TW414864B - Method of predicting dielectric film characteristics from chemical bonding and device thereof - Google Patents

Method of predicting dielectric film characteristics from chemical bonding and device thereof Download PDF

Info

Publication number
TW414864B
TW414864B TW89105177A TW89105177A TW414864B TW 414864 B TW414864 B TW 414864B TW 89105177 A TW89105177 A TW 89105177A TW 89105177 A TW89105177 A TW 89105177A TW 414864 B TW414864 B TW 414864B
Authority
TW
Taiwan
Prior art keywords
dielectric
film
thin film
patent application
item
Prior art date
Application number
TW89105177A
Other languages
Chinese (zh)
Inventor
Huang-Wen Chiou
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW89105177A priority Critical patent/TW414864B/en
Application granted granted Critical
Publication of TW414864B publication Critical patent/TW414864B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A method of predicting a dielectric film characteristics from the type and strength of a chemical bonding comprises setting up a database for storing various chemical bondings and the strength of chemical bondings of a dielectric film; storing the film characteristics obtained from measuring the dielectric film into the database; and setting up a prediction model using the relationship of the type and strength of chemical bonding stored in the database corresponding to the film characteristics, to achieve the purpose of predicting film characteristics through the analysis of the chemical bondings and the intensities.

Description

414864 a? ______B7 五、發明說明() 5-1發明領域: 本發明係與一種預測介電薄膜特性之方法與裝置有 關,特別是有關於一種利用化學鍵結種類以及強度量預測 介電薄膜特性之方法與裝置。 5-2發明背景: 半導體元件中的介電薄膜常用於隔離不同的導電層, 或是與導電層搭配而形成電容的結構。舉例而言,金氧半 場效電晶體(MOSFET)中的閘極結構,即是利用一片以二氧 化矽為材質之介電薄膜(即閘極氧化層分隔具有摻質的 丰導體基板以及由多晶石夕或金屬層所構成的明極電極板, 而由於閘極氡化層之薄膜特性的優劣往往影響金氧半場效 電晶體的性能與可靠度,因此如何有效監控其薄膜特性即 為確保產品品質與可靠度的一項重要課題。 經濟部智慧財產局員工消費合作社印製 影響介電薄膜之薄膜特性主要可以區分為物理特性、 光學特性、以及電特性。傳統上量測薄膜特性時必需先將 控片與晶圓前後置於反應至中’接著當介電薄膜形成之 後’將控片取出並透過複雜的量測程序而測得各種不同的 薄膜特性。由於這些量測的程序大都十分繁複,尤其是電 特性的量測更要消耗大量的時間,因此使得整個量測的程 序往往要花上數天的時間》此外由於量測時間·過長,故使 本紙張尺度適用令國國家標準<CNS>A4規格(210*297公釐) A7 414864 B7 五、發明說明() 得此項傳統的量測方法不能於製程線上即時得知介電薄膜 之薄膜特性。然而當某批次晶圓上的介電薄臈不合要求 時,傳統的量測方法必需等到幾天之後才能夠獲得其薄膜 特性的量測結果,因此將無法以即時調整製程的方式而重 新獲得合乎需求的介電薄膜。 綜上所述,針對於量測介電薄膜之薄膜特性的問題, 需要有更快速的薄膜特性量測技術,以簡化傳統量測的繁 複程序,進而縮減量測時間,以進一步提供製程線上薄膜 特性的快速焓斷能力。 5-3發明目的及概述: 本發明之目的為在提供一種利用化學鍵結種類與強度 量所建立之模型,以預測薄膜特性之方法與裝置。 本發明首先利用光譜儀量測介電薄膜中所包含之該化 學鍵結種類與強度量,以及量測介電層薄膜之薄膜特性。 接著利用上述量測得到的資料建立資料庫,用以儲存化學 鍵結種類與強度量,並同時儲存經由量測而得之薄膜特 性。再利用資料庫令的資料建立預測模型,以分析化學鍵 結與強度量對應於薄膜特性的關係,以建立可由化學鍵結 種類與強度量預測薄膜特性的數學模型。當預測薄膜特性 時,僅需分析介電薄膜中含有之化學鍵結種類與該強度 本紙張尺度適用中國囷家標準(CNS)A4規格(210 X 297公釐) - ---Μ 1 I i i I I --i I I — Ϊ - < I I--I i I » (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消费合作社印製 414864 A7 B7 五、發明說明() 量,再以預測模型為基礎 預測介電薄膜之薄膜特性 5-4圖式簡單說明: ,利用化學鍵結種類與強度量而 〇 (請先閱讀背面之α意事項再填寫本頁) ' 1 丨 I I I 丨—訂—丨 1 丨 — — I — 經濟部智慧財產局員工消費合作社印製 第 1圊 為 本 發 明 中 方 法 的 示 意 第: 2囷 為 本發 明 之 反 應 所 形 成 強 度 量 之 分 第: 3圖 為 本 發 明 之 響 薄 膜 折 射 第‘ 1圖 為 本 發 明 之 響 薄 膜 應 力 第丨 5圊 為 本發 明 之 預 測 由 四 乙 的 折 射 率 , 圊 0 第1 3圖 為 本 發 明 之 預 測 由 四 乙 的 應 力 > 與 第r 7圖 為 本發 明 之 響 薄 膜 介 電 第ί 3圖 為 本 發 明 之 由化學鍵结預測介電薄膜特性之 圖。 第一實施例中,由四乙基矽酸鹽 之介電薄膜中不同化學鍵結及其 析圖。 第一實施例中,不同化學鍵結影 率之權重分析圖。 第一實施例中,不同化學鍵結影 之權重分析圖。 第一實施例中,由本方法與裝置 基矽酸鹽反應所形成之介電薄膜 與實際量測得到的折射率之比較 第一實施例中,由本方法與裝置 基矽酸鹽反應所形成之介電薄膜 實際量測得到的應力之比較圖。 第一實施例中,不同化學鍵結影 常數之權重分析圊。 第一實施例中*由本方法與裝置 4 本紙張尺度適用中國國家標準(CNS)A4現格(210 X 297公釐) 414864 A7 B7 五、發明說明() 預測由四乙基矽酸鹽反應所形成之介電薄膜 的介電常數,與實際量測得到的介電常數之 比較圖。 第9圖 為本發明之第一實施例中,不同化學鍵結影 響薄膜平帶電壓之權重分析圖。 第1 0圖 為本發明之第一實施例中,由本方法與裝置 預測由四乙基矽酸鹽反應所形成之介電薄膜 的平帶電壓,與實際量測得到的平帶電壓之 比較圖。 第11圖 為本發明之第二實施例中,由含碳之低介電 常數材料所组成之介電薄膜中不同化學鍵結 及其強度量之分析圖。 第1 2圖 為本發明之第二實施例中,不同化學鍵結影 響薄膜折射率之權重分析圊。 第1 3圖 為本發明之第二實施例中,不同化學鍵結影 響薄膜應力之權重分析圖》 第1 4圖 為本發明之第二實施例中,由本方法與裝置 預測由低介電常數材料所組成之介電薄膜的 折射率,與實際量測得到的折射率之比較 圖。 第1 5圖 為本發明之第二實施例中,由本方法與裝置 預測由低介電常數材料所組成之介電薄膜的 應力,與實際量測得到的應力之比較圖。 第1 6圖 為本發明之第二實施例中,不同化學鍵結與 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — Mtnllllllt ' ------1 I (請先閱讀背面之泫意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 414864 A7 五、發明說明( 第17圖 第】8圖 第19圖 第20圖 薄膜介電常數之關係圖。 為本發明之第二實施例中,…法與裝置 預>J由低介電常數材料所組成之介電薄膜的 介電常數,虚穿降·蚤⑴β /、Τ U重剛得到的介電常數之比 較圖β 為本發明之第二實施例中,π同化學鍵結與 薄膜平帶電壓之關係圖。 為本發明之第二實施例中,*本方法與裝置 預測由低介電常數材料所纟且成之介電薄膜的 平帶電壓,與實際量測得到的平帶電壓之比 較圊。 為本發明中各種不同之化學鍵結相對應於介 電常數值的關係圖。 (請先M讀背面疋注意事項再填寫本頁) 經濟邨智慧財產局員工消費合作社印製 5-5發明詳細說明: 以巨觀言之,介電薄膜的薄膜特性通常由不同的因素 所決定,如薄膜材質、沈積溫度、沈積速率 '回火處理了 摻質濃度、薄膜多孔性(P〇r 〇 S i t y )等β而以微觀而言, 有的介電薄膜皆可視為由數種不同之化學鍵結所組成的2 構。理論上,這些化學鍵結的數量、分佈、與結構等性質^ 將決定介電薄膜的各種薄膜特性,如折射率、摩 H 介電 常數、以及平帶電壓(Flat Band Vol t age )等。然而即使在 相同材質所構成的介電薄膜中,這些不同的化學鍵結 數 冬紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公« ) · — I — i 1 I —tT: — — —*1111- s't A7414864 a? ______B7 V. Description of the invention (5-1) Field of the invention: The present invention relates to a method and a device for predicting the characteristics of a dielectric thin film, and in particular to a method for predicting the characteristics of a dielectric thin film by using the type of chemical bonding and the strength. Method and device. 5-2 Background of the Invention: Dielectric films in semiconductor devices are often used to isolate different conductive layers or to form capacitors with a conductive layer. For example, the gate structure in a metal-oxide-semiconductor field-effect transistor (MOSFET) uses a dielectric thin film made of silicon dioxide (that is, the gate oxide layer separates a dopant-rich conductor substrate and consists of multiple Bright electrode plate composed of spar or metal layer, and because the properties of the thin film of the gate electrode layer often affect the performance and reliability of the metal oxide half field effect transistor, how to effectively monitor its thin film characteristics is to ensure An important subject of product quality and reliability. The characteristics of thin films that affect the dielectric film printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs can be divided into physical characteristics, optical characteristics, and electrical characteristics. Traditionally, it is necessary to measure film characteristics First place the control panel and the wafer back and forth to the middle of the reaction, then “after the dielectric film is formed”, take out the control panel and measure various film characteristics through complex measurement procedures. Because these measurement procedures are mostly very Complex, especially the measurement of electrical characteristics consumes a lot of time, so the entire measurement process often takes several days "this Because the measurement time is too long, the paper standard applies the national standard < CNS > A4 specification (210 * 297 mm) A7 414864 B7 V. Description of the invention () This traditional measurement method cannot be used The thin film properties of the dielectric thin film are instantly known on the process line. However, when the dielectric thin film on a batch of wafers is not satisfactory, the traditional measurement method must wait for a few days to obtain the measurement results of its thin film properties. Therefore, it will not be possible to regain the desired dielectric film by adjusting the process in real time. In summary, for the problem of measuring the film characteristics of dielectric films, a faster film characteristic measurement technology is needed to simplify The complicated procedures of traditional measurement, further