TW317647B - - Google Patents

Download PDF

Info

Publication number
TW317647B
TW317647B TW085112366A TW85112366A TW317647B TW 317647 B TW317647 B TW 317647B TW 085112366 A TW085112366 A TW 085112366A TW 85112366 A TW85112366 A TW 85112366A TW 317647 B TW317647 B TW 317647B
Authority
TW
Taiwan
Prior art keywords
item
semiconductor
application
silicon
energy gap
Prior art date
Application number
TW085112366A
Other languages
English (en)
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Application granted granted Critical
Publication of TW317647B publication Critical patent/TW317647B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Description

經濟部中央搮率局貝工消费合作社印«. A7 _B7___五、發明説明(1) 本案主張擁有在1995年10月10日,向美國申請之專利 申請案之利益* S亥案之美國申請序號(U.S. Provisional Application Ser i a 1)為第60/004,983_ 〇 本發明係有關於半導體元件,尤其是有關於高壓半導 體元件,更特別是有闞於需要高導電性及高崩潰電壓的半 導體元件。 碳化矽(SiC)比矽(Si)具有較高的能隙,因此對於高 颳元件,SiC真有更高的臨界崩潰霣場(Critical Avalanche Electric Field) , 並具有較砂高 100 倍的性能 。尤其 ,3C-SiC較Si具有幾乎4倍高的臨界崩潰霣場•而6H-SiC 則具有幾乎8倍高的臨界崩溃電埸*而4H-SiC有10倍高的 臨界崩潰電場。相對於習用之Si的功率元件而言,SiC的 高臨界崩潰雪湯允許有更高的摻雜與更薄的薄餘區(Drift Region) »箱以降低SiC的功率元件之導确當B日(Πη-Rps is_ tance) ° 但是,習用SiC也存在一問題,即接雜劑(Dopant上不-容易擴散進SiC材料中。特別是’需要180CTC左右的高溫 *使摻雜劑擴散至SiC中。另一個問題是,該材料甚_低逢, 氣半通道載體遷移率(M0S Channel Carrier Mobility), 所Μ,當SiC在半導艘元件中當作通道材料時,其通道的 導電性可能會降低。 本發明提供一種半導體結構,包括一SiC材料的主艘 與其上的一曆薄的Si蒸晶餍,以克服上述習用技術之缺陷 。Si磊晶層的較佳厚度為3//m。此結構可用於功率金氣半 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) IJ-------C 装-- (請先聞讀背面之注意事項再填寫本買> 订-