reducing the measurement time, to further provide the fast enthalpy-breaking capability of the thin film characteristics on the process line. 5-3 Purpose and Summary of the Invention: The purpose of the present invention is to provide a method for measuring the type and strength of chemical bonds. The model is established to predict the characteristics and methods of the thin film. In the present invention, a spectrometer is first used to measure the type of chemical bonding contained in the dielectric thin film. Intensity, and measurement of thin film properties of the dielectric layer film. Then use the measured data to establish a database to store the type and intensity of chemical bonding, and at the same time store the measured film properties. Reuse The data of the database order is used to establish a prediction model to analyze the relationship between chemical bonding and strength amount corresponding to film properties, and to establish a mathematical model that can predict the film properties from the type and strength of chemical bonding. When predicting film properties, only the dielectric needs to be analyzed Types of chemical bonds contained in the film and the strength This paper size applies the Chinese Standard (CNS) A4 (210 X 297 mm)---- M 1 I ii II --i II — Ϊ-< I I --I i I »(Please read the notes on the back before filling out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 414864 A7 B7 V. Description of the invention, and then predict the dielectric film based on the prediction model Brief description of the film characteristics 5-4: Using chemical bond types and strengths 〇 (Please read the α meaning on the back before filling this page) '1 丨 III 丨 —Order— 1 丨 — — I — Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 1) This is a schematic illustration of the method of the present invention: 2) is the intensity of the intensity formed by the reaction of the present invention. Thin film refraction Figure 1 shows the film stress of the present invention. Figure 5 shows the predicted refractive index of the present invention from Si. 圊 0 Figure 13 shows the predicted value of the present invention from the stress of Si. Fig. 7 is a graph of the thin film dielectric of the present invention. Fig. 3 is a graph of the prediction of the characteristics of the dielectric thin film by chemical bonding according to the present invention. In the first embodiment, different chemical bonds in a dielectric film made of tetraethyl silicate and their analysis are shown. In the first embodiment, a weight analysis chart of different chemical bond bonding shadows. In the first embodiment, a weight analysis chart of different chemical bond shadows. In the first embodiment, the comparison between the dielectric film formed by the reaction between the method and the device-based silicate and the actual measured refractive index In the first embodiment, the dielectric film formed by the reaction between the method and the device-based silicate Comparison chart of the actual measured stress of the electrical film. In the first embodiment, the weights of different chemical bond shadowing constants are analyzed. In the first embodiment, * the method and the device 4 the paper size is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 414864 A7 B7 5. Description of the invention () Predicted by the tetraethyl silicate reaction Comparison graph of the dielectric constant of the formed dielectric film and the dielectric constant measured in practice. Fig. 9 is a weight analysis chart of the influence of different chemical bonds on the flat band voltage of the film in the first embodiment of the present invention. FIG. 10 is a comparison diagram of the flat band voltage of the dielectric film formed by the reaction of tetraethyl silicate predicted by the method and the device in the first embodiment of the present invention, and the flat band voltage measured by the actual measurement. . Fig. 11 is an analysis diagram of different chemical bonds and their strengths in a dielectric thin film composed of a carbon-containing low dielectric constant material in a second embodiment of the present invention. Fig. 12 is a weight analysis of the influence of different chemical bonds on the refractive index of the thin film in the second embodiment of the present invention. FIG. 13 is a weight analysis diagram of film stress in different chemical bonds in the second embodiment of the present invention. ”FIG. 14 is a second embodiment of the present invention. The method and device are used to predict the low dielectric constant material. A comparison chart of the refractive index of the composed dielectric film with the refractive index actually measured. Fig. 15 is a comparison diagram of the predicted stress of a dielectric film composed of a low dielectric constant material and the actually measured stress by the method and device in the second embodiment of the present invention. Figure 16 is the second embodiment of the present invention. Different chemical bonds and paper sizes are applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) — Mtnllllllt '------ 1 I (Please Read the intention on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by 414864 A7 V. Description of the invention (Figure 17) Figure 8: Figure 19: Figure 20 The relationship between the film dielectric constants. In the second embodiment of the present invention, the method and the device preliminarily > J the dielectric constant of the dielectric thin film composed of a low dielectric constant material, the virtual dielectric properties of the dielectric film obtained by the virtual breakdown, the fleas β /, and T U Comparison of constants β is the relationship between π and chemical bonding and the flat-band voltage of the thin film in the second embodiment of the present invention. In the second embodiment of the present invention, * the method and the device predict the low dielectric constant material The flat band voltage of the resulting dielectric film is compared with the actual measured flat band voltage. It is a diagram of the relationship between the various chemical bonds in the present invention corresponding to the dielectric constant value. (Please M first (Please read the note on the back and fill in this page) 5-5 printed by the Consumer Cooperative of the Property Bureau Detailed description of the invention: In large terms, the film properties of dielectric films are usually determined by different factors, such as film material, deposition temperature, and deposition rate. Concentration, porosity of the film (P0 〇 sity) and other β and microscopically speaking, some dielectric films can be considered as two structures composed of several different chemical bonds. In theory, the number of these chemical bonds Properties such as distribution, distribution, and structure ^ will determine various thin film characteristics of the dielectric thin film, such as refractive index, dielectric constant of MoH, and flat band voltage (Flat Band Volt age), etc. However, even the dielectric composed of the same material In the electric film, these different chemical bond numbers of winter paper are in accordance with China National Standard (CNS) A4 specifications (210 X 297 male «) · — I — i 1 I —tT: — — — * 1111- s't A7

4:4864 五、發明說明() 量、分佈、與結構亦不盡相同,因此使得目前無法透過微 觀的理論建立利用化學鍵結的數量、分佈、與結構等性 而預測出各種薄骐特性。 雖然目前沒有深入之理論研究的基礎’然而介電薄膜 中的化學鍵結確係與其薄膜特性息息相關。因此本發明提 出了一種方法與裝置,係用分析介電薄膜而得到其令主要 化學鍵結的強度量(即綜合考量化學鍵之數量與影響某一 薄膜特性之權重的度量),再將這些化學鍵結的強度量與相 對應之薄膜特性建立成一個龐大的資料庫。之後再利用統 計學的方法找出這些化學鍵之種類以及強度量,與薄膜特 性之間的關係,進而建立可以描述其間關係的數學模型。 嗣後’只需測得介電薄膜中化學鍵結的種類與強度量之 後’即可利用上述的數學模型而推預測出其薄膜特2。以 下將以一個系統方塊圖說明本發明之精神,接著再以兩個 具體實施例來說明本發明之實際成效。 首先參閱第1圖’顯示了本發明之實施方法。首先分 別量測介電薄膜之化學鍵結種類及強度量(如步驟2),以 及取得相對應之介電薄膜之薄膜特性(如步驟4 ),並將上 述的化學鍵結種類、強度量、以及薄骐特性建立成資料庫 (如步驟6)。而步驟2與步驟4可同時進行,或隨意以不 同的先後次序進行。在步驟2中,可利用不同化學鍵結對 不同頻率的光線有不同反應的性質,而以光譜儀(如霍氏紅 本k張尺度適用中國國家標準(CNS)A4規格(21G * 297公~ ~ ~~~" --- I 11 Γ . 1----1 丨訂*--------^fv. (請先閲讀背面之注意事項再填寫本頁> 經濟部智慧財產局員工消費合作社印製 414864 五、發明說明(4: 4864 V. Description of the invention () The quantity, distribution, and structure are also different. Therefore, it is currently impossible to use microscopic theory to establish the use of the number, distribution, and structure of chemical bonds to predict various thin-walled properties. Although there is currently no basis for in-depth theoretical research ’, the chemical bonding in a dielectric film is indeed closely related to its film characteristics. Therefore, the present invention proposes a method and device for analyzing the dielectric film to obtain the strength of its main chemical bonds (that is, a comprehensive measurement of the number of chemical bonds and a weight that affects the characteristics of a film), and then these chemical bonds The amount of strength and the corresponding film properties are established into a huge database. Then use statistical methods to find out the relationship between the type and intensity of these chemical bonds and the characteristics of the thin film, and then establish a mathematical model that can describe the relationship between them. After the 'after measuring the type and strength of the chemical bonds in the dielectric film', the above-mentioned mathematical model can be used to predict the film characteristics2. In the following, the spirit of the present invention will be explained with a system block diagram, and then the actual effect of the present invention will be explained with two specific embodiments. First, referring to Fig. 1, a method for carrying out the present invention is shown. First, measure the type and strength of the chemical bond of the dielectric film (as in step 2), and obtain the film characteristics of the corresponding dielectric film (as in step 4).骐 Features are created into a database (as in step 6). Steps 2 and 4 can be performed at the same time, or in any order. In step 2, different chemical bonds can be used to respond to different frequencies of light, and the spectrometer (such as Huo's red k-scale is applicable to China National Standard (CNS) A4 specifications (21G * 297) ~ ~ ~~ ~ " --- I 11 Γ. 1 ---- 1 丨 Order * -------- ^ fv. (Please read the notes on the back before filling this page > Staff of Intellectual Property Bureau, Ministry of Economic Affairs Printed by the Consumer Cooperative 414864 V. Description of Invention (