SV 317647 A7 B7 經濟部中央揉準局貝工消费合作社印装 五、發明説明(2) 場效電晶體(MOSFET),溝檑功率MOSFET,二極體和其他的 半導體元件。 為降低成本,SiC層可在一高摻雜的Si基底上形成(文 獻報告指出:3C-SiC在Si上較易長成)。這竖結構,例如 功率MOSFET,具有一砂晶晶層,可在一既有的砂功率MOS-FET製作設備中,K既有的製程進行生產。 本發明半導體元件(如功率MOSFET)之遷移區主要包括 SiC *而且,既然SiC的接雜較Si高很多(與支撐相同電應 之一習用Si元件比較)*本發明的半導體元件新結構,比 習用Si功率元件,提供較低的導通電阻。需要注意的是, 本發明元件結構的崩潢霄壓,仍然由於部份Si上形成之P 型主體(Body)/N-型遷移區接面的臨界電場決定。.對於高 壓元件(例如:高於60伏特),本發明的元件結構提供較習· 用之Si元件低20到90%的導通轚阻。 在本發明的新結構中* P型主體/N-型遷移區的接面, 能夠完全在Si中形成,或是形成Si/SiC的異質接面。為 了達到最佳改菩效果,Si層需愈薄愈好,並且P型主體擴 散需使得P型主體/N-型遷移區接面能在SiC中形成。但是 此結構需藉高溫將摻雜劑擴散至SiC中,K及需較長的時 間。 本發明也可Μ其他高能隙的半導體材料來代替SiC材 料*該作法也在本本發明範圍内。 參考附圖,並配合以下之描述,本發明的其他特色及 優點將更為明顯。 |/^ ___ ·丨丨 I.J-------^裝-- (請先《讀背面之注$項再填寫本頁) 訂 K4 本紙張尺度逋用中國國家榡準《CNS ) A4规格(210X297公漦) 317647 A7 B7 經濟部中央揉準局—工消费合作社印製 五、發明説明(3) 圖式之簡單說明: νώΐ為本發明的功率DMOSFET元件之横截面圖。 ^^12為本發明蕭基二極體(Schottky Barrier Diode) ' / " s 元件之横截面圖。 ^/^13為本發明溝槽(Trench)功率ΜΟ$ΕΈΤ元件之横截面 / · Λ. 圖。 4為本發明功^H〇SF:ET元件的另一個實施例之横截 —______ 面_。 \/^5為本發明溝榴功率M0SFET元件的另一個實施例之 横截面圖。 ». · · N一. 為圖4中P型矽和N型碳化砂接面之横截面圖與電場 ' \ 分布圖。 v^B7為圖1在較高電Μ下各接面之横截面圖與電埸分佈 画。 玆配合圖式將本發明較佳實施例詳細說明如下。 參閲圖1,本發明的功率DMOSFET元件之横截面圖。顯 示出根據本發明的一種新的SiC功率DMOSFET结構,其中, 一種N型的SiC遷移區11配置在習用的N+型Si基體上。SiC 區域11較Si有更高的慘雜,所以當支搏相同高的崩潰電應 時,SiC區域11較Si遷移區的_習用技術具有較小的電阻。 一3微米厚的型藩晶層12在SiC遷移區11的頂部長成。習 用的功率MOSFET接面(例如:P-型通道區域13和14 ; P +塑 *·. 本紙張尺度逋用中國鬮家揉準(CNS ) A4规格(210X297公瘦) (请先《请背面之注$項再填窝本寊) 装· 訂 317647 A7 _上____B7 _ 五、發明説明(4:) 主體區域15和16 ; N+型源極17和18 ;多晶矽閘極19 ;閘極 氣化層20 ;層間氧化層21 ;以及頂部源極接觸曆22)配置 在N-型磊晶層12上。一個汲極接觸層23配置在基體1〇的底 部。 參閱圖6,圖4中卩型砂和N型碳化砂接面之横截面圖與 電場分布圖。顯示出在SiC區域11中的電子數為具有同樣 崩潰電壓之砂的三倍多。圖中顯示一種P型Si51和N梨SiC 52的接面50,及其對應的電場。相較Si的M0SFET而言,要 得到一較低導通霄阻的遷移區,遷移區摻雜(Nrf)須較高, 以支撐電高壓,;而為了支撐高壓,則需要小的遷移區厚 度。也就是說,通移區須能Μ高接雜(NcO和最小的厚度(W ),去支撐其截止爾壓。 在接面50處,高斯定律(Gauss’ Law )使得以下等式 成立:
Csi^Eai =€si ^Esi 〇 Es i = (€s i/€sI )«Es i c 經濟部中央揉準局身工消费合作社印装 (請先閎讀背面之注f項再球寫本買)
EsI=〇.82^^3 t c, for 3C~S i C Es i 〇*=i. 2l5»Es i , for 3C-SiC 一般而言,在平均撥雜的遷移區,下面的關係成立: qNdV^/e ,其中Ec為此结構崩潰時的臨界崩 潰電場
Es1°=1.21«E〇,sI E 場的斜 = dE/dY = 遷移區摻雜正比於;邊移區厚度W正比於e。 ---- 本紙張尺度逍用T躅鬮家標準(CNS ) A4规^ ( 210X 297公' 317647 經濟部中央檫準*ιτ貝工消费合作社印蓑 A7 B7______五、發明説明(5 ) 上述等式表示*要使電場在最短的距離降為〇(亦即需 要最小遷移區厚度W),則遷移區材料的介電係數(€)應盡 可能的低。 所Μ,要得到高的遷移區摻雜,較矽而言,遷移區應 用具有較高臨界崩潰電場的衬料製成。 要得到較小的遷移區厚度,較砂而言,遷移區懕用具 有較低的介電係數的材料製成。 相較於Si,SiC具有較高的臨界崩潰電場以及較低的 介霣係數。所Μ,SiC作為通移區材料是非常合適的,為 了降低遷移區的電阻,遷移區應該K類似SiC的材料製成 〇 參考圖1,任何拓撲(Topology)都可作為N-型晶晶層 12的接面*因此依據本發明,可得其他的MOS閘元件。 參考画2 *本發明蕭基二極體元件之横截面圖。其組 成與圖1中所定義的相類似。圖1和圈2结構的主要差異在 於(i)區域12沒有接面,而使用習用的保護環(Guard Ring );(ii)陰極(Cathode)22a最好為高工作性能的材料,例 如鉬(Mo)之類。如上所討論,同樣的崩潰電懕下,SiC材 料中的電子數目較Si的高出很多,所以,元件的導電性比 具有同樣崩潰電歷的習用元件有所提高。 參考圖3,本發明溝槽(Trench)功率MOSFET元件之横 截面圖。其中顯示出根據本發明所得之一種溝槽功率M0SF ET的结構。一個從P+型主體31延伸而得的P型砂層30,與 一閘極氧化層32相反配置,該閘極氧化曆32與矽中所蝕刻 (請先閲讀背面之注$項脣填寫本買) 本紙张尺度適用中國國家揉率(CNS >八4规格(210X297公釐) 經濟部中央揉準局Λ工消费合作社印装 317647 at _ _B7_:_五、發明说明(6 ) 的溝槽排成一線。該溝檐由多晶砂亂極33所填滿。一N +型 源極擴散區域34擴散進入?型區域30和31 ’同時一源極接 觸區22配置在區域31、34和閘極氧化層32之上。如上所討 論,在SiC材料中的轚子數目’比具有同樣崩潰電壓的Si 高很多。 參考画4,本發明功率DMOSFET元件的另一偭實施例之 横截面圖。圖中·結構與圖II的相類似*其中P+型基體15和 16直接與SiC遺移區11接觸’造成相尉較智的磊晶層12。 參考圖5 ·本發明溝榷功率MOSFET元件的另一個實施 例之横截面_。除了在P+型區域31、P型區域30和N型區域 11之間的接面係由Si/SiC的異質接面形成以外,圖5的元 件類似於圖3的元件。 雖然本發明已被特殊的實施例所描述*但許多其他變· 化、修正和其他用途對於精於此項技術的人而言·係顯而 易見,因此希望本發明不會被以上之特殊攥露所限制,但 為所附加申請専利範園所限制。 綜上所述,當知本案發明具有實用性與創作性,且本 發明未見之於任何刊物,當符合專利法規定。 唯以上所述者,僅為本發明之一較佳實施例而已,當 不能K之限定本發明實施之範園。即大凡依本發明申請專 利範圍所作之均等變化與修飾,皆應靨本發明專利涵蒹之 範圍内。 ^---1---------C 装-- (請先面之注$項莓填寫本買) 訂 in.
本紙張尺度適用中國國3^#準(CNS > A4规格(210X297公&T « i imam