外線光譜儀)量滴丨丨八# ^ 於薄膜特性如折電薄膜中化學鍵結種類及強度量。至 則可利用傳統的=、應力 '介電常數、肖平帶電壓等, 結種類及強度量儲二方式取得後,將其與相對應之化學鰱 夠大之後m子於資料庫中β #資料庫的取樣數量足 結種類以及强户習知的統計學方法建立可指述化學鍵 後,每當欲心::膜特性的數學模型,如步驟之 儀量測其中之化麥f㈣之薄膜特性時,|需要利用光譜 的數學模式而計算:結種類以及強度量,可依據所建立 1 0所示。 預測出此介電薄膜的薄膜特性,如步驟 依 測薄膜 步驟6 式磁碟 膜特性 軟體形 計算單 人電腦 元可進 學鍵結 經濟部智慧財產局員工消費合作社印製 據使用上沾+特性的裝置# ’本發明之方法亦可建構成之資料廉-r " 1圖所示’步驟8之預測 、 可鍺存於資料載體之中,如硬式磁 僅需二磉帶、快閃記德體等。而步驟10之 4姑六具有數位運算能力的計算單元,而 二1子於資料載體中的預測棋型即可。至於 凡:資科載體可互連結耦合而形成運算裝置 作站、或製程線上的偵測單元等。此一 -步舆光譜儀結合,以直接接收光譜儀所測 種類與強度量,而輸出薄膜特性的預測值。 —組預 模型與 碟、軟 預測薄 執行以 上述的 ’如個 計算單 得之化 第2圖〜第1 〇圖,為利用本發明 (TE0S)反應而得之介電薄膜(以下簡^ ^ ^ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ""^1- .1 : —K^ ml— —--I I--* c靖先閲讀背面之注意事項再填寫本頁) 414864 經濟部智慧財產局員工消費合作社印5取 A7 B7 五、發明說明() 之化學鍵结與強度量對TEOS薄膜之薄膜特性的關係。首先 經過光譜儀的分析之後,TEOS薄膜可分類成由五種不同波 數(Wavenumber)之化學鍵結所組成,而其中不同種類之化 學鍵結與歸一化(Normal izati on)後的強度量顯示於第2 圖之中。如圖中所示,TEOS薄膜可分類成由波數450± 50 之*夕氧鍵結(450 Si-Ο)、波數820± 50之石夕氡鍵結(820 Si-Ο)、波數1 050± 50之矽氧鍵結(〗050 Si-Ο) '波數1243 ± 50之矽甲基鍵結( 1 243 Si-CH3)、與波數3500± 50之氩 氧鍵結(3500 0H)。 第3圖顯示了上述五種化學鍵結影響TEOS薄膜之折射 率的權重分析圖。其中正向的權重值表示該化學鍵結有增 加折射率的效果,而其數值越大則表示對折射率的增加效 果越好。相反的負向的權重值表示該化學鍵結有減少折射 率的效果,而其絕對值越大則表示對折射率的減少效果越 強。由圖中可以得之’波數丨〇5〇± 50之矽氧鍵結(1〇50 Si-0) 對折射率有最佳的貢獻度,而波數820± 50之矽氧鍵結(820 S i - 0)則對折射率有最強的減弱效果。第4圖則顯示了上述 五種化學鍵結影響TEOS薄膜之應力的權重分析圖,而其判 讀方式則與第3圖相類似。其中’波數8 2 0 ± 5 0之矽氧鍵 結(820 Si-Ο)對應力有最佳的增強效果,而波數450± 50 之石夕氧鍵結(4 5 0 S i - 0)則對應力有最強的減弱效果。如此 將可以此權重分析為基礎,利用化學鍵結種類與強度量建 立預測TEOS薄膜之折射率與應力的棋型。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ΙΊΙ1-: I I I I I I I ^ *II!flllp 後/—·,-(猜先閱讀背面之注意事項再填寫本頁) 414864 經濟部智慧財產局員工消f合作社印製 A7 五、發明說明() 請參閱第5圖與第6圖,顯示了依據上述的模型所預 測之折射率與薄臈應力,和實際量測TE〇s薄膜所得之折射 率與薄膜應力的比較圖。圖中方塊係為透過傳統方法做實 際量測而得到的結果,而園圈則是本發明所建立之模型所 預測得的結果’至於所連成的折線則是量測多片晶圓所得 到的連線。由圖中可以得知’本發明之模型對於TE0S薄臈 之折射率與應力之預測結果顯得十分準確。 接著參閱第7圖與第8圖,顯示了上述五種化學鍵結 影饗TEOS薄膜之權重分析圊,以及預測之介電常數與實際 量測之介電常數的比較關係。如第7圖所示波數45〇± 5〇 之矽氧鍵結( 450 Si-Ο)對介電常數有最大的增強效果,而 波數820± 50之矽氧鍵結(82〇 Si_〇)則對介電常數有最強 的減弱效果。而由第8圖中可以得知,本發明之模型對於 TEOS薄膜之介電常數之預測結果(圓圈折線)與實際量測結 果(方塊折線)的比較亦十分準破。 接著參閱第9圖與第類示了上述五種化學鍵结 影響TEOS薄膜之權重分析圖,以及預測之平帶電壓盘實際 量測之平帶電壓的比較關係.如第9圖所示波數ι〇5〇+ 5〇 之矽氧鍵結( 1 050 S卜0)對平帶電壓有最大的增強效果,而 波數820± 50之破氧鍵結(820 Si_〇)則對平帶電壓有最強 的減弱效果。而由第U IB中可以得知,本發明之模型對於 10 參紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I Ί 1 I — I I I ! I I " — — I1IIII ^^/ΙΓ (靖先閱讀背面之注t事項再填窝本頁} A7 B7 414864 五、發明說明() T E 0 S薄膜之平帶電壓之預測結果(圓圈折線)與實際量測 (方塊折線)的結果則是跡近於重合。 第11圖〜第1 9圖,為利用本發明針對由含碳之低介 電常數材料所形成之介電薄膜(以下簡稱低介電常數薄 膜),所建立之化學鍵結與強度量對低介電常數薄膜之薄膜 特性的關係。由於此類的低介電常數薄膜已廣泛的運用在 新一代的半導體製程中,因此對其薄膜特性的分析將顯得 十分有價值。首先經過光譜儀的分析之後,低介電常數薄 膜可分類成由五種不同波數(ffave number)之化學鍵結所組 成,而其中不同種類之化學鍵結與歸一化(Normal i zat i 〇f〇 後的強度量顯示於第1丨圖之中°如圖中所示,低介電常數 薄膜可分類成由波數800土 50之矽碳、矽氧、碳氫鍵結(8〇〇 SiC、SiO、CH)、波數 1030± 50 之矽氧鍵結Si〇)、 波數1 268± 50之矽甲基鍵結U 268 SiCH3) '波數2184± 50 之石夕氫鍵結(2184 SiH)、與波數3000± 50之碳氛鍵結(3500 CH)。其中由於矽碳、矽氧、碳氫鍵結對於波數800± 50的 入射光皆有反應,故將其合併成一類化學鍵考慮。 第1 4圊與第1 5圖則顯示了上述五種化學鍵結影響低 介電常數薄膜之折射率與薄膜應力的權重分析圖。其中正 向的權重值表不这化學鍵結對该薄膜特性有增加的效果, 相反的負向的權重值表示該化學鍵結有減少該薄膜特性的 效果。由圊中可以得之,波數800± 5〇之石夕碳、石夕氧、碳 本紙張尺度適用中國國家標準(CNS)A4规格<210 X 297公釐) - — (Mill-1111 —I » I I i i ml ^ *1111111— / i {請先閱讀背面之Ji意事項再填寫本頁) 經濟邨智慧財產局員工消費合作社印製 A7 414864 ----------B7_____ 五、發明說明() 氩鍵結(800 SiC、SiO、CH)對折射率有最佳的貢獻度,而 波數1 268± 50之矽甲基鍵結( 1 268 SiCH3)則對折射率有最 強的減弱效果,此外波數1 2 6 8 ± 5 0之矽f基鍵結U 2 6 8 SiCH3)對應力有最佳的增強效果,而波數800± 50之矽碳、 矽氧、碳氩鍵结(800 SiC、SiO、CH)則對應力有最強的減 弱效果。如此將可以此權重分析為基礎,利用化學鍵結種 類與強度量建立預測低介電常數薄膜之折射率與應力的模 型。 第丨4困與第丨5圖,顯示了依據上述的模型所預測之 折射率與薄膜應力’和實際量測低介電常數薄膜所得之折 射率與薄膜應力的比較圈。圖中方塊折線係為透過傳統方 法做實際量測而得到的結果,而圓圈折線則是本發明所建 立之模型所預測得的結果。由圖中可以得知,本發明之棋 型對於低介電常數薄膜之折射率與應力之預測結果顯得十 分準確。 第16圖與第18圖顯示了不同化學鍵結對介電常數與 平帶電壓的影響效果,而第17圖與第19圖則顯示了本模 型預測之介電常數與平帶電壓,和實際測量值的比較結 果》第16圖與第18圖中,不同段的曲線即表示了不同化 學鍵結對應介電常數或平帶電壓的趨勢,而其斜率則表示 了影響的權重。由第17圖與第19圖中可以發現,以本發 明之方法預測低介電常數薄膜之薄膜特性已十分的良好。 本紙張尺度適用申國國家標準(CNS)A4規格(210 X 297公釐) (請先®讀背面之注意事項再填寫本頁) ^eJI . -線,/ 經濟部智慧財產局員工消费合作社印製 414864 A7 B7 第 數的關 與介電 折射率 知亦大 建立了 測薄膜 常數薄 擴展其 特性所 力。 鍵结與介電常 強度量的變化 他薄膜特性如 之間經實驗得 介電常數薄膜 數學模型而預 薄暝與低介電 資料庫中,而 節省量測薄膜 薄骐特性的能 五、發明說明( 20圖將上述兩個實施例中十組的化學 係繪製成圏。由圖中可知,其化學鍵 常數的變化大約成線性的關係。而其 、應力、平帶電壓’與化學鍵強度量 約成線性的關係^當對丁E〇s薄膜與低 資料足夠的資料庫之後,即可找出其 特性°當然’此資料庫並不限於TE〇s 膜,因此其他薄膜的資料亦可儲存於 應用範圍。如此,本發明將可以大幅 花費的時間,並提供於製程線上診斷 本發明以一較佳賞施例說明如上,僅用於藉以幫助了 解本發明之實施’㈣以限定本發明之精神,而熟悉此領 域技藝者於領悟本發明之精神後,在不脫離本發明之精神 範圍内,當可做些許更動潤飾及等同之變化㈣,其專利 保護範圍當視後附之專利申請範圍及其等同領域而定。 — Ml —1-— - ----— >-33^ — t----- 訂· — il — 1. (請先M讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消t合作社印製 13 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公蜚)Outside line spectrometer) measuring drops 丨 丨 八 # ^ In film characteristics such as the type and intensity of chemical bonds in the film. Then you can use the traditional =, stress' dielectric constant, Xiaoping band voltage, etc. After obtaining the junction type and strength storage method, the corresponding chemical is large enough, and then it is stored in the database β # The number of samples in the database is based on the types of statistics and the statistical methods familiar to strong households. After establishing a chemical bond that can be referred to, whenever you want to :: a mathematical model of the membrane characteristics, such as when measuring the characteristics of the thin film , | Need to use the mathematical model of the spectrum to calculate: the type of knot and the amount of intensity can be shown according to the established 10. Predict the film characteristics of this dielectric film. For example, follow the steps to measure the film. Step 6 Type of magnetic disk film. Software-shaped calculation. Single computer element can be learned. Bonding. Intellectual property bureau of the Ministry of Economic Affairs.的 装置 # The method of the present invention can also be constructed with the data as shown in Figure 1-r " as shown in the figure below. The prediction of step 8 can be stored in the data carrier. For example, hard magnetism requires only two bands, flash memory.体 等。 Body and so on. Step 4 of step 10 is a calculation unit with a digital operation capability, and the second one can predict the chess pattern in the data carrier. As for where: the asset carrier can be interconnected and coupled to form a computing device as a station or a detection unit on the process line. This one-step spectrometer is combined to directly receive the type and intensity measured by the spectrometer, and output the predicted value of the film characteristics. —The group pre-model, disc, and soft prediction sheet are executed according to the above-mentioned “Single calculation,” Figures 2 to 10, for the dielectric film obtained by using the TEOS reaction (hereinafter abbreviated ^ ^ ^ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) " " ^ 1- .1: —K ^ ml— —-- I I-* Please fill in this page for further information) 414864 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5 Take A7 B7 V. The relationship between the chemical bonding and strength of the invention () and the characteristics of the TEOS film. After analysis by a spectrometer, TEOS films can be classified into five types of chemical bonds with different wave numbers (Wavenumber), and the intensity of different types of chemical bonds and normalized (Normal izati on) 2 In the figure. As shown in the figure, TEOS films can be classified into * Xi oxygen bond (450 Si-O) with a wave number of 450 ± 50, Shixian bond (820 Si-O) with a wave number of 820 ± 50, and wave number 1 050 ± 50 silicon-oxygen bond (〖050 Si-〇) 'wave number 1243 ± 50 silicon-methyl bond (1 243 Si-CH3), and argon-oxygen bond (3500 0H at wave number 3500 ± 50) ). Figure 3 shows the weight analysis of the five chemical bonds affecting the refractive index of the TEOS film. The positive weight value indicates that the chemical bond has the effect of increasing the refractive index, and the larger the value, the better the effect of increasing the refractive index. The opposite negative weight value indicates that the chemical bond has the effect of reducing the refractive index, and the larger the absolute value, the stronger the effect of reducing the refractive index. From the figure, the silicon-oxygen bond with a wave number of 丨 050 ± 50 (1050 Si-0) has the best contribution to the refractive index, and the silicon-oxygen bond with a wave number of 820 ± 50 ( 820 S i-0) has the strongest weakening effect on the refractive index. Figure 4 shows the weight analysis of the stress of the five chemical bonds affecting the TEOS film, and the interpretation method is similar to that of Figure 3. Among them, the silicon-oxygen bond (820 Si-O) with a wave number of 8 2 0 ± 50 has the best enhancement effect on stress, and the stone-oxygen bond with a wave number of 450 ± 50 (4 5 0 S i-0 ) Has the strongest weakening effect on stress. In this way, based on this weight analysis, the type and strength of chemical bonds are used to establish a chess pattern for predicting the refractive index and stress of TEOS films. This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) ΙΊΙ1-: IIIIIII ^ * II! Flllp After /-·,-(Guess to read the precautions on the back before filling this page) 414864 Ministry of Economic Affairs Printed by the Intellectual Property Bureau staff A7 printed by the cooperative Fifth, the description of the invention () Please refer to Figure 5 and Figure 6, which show the refractive index and thin stress predicted by the above model, and the actual measurement of TE0s film Comparison chart of the obtained refractive index and film stress. The squares in the figure are the results obtained by actual measurement through traditional methods, and the circles are the results predicted by the model established by the present invention. As for the connected polylines, they are obtained by measuring multiple wafers. Connection. It can be known from the figure that the model of the present invention is very accurate in predicting the refractive index and stress of the TE0S thin plate. Next, referring to Fig. 7 and Fig. 8, the above five kinds of chemical bonding shadows (weight analysis of TEOS film) and the comparison relationship between the predicted dielectric constant and the actually measured dielectric constant are shown. As shown in Figure 7, the silicon-oxygen bond (450 Si-O) with a wave number of 45 ± 50 has the greatest effect on enhancing the dielectric constant, while the silicon-oxygen bond (82〇Si_ with a wave number of 820 ± 50) 〇) has the strongest weakening effect on the dielectric constant. It can be seen from Fig. 8 that the comparison between the prediction result of the dielectric constant of the TEOS film (circle broken line) and the actual measurement result (square broken line) of the model of the present invention is quite accurate. Next, refer to Figure 9 and the first category, which show the weight analysis of the five kinds of chemical bonds affecting the TEOS film, and the comparison relationship between the predicted flat band voltage and the actual measured flat band voltage. As shown in Figure 9 〇5〇 + 50 of silicon-oxygen bonding (1 050 Sb 0) has the largest enhancement effect on the flat band voltage, while the wave number 820 ± 50 oxygen breaking bond (820 Si_〇) has a flat band voltage Has the strongest weakening effect. According to U IB, the model of the present invention applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) for 10 reference paper sizes. I Ί 1 I — III! II " — — I1IIII ^^ / ΙΓ (Jing first read the note t on the back and then fill in the page) A7 B7 414864 V. Description of the invention () TE 0 S film's flat band voltage prediction result (circle polyline) and actual measurement (square polyline) As a result, the traces are nearly coincident. Figures 11 to 19 are created by using the present invention for a dielectric film (hereinafter referred to as a low dielectric constant film) formed of a low dielectric constant material containing carbon. The relationship between chemical bonding and strength on the film properties of low-dielectric-constant films. Since such low-dielectric-constant films have been widely used in the new generation of semiconductor processes, the analysis of their film properties will be very valuable First, after analysis by a spectrometer, low dielectric constant films can be classified into five types of chemical bonds with different ffave numbers, and different types of chemical bonds and normalization (Normal i zat i 〇). The intensity after f0 is shown in Fig. 1 °. As shown in the figure, the low dielectric constant film can be classified into silicon carbon, silicon oxygen, and carbon-hydrogen bonding (800) with a wavenumber of 800 to 50. SiC, SiO, CH), silicon-oxygen bond Si with wave number 1030 ± 50, silicon methyl bond with wave number 1 268 ± 50 U 268 SiCH3) 'stone wave hydrogen bond with wave number 2184 ± 50 ( 2184 SiH), bonded to a carbon atmosphere with a wave number of 3000 ± 50 (3500 CH). Among them, since the silicon-carbon, silicon-oxygen, and carbon-hydrogen bonds all react to the incident light with a wavenumber of 800 ± 50, they are considered as a type of chemical bond. Figures 14 and 15 show the analysis of the weight of the refractive index and film stress of the low-dielectric-constant film affected by the five chemical bonds mentioned above. The positive weight value indicates that the chemical bonding has an effect of increasing the film characteristics, and the negative negative weight value indicates that the chemical bonding has an effect of reducing the film characteristics. It can be obtained from Huangzhong, and the paper size of Shixi Carbon, Shixi Oxygen and Carbon with wave number 800 ± 50 is applicable to China National Standard (CNS) A4 Specification < 210 X 297 mm)--(Mill-1111 — I »II ii ml ^ * 1111111— / i {Please read Ji's notice on the back before filling out this page) Printed by the Economic Consumers' Property Bureau Employee Consumer Cooperative A7 414864 ---------- B7_____ V. Description of the invention () Argon bond (800 SiC, SiO, CH) has the best contribution to the refractive index, while the silicon methyl bond (1 268 SiCH3) with a wave number of 1 268 ± 50 has the strongest refractive index. Attenuation effect, in addition, the silicon f-based bond U 2 6 8 SiCH 3) with wave number 1 2 6 8 ± 50 has the best enhancement effect on stress, and the silicon carbon, silicon oxygen, carbon argon bond with wave number 800 ± 50 The junction (800 SiC, SiO, CH) has the strongest weakening effect on stress. In this way, based on this weight analysis, the type and intensity of chemical bonding are used to establish a model for predicting the refractive index and stress of a low dielectric constant film. Figures 4 and 5 show the circle of comparison of the refractive index and film stress predicted by the above model and the refractive index and film stress of the low-dielectric constant film actually measured. The square polyline in the figure is the result of actual measurement through traditional methods, and the circle polyline is the result predicted by the model established by the present invention. It can be seen from the figure that the prediction result of the chess pattern of the present invention for the refractive index and the stress of the low-dielectric-constant film is extremely accurate. Figures 16 and 18 show the effects of different chemical bonds on the dielectric constant and flat band voltage, while Figures 17 and 19 show the dielectric constant and flat band voltage predicted by this model, and actual measured values Comparing Results of Figures 16 and 18, the curves in different sections show the trends of the dielectric constant or flat band voltage corresponding to different chemical bonds, and their slopes indicate the weight of influence. From Figs. 17 and 19, it can be found that the film characteristics of the low-dielectric-constant film predicted by the method of the present invention are very good. This paper size applies to the Shenyang National Standard (CNS) A4 specification (210 X 297 mm) (please read the notes on the back before filling this page) ^ eJI. -Line, / Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economy The number of 414864 A7 B7 and the dielectric index of refraction are well established to measure the thin film constant and expand its characteristics. Changes in the bond strength and dielectric constant strength. Other thin film properties are obtained by experimentally obtaining a mathematical model of the dielectric constant thin film and pre-thinned in the low-k dielectric and low-dielectric database. Explanation (Figure 20 draws ten groups of chemical systems in the above two examples as 圏. From the figure, it can be seen that the change in the chemical bond constant is approximately linear. And its stress, flat band voltage 'and the amount of chemical bond strength are about It has a linear relationship ^ After the database of Ding E0s film and low data is sufficient, its characteristics can be found. Of course 'this database is not limited to TE0s film, so the data of other films can also be stored in Scope of application. In this way, the present invention can take a lot of time and provide diagnosis on the process line. The present invention is explained above with a preferred example. It is only used to help understand the implementation of the present invention. However, after knowing the spirit of the present invention, those skilled in this field can make some modifications and equivalent changes without departing from the spirit of the present invention. Its patent protection It depends on the scope of the attached patent application and its equivalent fields. — Ml —1-—-----— > -33 ^ — t ----- Order · — il — 1. (Please first Please read the notes on the back of the M and fill in this page again.) 13 printed by the co-operatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Paper size is applicable to China National Standard (CNS) A4 (210 X 297 cm).