Claims (1)

  1. A8 B8 C8 D8 鐘濟部中央標率局tec工消费合作社印装 六、申請專利範圍 ι·—種半導艘元件,包括: ·; .·»Λ .;、、 * ·. ·- . —半導體基體; —高能隙材料•在半導嫌基艚上形成遷移區;Κ及 一半導體材料的磊晶曆》配置在該隙材料上。 2·如申請専利範園第1項所述之半導體元件•其中形成該 遷移區的高能隙材料為一具有低介霣係數、高載子遷移 率的材料。 3. 如申謫専利範圃第1項所述之半導體元件•其中該半導 體材料的磊晶曆的厚度大約為3微米。 4. 如申請専利範園第1項所述之半導髓元件•其中該半導 體基體材料為矽。 5. 如申請專利範圓第1項所述之半導«元件•其中形成該 遷移區的高能隙材料為碳化矽。 6. 如申請専利範圓第1項所述之半導《元件,其中該半_ 雅材料的晶晶靥為矽。 7. 如申請専利範園第1項所述之半導嫌元件,其中該半導 體基》材料為矽•形成遷移區的高_隙材料為碳化矽* 該半導《材料的磊晶曆為矽。 8. —種MOSFET半導賊元件,包括: 一摻雜的半導體基嫌; 一给雜的高能隙材料,在摻雑的半導體基體上形成一遷 移區;以及 一摻雜的半導《材料磊晶靥•配置在該高能隙材料上。 9. 如申請專利範圃第8項所述之MOSFET半導嫌元件•其中 〜10〜 i 面 之 注 I Λ 袈 % 订 Κ 本紙浪欠度逋用中•國家樑率(CNS ) A4«UI· ( 210X297公兼) 經濟部中央樣率局貞工消费合作社印*. Α8 Β8 C8 D8 六、申請專利範圍 形成該遷移區之摻雑的高能隙材料,為«有低介電係 歟、高載子遷移率的材料。 10.如申請専利範園第8項所逑之MOSFET半導«元件,其中 該半専體材料的磊晶曆厚度,大約為3微米。 11·如申謫專利範園第8項所述之MOSFET半導嫌元件•其中 該半導體基體材料為矽。 如申諌専利範園第8項所述之MOSFET半等體元件•其中 形成該遷移區的高能隙材料為碳化矽。 13. 如申請専利範園第8項所述之MOSFET半専«元件,其中 該半導«材料的磊晶曆為砂。 14. 如申請専利範圃第8項所述之MOSFET半導體元件,其中 該半導體基體材料為矽,彤成該钃移區的高能隙材料 為碳化矽*該半導嫌材料的磊晶靥為矽。 15. —種半導體二極體•包括: 一摻雜的半導體基《: 一摻雑的高能隙材料•在該摻雑的半導體基嫌上形成 一遷移區;Μ及 一摻雜的半導體材料磊晶靥,配置在該高能陳材料上 〇 16. 如申請専利範困第15項所述之半導體二極體,其中形 成該邊移區之摻雜的高能隙材料為一具有低介霣係數 、高載子通移率的材料。 17. 如申請專利範園第15項所述之半導«二極體•其中該 〜11〜 本纸張尺Λ·適用令國家橾率(CNS)Α4規旅(21〇Χ297公釐) --------f袈丨— (KHt面之注$項脣埃寫本霣) 訂 317647 as B8 C8 D8 六、申請專利範圍 半導體材料的磊晶曆厚度,大約為?微米」。 ;\ · 18. 如申誧専利範園第15項所述之半導體二極體,其中該 半導體基«材料為矽。 19. 如申謫専利範園第15項所述之半導體二極體•其中形 成該遷移區的高能隙材料為碳化矽。 20. 如申請専利範園第15項所述之半導髓二棰體,其中該 半導體材料的磊晶曆為矽。 21. 如申請専利範匯第15項所述之半導體二極體,其中該 半導髁基體材料為矽•形_該邐移區的高能隙材料為 碳化砂。 22. 如申請専利範圃第1項所述之半導體元件•其中該半導 嫌為一溝横功率M0SFET。 23. 如申請專利範圃第1項所述之半導嫌元件*進一步包括 功率M0SFET接面,配置在磊晶曆上,並包括P+型主嫌 區域、N+型源極;一多晶矽閜棰;閘極氧化靥以及所 有配置在磊晶曆上的源極接觸匾。 24. 如申請専利範匯第21項所述之半導體元件•進一步包 括一汲棰接觸區•配置在該半導體基髁下。 鯉濟部中央樣率局負工消合作社印装 (請先Η#·背面之注$項再$本蒽) 25. 如申請専利範匯第8項所述之M0SFET半導《元件,其中 支撐P型主體/N-型遷移區接面的高壓•在磊晶曆/高能 隙材料的異質接面處形成。 26. 如申讅専利範圃第8項所述之M0SFET半導雄元件,其中 / 支撐P型主體/N-型遷移區接面的高® •在比接面更深 處的高能隙材料之蒸晶曆中形成。 〜12〜 本,張尺度逋用中國國家樑率( CNS ) Α4ΛΜΜ 210X297公釐) ~ ... ...... 317647 A8 B8 C8 D8 六、申請專利範圍 27.如申請専利範圃第8項所述之MOSFE了半導體元件 > 其中 :· ·ν :、、 Λ . 支撐Ρ型主體/Ν-型遷移區接面的高壓•形成於該高能 隙材料中*而該高能賺材料具有磊晶暦/高能隙異質接 面•配置在比Ρ型主«/Ν-型«移區接面較淺處。 --------?11----ir------r, (#.先Ht面之注f項再揍寫本I) 經濟部中央梂準局βζ工消费合作社印*. 〜13〜 本紙張尺度逋用中國國家梂準(CNS ) Α4規格(210X297公釐)
TW085112366A 1995-10-10 1996-10-09 TW317647B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US498395P 1995-10-10 1995-10-10

Publications (1)

Publication Number Publication Date
TW317647B true TW317647B (zh) 1997-10-11

Family

ID=21713529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW085112366A TW317647B (zh) 1995-10-10 1996-10-09

Country Status (9)

Country Link
US (1) US5877515A (zh)
JP (1) JPH09172159A (zh)
KR (1) KR970024296A (zh)
DE (1) DE19641839A1 (zh)
FR (1) FR2740907B1 (zh)
GB (1) GB2306250A (zh)
IT (1) IT1285498B1 (zh)
SG (1) SG64402A1 (zh)
TW (1) TW317647B (zh)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213607A (ja) * 1995-02-08 1996-08-20 Ngk Insulators Ltd 半導体装置およびその製造方法
JP3327135B2 (ja) * 1996-09-09 2002-09-24 日産自動車株式会社 電界効果トランジスタ
JP3461274B2 (ja) * 1996-10-16 2003-10-27 株式会社東芝 半導体装置
JP3206727B2 (ja) * 1997-02-20 2001-09-10 富士電機株式会社 炭化けい素縦型mosfetおよびその製造方法
CA2295248C (en) * 1997-06-23 2006-08-29 James Albert Cooper Jr. Power devices in wide bandgap semiconductor
KR20000068738A (ko) * 1997-08-13 2000-11-25 모리시타 요이찌 반도체기판 및 반도체소자
DE19741928C1 (de) * 1997-09-10 1998-09-24 Siemens Ag Halbleiterbauelement
US6420225B1 (en) 1999-04-01 2002-07-16 Apd Semiconductor, Inc. Method of fabricating power rectifier device
US6448160B1 (en) 1999-04-01 2002-09-10 Apd Semiconductor, Inc. Method of fabricating power rectifier device to vary operating parameters and resulting device
US6624030B2 (en) 2000-12-19 2003-09-23 Advanced Power Devices, Inc. Method of fabricating power rectifier device having a laterally graded P-N junction for a channel region
US6331455B1 (en) * 1999-04-01 2001-12-18 Advanced Power Devices, Inc. Power rectifier device and method of fabricating power rectifier devices
US6498367B1 (en) 1999-04-01 2002-12-24 Apd Semiconductor, Inc. Discrete integrated circuit rectifier device
DE60033829T2 (de) * 1999-09-07 2007-10-11 Sixon Inc. SiC-HALBLEITERSCHEIBE, SiC-HALBLEITERBAUELEMENT SOWIE HERSTELLUNGSVERFAHREN FÜR EINE SiC-HALBLEITERSCHEIBE
US6303508B1 (en) 1999-12-16 2001-10-16 Philips Electronics North America Corporation Superior silicon carbide integrated circuits and method of fabricating
US6407014B1 (en) 1999-12-16 2002-06-18 Philips Electronics North America Corporation Method achieving higher inversion layer mobility in novel silicon carbide semiconductor devices
US6537860B2 (en) 2000-12-18 2003-03-25 Apd Semiconductor, Inc. Method of fabricating power VLSI diode devices
US6859074B2 (en) * 2001-01-09 2005-02-22 Broadcom Corporation I/O circuit using low voltage transistors which can tolerate high voltages even when power supplies are powered off
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
JP4288907B2 (ja) * 2001-08-29 2009-07-01 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP2003100657A (ja) * 2001-09-20 2003-04-04 Nissan Motor Co Ltd 半導体装置の製造方法
US7138836B2 (en) * 2001-12-03 2006-11-21 Broadcom Corporation Hot carrier injection suppression circuit
JP2003174187A (ja) * 2001-12-07 2003-06-20 Sumitomo Chem Co Ltd 薄膜半導体エピタキシャル基板及びその製造方法
JP3559971B2 (ja) * 2001-12-11 2004-09-02 日産自動車株式会社 炭化珪素半導体装置およびその製造方法
US6515330B1 (en) * 2002-01-02 2003-02-04 Apd Semiconductor, Inc. Power device having vertical current path with enhanced pinch-off for current limiting
US7183575B2 (en) 2002-02-19 2007-02-27 Nissan Motor Co., Ltd. High reverse voltage silicon carbide diode and method of manufacturing the same high reverse voltage silicon carbide diode
US7282739B2 (en) * 2002-04-26 2007-10-16 Nissan Motor Co., Ltd. Silicon carbide semiconductor device
US7074643B2 (en) * 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
JP2006245243A (ja) * 2005-03-02 2006-09-14 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
US7588961B2 (en) * 2005-03-30 2009-09-15 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method thereof
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
JP4903439B2 (ja) * 2005-05-31 2012-03-28 株式会社東芝 電界効果トランジスタ
US7589004B2 (en) * 2005-06-21 2009-09-15 Los Alamos National Security, Llc Method for implantation of high dopant concentrations in wide band gap materials
DE102005047054B4 (de) * 2005-09-30 2008-04-03 Infineon Technologies Austria Ag Leistungs-MOS-Transistor mit einer SiC-Driftzone und Verfahren zur Herstellung eines Leistungs-MOS-Transistors
JP2007299845A (ja) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd 半導体装置の製造方法および半導体装置
DE102007004320A1 (de) * 2007-01-29 2008-07-31 Infineon Technologies Ag Halbleiterbauelement mit vertikalen Strukturen von hohem Aspektverhältnis und Verfahren zur Herstellung einer kapazitiven Struktur in einem Halbleiterkörper
US8148748B2 (en) 2007-09-26 2012-04-03 Stmicroelectronics N.V. Adjustable field effect rectifier
US8643055B2 (en) * 2007-09-26 2014-02-04 Stmicroelectronics N.V. Series current limiter device
US8633521B2 (en) * 2007-09-26 2014-01-21 Stmicroelectronics N.V. Self-bootstrapping field effect diode structures and methods
EP3447803A3 (en) 2007-09-26 2019-06-19 STMicroelectronics N.V. Adjustable field effect rectifier
US8492771B2 (en) 2007-09-27 2013-07-23 Infineon Technologies Austria Ag Heterojunction semiconductor device and method
US20090159896A1 (en) * 2007-12-20 2009-06-25 General Electric Company Silicon carbide mosfet devices and methods of making
SG164324A1 (en) * 2009-02-20 2010-09-29 Semiconductor Energy Lab Semiconductor device and manufacturing method of the same
JP5699628B2 (ja) * 2010-07-26 2015-04-15 住友電気工業株式会社 半導体装置
IT1401755B1 (it) 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato a conduzione verticale e relativo metodo di fabbricazione.
IT1401756B1 (it) 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato con struttura di terminazione di bordo e relativo metodo di fabbricazione.
IT1401754B1 (it) * 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato e relativo metodo di fabbricazione.
JP5730521B2 (ja) * 2010-09-08 2015-06-10 株式会社日立ハイテクノロジーズ 熱処理装置
US8389348B2 (en) * 2010-09-14 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanism of forming SiC crystalline on Si substrates to allow integration of GaN and Si electronics
GB2484506A (en) * 2010-10-13 2012-04-18 Univ Warwick Heterogrowth
DE102011053641A1 (de) * 2011-09-15 2013-03-21 Infineon Technologies Ag SiC-MOSFET mit hoher Kanalbeweglichkeit
CN104347708A (zh) * 2013-08-07 2015-02-11 中芯国际集成电路制造(北京)有限公司 多栅vdmos晶体管及其形成方法
JP6228850B2 (ja) 2014-01-10 2017-11-08 ルネサスエレクトロニクス株式会社 半導体装置
JP6237408B2 (ja) * 2014-03-28 2017-11-29 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
CN105336775B (zh) * 2014-07-01 2018-03-09 无锡华润华晶微电子有限公司 一种vdmos器件的元胞结构及其制作方法
US10147813B2 (en) 2016-03-04 2018-12-04 United Silicon Carbide, Inc. Tunneling field effect transistor
CN105810722B (zh) * 2016-03-16 2019-04-30 中国科学院半导体研究所 一种碳化硅mosfet器件及其制备方法
CN107086243A (zh) * 2017-03-16 2017-08-22 西安电子科技大学 具有宽带隙材料与硅材料复合的u‑mosfet
US10957791B2 (en) * 2019-03-08 2021-03-23 Infineon Technologies Americas Corp. Power device with low gate charge and low figure of merit
CN110429137B (zh) * 2019-08-15 2020-08-21 西安电子科技大学 具有部分氮化镓/硅半导体材料异质结的vdmos及其制作方法
US10777689B1 (en) 2019-10-18 2020-09-15 Hong Kong Applied Science and Technology Research Institute Company, Limited Silicon-carbide shielded-MOSFET embedded with a trench Schottky diode and heterojunction gate
CN116741639A (zh) * 2023-06-20 2023-09-12 中国科学院上海微***与信息技术研究所 半导体器件的制备方法及半导体器件
CN116895699A (zh) * 2023-09-08 2023-10-17 成都蓉矽半导体有限公司 一种具有异质结的共源共栅沟槽mosfet及制备方法
CN117438446A (zh) * 2023-12-18 2024-01-23 深圳天狼芯半导体有限公司 一种具有异质结的平面vdmos及制备方法
CN117423729A (zh) * 2023-12-18 2024-01-19 深圳天狼芯半导体有限公司 一种具有异质结的沟槽栅vdmos及制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2159592A5 (en) * 1971-11-04 1973-06-22 Anvar Beta-silicon carbide/silicon semiconductor device - made by epitaxial growth
JPS60136223A (ja) * 1983-12-23 1985-07-19 Sharp Corp 炭化珪素半導体素子の製造方法
JPS63254762A (ja) * 1987-04-13 1988-10-21 Nissan Motor Co Ltd Cmos半導体装置
US5216264A (en) * 1989-06-07 1993-06-01 Sharp Kabushiki Kaisha Silicon carbide MOS type field-effect transistor with at least one of the source and drain regions is formed by the use of a schottky contact
JPH04335538A (ja) * 1991-05-10 1992-11-24 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH0521762A (ja) * 1991-07-10 1993-01-29 Mitsubishi Electric Corp 電界効果型トランジスタを備えた半導体装置およびその製造方法
US5234848A (en) * 1991-11-05 1993-08-10 Texas Instruments Incorporated Method for fabricating lateral resonant tunneling transistor with heterojunction barriers
US5272096A (en) * 1992-09-29 1993-12-21 Motorola, Inc. Method for making a bipolar transistor having a silicon carbide layer
US5506421A (en) * 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US5539217A (en) * 1993-08-09 1996-07-23 Cree Research, Inc. Silicon carbide thyristor
US5323040A (en) * 1993-09-27 1994-06-21 North Carolina State University At Raleigh Silicon carbide field effect device
US5378912A (en) * 1993-11-10 1995-01-03 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a lateral drift region
US5510275A (en) * 1993-11-29 1996-04-23 Texas Instruments Incorporated Method of making a semiconductor device with a composite drift region composed of a substrate and a second semiconductor material
US5396085A (en) * 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate

Also Published As

Publication number Publication date
US5877515A (en) 1999-03-02
KR970024296A (ko) 1997-05-30
GB9621170D0 (en) 1996-11-27
FR2740907A1 (fr) 1997-05-09
IT1285498B1 (it) 1998-06-08
SG64402A1 (en) 1999-04-27
GB2306250A (en) 1997-04-30
DE19641839A1 (de) 1997-05-15
FR2740907B1 (fr) 1999-05-14
ITMI962098A1 (it) 1998-04-10
JPH09172159A (ja) 1997-06-30

Similar Documents

Publication Publication Date Title
TW317647B (zh)
US9419092B2 (en) Termination for SiC trench devices
US20080179671A1 (en) Semiconductor apparatus
Appels et al. High voltage thin layer devices (RESURF devices)
TW594987B (en) Lateral junction filed-effect transistors
TW301797B (zh)
DE69718477T2 (de) Siliciumcarbid-metall-isolator-halbleiter-feldeffekttransistor
EP1162664A1 (en) Lateral semiconductor device with low on-resistance and method of making the same
EP0726604A2 (en) MIS device and method of manufacturing the same
JPH0783118B2 (ja) 半導体装置およびその製造方法
US20100001362A1 (en) Edge termination for semiconductor device
CN103151379A (zh) 一种半导体器件的终止结构
JP2001135819A (ja) 超接合半導体素子
JP2002231944A (ja) 電力用半導体装置
JPH10510952A (ja) 絶縁されたゲートを有する半導体デバイス
JP2002520816A (ja) 表面電界の低減されたバーティカル半導体素子
US8466492B1 (en) Semiconductor device with edge termination structure
US6515302B1 (en) Power devices in wide bandgap semiconductor
JP2000349288A (ja) 縦型mosfet
CN114203821A (zh) 一种内置异质结二极管的SiC沟槽型MOSFET结构
Shimbori et al. Design methodologies and fabrication of 4H-SiC lateral Schottky barrier diode on thin RESURF layer
JPH09199721A (ja) 電界効果トランジスタ
JP6336165B2 (ja) 半導体装置
JP2009076930A (ja) 半導体装置
TW513815B (en) Silicon carbide dual metal trench Schottky diode and its manufacture method