Claims (1)

414864 A8 B8 C8 D8 六、申請專利範圍 由 法 結 方 鍵 該 學 , 匕 法 種 方 各 之 中 性 膜 特 薄 膜 電 薄 介 電 種 測 存 預 儲 結 以 ί .. 用J驟, ' 步庫 列料 種下資 一含立 1.包建 少 至 量 由 經 膜 薄 電 介 該 存 儲 時 同 並 量及 度以 強; 之性 結特 鍵膜 學薄 化之 該得 及而 以測 於強 應該 對及 量以 度類 強種 該結 及鍵 以學 結化。 鍵該型 學由模 化可測 該立預 析建該 分以之 , , 性 型係特 模關膜 測的薄 預性該 立特測 建膜預 薄量 該度 測 學 預 化 立 該 建 及 述 以 上 類 中 種 其 結 , 鍵 法 學 方 化 之:該 項驟之 1步含 第列中 alTΜ 範含薄 中包電 專更介 請後測 申驟待 如步析 2之分 型 模 強 該 及 以 類 種 結 鍵。 學性 化特 該膜 用薄 ^ 亥 ,之 礎膜 及基薄 以為電 ;型介 量模測 度測待 強預該 該該測 之以預 結 量 鍵 度 測學 待化 析之 分膜 述薄 上電 中介 其測 ’待 法該 方析 之分 項儀 2譜 第光 圍為 範係 利, 專驟 請步 申之 如膜 3.薄。 電構 介結 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印踅 圍列 *、巳 ί 下 利含 專包 請更 申前 如驟 4.步 之 庫 料 資 立 建 述 上 中 其 法 方 之 項 - 第 步 結 鍵 學 匕 亥 言 之 含 包 所 中 膜 薄 電 介 該及 測以 量 ; 儀量 譜度 光強 用該 利及 以 類 本纸張尺度逋用中國國家榡準(CNS ) Α4規格(210Χ297公爱) AS B8 _414864 g_ 六、申請專利範圍 量測介電層薄膜之該薄膜特性;以及 (請先閱讀背面之注意事項再填寫本頁) 其中,該利用光譜儀量測該介電薄膜中所包含之該化 學鍵結種類以及該強度量之步驟,與該量測介電層薄膜之 步驟的執行順序可以前後對調,或是同時進行。 5. 如申請專利範圍第1項之方法 > 其中上述之薄膜特 性為折射率、應力 '介電常數、或平帶電壓。 6. 如申請專利範圍第1項之方法,其中上述之介電層 薄膜包含由四乙基矽酸鹽反應形成之該介電薄膜,與含碳 之低介電常數材料所组成之該介電薄膜。 7. 如申請專利範圍第6項之方法,其ΐ上述之由四乙 基矽酸鹽反應形成之該介電薄膜中,影響該薄膜特性的該 化學鍵結包含波數450± 50之矽氧鍵結( 450 SiO)。 8. 如申請專利範圍第6項之方法,其中上述之由四乙 基矽酸鹽反應形成之該介電薄膜中,影響該薄膜特性的該 化學鍵結包含波數8 2 0 土 5 0之矽氧鍵結(8 2 0 S i 0)。 經濟部智葸財產局員工消費合作社印製 9. 如申請專利範圍第6項之方法,其中上述之由四乙 基矽酸鹽反應形成之該介電薄膜中,影響該薄膜特性的該 化學鍵結包含波數1 0 5 0± 50之矽氧鍵結(1 050 SiO)。 本纸張尺度適用中國國家揉準(CNS) A4規格(210X297公嫠) 414864 ιι _ D8______ 々、申請專利範圍’ (請先聞讀背面之注意事項再填疼本頁} 10. 如申請專利範圍第6項之方法’其中上述之由四 乙基石夕酸鹽反應形成之該介電薄膜中,影響該薄膜特性的 該化學鍵結包含波數1 2 4 3 ± 5 0之矽甲基鍵結(1 2 4 3 SiCH3)。 11. 如申請專利範圍第6項之方法’其中上述之由四 乙基夕酸鹽反應形成之該介電薄膜中,影響該4膜特性的 該化學鍵結包含波數3500± 50之氩氧鍵結(3500 。 12. 如申請專利範圍第6項之方法,其中上述之由含 碳之低介電常數材料所組成的該介電層薄膜中’影響該薄 膜特性的該化學鍵結包含波數8 0 0 ± 5 0之矽碳 '矽氧、碳 氫鍵結(80 0 SiC、Si〇、CH)。 13. 如申請專利範園第6項之方法,其中上述之由含 碳之低介電常數材料所組成的該介電層薄膜中,影響該薄 膜特性的該化學鍵結包含波數1 〇30土 50之矽氧鍵結(1 030 SiO)。 經濟部智葸財產局員工消費合作社印製 14. 如申請專利範圍第6項之方法,其中上述之由含 碳之低介電常數材料所組成的該介電層薄膜中,影響該薄 .膜特性的該化學鍵結包含波數1 2 6 8 ± 5 0之矽曱基鍵結 (1268 SiCH3)。 本紙張尺度適用中國國家播準(CNS)A4現格(210X297公釐) 414864 A8 BS C8 D8 、申請專利範圍 (請先閲讀背面之注意事項再填寫本頁) 15. 如申請專利範圍第6項之方法,其中上述之由含 碳之低介電常數材料所組成的該介電層薄膜中,影響該薄 膜特性的該化學鍵結包含波數21 84± 50之矽氫鍵結(2 1 84 SiH)。 16. 如申請專利範圍第6項之方法,其中上述之由含 碳之低介電常數材料所組成的該介電層薄膜中,影響該薄 膜特性的該化學鍵結包含波數3 0 0 0 ± 5 0之碳氫鍵結(3 5 0 0 CH)。 17. 如申請專利範圍第6項之方法,其中上述之由四 乙基矽酸鹽反應形成之該介電薄膜中,以及由含碳之低介 電常數材料所組成的該介電層薄膜中,該化學鍵結之該強 沒5:伢與該溥胰狩性巧JL涨性變化的關你。 18. 一種由化學鍵結預測介電薄膜特性之預測裝置, 該預測裝置至少包含: 光譜儀,用以量測待測介電薄膜所含之化學鍵結種 類,以及該化學鍵結之強度量; 經濟部智慧財產局員工消費合作社印製 運算裝置,與該光譜儀相耦合用以接收該光譜儀所測 得之該化學鍵結種類以及該化學鍵結之該強度量,該運算 裝置至少包含: 資料載體,用以儲存可描述該化學鍵結以及該強 度量,與該待測介電薄膜之薄膜特性的數學棋型;以 17 本紙張尺度逋用中國國家標準(CNS ) A4規格(2IOX297公釐) 414864 A8 B8 C8 D8 六、申請專利範圍 及 計算單元,與該光譜儀以及該資料載體相耦合, 用以利用該數學模型以因應該化學鍵結種類與該強度 量而輪出該待測介電薄膜之該薄膜特性的預測值。 1 9.如申請專利範圍第1 8項之預測裝置*其中上述之 資料載體更包含資料庫,用以儲存該化學鍵結種類、該強 度量、以及對應之該薄膜特性,藉以作為建立該數學模型 之統計依據。 2 0.如申請專利範圍第1 8項之預測裝置,其中上述之 光譜儀包含霍氏(Fourier)紅外線光譜儀。 21.如申請專利範圍第i 8項之預測裝置,其中上述之 運算裝置包含個人電腦、工作站、或線上偵測單元等。 (請先閱讀背面之注意事項再填寫本頁) 訂 東 經濟部智慧財產局員工消費合作社印¾ 本紙張尺度適用中國國家橾準(CNS ) A4洗格(210X 297公釐)414864 A8 B8 C8 D8 VI. The scope of the patent application is based on the method of bonding, the method of measuring the neutral storage, the special membrane, the thin film, and the dielectric material of the thin film. The listed materials are as follows: 1. The package is as small as the amount by the membrane and the dielectric. The storage should be measured and strengthened at the same time; The knots and bonds should be quantified to measure the strong knots in order to learn knot formation. The type of the model is determined by the model, measurable, and pre-analysis, and the thin type of the model is measured by the model. The pre-thin amount of the model is determined by the model. As mentioned in the above categories, the key method is scientific: one of the steps in this step includes alTM in the first column, and the thin and medium-sized packaged electricity specialists are invited to post-test and wait for the sub-modeling of step 2. The and to all kinds of bonds. The chemical characteristics of the film are thin, the base film and the base film are considered to be electrical; the model of the dielectric modulus measurement should be strongly predicted; the measured film should be analyzed by the pre-junction bond measurement. The power-on intermediary should measure the light spectrum of the spectrum analyzer 2 of the item analysis method to be Fan Li, please apply as detailed as the film 3. Thin. Electrical connection (please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs *, 巳 ί The special benefits include special packages, please refer to step 4. The item of the method of capital construction mentioned above-the first step of the bond science and the thin dielectric of the film in the package containing the material and the measurement; to measure the spectral intensity using the benefit and similar paper Standards: China National Standard (CNS) A4 specification (210 × 297 public love) AS B8 _414864 g_ VI. Patent application for measuring the film characteristics of the dielectric layer film; and (Please read the precautions on the back before filling this page ) Wherein, the step of measuring the type of the chemical bond and the strength included in the dielectric film by using a spectrometer may be reversed with each other, or performed simultaneously with the step of measuring the dielectric layer film. 5. The method according to item 1 of the patent application > wherein the characteristics of the above thin film are refractive index, stress' dielectric constant, or flat band voltage. 6. The method according to item 1 of the patent application range, wherein the above-mentioned dielectric layer thin film comprises the dielectric thin film formed by a reaction of tetraethyl silicate, and the dielectric composed of a low dielectric constant material containing carbon. film. 7. The method according to item 6 of the patent application, wherein in the dielectric thin film formed by the reaction of tetraethyl silicate as described above, the chemical bond that affects the properties of the thin film includes a silicon oxygen bond with a wave number of 450 ± 50 Junction (450 SiO). 8. The method according to item 6 of the patent application, wherein in the dielectric thin film formed by the reaction of tetraethylsilicate described above, the chemical bond that affects the properties of the thin film includes silicon with a wave number of 8 2 0 to 5 0 Oxygen bonding (8 2 0 S i 0). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 9. If the method of the scope of patent application is No. 6, wherein the above-mentioned dielectric thin film formed by the reaction of tetraethyl silicate, the chemical bonding that affects the properties of the thin film Contains silicon-oxygen bond (1 050 SiO) with a wavenumber of 1 0 50 0 ± 50. This paper size is applicable to China National Standard (CNS) A4 (210X297) 414864 ι _ D8______ 々, patent application scope '(Please read the precautions on the back before filling this page} 10. If the scope of patent application Method 6 of item 6, wherein in the dielectric thin film formed by the reaction of tetraethyl oxalate, the chemical bond that affects the properties of the thin film includes a silicon methyl bond having a wave number of 1 2 4 3 ± 50 1 2 4 3 SiCH3). 11. The method according to item 6 of the scope of patent application, wherein in the dielectric thin film formed by the reaction of the tetraethyl oxalate, the chemical bond that affects the characteristics of the 4 film includes a wave number. 3500 ± 50 argon-oxygen bond (3500. 12. The method according to item 6 of the scope of patent application, wherein the dielectric layer thin film composed of a low-dielectric constant material containing carbon as described above affects the properties of the thin film The chemical bonding includes silicon-carbon-silicon-oxygen, carbon-hydrogen bonding (80 0 SiC, Si0, CH) with a wave number of 80 0 ± 50. 13. For the method of the sixth item of the patent application park, wherein In the dielectric layer film composed of a low dielectric constant material containing carbon, The chemical bond that affects the characteristics of the film includes a silicon-oxygen bond (1 030 SiO) with a wave number of 1030 to 50. Printed by the Consumer Cooperative of the Intellectual Property Office of the Ministry of Economic Affairs 14. If the method of the sixth item of the scope of patent application, Wherein the above-mentioned dielectric layer thin film composed of a low dielectric constant material containing carbon affects the thinness. The chemical bonding of the film characteristics includes a silicon-based bonding (1268 with a wavenumber of 1 2 6 8 ± 50). SiCH3). This paper size is applicable to China National Broadcasting Standard (CNS) A4 (210X297 mm) 414864 A8 BS C8 D8, scope of patent application (please read the precautions on the back before filling this page) 15. If the scope of patent application The method of item 6, wherein in the dielectric layer thin film composed of the carbon-containing low dielectric constant material, the chemical bonding that affects the properties of the thin film includes a silicon-hydrogen bonding with a wave number of 21 84 ± 50 (2 1 84 SiH). 16. The method according to item 6 of the patent application range, wherein in the dielectric layer thin film composed of a carbon-containing low dielectric constant material, the chemical bonding that affects the properties of the thin film includes a wave number 3 0 0 0 ± 5 0 hydrocarbon bonding (3 5 0 0 CH). 17. The method according to item 6 of the patent application, wherein the dielectric thin film formed by the reaction of tetraethyl silicate as described above, and the dielectric composed of a carbon-containing low dielectric constant material In the layered film, the strength of the chemical bond 5: 伢 is related to the change in the expansion of the pancreatic property. 18. A prediction device for predicting the characteristics of a dielectric thin film by chemical bonding, the prediction device includes at least: Spectrometer for measuring the type of chemical bond contained in the dielectric film to be measured and the intensity of the chemical bond; printed computing device of the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, coupled with the spectrometer to receive the spectrometer The type of the chemical bond and the strength of the chemical bond are measured. The computing device includes at least: a data carrier for storing a mathematical description of the chemical bond and the amount of strength, and the film characteristics of the dielectric film to be measured. Chess type; 17 paper sizes, using China National Standard (CNS) A4 (2IOX297 mm) 414864 A8 B8 C8 D8 6. Scope of patent application and calculation unit Is coupled with the spectrometer and the data carrier, and is used to use the mathematical model to predict the characteristics of the thin film of the dielectric film to be tested in accordance with the type of chemical bond and the strength. 19 9. The prediction device according to item 18 of the scope of patent application *, wherein the aforementioned data carrier further includes a database for storing the type of chemical bond, the amount of strength, and the characteristics of the corresponding thin film for establishing the mathematical model Statistical basis. 20. The prediction device according to item 18 of the patent application range, wherein the spectrometer includes a Fourier infrared spectrometer. 21. The prediction device according to item i 8 of the patent application range, wherein the above computing device includes a personal computer, a workstation, or an online detection unit. (Please read the precautions on the back before filling out this page) Order Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ¾ This paper size is applicable to China National Standard (CNS) A4 Washing (210X 297 mm)
TW89105177A 2000-03-17 2000-03-17 Method of predicting dielectric film characteristics from chemical bonding and device thereof TW414864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89105177A TW414864B (en) 2000-03-17 2000-03-17 Method of predicting dielectric film characteristics from chemical bonding and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89105177A TW414864B (en) 2000-03-17 2000-03-17 Method of predicting dielectric film characteristics from chemical bonding and device thereof

Publications (1)

Publication Number Publication Date
TW414864B true TW414864B (en) 2000-12-11

Family

ID=21659158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89105177A TW414864B (en) 2000-03-17 2000-03-17 Method of predicting dielectric film characteristics from chemical bonding and device thereof

Country Status (1)

Country Link
TW (1) TW414864B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217948A1 (en) * 2016-09-20 2018-03-22 Bayerische Motoren Werke Aktiengesellschaft Method for forecasting the quality of glued joints

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217948A1 (en) * 2016-09-20 2018-03-22 Bayerische Motoren Werke Aktiengesellschaft Method for forecasting the quality of glued joints

Similar Documents

Publication Publication Date Title
Terlinden et al. Influence of the SiO2 interlayer thickness on the density and polarity of charges in Si/SiO2/Al2O3 stacks as studied by optical second-harmonic generation
Luo et al. Study on mobility of water and polymer chain in epoxy and its influence on adhesion
Olsen et al. Infrared spectroscopy of thin silicon dioxide on silicon
Stathis Electrically detected magnetic resonance study of stress‐induced leakage current in thin SiO2
US9442063B2 (en) Measurement of composition for thin films
US6791310B2 (en) Systems and methods for improved metrology using combined optical and electrical measurements
TW414864B (en) Method of predicting dielectric film characteristics from chemical bonding and device thereof
Karna et al. Point defects in Si-SiO2 systems: current understanding
Panteli et al. Reduced drift of CMOS ISFET pH sensors using graphene sheets
Butler et al. Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon
Hietpas et al. The molecular structure of poly (biphenyl dianhydride‐p‐phenylenediamine) polyimide thin films by infrared spectroscopy: Thickness dependence of structure in the nano‐to micrometer range
Damianos et al. Field-effect passivation of Si by ALD-Al2O3: second harmonic generation monitoring and simulation
Lanckmans et al. Use of a capacitance voltage technique to study copper drift diffusion in (porous) inorganic low-k materials
Guo-Zhen et al. Dielectric response and its light-induced change in undoped a− Si: H films below 13 MHz
Carlotti et al. Elastic properties of spin‐on glass thin films
Sun et al. In-situ monitoring the growth of polypyrrole films at liquid/solid interface using a combination of polarized infrared spectroscopy and reflectance anisotropy spectroscopy
US4599241A (en) Method for inspecting defects of thin material film
Vallon et al. Improvements of Fourier transform phase‐modulated ellipsometry
Prunnila et al. Electron mobility in ultrathin silicon-on-insulator layers at 4.2 K
Mackowiak et al. Electrical characterization of low temperature PECVD oxides for TSV applications
CN115668465A (en) Thermal oxide film forming method for semiconductor substrate
Garnier Wet etchants penetration through photoresist during wet patterning
CN114002252B (en) Method for detecting perpendicular magnetic anisotropy of multilayer thin film material
Cook et al. Spectroscopic ellipsometry for in-line monitoring of silicon nitrides
Heilig et al. Electrical Properties of Silicon/Lead Boro‐Alumino‐Silicate Glass Interfaces. Insulator Charge and Distribution of Interface States Studied by Photovoltage Measurements

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees