TW202229649A - An improved process and device for copper electroplating with sulfate bath and insoluble anode - Google Patents

An improved process and device for copper electroplating with sulfate bath and insoluble anode Download PDF

Info

Publication number
TW202229649A
TW202229649A TW110149594A TW110149594A TW202229649A TW 202229649 A TW202229649 A TW 202229649A TW 110149594 A TW110149594 A TW 110149594A TW 110149594 A TW110149594 A TW 110149594A TW 202229649 A TW202229649 A TW 202229649A
Authority
TW
Taiwan
Prior art keywords
electroplating
anode
liquid
insoluble
tank
Prior art date
Application number
TW110149594A
Other languages
Chinese (zh)
Other versions
TWI806328B (en
Inventor
葉濤
葉旖婷
Original Assignee
葉濤
葉旖婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 葉濤, 葉旖婷 filed Critical 葉濤
Publication of TW202229649A publication Critical patent/TW202229649A/en
Application granted granted Critical
Publication of TWI806328B publication Critical patent/TWI806328B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention discloses an improved process and device for copper electroplating with sulfate bath and insoluble anode, which includes an electroplating tank, an electroplating power source, an insoluble anode and a cathode plating piece, and applies an acidic sulfate bath as the copper electroplating solution. The insoluble anode is made of coated titanium material in the shape of a mesh or a pierced plate, and at least one suction pipe/suction inlet is added on the side of the insoluble anode facing away from the cathode plating piece, so that the electroplating solution can pass through the suction pipe/suction inlet and generate liquid flow by overflow or/and electric suction methods; turn on the electroplating power supply to start electroplating production, and at the same time the electroplating solution is removed through the suction pipe/suction inlet by overflow or/and power methods, forming a liquid flow towards the suction pipe/suction inlet. Accordingly, electroplating solution is added to the electroplating tank in order to maintain the amount of electroplating solution in the electroplating tank until the electroplating process is completed and take out the cathode plating piece. The process can effectively improve the uniformity of the electroplated copper layer and improve the electroplating quality.

Description

不溶性陽極酸性硫酸鹽電鍍銅的優化製程及裝置Optimized process and device for copper electroplating with insoluble anodic acid sulfate

本發明屬於電鍍銅製程領域,具體涉及不溶性陽極酸性硫酸鹽電鍍銅的優化製程和裝置。The invention belongs to the field of copper electroplating process, and in particular relates to an optimized process and device for electroplating copper with insoluble anodic acid sulfate.

電鍍銅是電鍍工業中最常見的工序之一。通常而言,若要在多種類的金屬件其表面鍍上鎳、金、銀、錫金屬層,都需要先預鍍上一中間銅層以改善其外表鍍層的結合力;此外,線路板行業在生產製程中也常見到銅金屬電鍍工序。Electroplating copper is one of the most common processes in the electroplating industry. Generally speaking, if nickel, gold, silver and tin metal layers are to be plated on the surface of various types of metal parts, an intermediate copper layer needs to be pre-plated to improve the bonding force of the outer coating; in addition, the circuit board industry Copper metal electroplating is also common in the production process.

現有的酸性硫酸鹽電鍍銅製程是以硫酸和硫酸銅為其電鍍液主成分的電鍍製程,其可以根據可溶性陽極和不溶性陽極分為兩種不同的製程。可溶性陽極電鍍銅製程採用磷銅作為可溶性陽極材料;而不溶性陽極電鍍銅製程則指在電鍍反應過程中陽極不發生或發生極少量溶解的電鍍製程,即採用不溶性陽極材料,現有技術中普遍採用不溶性鈦基塗層陽極。The existing acid sulfate copper electroplating process is an electroplating process with sulfuric acid and copper sulfate as the main components of the electroplating solution, which can be divided into two different processes according to the soluble anode and the insoluble anode. The soluble anodic copper plating process uses phosphorous copper as the soluble anode material; the insoluble anodic copper plating process refers to the electroplating process in which the anode does not dissolve or a very small amount of dissolution occurs during the electroplating reaction process, that is, the insoluble anode material is used, and insoluble anode materials are generally used in the prior art. Titanium based coated anode.

兩種酸性硫酸鹽電鍍銅製程的陽極電化學反應式如下: (1)可溶性陽極電鍍銅製程

Figure 02_image001
(2) 不溶性陽極電鍍銅製程
Figure 02_image003
The anodic electrochemical reaction equations of the two acid sulfate copper electroplating processes are as follows: (1) Soluble anodic copper electroplating process
Figure 02_image001
(2) Insoluble anodized copper plating process
Figure 02_image003

與可溶性陽極電鍍銅製程相比,不溶性陽極電鍍銅製程在陽極上發生水的電解反應生成氫離子和氧氣,電鍍液中的銅離子在陰極處被還原成金屬銅,由於在電鍍過程中有較穩定的陽極外形尺寸和可控、穩定的電鍍液成分狀態,使得在陰極鍍件電鍍出更加均勻平整密緻的銅金屬鍍層;而且除了直流電鍍以外不溶性陽極電鍍銅製程也能適用於脈衝電鍍,還能夠通過增加陽極電流密度使生產效率得到大幅提高。Compared with the soluble anodic copper electroplating process, the insoluble anodic copper electroplating process produces hydrogen ions and oxygen through the electrolysis of water on the anode, and the copper ions in the electroplating solution are reduced to metallic copper at the cathode. The stable anode shape and the controllable and stable composition of the electroplating solution enable a more uniform, flat and dense copper metal coating to be electroplated on the cathode plating parts; and in addition to DC electroplating, the insoluble anodic copper electroplating process can also be applied to pulse electroplating. The production efficiency can also be greatly improved by increasing the anode current density.

與此同時,由於近年科技發展已全面步入5G電氣通信,市場對精密線路板的需求越來越大,其中對多層線路板中鍍銅通孔的縱橫比值(即通孔的孔長與孔徑的比值)的要求也日益提高,因此,目前線路板加工生產中已開始推廣不溶性陽極電鍍銅製程,以提升線路板產品電鍍銅的生產品質和生產效率。At the same time, as the development of science and technology has fully entered 5G electrical communication in recent years, the market demand for precision circuit boards is increasing. Therefore, the insoluble anodized copper plating process has been promoted in the current circuit board processing and production to improve the production quality and production efficiency of circuit board products.

對於鍍銅通孔其縱橫比值較大的線路板進行雙面電鍍時,現有的不溶性陽極電鍍銅製程中利用電源的反脈衝使陰極鍍件轉作電解陽極溶銅反應;如此不僅能實現優化鍍層的均勻性和平整性、改善鍍液分散能力和提高鍍層結合力,而且還能使具有通孔的鍍銅層得到良好的貫通效果。When double-sided electroplating is performed on a circuit board with a large aspect ratio of copper-plated through holes, in the existing insoluble anodized copper plating process, the reverse pulse of the power supply is used to convert the cathode plated part into an electrolytic anode copper dissolution reaction; this can not only optimize the plating layer It can improve the uniformity and flatness of the plating solution, improve the dispersion ability of the plating solution and the bonding force of the plating layer, and can also make the copper plating layer with through holes obtain a good penetration effect.

然而,現有的不溶性陽極電鍍銅製程中仍存有下列缺點:However, the existing insoluble anodized copper plating process still has the following disadvantages:

1.電鍍過程中陽極上產生氧氣泡,該氣泡會分佈於陽極和陰極鍍件之間,從而形成阻礙電鍍電流的屏障,影響放電的均勻性,從而降低鍍層的均勻性。同時,常規採用垂直電鍍製程時電鍍過程中產生的氧氣泡會在陽極表面從下至上形成一定梯度的氣泡層而進一步導致電流分佈不均,因此嚴重影響垂直電鍍的鍍件品質。1. Oxygen bubbles are generated on the anode during the electroplating process, and the bubbles will be distributed between the anode and cathode plating parts, thereby forming a barrier to hinder the electroplating current, affecting the uniformity of discharge, thereby reducing the uniformity of the coating. At the same time, when the vertical electroplating process is conventionally used, the oxygen bubbles generated during the electroplating process will form a certain gradient of bubble layers on the anode surface from bottom to top, which will further lead to uneven current distribution, thus seriously affecting the quality of the vertical electroplating parts.

針對上述垂直電鍍的問題,現有技術的解決方法是採用水平電鍍的方式,使得最大限度地降低氣泡層阻礙屏障所帶來的影響,但是水平電鍍設備結構更為複雜,電鍍槽內空間很局限,因此鍍件通常只能是薄板,不能滿足不同外形尺寸產品的電鍍銅生產。Aiming at the above-mentioned vertical electroplating problem, the solution in the prior art is to use the horizontal electroplating method to minimize the influence of the bubble layer hindering the barrier. However, the structure of the horizontal electroplating equipment is more complicated, and the space in the electroplating tank is very limited. Therefore, the plated parts are usually only thin plates, which cannot meet the production of electroplated copper for products with different dimensions.

2.在反脈衝電鍍過程中,當原來的不溶性陽極在反向脈衝的作用下轉變為陰極時,不溶性陽極所發生的極性轉變會令其表面出現析氫反應,使得不溶性鈦基塗層陽極的鈦基材表面的氧化鈦變為氫化鈦,導致不溶性陽極的塗層脫落造成陽極損壞。2. During the reverse pulse electroplating process, when the original insoluble anode is transformed into a cathode under the action of reverse pulse, the polarity change of the insoluble anode will cause a hydrogen evolution reaction on its surface, which makes the titanium of the insoluble titanium-based coating anode. The titanium oxide on the surface of the substrate changes to titanium hydride, which causes the coating of the insoluble anode to peel off and cause anode damage.

3.現有的不溶性陽極電鍍銅製程中,鍍液裡通常需要加入有機的電鍍添加劑,即光亮添加劑,來使鍍件獲得更為平整光潔的鍍層。而由於不溶性陽極電鍍銅製程中所使用的陽極其表面塗覆有貴金屬塗層,所述塗層對電鍍添加劑的分解反應具有催化作用,能夠直接對鍍液中的電鍍添加劑進行分解。另外,不溶性陽極進行酸性鍍銅作業時,一些新生的氧化劑會加速對電鍍添加劑的分解破壞。所以,在電鍍銅製程中使用現有的不溶性陽極,其電鍍添加劑的消耗量遠遠大於可溶性陽極電鍍銅製程中的正常用量。電鍍添加劑被額外地消耗導致生產增加成本。3. In the existing insoluble anodic copper electroplating process, organic electroplating additives, ie brightening additives, are usually added to the plating solution to obtain a smoother and smoother coating on the plated parts. Since the surface of the anode used in the insoluble anodic copper electroplating process is coated with a precious metal coating, the coating has a catalytic effect on the decomposition reaction of the electroplating additive, and can directly decompose the electroplating additive in the plating solution. In addition, when acid copper plating is performed on insoluble anodes, some new oxidants will accelerate the decomposition and damage of plating additives. Therefore, when the existing insoluble anode is used in the copper electroplating process, the consumption of electroplating additives is far greater than the normal consumption in the soluble anode copper electroplating process. Plating additives are additionally consumed resulting in increased production costs.

綜上所述,儘管在電鍍銅製程中不溶性陽極與可溶性陽極相比,有鍍層平整和效率高的優勢,但仍有必要進行製程優化。To sum up, although insoluble anodes have the advantages of flat coating and high efficiency compared with soluble anodes in copper electroplating process, process optimization is still necessary.

本發明的第一個目的在於提供一種不溶性陽極酸性硫酸鹽電鍍銅的優化製程,該製程能有效提高鍍件上電鍍金屬銅層的均勻性,提高電鍍品質。The first object of the present invention is to provide an optimized process for electroplating copper with insoluble anodic acid sulfate, which can effectively improve the uniformity of the electroplated metal copper layer on the plated part and improve the electroplating quality.

本發明的第二個目的在於提供一種不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。The second object of the present invention is to provide an optimized device for electroplating copper with insoluble anodic acid sulfate.

本發明的第一個目的通過以下技術方案實現。The first object of the present invention is achieved through the following technical solutions.

一種不溶性陽極酸性硫酸鹽電鍍銅的優化製程,包括電鍍槽、電鍍電源、不溶性陽極以及陰極鍍件,以酸性硫酸鹽鍍銅電鍍液作為電鍍液,其特徵在於: (1)採用材料為覆有塗層的鈦材、且形狀為網狀或者帶鏤空結構的板狀作為不溶性陽極,然後將所述不溶性陽極和所述陰極鍍件安裝在電鍍槽中;並在所述不溶性陽極背向陰極鍍件的那一面增設至少一個吸液管/吸液口,以使電鍍液通過該吸液管/吸液口的溢流或/和電動吸液方式產生液流; (2)接通電鍍電源進行電鍍生產作業,同時,通過所述吸液管/吸液口的溢流或/和採用動力的方式吸走電鍍液,使電鍍槽中的電鍍液形成流向吸液管/吸液口的液流,相應地,再添加電鍍液進入電鍍槽中以維持電鍍槽內的電鍍液體量,直到完成電鍍將鍍件取出。 An optimized process for insoluble anodic acid sulfate copper electroplating, comprising an electroplating tank, an electroplating power source, an insoluble anode and a cathode plating piece, and an acid sulfate copper electroplating solution is used as the electroplating solution, characterized in that: (1) The material is a coated titanium material, and the shape is a mesh or a plate with a hollow structure as the insoluble anode, and then the insoluble anode and the cathode plating piece are installed in the electroplating tank; and in the At least one suction pipe/liquid suction port is added on the side of the insoluble anode facing away from the cathode plating piece, so that the electroplating solution can generate liquid flow through the overflow of the liquid suction pipe/liquid suction port or/and the electric suction method; (2) Turn on the electroplating power supply to carry out the electroplating production operation, and at the same time, the electroplating solution is sucked away through the overflow of the suction pipe/liquid suction port or/and by means of power, so that the electroplating solution in the electroplating tank flows into the suction liquid The liquid flow of the pipe/liquid suction port, correspondingly, the electroplating solution is added into the electroplating tank to maintain the amount of electroplating liquid in the electroplating tank until the plating is completed and the plated parts are taken out.

本發明所述的不溶性陽極採用網狀或者帶鏤空的板狀結構,使其具備兩面貫通的孔隙,與所述設置在陽極背向陰極鍍件方向的那一面的至少一個吸液管/吸液口相配合,通過溢流和/或採用動力的方式令不溶性陽極附近的液體產生遠離陰極鍍件並穿過陽極孔隙的液流,從而使得電鍍過程中陽極表面產生的氧氣泡能隨液流穿過不溶性陽極的網孔或鏤空結構所形成的孔隙,被帶離陽極與陰極鍍件之間的區域作外排釋放,這樣有助於減少電鍍過程中氧氣在陽極面向陰極鍍件那一面的表面聚積而形成氧氣泡遮罩層,從而提高鍍件的電鍍均勻性和電鍍效率。The insoluble anode of the present invention adopts a net-like or hollowed-out plate-like structure, so that it has pores that pass through on both sides, and the at least one liquid suction pipe/liquid suction pipe arranged on the side of the anode facing away from the direction of the cathode plating piece. By means of overflow and/or dynamic means, the liquid near the insoluble anode can be produced away from the cathode plating part and pass through the pores of the anode, so that the oxygen bubbles generated on the surface of the anode can flow through the liquid during the electroplating process. The pores formed by the mesh or hollow structure of the insoluble anode are taken away from the area between the anode and the cathode plating part for efflux release, which helps to reduce the oxygen on the surface of the anode facing the cathode plating part during the electroplating process. Accumulation to form an oxygen bubble mask layer, thereby improving the electroplating uniformity and electroplating efficiency of the plated parts.

優選地,所述吸液管/吸液口採用動力使不溶性陽極附近的液體產生遠離陰極鍍件並穿過陽極孔隙的液流,所述的動力為加壓引流和/或負壓吸液的泵浦。Preferably, the liquid suction pipe/liquid suction port uses power to make the liquid near the insoluble anode generate a liquid flow away from the cathode plating member and through the anode pores, and the power is pressurized drainage and/or negative pressure liquid suction pump.

本發明所述的再添加電鍍液進入電鍍槽中以維持電鍍槽內的電鍍液的量,可以是另外添加新的電鍍液或者電鍍補液,也可以是採用回流系統。In the present invention, adding the electroplating solution into the electroplating tank to maintain the amount of the electroplating solution in the electroplating tank can be by adding a new electroplating solution or an electroplating replenishing solution, or using a reflow system.

本發明採用的回流系統主要由泵浦和連接管道組成,其一端連接吸液管/吸液口,另一端連通電鍍槽,利用該回流系統使由吸液管/吸液口吸走的電鍍液再回流入電鍍槽中,形成電鍍槽內的電鍍液流向陽極處的吸液管/吸液口的液流,循環往復。所述回流系統可以在上述吸液管/吸液口採用泵浦使不溶性陽極附近的液體產生遠離陰極鍍件並穿過陽極孔隙的液流的基礎上加上連接管道連通電鍍槽而構成。The backflow system adopted in the present invention is mainly composed of a pump and a connecting pipe, one end of which is connected to a liquid suction pipe/liquid suction port, and the other end is connected to an electroplating tank. Then it flows back into the electroplating tank to form a liquid flow from the electroplating solution in the electroplating tank to the liquid suction pipe/liquid suction port at the anode, and the cycle is repeated. The recirculation system can be constructed by adding a connecting pipe to the electroplating tank based on the above-mentioned suction pipe/liquid suction port using a pump to make the liquid near the insoluble anode generate a liquid flow away from the cathode plating member and through the anode pores.

本發明的方法既適用於垂直電鍍,也適用於水平電鍍;既能與普通的直流電源配合使用,也能與反脈衝電源匹配使用。特別是將本發明的方法應用於垂直電鍍時,能有效地解決現有製程中氧氣泡在陽極面向陰極的那一面的表面上形成電流阻礙遮罩層的製程問題,使不溶性陽極在結構簡單容易維護的垂直電面鍍設備中也能實現良好的電鍍效果。The method of the invention is suitable for both vertical electroplating and horizontal electroplating; it can be used in combination with ordinary direct current power supply and reverse pulse power supply. Especially when the method of the present invention is applied to vertical electroplating, it can effectively solve the process problem that oxygen bubbles form a current blocking mask layer on the surface of the anode facing the cathode in the existing process, so that the insoluble anode has a simple structure and is easy to maintain. Good electroplating effect can also be achieved in the vertical electroplating equipment.

本發明可以做以下改進。The present invention can make the following improvements.

在所述不溶性陽極面向陰極鍍件的那一面增設至少一個噴液管/噴液口,該噴液管/噴液口與外接的噴液管路相連,用以朝向陽極噴液,與所述的吸液管/吸液口配合,在不溶性陽極附近產生更穩定可控的遠離陰極鍍件的液流,從而更好地令電鍍過程中陽極上產生的氣泡順利穿過不溶性陽極的孔隙離開陽極與陰極鍍件之間的區域,所述噴液管路為另一端連通裝有電鍍液的容器的具有泵浦的管路,為噴液管/噴液口噴液提供源源不斷的電鍍液。At least one spray pipe/spray port is added on the side of the insoluble anode facing the cathode plating piece, and the spray pipe/spray port is connected to an external spray pipe for spraying liquid toward the anode, and is connected with the The combination of the suction pipe and suction port produces a more stable and controllable liquid flow away from the cathode plating near the insoluble anode, so that the bubbles generated on the anode during the plating process can pass through the pores of the insoluble anode and leave the anode. In the area between the cathode plating piece, the liquid spraying pipeline is a pipeline with a pump connected to the container containing the electroplating solution at the other end, and provides a steady stream of electroplating solution for the liquid spraying pipe/spraying port.

優選地,所述的噴液管/噴液口設置在所述不溶性陽極面向陰極鍍件的那一面的電鍍槽底部,從而使所述噴液管/噴液口和所述的吸液管/吸液口配合產生從下而上的液流,令陽極上產生的氣泡儘快通過不溶性陽極的孔隙被吸走遠離陰極鍍件,同時避免陽極與陰極鍍件之間區域的電鍍液產生渦流而影響電鍍液的電流分佈。Preferably, the spray pipe/spray port is arranged at the bottom of the electroplating tank on the side of the insoluble anode facing the cathode plating part, so that the spray pipe/spray port and the suction pipe/ The liquid suction port cooperates to generate a liquid flow from bottom to top, so that the bubbles generated on the anode are sucked away from the cathode plating parts as soon as possible through the pores of the insoluble anode, and at the same time, the eddy current of the electroplating solution in the area between the anode and the cathode plating parts is avoided. The current distribution of the plating solution.

本發明還可以採用對所述的不溶性陽極進行饋電結構改進,優選從不溶性陽極的水平兩旁邊設入饋電線路,減少不溶性陽極的上部和下部的電流密度差,使析氣電極與陰極區域間的氣液混合液的電導率趨向均勻一致。這克服了從上饋電方式因陽極上部電流密度較下部大而令電析氣泡更加集中於陽極上部,導致電鍍液的電鍍電流分佈極不均勻的缺點。The present invention can also improve the feeding structure of the insoluble anode. It is preferable to set the feeding lines from the horizontal sides of the insoluble anode to reduce the current density difference between the upper and lower parts of the insoluble anode, so that the gas evolution electrode and the cathode area can be improved. The conductivity of the gas-liquid mixture tends to be uniform. This overcomes the disadvantage that the current density of the upper part of the anode is higher than that of the lower part of the feeding method, so that the electrolytic bubbles are more concentrated in the upper part of the anode, resulting in extremely uneven plating current distribution of the electroplating solution.

本發明還可以進一步在回流管系中增設氣液分離器,使所述的吸液管通過連接管道將從電鍍槽吸出的氣液混合物流體排入到氣液分離器中。所述的氣液分離器是將電鍍過程中陽極上產生的氧氣泡連同電鍍液一起被引流到較大的空間,令液體流速減慢致使其中氣體逸出的裝置。所述氣液混合物在氣液分離器中作分離釋放氣體後其液體再次被引回流到所述電鍍槽中作迴圈流動。In the present invention, a gas-liquid separator can be further added to the return piping system, so that the liquid suction pipe discharges the gas-liquid mixture fluid sucked from the electroplating tank into the gas-liquid separator through the connecting pipe. The gas-liquid separator is a device for draining the oxygen bubbles generated on the anode during the electroplating process together with the electroplating solution to a larger space, so that the liquid flow rate is slowed down and the gas escapes. After the gas-liquid mixture is separated in the gas-liquid separator to release the gas, the liquid of the gas-liquid mixture is led back to the electroplating tank for circulating flow again.

優選地,對所述氣液分離器中所析出的氧氣收集再利用。Preferably, the oxygen separated out in the gas-liquid separator is collected and reused.

本發明還可以將所述電鍍槽用電鍍槽分隔物將其分隔開為陽極電鍍槽區和陰極電鍍槽區兩個區域,在所述二電鍍槽區中的電鍍液可以是相同的,也可以是不同的。即所述陽極電鍍槽區中的電鍍液為陽極電鍍液,具體為含有無機酸和/或無機鹽的水溶液,或者採用酸性硫酸鹽鍍銅電鍍液;所述陰極電鍍槽區中的電鍍液為酸性硫酸鹽鍍銅電鍍液。電鍍過程中,所述不溶性陽極和陰極鍍件分別隔離置於所述陽極電鍍槽區和陰極電鍍槽區中。在此優選方案中,由於氣泡僅存在於兩極之間的陽極電鍍槽區範圍內,本發明所述的吸液管/吸液口設置在陽極電鍍槽區內,僅在陽極電鍍槽區內產生遠離陰極鍍件並穿過陽極孔隙的液流。若進一步在所述不溶性陽極面向陰極鍍件的那一面設置噴液管/噴液口時,所述噴液管/噴液口也位於陽極電鍍槽區內。In the present invention, the electroplating tank can also be separated into two areas, an anode plating tank area and a cathode plating tank area, with an electroplating tank separator, and the electroplating solutions in the two electroplating tank areas can be the same, or can be different. That is, the electroplating solution in the anodic electroplating tank area is an anodic electroplating solution, specifically an aqueous solution containing inorganic acids and/or inorganic salts, or an acidic sulfate copper plating electroplating solution; the electroplating solution in the cathode electroplating tank area is Acid sulfate copper plating bath. During the electroplating process, the insoluble anode and cathode plating parts are isolated and placed in the anode plating tank area and the cathode plating tank area, respectively. In this preferred solution, since the air bubbles only exist in the area of the anodizing bath area between the two poles, the pipette/suction port of the present invention is arranged in the anodizing bath area, and only occurs in the anodizing bath area. Flow away from the cathodic plating and through the pores of the anode. If the side of the insoluble anode facing the cathode plating member is further provided with a liquid spray pipe/liquid spray port, the liquid spray pipe/liquid spray port is also located in the anode plating tank area.

所述的電鍍槽分隔物作用在於對陽極上所生成的氧氣和羥基自由基與陰極鍍件附近區域的電鍍液進行分隔,以減少氧氣和羥基自由基進入陰極鍍件附近的酸性鍍銅電鍍液中與電鍍添加劑發生化學反應的機會,從而降低酸性鍍銅電鍍液中電鍍添加劑的額外損耗。同時,也有利於實現電鍍過程中陽極表面所產生的氧氣得到集中抽排。The function of the electroplating tank separator is to separate the oxygen and hydroxyl radicals generated on the anode from the electroplating solution in the vicinity of the cathode plating piece, so as to reduce the entry of oxygen and hydroxyl radicals into the acid copper plating electroplating solution near the cathode plating piece. The chance of chemical reaction with electroplating additives is reduced, thereby reducing the additional loss of electroplating additives in acid copper plating baths. At the same time, it is also beneficial to realize the centralized extraction of oxygen generated on the surface of the anode during the electroplating process.

優選地,所述的電鍍槽分隔物選自陽離子交換膜、陰離子交換膜、雙極膜、反滲透膜、濾布、超濾膜、陶瓷濾板和PE濾板中的至少一種。Preferably, the electroplating tank separator is selected from at least one of cation exchange membrane, anion exchange membrane, bipolar membrane, reverse osmosis membrane, filter cloth, ultrafiltration membrane, ceramic filter plate and PE filter plate.

當所述的電鍍槽分隔物單獨選用陽離子交換膜時,隨著電化學反應的進行,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的銅離子在陰極鍍件表面被還原為金屬銅,同時所述陽極電鍍槽區中的電鍍液中的陽離子會通過所述電鍍槽分隔物進入到所述陰極電鍍槽區中。When the cation exchange membrane is used as the separator of the electroplating tank, with the progress of the electrochemical reaction, the copper ions in the acid sulfate copper plating solution in the cathode electroplating tank area are reduced to metallic copper on the surface of the cathode plating piece At the same time, the cations in the electroplating solution in the anodic electroplating tank area will enter the cathode electroplating tank area through the electroplating tank partition.

當所述的電鍍槽分隔物單獨選用陰離子交換膜時,隨著電化學反應的進行,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的銅離子在陰極鍍件表面被還原為金屬銅,同時所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的陰離子會通過所述電鍍槽分隔物進入到所述陽極電鍍槽區中。When the anion exchange membrane is used as the separator of the electroplating tank, with the progress of the electrochemical reaction, the copper ions in the acid sulfate copper plating solution in the cathode electroplating tank area are reduced to metallic copper on the surface of the cathode plating piece At the same time, the anions of the acid sulfate copper plating solution in the cathodic electroplating tank area will enter the anode electroplating tank area through the electroplating tank separator.

當所述的電鍍槽分隔物單獨選用超濾膜和/或陶瓷濾板和/或PE濾板和/或濾布時,隨著電化學反應的進行,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的銅離子在陰極鍍件表面被還原為金屬銅,同時所述陽極電鍍槽區中的電鍍液中的部分陽離子會通過所述電鍍槽分隔物的小孔進入到所述陰極電鍍槽區中,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的部分陰離子也會通過所述電鍍槽分隔物的小孔進入到所述陽極電鍍槽區中。When an ultrafiltration membrane and/or a ceramic filter plate and/or a PE filter plate and/or a filter cloth are selected as the separators of the electroplating tank, with the progress of the electrochemical reaction, the acid sulfate in the cathode electroplating tank area The copper ions of the copper-plating electroplating solution are reduced to metallic copper on the surface of the cathode plating part, and at the same time, some cations in the electroplating solution in the anodizing bath area will enter the cathode electroplating through the small holes of the electroplating bath partition. In the tank area, some anions of the acid sulfate copper plating solution in the cathodic electroplating tank area also enter into the anode plating tank area through the small holes of the electroplating tank separator.

當所述的電鍍槽分隔物單獨選用雙極膜時,隨著電化學反應的進行,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的銅離子在陰極鍍件表面被還原為金屬銅,同時所述的雙極膜內部發生水的電解反應生成氫離子並進入到所述陰極電鍍槽區中。When the electroplating tank separator is a bipolar membrane alone, with the progress of the electrochemical reaction, the copper ions in the acid sulfate copper plating solution in the cathode electroplating tank area are reduced to metallic copper on the surface of the cathode plating piece At the same time, the electrolysis reaction of water occurs inside the bipolar membrane to generate hydrogen ions and enter into the cathode electroplating tank area.

當所述的電鍍槽分隔物單獨選用反滲透膜時,隨著電化學反應的進行,所述陰極電鍍槽區中酸性硫酸鹽鍍銅電鍍液的銅離子在陰極鍍件表面被還原為金屬銅。若所述陽極電鍍槽區中電鍍液存在有氫離子,所述氫離子也會通過所述電鍍槽分隔物進入到所述陰極電鍍槽區中。When the reverse osmosis membrane is used as the separator of the electroplating tank, with the progress of the electrochemical reaction, the copper ions in the acid sulfate copper plating solution in the cathode electroplating tank area are reduced to metallic copper on the surface of the cathode plating piece . If there are hydrogen ions in the electroplating solution in the anode plating tank, the hydrogen ions will also enter the cathode plating tank through the plating tank separator.

優選地,所述的陽極電鍍液為硫酸和/或硫酸銅的溶液。更優選地,所述的陽極電鍍液為硫酸溶液。Preferably, the anodic plating solution is a solution of sulfuric acid and/or copper sulfate. More preferably, the anodic plating solution is a sulfuric acid solution.

本發明若在回流管系中增設氣液分離器時,所述的吸液管/吸液口通過連接管道將從陽極電鍍槽區吸出的氣液混合物流體排入到氣液分離器中,所述氣液混合物在氣液分離器中作分離釋放氣體後,其液體再次被引回流到所述陽極電鍍槽區中作迴圈流動。In the present invention, if a gas-liquid separator is added to the return piping system, the liquid suction pipe/liquid suction port discharges the gas-liquid mixture fluid sucked from the anode plating tank area into the gas-liquid separator through the connecting pipe, so After the gas-liquid mixture is separated in the gas-liquid separator to release the gas, the liquid of the gas-liquid mixture is led back to the anode plating tank again for circulating flow.

作為本發明一種改進的實施方式,所述陽極電鍍槽區採用陽極盒的形式並安裝在所述的電鍍槽中以對陽極電鍍槽區和陰極電鍍槽區作分隔,其具體為:所述陽極盒為立方體型盒狀,不溶性陽極位於陽極盒中,所述陽極盒面朝向陰極鍍件的那一面為電鍍槽分隔物,所述陽極盒的內部空間為陽極電鍍槽區,所述電鍍槽中、陽極盒以外的空間為陰極電鍍槽區。在此優選方案中,本發明所述的吸液管/吸液口設置在所述陽極盒上,具體位於陽極盒內所述不溶性陽極背向陰極鍍件的那一面的空間位置或者盒壁上;另外,所述陽極盒內還可以設置有噴液管/噴液口,具體位於陽極盒內所述不溶性陽極面向陰極鍍件那一面與相鄰盒壁之間的區域中。優選地,所述陽極盒內噴液管/噴液口噴出的液體取自於所述氣液分離器中的液體。As an improved embodiment of the present invention, the anode plating tank area adopts the form of an anode box and is installed in the plating tank to separate the anode plating tank area and the cathode plating tank area, which is specifically: the anode The box is a cube-shaped box, and the insoluble anode is located in the anode box. The side of the anode box facing the cathode plating part is the electroplating tank partition. The inner space of the anode box is the anode plating tank area. , The space outside the anode box is the cathode plating tank area. In this preferred solution, the liquid suction pipe/liquid suction port of the present invention is arranged on the anode box, specifically located in the space position of the side of the insoluble anode facing away from the cathode plating member in the anode box or on the box wall In addition, the anode box may also be provided with a liquid spray pipe/liquid spray port, which is specifically located in the area between the side of the insoluble anode facing the cathode plating piece and the adjacent box wall in the anode box. Preferably, the liquid sprayed from the liquid spray pipe/liquid spray port in the anode box is taken from the liquid in the gas-liquid separator.

優選地,在所述陽極盒朝向陰極鍍件那一面外的四周邊沿裝設有液體噴射管,用於向陰極噴射電鍍液,從而使電鍍液能夠湧入陰極鍍件的孔隙深處,令孔隙內部的電鍍液能得到補充更新,以此提高鍍件的孔隙深處的電鍍品質。Preferably, liquid spray pipes are installed along the four peripheries of the anode box outside the side facing the cathode plating piece, for spraying the electroplating liquid to the cathode, so that the electroplating liquid can pour into the depth of the pores of the cathode plating piece, so that the pores The internal electroplating solution can be replenished and updated, so as to improve the electroplating quality in the pore depth of the plated part.

更優選地,當設置有多個陽極盒時,所述陽極盒外的液體噴射管的噴射動作根據時間和/或流量進行程式控制,利用時間差和/或流量差來避免陰極鍍件兩側陽極盒雙方同時噴射的液流相互對射衝撞,從而實現鍍液灌孔效果的最優化。More preferably, when a plurality of anode boxes are provided, the spray action of the liquid injection pipe outside the anode box is program-controlled according to time and/or flow rate, and the time difference and/or flow rate difference are used to avoid anodes on both sides of the cathode plating piece. The liquid streams sprayed by both sides of the box at the same time collide with each other, so as to achieve the optimization of the effect of the plating solution.

本發明還可以在所述的不溶性陽極上設有反脈衝保護屏網,所述反脈衝保護屏網為設置在陽極面向陰極鍍件那一面上的無塗層鈦材凸起物或凸起的網狀物、條狀物等任意有利於放電的電極結構形式,且與不溶性陽極的鈦基材直接連接。所述凸起物的形狀可以是凸點狀、尖刺狀、豎條狀;所述的凸起的網狀物和條狀物則可以是在陽極面向陰極鍍件那一面上伸向陰極鍍件方向的支援腳端固定的網狀物或者條狀物,或者是與上述任意凸起物上部相互連接形成的網狀物或者條狀物,所述網狀物構成的平面與陽極面平行或者基本平行。In the present invention, a reverse pulse protection screen can also be provided on the insoluble anode, and the reverse pulse protection screen is an uncoated titanium protrusion or a raised protrusion disposed on the side of the anode facing the cathode plating piece. Any electrode structure that is beneficial to discharge, such as meshes, strips, etc., is directly connected to the titanium substrate of the insoluble anode. The shape of the protrusions can be in the shape of bumps, spikes, and vertical strips; the raised meshes and strips can extend toward the cathode plating on the side of the anode facing the cathode plating piece. A mesh or strip fixed at the support foot end in the direction of the piece, or a mesh or strip formed by interconnecting with the upper part of any of the above-mentioned protrusions, the plane formed by the mesh is parallel to the anode surface or basically parallel.

上述這種對不溶性陽極的結構有針對性地進行改造,在採用反脈衝電源作電鍍製程時,更能有效地發揮本發明所述不溶性陽極的製程品質優勢。所述的反脈衝保護屏網在反脈衝電解過程中對不溶性陽極起保護作用,其原理是利用鈦在電解質水溶液電化學反應中具有單向導電的閥值金屬特性,即利用所述的反脈衝保護屏網裸露的鈦金屬作為陽極進行電解質水溶液的電化學反應時,其表面會有氧化層生成而難以參與電化學反應,但作為陰極鍍件進行電化學反應時卻能正常參與放電的特性,使得設置有所述反脈衝保護屏網的不溶性陽極作為陽極進行電鍍電化學反應時,所述的反脈衝保護屏網幾乎不參加反應,而是由所述覆有塗層的鈦材陽極本體進行主要的電鍍的電化學反應;但當電源反脈衝換極相後,原鍍件轉作陽極電解溶銅時,所述的不溶性陽極轉作為陰極時,則所述反脈衝保護屏網參與電化學反應進行放電。由於所述反脈衝保護屏網從不溶性陽極表面凸出而在距離上更加接近陰極鍍件,所以根據電場電位差原理,其更加能有效地吸引電鍍電流並使主電流通過反脈衝保護屏網後再從所述不溶性陽極裡的鈦基材中導流。析氫反應會直接在所述反脈衝保護屏網上發生,而非如現有技術主要發生在不溶性陽極塗層的表面。因此所述的反脈衝保護屏網能有效地減少不溶性陽極塗層表面的電化學析氫反應,從而有效地延長不溶性陽極的使用壽命。當所述的反脈衝保護屏網為凸起物時,所述凸起物的數量越多、分佈越均勻,對所述不溶性陽極塗層的保護效果越好。The above structure of the insoluble anode is modified in a targeted manner, and the process quality advantage of the insoluble anode of the present invention can be effectively exerted when the reverse pulse power supply is used for the electroplating process. The anti-pulse protective screen protects the insoluble anode in the process of anti-pulse electrolysis. When the exposed titanium metal of the protective screen is used as the anode for the electrochemical reaction of the electrolyte aqueous solution, an oxide layer will be formed on the surface and it is difficult to participate in the electrochemical reaction, but when it is used as a cathode plating part for the electrochemical reaction, it can normally participate in the discharge characteristics. When the insoluble anode provided with the anti-pulse protective screen is used as the anode to carry out the electroplating electrochemical reaction, the anti-pulse protective screen hardly participates in the reaction, but is carried out by the coated titanium anode body. The main electrochemical reaction of electroplating; but when the reverse pulse of the power source changes the phase, when the original plated part is converted into an anode for electrolytic copper dissolution, and the insoluble anode is converted into a cathode, the reverse pulse protection screen participates in the electrochemical reaction. The reaction is discharged. Since the reverse pulse protection screen protrudes from the surface of the insoluble anode and is closer to the cathode plating piece in distance, according to the principle of electric field potential difference, it can more effectively attract the electroplating current and make the main current pass through the reverse pulse protection screen. Conduction from the titanium substrate in the insoluble anode. The hydrogen evolution reaction occurs directly on the back pulse protection screen, rather than mainly on the surface of the insoluble anode coating as in the prior art. Therefore, the reverse pulse protection screen can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode coating, thereby effectively prolonging the service life of the insoluble anode. When the anti-pulse protection screen is protrusions, the more the protrusions are in number and the more uniform the distribution is, the better the protection effect on the insoluble anode coating is.

本發明還可以進一步在所述的不溶性陽極的邊沿增設定型框,所述不溶性陽極連接上所述定型框有助於增強其平直機械剛性,減少因陽極變型帶來的放電不均勻的影響。所述定型框的厚度大於所述不溶性陽極厚度和/或其寬度大於所述不溶性陽極無孔隙部位的寬度和/或其機械剛性高於所述不溶性陽極的機械剛性和/或通過穩定結構來加強所述不溶性陽極的機械剛性。In the present invention, a setting frame can be further added to the edge of the insoluble anode, and the connection of the setting frame to the insoluble anode helps to enhance its straight mechanical rigidity and reduce the influence of uneven discharge caused by anode deformation. . The thickness of the sizing frame is greater than the thickness of the insoluble anode and/or its width is greater than the width of the non-porous portion of the insoluble anode and/or its mechanical rigidity is greater than that of the insoluble anode and/or is reinforced by a stabilizing structure Mechanical rigidity of the insoluble anode.

所述的定型框可以採用任意具有陽性不溶性、耐熱耐酸且剛性較強的材料。The shaping frame can be any material with positive insolubility, heat and acid resistance and strong rigidity.

當本發明所述的不溶性陽極設置有反脈衝保護屏網且所述的定型框為裸露鈦材或者覆有塗層的鈦材時,所述的反脈衝保護屏網除了與不溶性陽極的鈦基材直接連接的方案外,也可以單獨與所述定型框的鈦材連接,或者同時與兩者連接。由於導電體越粗電阻越小,使得此優選方案中的定型框除了在電鍍時能使不溶性陽極的整體電流作合理的電流分佈之外,還能在反脈衝電解過程中將主電流接引入定型框中作旁路引走,進一步保護不溶性陽極的表面塗層。When the insoluble anode of the present invention is provided with an anti-pulse protective screen and the shaping frame is a bare titanium material or a coated titanium material, the anti-pulse protective screen is in addition to the titanium base of the insoluble anode. In addition to the scheme of directly connecting the material, it can also be connected with the titanium material of the setting frame alone, or connected with both at the same time. Since the thicker the conductor, the smaller the resistance, the sizing frame in this preferred solution can not only make a reasonable current distribution of the overall current of the insoluble anode during electroplating, but also introduce the main current into the sizing frame during the reverse pulse electrolysis process. The frame is bypassed to further protect the surface coating of the insoluble anode.

優選地,所述的定型框選用導電材料,且所述定型框通過所述不溶性陽極的鈦基材與電鍍電源的正極相連接,或同時與所述不溶性陽極的鈦基材和電鍍電源的正極相連接,或與反脈衝電鍍電源的正極相連接。Preferably, the sizing frame is made of conductive material, and the sizing frame is connected to the positive electrode of the electroplating power source through the titanium base material of the insoluble anode, or is simultaneously connected to the titanium base material of the insoluble anode and the positive electrode of the electroplating power source. Connected to or connected to the positive pole of the reverse pulse electroplating power supply.

更優選地,所述的定型框選用裸露鈦材,且所述定型框通過所述不溶性陽極的鈦基材與電鍍電源的正極連接,或同時與所述不溶性陽極的鈦基材和電鍍電源的正極相連接,或與反脈衝電鍍電源的正極相連接,能夠結合不溶性陽極作饋電結構的改進。More preferably, the shaping frame is made of exposed titanium material, and the shaping frame is connected to the positive electrode of the electroplating power supply through the titanium base material of the insoluble anode, or is simultaneously connected to the titanium base material of the insoluble anode and the anode of the electroplating power supply. The positive electrode is connected, or connected with the positive electrode of the reverse pulse electroplating power supply, which can be combined with the insoluble anode to improve the feeding structure.

本發明可以作以下改進:電鍍過程中根據對電鍍液的成分濃度的分析結果向電鍍槽中加投補充液或者電鍍原料,以維持電鍍液中各成分比例的穩定。The present invention can make the following improvements: in the electroplating process, supplementary solution or electroplating raw materials are added to the electroplating tank according to the analysis result of the component concentration of the electroplating solution, so as to maintain the stability of each component ratio in the electroplating solution.

本發明可以作以下改進:所述的電鍍槽可以直接或者通過中轉槽與電鍍液再生裝置相連接,形成按製程設置的可控迴圈回用系統,作電鍍銅源補充,這有助於實現綠色清潔生產和降低生產成本。The present invention can make the following improvements: the electroplating tank can be connected with the electroplating solution regeneration device directly or through a transfer tank to form a controllable loop recycling system set according to the process, which can be used as a supplement for the electroplating copper source, which helps Realize green and clean production and reduce production costs.

本發明可以作以下改進:所述不溶性陽極背向陰極鍍件的那一面連接有與電鍍電源正極連通的導電體,利用導電體的旁路電流來增加不溶性陽極電鍍時放電的均勻性,從而提高鍍件的電鍍品質。所述的導電體可以是導電板或者導電網,同時所述導電板或者導電網與所述定型框相連接,能使該不溶性陽極在電鍍時放電更為均勻。The present invention can make the following improvements: the side of the insoluble anode facing away from the cathode plating piece is connected with a conductor that is in communication with the positive electrode of the electroplating power supply, and the bypass current of the conductor is used to increase the uniformity of discharge during electroplating of the insoluble anode, thereby improving the The plating quality of the plated parts. The conductor can be a conductive plate or a conductive mesh, and the conductive plate or the conductive mesh is connected to the shaping frame, so that the insoluble anode can be more uniformly discharged during electroplating.

優選地,所述導電板為無塗層的帶網狀或者鏤空結構的鈦板,或者所述導電網為無塗層的鈦網。Preferably, the conductive plate is an uncoated titanium plate with a mesh or hollow structure, or the conductive mesh is an uncoated titanium mesh.

本發明還可以進一步改為將所述的反脈衝保護屏網設置在所述的導電體上,然後將反脈衝保護屏網穿過不溶性陽極的網孔或鏤空結構伸出不溶性陽極表面朝向陰極鍍件。其中具體有以下兩種連接方式。In the present invention, the anti-pulse protective screen can be further changed to be arranged on the conductor, and then the anti-pulse protective screen can be passed through the mesh or hollow structure of the insoluble anode and protrude from the surface of the insoluble anode toward the cathode plating. pieces. Specifically, there are the following two connection methods.

(1)所述的反脈衝保護屏網在穿過不溶性陽極時與陽極的鈦基材焊接相連,在電鍍時能使反脈衝電流通過凸出的部分分別沿導電體和不溶性陽極的鈦基材分流,以減少在不溶性陽極上發生析氫現象。(1) The reverse pulse protection screen is connected to the titanium base material of the anode by welding when passing through the insoluble anode, so that the reverse pulse current can pass through the protruding parts along the conductor and the titanium base material of the insoluble anode respectively during electroplating. Shunt to reduce hydrogen evolution on insoluble anodes.

(2) 所述的反脈衝保護屏網在穿過不溶性陽極時不作導電連接,在反脈衝電鍍時更能減少通過所述不溶性陽極的電流,從而進一步減少其析氫現象。(2) The reverse pulse protection screen does not conduct conductive connection when passing through the insoluble anode, and can reduce the current passing through the insoluble anode during reverse pulse electroplating, thereby further reducing its hydrogen evolution phenomenon.

優選地,所述反脈衝保護屏網與所述不溶性陽極不作導電連接,且所述不溶性陽極和/或定型框與所述導電板或者導電網之間使用鈦板或鈦網作焊接相連。Preferably, the anti-pulse protection screen and the insoluble anode are not conductively connected, and the insoluble anode and/or the shaping frame and the conductive plate or the conductive mesh are connected by welding using a titanium plate or a titanium mesh.

更優選地,所述定型框與導電板或者導電網之間使用鈦板或鈦網作四周封邊相焊連接。這樣既能使電鍍時所述不溶性陽極放出電流更為均勻,並且在反脈衝的工作期間當不溶性陽極轉變為陰極時,其主電流通過反脈衝保護網、定型框和/或導電板(網)的旁路分流,使進一步減少所述不溶性陽極的析氫反應。More preferably, a titanium plate or a titanium mesh is used to seal the surrounding edges between the shaping frame and the conductive plate or the conductive mesh by welding. This not only makes the insoluble anode discharge more uniform during electroplating, and during the operation of the reverse pulse, when the insoluble anode changes to the cathode, its main current passes through the reverse pulse protection mesh, sizing frame and/or conductive plate (mesh) The bypass shunt enables to further reduce the hydrogen evolution reaction of the insoluble anode.

本發明可以作以下改進,當不溶性陽極帶有所述反脈衝保護屏網、定型框和導電板或導電網時,在所述導電板或導電網背向陰極鍍件的方向的那一面安裝至少一個吸液管/吸液口;而且所述不溶性陽極與導電板或導電網通過鈦板材料的定型框作兩者之間的密封邊連接,使噴液管/噴液口的主液流攜帶著陽極所析氣泡能集中通過不溶性陽極上的通孔及其背後的導電板或導電網上的通孔,被推引到吸液管/吸液口中吸引流出。The present invention can be improved as follows: when the insoluble anode is provided with the anti-pulse protection screen, the setting frame and the conductive plate or conductive mesh, at least the side of the conductive plate or conductive mesh facing away from the direction of the cathode plating is installed at least A liquid suction pipe/liquid suction port; and the insoluble anode and the conductive plate or conductive mesh are connected with the sealing edge between the two through the setting frame of titanium plate material, so that the main liquid flow of the liquid spray pipe/liquid spray port is carried The bubbles formed on the anode can be concentrated through the through holes on the insoluble anode and the through holes on the conductive plate or conductive mesh behind it, and are pushed into the suction pipe/liquid suction port for suction and flow out.

優選地,將帶有所述反脈衝保護網、定型框、導電體的不溶性陽極和吸液管/吸液口、噴液管/噴液口的不溶性陽極元件安裝在所述的陽極盒中作為陽極槽區盒式總成。Preferably, the insoluble anode element with the reverse pulse protection net, the setting frame, the electrical conductor and the suction pipe/suction port, the liquid spray pipe/spray port is installed in the anode box as a Anode tank box assembly.

本發明可以作以下改進:當陰極鍍件需要在多個方向進行電鍍或者其在不同方向表面的電鍍面積不等時,可採用一個電源接上兩個或兩個以上的不溶性陽極,並合理分佈在鍍件周邊的位置上作電鍍的電化學反應;也可以選用兩個或多個電源以及多個不溶性陽極在合理位置的佈置下共接陰極鍍件作電鍍;還也可以根據要求的電化學反應量設置兩個或兩個以上的電鍍電源及各電源各自連接上一個或一個以上的所述不溶性陽極,在共接陰極電鍍工件進行電鍍的情況下,根據鍍件不同方向的電鍍表面積和製程要求對各電鍍電源輸出的電流強度大小進行精確調節,以提高鍍件的電鍍品質。The invention can make the following improvements: when the cathode plating part needs to be electroplated in multiple directions or the electroplating area of the surface in different directions is not equal, one power supply can be used to connect two or more insoluble anodes, and distribute them reasonably Electrochemical reaction of electroplating is performed on the surrounding position of the plated part; two or more power sources and multiple insoluble anodes can also be used to connect the cathode plated parts for electroplating in a reasonable position; The amount of reaction is to set two or more electroplating power sources, and each power source is connected to one or more of the insoluble anodes. It is required to precisely adjust the current intensity output by each electroplating power supply to improve the electroplating quality of the plated parts.

本發明的第二個目的通過以下技術方案實現。The second object of the present invention is achieved through the following technical solutions.

一種不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,包括電鍍槽、不溶性陽極、陰極鍍件、電鍍電源,其特徵在於:所述的電鍍槽內還設置有至少一個吸液管/吸液口,所述吸液管/吸液口位於所述不溶性陽極背向陰極鍍件的那一面,用於使電鍍液通過該吸液管/吸液口的溢流或/和電動吸液方式在電鍍槽內產生液流; 所述的不溶性陽極為覆有塗層的鈦材,其形狀為網狀或者帶鏤空結構的板狀; 所述的電鍍電源的正極和負極在電鍍過程中分別與所述的不溶性陽極和陰極鍍件連接。 An optimization device for insoluble anodic acid sulfate electroplating copper, comprising an electroplating tank, an insoluble anode, a cathode plating piece, and an electroplating power supply, characterized in that: the electroplating tank is further provided with at least one liquid suction pipe/liquid suction port. The suction pipe/liquid suction port is located on the side of the insoluble anode facing away from the cathode plating part, for making the electroplating solution pass through the overflow of the liquid suction pipe/liquid suction port or/and the electric liquid suction method in the electroplating tank produce flow; The insoluble anode is a titanium material covered with a coating, and its shape is a mesh or a plate with a hollow structure; The positive electrode and the negative electrode of the electroplating power supply are respectively connected with the insoluble anode and the cathode plating piece during the electroplating process.

本發明可以作以下改進:本發明的裝置採用回流系統,其主要由動力源和連接管道組成,其一端連接吸液管/吸液口,另一端連通電鍍槽,利用該回流系統使由吸液管/吸液口吸走的電鍍液再回流入電鍍槽中,形成電鍍槽內的電鍍液流向陽極處的吸液管/吸液口的液流,循環往復。所述回流系統可以在上述吸液管/吸液口採用動力使不溶性陽極附近的液體產生遠離陰極鍍件並穿過陽極孔隙的液流的基礎上加上連接管道連通電鍍槽而構成。The present invention can make the following improvements: the device of the present invention adopts a backflow system, which is mainly composed of a power source and a connecting pipe, one end of which is connected to a liquid suction pipe/liquid suction port, and the other end is connected to an electroplating tank. The electroplating solution sucked by the pipe/liquid suction port flows back into the electroplating tank to form a liquid flow from the electroplating liquid in the electroplating tank to the liquid suction pipe/liquid suction port at the anode, and the cycle reciprocates. The recirculation system can be constructed on the basis that the above-mentioned suction pipe/liquid suction port uses power to make the liquid near the insoluble anode generate a liquid flow away from the cathode plating member and pass through the anode pores, and a connecting pipeline is added to communicate with the plating tank.

本發明可以作以下改進:所述的電鍍槽內設置有至少一個噴液管/噴液口,所述噴液管/噴液口設置在所述不溶性陽極面向陰極鍍件的那一面的兩電極之間的區域空間內,該噴液管/噴液口外接一噴液管路,用於向陽極噴液,與所述的吸液管/吸液口配合,在不溶性陽極附近產生更穩定可控的遠離陰極鍍件的液流,所述噴液管路為另一端連通裝有電鍍液的容器的具有泵浦的管路,也可以直接與上述連接吸液管/吸液口的回流系統連接,為噴液管/噴液口噴液提供源源不斷的電鍍液。The present invention can be improved as follows: the electroplating tank is provided with at least one spray pipe/spray port, and the spray pipe/spray port is arranged on the two electrodes on the side of the insoluble anode facing the cathode plating piece In the area space between, the spray pipe/spray port is connected to a spray line for spraying liquid to the anode, which cooperates with the suction pipe/suction port to generate a more stable and stable liquid near the insoluble anode. Controlled liquid flow away from the cathode plating piece, the liquid spray pipeline is a pipeline with a pump connected to the container containing the electroplating solution at the other end, and can also be directly connected to the above-mentioned return system with a suction pipe/suction port Connected to provide a continuous flow of plating solution for the spray pipe/spray port.

優選地,所述噴液管/噴液口安裝在所述不溶性陽極面向陰極鍍件的那一面的電鍍槽底部並向著所述不溶性陽極作噴液。Preferably, the liquid spray pipe/spray port is installed at the bottom of the electroplating tank on the side of the insoluble anode facing the cathodic plating piece and sprays liquid toward the insoluble anode.

本發明可以作以下改進:所述的吸液管/吸液口通過連接管道與氣液分離器相連接,所述的氣液分離器是一個較大的容器裝置,當將電鍍過程中陽極上產生的氧氣泡連同電鍍液一起引流到氣液分離器後,利用其較大的空間令液體流速減慢致使其中氣體逸出。所述氣液分離器還可以再通過泵浦和連接管道與電鍍槽連通構成回流系統,將釋放氣體處理後的液體排回到電鍍槽中作迴圈流動。The present invention can be improved as follows: the liquid suction pipe/liquid suction port is connected with the gas-liquid separator through the connecting pipeline, and the gas-liquid separator is a larger container device. The generated oxygen bubbles together with the electroplating solution are drained to the gas-liquid separator, and the larger space is used to slow down the liquid flow rate so that the gas escapes. The gas-liquid separator can also be communicated with the electroplating tank through a pump and a connecting pipeline to form a return system, and the liquid treated by releasing the gas is discharged back into the electroplating tank for circular flow.

本發明可以作以下改進:在所述的電鍍槽中設置電鍍槽分隔物,將電鍍槽分隔開為陽極電鍍槽區和陰極電鍍槽區。The present invention can be improved as follows: an electroplating tank separator is arranged in the electroplating tank to separate the electroplating tank into an anode plating tank area and a cathode plating tank area.

優選地,所述陽極電鍍槽區和陰極電鍍槽區的分隔採用在電鍍槽中安裝陽極盒的方式來進行分隔:所述陽極盒為立方體型盒狀,不溶性陽極位於陽極盒中,所述陽極盒面朝向陰極鍍件的那一面為電鍍槽分隔物,所述陽極盒的內部空間為陽極電鍍槽區,所述電鍍槽中除陽極盒以外的其餘空間為陰極電鍍槽區。所述的吸液管/吸液口設置在所述陽極盒上,具體位於陽極盒相對所述不溶性陽極背向陰極鍍件的那一面的空間或盒壁上;另外,所述陽極盒內還可以設置有噴液管/噴液口,具體位於陽極盒內所述不溶性陽極面向陰極鍍件的那一面與相鄰盒壁之間的區域中。Preferably, the anode plating tank area and the cathode plating tank area are separated by installing an anode box in the plating tank: the anode box is a cube-shaped box, the insoluble anode is located in the anode box, and the anode box is located in the anode box. The side of the box surface facing the cathode plating member is the electroplating tank partition, the inner space of the anode box is the anode plating tank area, and the remaining space in the electroplating tank except the anode box is the cathode plating tank area. The suction pipe/liquid suction port is arranged on the anode box, specifically on the space or box wall of the anode box on the side of the anode box facing away from the cathode plating piece relative to the insoluble anode; in addition, the anode box is also A spray pipe/spout may be provided, in particular in the region of the anode box between the side of the anode box that faces the cathode plating and the adjacent box wall.

優選地,所述氣液分離器的出液口與所述噴液管路和噴液管/噴液口連接,即所述氣液分離器與噴液管/噴液口的連接管道上安裝泵浦,使所述回流管道與噴液管路合二為一,使陽極電鍍液受泵浦的推動作用力帶著氣泡穿透不溶性陽極的結構孔隙通過吸液管/吸液口快速地引流到氣液分離器中作氣液分離。Preferably, the liquid outlet of the gas-liquid separator is connected to the liquid spray pipeline and the liquid spray pipe/liquid spray port, that is, the gas-liquid separator is installed on the connecting pipe of the liquid spray pipe/liquid spray port The pump makes the return pipeline and the liquid spray pipeline become one, so that the anodic plating solution is quickly drained by the suction pipe/suction port through the suction pipe/liquid suction port with the bubbles through the structural pores of the insoluble anode due to the driving force of the pump. To the gas-liquid separator for gas-liquid separation.

本發明可以作以下改進:所述的陽極盒朝向陰極鍍件的那一面的外側面邊沿四周裝設有液體噴射管,並且各液體噴射管中裝置有流量調節器,以便作向陰極電鍍液的噴射效果的調節。The present invention can make the following improvements: the outer side edge of the side of the anode box facing the cathode plating part is equipped with liquid spray pipes, and each liquid spray pipe is equipped with a flow regulator, so as to be used for the discharge of the cathode plating solution. Adjustment of spray effect.

更優選地,還可以在一個電鍍槽中設置多個陽極盒,在所述陽極盒外設置的液體噴射管的噴射動作可以通過程式進行控制,以避免陽極盒上安裝的噴射管在動作期間的噴射液體對沖而不能實現灌孔最優化。More preferably, a plurality of anode boxes can also be set in one electroplating tank, and the spraying action of the liquid injection pipes arranged outside the anode boxes can be controlled by a program, so as to avoid the spray pipes installed on the anode boxes during the operation. Jet liquid hedges and does not achieve optimal filling.

本發明所述的不溶性陽極上還可以設有反脈衝保護屏網,所述反脈衝保護屏網是設置在不溶性陽極面向陰極鍍件的那一面上的無塗層鈦材凸起物,所述凸起物與不溶性陽極的鈦基材直接連接,其形狀可以是凸點狀,尖刺狀,豎條狀,或與上述任意形狀結構連接的網狀或者條狀等任意有利於放電的電極結構形式。The insoluble anode of the present invention may also be provided with a back-pulse protection screen, and the back-pulse protection screen is an uncoated titanium protrusion disposed on the side of the insoluble anode facing the cathode plating piece. The protrusion is directly connected to the titanium substrate of the insoluble anode, and its shape can be a bump, a spike, a vertical strip, or any electrode structure that is conducive to discharge, such as a mesh or strip connected to the above-mentioned arbitrary shape structure. form.

本發明可以作以下改進:所述的不溶性陽極的邊沿處還設置有定型框。The present invention can be improved as follows: the edge of the insoluble anode is also provided with a shaping frame.

優選地,所述的定型框選用裸露鈦材,並通過所述不溶性陽極的鈦基材與電鍍電源正極作連接,或者同時與所述不溶性陽極的鈦基材以及電鍍電源正極作連接。Preferably, the shaping frame is made of exposed titanium material, and is connected to the positive electrode of the electroplating power supply through the titanium base material of the insoluble anode, or is connected to the titanium base material of the insoluble anode and the positive electrode of the electroplating power supply at the same time.

本發明可以作以下改進:所述不溶性陽極背向陰極鍍件的那一面安裝連接有與電鍍電源正極連通的導電體,使其放電均勻。優選所述導電體為帶網狀或者鏤空結構的鈦板,即導電網或者導電板。The present invention can be improved as follows: the side of the insoluble anode facing away from the cathode plating piece is installed with a conductor connected to the positive electrode of the electroplating power source, so that the discharge is uniform. Preferably, the conductor is a titanium plate with a mesh or hollow structure, that is, a conductive mesh or a conductive plate.

本發明可以作以下改進:採用對所述的不溶性陽極進行饋電結構改進,優選從不溶性陽極的極板水平兩旁邊設入饋電線路,使析氣電極與陰極區域間的氣液混合液其電導率趨向均勻一致,從而克服了傳統的從上而下的饋電方式令析氣電極形成有梯度的氣泡層缺點。The present invention can make the following improvements: by adopting the improvement of the power feeding structure of the insoluble anode, it is preferable to set the feeding lines from the horizontal sides of the polar plates of the insoluble anode, so that the gas-liquid mixture between the gas-emission electrode and the cathode area is The conductivity tends to be uniform, thus overcoming the disadvantage of forming a gradient bubble layer in the gassing electrode due to the traditional top-down feeding method.

本發明可以作以下改進:將帶有所述反脈衝保護網、定型框、導電體的不溶性陽極和吸液管/吸液口、噴液管/噴液口的不溶性陽極元件安裝在所述帶噴射管的陽極盒中作為陽極槽區總成,使電鍍設備更為緊湊。The present invention can be improved as follows: the insoluble anode element with the reverse pulse protection net, the sizing frame, the electrical conductor and the suction pipe/suction port, the spray pipe/spray port are installed on the belt The anode box of the spray tube is used as an anode tank assembly, which makes the electroplating equipment more compact.

本發明可以作以下改進:當鍍件的各方向的電鍍表面積不一致時,可採用一個電源和兩個或多個以上數目的不溶性陽極作繞圍陰極鍍件合理分佈的電鍍製程系統;也可以根據製程要求採用兩個或多個電鍍電源和兩個或多個不溶性陽極佈置在陰極鍍件周邊而組成一個共陰極鍍件的電鍍系統。電源之間的工作狀態按製程要求作程式控制,使陰極鍍件能滿足電鍍品質要求。The present invention can make the following improvements: when the electroplating surface areas of the plated parts are inconsistent in all directions, one power supply and two or more insoluble anodes can be used as the electroplating process system reasonably distributed around the cathode plated parts; The process requires the use of two or more electroplating power sources and two or more insoluble anodes arranged around the cathode plating to form a common cathode plating plating system. The working state between the power sources is controlled by the program according to the process requirements, so that the cathode plating parts can meet the plating quality requirements.

本發明可以作以下改進:為能達到對陰極鍍件孔隙電鍍的品質要求,可採用反脈衝式電鍍電源,應用反脈衝電鍍製程以更好的發揮本發明所述不溶性陽極的性能和作用來提高電鍍品質和效率。The present invention can make the following improvements: in order to meet the quality requirements for pore electroplating of cathode plating parts, a reverse-pulse electroplating power source can be used, and a reverse-pulse electroplating process can be used to better exert the performance and function of the insoluble anode of the present invention to improve Plating quality and efficiency.

本發明可以作以下改進:在電鍍槽中設置攪拌裝置,以助電鍍液各組分的濃度均勻分佈。所述的攪拌裝置為回流液體攪拌裝置、葉攪拌裝置、氣動攪拌裝置中任一種攪拌裝置或它們的任意組合,所述回流液體攪拌裝置包括出液管、泵浦、回流管,所述氣動攪拌裝置為可向所述電鍍液通入氣體使電鍍液發生流動的設備。The present invention can be improved as follows: a stirring device is arranged in the electroplating tank to assist the uniform distribution of the concentration of each component of the electroplating solution. The stirring device is any one of a backflow liquid stirring device, a blade stirring device, and a pneumatic stirring device or any combination thereof. The backflow liquid stirring device includes a liquid outlet pipe, a pump, and a return pipe. The pneumatic stirring device The device is a device that can pass gas into the electroplating solution to make the electroplating solution flow.

本發明可以作以下改進:對所述的電鍍電源增設電流調節器,或者採用自帶電流調節器的電鍍電源,用於所述電鍍電源的輸出電流大小調節,或控制所述電鍍電源的開啟/或關停。The present invention can make the following improvements: add a current regulator to the electroplating power supply, or adopt an electroplating power supply with its own current regulator to adjust the output current size of the electroplating power supply, or control the opening/closing of the electroplating power supply. or shut down.

本發明可以作以下改進:在所述的電鍍槽內設置檢測裝置,包括液位計、比重計、酸度計、氧化還原電位計、光電比色計、pH計和溫度計中的一種或多種,用於檢測電鍍槽中液體的相應製程參數。The present invention can make the following improvements: a detection device is provided in the electroplating tank, including one or more of a liquid level meter, a hydrometer, an acidity meter, an oxidation-reduction potentiometer, a photoelectric colorimeter, a pH meter and a thermometer. It is used to detect the corresponding process parameters of the liquid in the electroplating bath.

優選地,所述的檢測裝置連接一自動檢測投料控制器,所述的自動檢測投料控制器能根據時間和/或所述檢測裝置的檢測結果來進行製程控制:對所述電鍍槽加投電鍍液的補充液和/或化學原料和/或清水,和/或對電鍍電源的啟動或者關停或者電流大小進行控制。Preferably, the detection device is connected to an automatic detection and feeding controller, and the automatic detection and feeding controller can perform process control according to the time and/or the detection result of the detection device: adding electroplating to the electroplating tank liquid replenishment and/or chemical raw materials and/or clean water, and/or control the start or stop of the electroplating power supply or the magnitude of the current.

本發明可以作以下改進:設置過濾裝置通過管道與所述電鍍槽連接,以便除去電鍍液中可能存在的銅泥和/或電極使用過程中帶來的雜質。The present invention can be improved as follows: a filter device is arranged to be connected with the electroplating tank through a pipeline, so as to remove the copper mud that may exist in the electroplating solution and/or the impurities brought during the use of the electrode.

本發明可以作以下改進:在所述電鍍槽的上方設置尾氣抽排系統,以抽走電鍍過程中陽極和/或陰極上產生的氣體,避免積聚以確保安全生產。The present invention can be improved as follows: a tail gas extraction system is arranged above the electroplating tank to extract the gas generated on the anode and/or the cathode during the electroplating process to avoid accumulation and ensure safe production.

本發明可以作以下改進:所述電鍍槽通過管道和泵浦與電鍍液再生裝置相連接,形成按製程設置的電鍍銅源補充可控迴圈回用系統設備。The present invention can be improved as follows: the electroplating tank is connected with the electroplating solution regeneration device through pipelines and pumps to form an electroplating copper source supplementary controllable loop recycling system equipment set according to the process.

本發明可以作以下改進:增設與電鍍槽連接的暫存槽,用於暫存從所述電鍍槽中流出的液體和/或準備加入所述電鍍槽的液體,和/或用於電鍍液進行其它的化學反應。The present invention can be improved as follows: a temporary storage tank connected to the electroplating tank is added to temporarily store the liquid flowing out of the electroplating tank and/or the liquid to be added to the electroplating tank, and/or for the electroplating liquid to carry out other chemical reactions.

本發明可以作以下改進:在所述電鍍槽和/或氣液分離器中裝設有溫度冷熱交換器,以穩定電鍍液溫度。The present invention can be improved as follows: a temperature-cooling heat exchanger is installed in the electroplating tank and/or the gas-liquid separator to stabilize the temperature of the electroplating solution.

與現有技術相比,本發明具有以下有益效果。Compared with the prior art, the present invention has the following beneficial effects.

1. 本發明通過採用網狀或者帶鏤空結構的板狀結構材料作為不溶性陽極,並在不溶性陽極背向陰極鍍件的方向設置吸液管/吸液口,能有效克服現有技術中因陽極表面的氧氣聚積形成氧氣泡遮罩層而影響電鍍均勻性的問題,使鍍層更加均勻、平整,顯著提高電鍍品質;而且設置在不溶性陽極面向陰極鍍件那一面的電鍍槽底部的噴液管/噴液口,與吸液管/吸液口配合產生從下而上且遠離陰極鍍件的液流,令陽極上產生的氣泡儘快通過不溶性陽極的孔隙進入吸液管/吸液口中,同時避免陽極與陰極鍍件之間區域的電鍍液產生渦流而影響電鍍液的電流分佈。1. The present invention can effectively overcome the problems caused by the anode surface in the prior art by using a mesh or a plate-shaped structural material with a hollow structure as the insoluble anode, and setting a suction pipe/liquid suction port in the direction of the insoluble anode facing away from the cathode plating part. The problem that the oxygen accumulation in the insoluble anode will form an oxygen bubble mask layer and affect the uniformity of the electroplating, make the coating more uniform and flat, and significantly improve the electroplating quality; and the liquid spray pipe/spraying pipe/spraying pipe/spray is arranged at the bottom of the electroplating tank on the side of the insoluble anode facing the cathode plating part. The liquid port cooperates with the pipette/suction port to generate liquid flow from bottom to top and away from the cathode plating part, so that the air bubbles generated on the anode enter the pipette/suction port through the pores of the insoluble anode as soon as possible, while avoiding the anode The electroplating solution in the area between the cathode plating part produces eddy currents and affects the current distribution of the electroplating solution.

本發明的方法在垂直電鍍方式中也能獲得均勻高品質的鍍層,因此可以推廣到傳統的垂直電鍍製程中使用,也因此能夠避免外型不規則的鍍件在不溶性陽極水平電鍍線中難以克服的製程問題。The method of the invention can also obtain a uniform and high-quality coating in the vertical electroplating method, so it can be extended to the traditional vertical electroplating process, and therefore, it can avoid the insoluble anode horizontal electroplating line that is difficult to overcome by irregularly shaped plated parts process issues.

2. 本發明在不溶性陽極邊沿處設置定型框,能有效增強所述不溶性陽極的平整機械剛性,減少因陽極變型帶來的放電不均勻現象,提高鍍件品質,獲得平整度和均勻度高的產品;2. The present invention sets a shaping frame at the edge of the insoluble anode, which can effectively enhance the flat mechanical rigidity of the insoluble anode, reduce the uneven discharge caused by the deformation of the anode, improve the quality of the plated parts, and obtain high flatness and uniformity. product;

而且本發明進一步設置與所述陽極本體的鈦基材和/或反脈衝保護屏網連接的裸露鈦材或者覆有塗層的鈦材定型框,或者在不溶性陽極背向陰極鍍件的那一面設有導電體,能夠有效增加不溶性陽極在電鍍時放電的均勻性從而提高塗層保護效果和電鍍品質。In addition, the present invention further provides a bare titanium material or a coated titanium material setting frame connected with the titanium base material of the anode body and/or the anti-pulse protection screen, or on the side of the insoluble anode facing away from the cathode plating part. The electric conductor is provided, which can effectively increase the uniformity of the discharge of the insoluble anode during electroplating, thereby improving the coating protection effect and electroplating quality.

3. 本發明在不溶性陽極面朝向陰極鍍件的那一面上設置反脈衝保護屏網,能夠在反脈衝過程中有效減少不溶性陽極表面的塗層因析氫反應而導致被破壞的情況,從而延長不溶性陽極使用壽命,降低生產成本。3. In the present invention, a reverse pulse protection screen is set on the side of the insoluble anode surface facing the cathode plating part, which can effectively reduce the damage of the coating on the surface of the insoluble anode due to the hydrogen evolution reaction during the reverse pulse process, thereby prolonging the insolubility. Anode service life, reducing production costs.

而且本發明設置有裸露鈦材或者覆有塗層的鈦材定型框,其與不溶性陽極的鈦基材和/或反脈衝保護屏網和/或電鍍反脈衝電源的正極連接時,能有效在反脈衝電解過程中將主電流接引入定型框中作旁路引走,從而進一步提高對不溶性陽極表面塗層保護效果,減少不溶性陽極的損壞。Moreover, the present invention is provided with an exposed titanium material or a titanium material forming frame covered with a coating, when it is connected with the titanium base material of the insoluble anode and/or the reverse pulse protection screen and/or the positive electrode of the electroplating reverse pulse power supply, it can effectively In the process of reverse pulse electrolysis, the main current is introduced into the setting frame for bypassing, so as to further improve the protection effect of the surface coating on the insoluble anode and reduce the damage of the insoluble anode.

因此,採用本發明的製程,能夠在反脈衝電鍍過程中,既有效保證鍍銅通孔的貫通品質,即較好的電鍍品質,也大大減少不溶性陽極的損壞,延長不溶性陽極使用壽命。Therefore, the process of the present invention can not only effectively ensure the penetration quality of the copper-plated through hole, that is, the better electroplating quality, but also greatly reduce the damage of the insoluble anode and prolong the service life of the insoluble anode during the reverse pulse electroplating process.

4.本發明在陽極盒外設有液體噴射管向鍍件噴射電鍍液,使電鍍液湧入陰極鍍件的小孔內部,令孔隙內部的鍍液得到補充更新,從而進一步提高鍍件的通孔貫通品質。4. In the present invention, a liquid spray pipe is arranged outside the anode box to spray the electroplating solution to the plated parts, so that the electroplating solution pours into the inside of the small holes of the cathode plated parts, so that the plating solution inside the pores is supplemented and updated, thereby further improving the transmission efficiency of the plated parts. Hole through quality.

5.本發明在採用電鍍槽分隔物將電鍍槽分隔開為陽極電鍍槽區和陰極電鍍槽區時,能有效減少酸性電鍍銅電鍍液的電鍍添加劑的額外損耗,從而降低生產成本;其中,本發明製程中電鍍添加劑的消耗速度為現有技術的1/3。5. The present invention can effectively reduce the extra loss of the electroplating additives of the acid electroplating copper electroplating solution when the electroplating tank is separated into an anode electroplating tank area and a cathode electroplating tank area by using the electroplating tank separator, thereby reducing the production cost; wherein, The consumption rate of the electroplating additive in the process of the present invention is 1/3 of the prior art.

6. 本發明將帶有所述反脈衝保護網、定型框、導電板或導電網的不溶性陽極和吸液管/吸液口、噴液管/噴液口的不溶性陽極元件安裝在所述的陽極盒中作為陽極槽區盒式總成, 且在鍍件周邊合理連接多個不溶性陽極,這不僅解決了陽極放電不均和析氫的問題,而且提高了外型不規則鍍件的電鍍品質。6. In the present invention, the insoluble anode with the reverse pulse protection net, the setting frame, the conductive plate or the conductive net and the insoluble anode element of the suction pipe/suction port, the liquid spray pipe/spray port are installed in the described The anode box is used as an anode tank box assembly, and multiple insoluble anodes are reasonably connected around the plated parts, which not only solves the problems of uneven anode discharge and hydrogen evolution, but also improves the electroplating quality of irregularly shaped plated parts.

7. 本發明裝置能與電鍍液再生裝置配合使用,將所述的電鍍槽與電鍍液再生裝置作連接,通過控制系統的結合來構成電鍍銅源補充的迴圈回用系統,有助於減少磷銅污染實現綠色清潔生產,同時又降低生產成本。7. The device of the present invention can be used in conjunction with the electroplating solution regeneration device, and the electroplating tank is connected with the electroplating solution regeneration device, and a loop recycling system supplemented by the electroplating copper source is formed through the combination of the control system, which is helpful to reduce Phosphorus copper pollution achieves green and clean production, while reducing production costs.

以下通過具體的實施例對本發明作進一步的說明。The present invention will be further described below through specific examples.

在下述實施例中,所使用的硫酸銅為市售的硫酸銅產品;所使用的硫酸優選為廣州化學試劑廠生產的產品;所使用的鈦基塗層電鍍陽極和電鍍槽為佛山市業高環保設備製造有限公司生產的產品;所使用的電鍍陰極優選為市售的純銅板和帶小孔銅板塊;所使用的離子交換膜優選為膜國際公司生產的離子交換膜;所使用的雙極膜優選為國初科技生產的雙極膜;超濾膜、濾布和陶瓷濾板、PE濾板及反滲透膜為市售商品;所使用的顯微鏡優選為廣州光學儀器廠生產的電腦顯微鏡;所使用的電鍍電源和反脈衝電鍍電源為廣州市番禺廣興電鍍設備廠生產產品;酸性鍍銅電鍍添加劑為佛山市高力集團公司生產的產品。除上述列舉的之外,本領域技術人員根據常規選擇,也可以選擇其他具有與本發明列舉的上述產品具有相似性能的產品,均可以實現本發明的目的。In the following examples, the copper sulfate used is a commercially available copper sulfate product; the sulfuric acid used is preferably a product produced by Guangzhou Chemical Reagent Factory; the used titanium-based coating electroplating anode and electroplating tank are Foshan Yegao Products produced by Environmental Protection Equipment Manufacturing Co., Ltd.; the electroplating cathodes used are preferably commercially available pure copper plates and copper plates with small holes; the ion exchange membranes used are preferably ion exchange membranes produced by Membrane International Corporation; the bipolar used The membrane is preferably a bipolar membrane produced by Guochu Technology; the ultrafiltration membrane, filter cloth, ceramic filter plate, PE filter plate and reverse osmosis membrane are commercially available commodities; the microscope used is preferably a computer microscope produced by Guangzhou Optical Instrument Factory; The electroplating power supply and reverse pulse electroplating power supply used are products produced by Guangzhou Panyu Guangxing Electroplating Equipment Factory; the acid copper electroplating additives are products produced by Foshan Gaoli Group Company. In addition to those listed above, those skilled in the art can also select other products with similar properties to those listed in the present invention according to routine selection, all of which can achieve the purpose of the present invention.

實施例1Example 1

如圖1所示,為不溶性陽極酸性硫酸鹽電鍍銅的優化裝置的實施例,其包括電鍍槽5、不溶性陽極1、吸液管2、陰極鍍件4、電鍍電源6與氣液分離器8。As shown in FIG. 1 , it is an example of an optimized device for insoluble anodic acid sulfate copper electroplating, which includes an electroplating tank 5 , an insoluble anode 1 , a liquid suction pipe 2 , a cathode plating part 4 , an electroplating power source 6 and a gas-liquid separator 8 .

電鍍槽5裡設置有吸液管2,吸液管2位於不溶性陽極1背向陰極鍍件4的一面;吸液管2通過連接管道與氣液分離器8相連接,氣液分離器8另一端通過管道和泵浦23與電鍍槽相連接,使的吸液管2通過連接管道將從電鍍槽吸出的氣液混合物在氣液分離器中作分離釋放氣體後其液體再次被引回流到所述電鍍槽中作迴圈流動。The electroplating tank 5 is provided with a liquid suction pipe 2, and the liquid suction pipe 2 is located on the side of the insoluble anode 1 facing away from the cathode plating part 4; One end is connected with the electroplating tank through a pipeline and a pump 23, so that the liquid suction pipe 2 through the connecting pipeline will separate the gas-liquid mixture sucked out of the electroplating tank in the gas-liquid separator to release the gas, and then the liquid will be led back to the place again. Circulating flow in the electroplating tank.

不溶性陽極1的結構如圖18A與圖18B所示,其為覆有塗層的鈦材,結構為帶鏤空通孔的板狀物,且從陽極極板的上部的饋線安裝孔設入饋電線路作從上饋電。The structure of the insoluble anode 1 is shown in Fig. 18A and Fig. 18B , which is a titanium material covered with a coating, and the structure is a plate with hollow through holes. The road is fed from above.

電鍍電源6的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the electroplating power source 6 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

陰極鍍件4為一塊平整銅板。The cathode plating member 4 is a flat copper plate.

不溶性陽極酸性電鍍銅的優化方法,包括以下步驟: (1)根據表-1指定的電鍍液進行準備,將電鍍液倒入電鍍槽中; (2)將不溶性陽極裝置安裝在電鍍槽中,並在不溶性陽極背向陰極的一面設置吸液管,將電鍍電源的正極與不溶性陽極連接,將電鍍電源的負極與陰極鍍件連接; (3)往電鍍液中投入適量的電鍍添加劑,接通電解電源,以酸性鍍銅電鍍液作為電鍍液進行電鍍生產作業; (4)電鍍完成後,將陰極鍍件取出;使用清水清洗所述陰極鍍件並利用熱風吹乾;並使用電腦顯微鏡觀察鍍層表面,將觀察的結果記錄於表-1中。 An optimized method for insoluble anodic acid copper electroplating, including the following steps: (1) Prepare according to the plating solution specified in Table-1, and pour the plating solution into the plating tank; (2) Install the insoluble anode device in the electroplating tank, and set up a pipette on the side of the insoluble anode facing away from the cathode, connect the positive electrode of the electroplating power source to the insoluble anode, and connect the negative electrode of the electroplating power source to the cathode plating piece; (3) Put an appropriate amount of electroplating additives into the electroplating solution, turn on the electrolysis power supply, and use the acid copper plating electroplating solution as the electroplating solution to carry out the electroplating production operation; (4) After the electroplating is completed, take out the cathode plated parts; use clean water to clean the cathode plated parts and dry them with hot air; and use a computer microscope to observe the surface of the plating layer, and record the observation results in Table-1.

電鍍過程中,由不溶性陽極的結構與設置在陽極背向陰極方向一面的吸液管相配合,通過溢流使不溶性陽極附近的液體產生背向遠離陰極並穿過陽極孔隙的液流,使的陽極表面產生的氧氣泡隨液流穿過不溶性陽極其結構所形成的孔隙送往遠離陰極的方向外排釋放。During the electroplating process, the structure of the insoluble anode cooperates with the pipette arranged on the side of the anode facing away from the cathode. Through overflow, the liquid near the insoluble anode generates a liquid flow away from the cathode and passing through the pores of the anode, so that the The oxygen bubbles generated on the surface of the anode flow through the pores formed by the structure of the insoluble anode and are sent to the direction away from the cathode to be discharged and released.

在電鍍的作業前後對鍍液進行COD的檢測,通過前後的變化數值來初步判斷製程對電鍍添加劑的消耗狀況,將結果記錄於表-2中。The COD of the plating solution is detected before and after the electroplating operation, and the consumption of the electroplating additives in the process is preliminarily judged by the change values before and after, and the results are recorded in Table-2.

實施例2Example 2

如圖2所示,為不溶性陽極酸性硫酸鹽電鍍銅的優化裝置的實施例,其與實施例1的裝置的不同之處在於: 不溶性陽極1的結構如圖19A、圖19B與圖19C,不溶性陽極為覆有塗層的鈦網,而且不溶性陽極的四邊周圍焊接材料為覆有塗層的鈦材的定型框16,並從陽極極板的水平兩旁的饋線安裝孔設入饋電線路作結構改進。 As shown in Figure 2, it is an example of an optimized device for insoluble anodic acid sulfate copper electroplating. The difference between it and the device of Example 1 is: The structure of the insoluble anode 1 is shown in Fig. 19A, Fig. 19B and Fig. 19C. The insoluble anode is a titanium mesh covered with a coating, and the welding material around the four sides of the insoluble anode is a setting frame 16 of a coated titanium material. The feeder installation holes on both sides of the pole plate are set into the feeder line for structural improvement.

根據表-1指定的各參數,採用實施例1所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 1, and the results were recorded in Table-1.

實施例3Example 3

如圖3所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、不溶性陽極1、陰極鍍件4、電鍍電源6、氣液分離器8與固液分離篩檢程式33。As shown in FIG. 3 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes an electroplating tank 5 , an insoluble anode 1 , a cathode plating member 4 , an electroplating power source 6 , and a gas-liquid separator 8 for solid-liquid separation. Screener 33.

電鍍槽5裡設置有吸液口2、噴液管10、葉攪拌裝置24.2和氣動攪拌裝置24.1,吸液口2設在電鍍槽5壁上,且位於不溶性陽極1背向陰極鍍件4的一面,噴液管10裝置在不溶性陽極1面向陰極鍍件4的一面的兩極區域空間內,吸液口2通過管道和泵浦連接氣液分離器8,且氣液分離器8通過液體回流迴圈管道9和過濾裝置33將析氣處理後的液體經過濾後,從噴液管10回流至電鍍槽5中。The electroplating tank 5 is provided with a liquid suction port 2, a liquid spray pipe 10, a leaf stirring device 24.2 and a pneumatic stirring device 24.1, and the liquid suction port 2 is arranged on the wall of the electroplating tank 5, and is located in the insoluble anode 1 facing away from the cathode plating piece 4. On the one hand, the liquid spray pipe 10 is installed in the space of the two-pole region on the side of the insoluble anode 1 facing the cathode plating part 4, the liquid suction port 2 is connected to the gas-liquid separator 8 through a pipeline and a pump, and the gas-liquid separator 8 returns to the gas-liquid separator 8 through the liquid backflow. The liquid after the gassing treatment is filtered by the loop pipe 9 and the filtering device 33, and then returned to the electroplating tank 5 from the liquid spray pipe 10.

不溶性陽極1結構如圖20A與圖20B所示,不溶性陽極1為覆有塗層的鈦材,結構為帶鏤空通孔1-1的板狀物,四邊周圍焊接有材料為裸露鈦材的定型框16,並且在不溶性陽極1上和定型框16上安裝反脈衝保護屏網15,反脈衝保護屏網15為尖刺狀的無塗層鈦材,從陽極極板的上部的饋線安裝孔設入饋電線路作從上饋電的結構改進。The structure of the insoluble anode 1 is shown in Figures 20A and 20B. The insoluble anode 1 is a titanium material covered with a coating. Frame 16, and install a back-pulse protection screen 15 on the insoluble anode 1 and the setting frame 16. The back-pulse protection screen 15 is a thorn-shaped uncoated titanium material, which is installed from the feeder installation hole on the upper part of the anode plate. Into the feeder line for structural improvement of feeding from above.

電鍍電源6的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the electroplating power source 6 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

所述的陰極鍍件4為一塊平整銅板。The cathode plating member 4 is a flat copper plate.

根據表-1指定的各參數,採用實施例1所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1和表-2中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 1, and the results were recorded in Table-1 and Table-2.

電鍍過程中,不溶性陽極的鏤空結構與設置在陽極背向陰極方向一面的吸液口相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極鏤空結構所形成的孔隙送往遠離陰極的方向並外排到氣液分離器中釋放,氣液分離器中作分離釋放氣體後的液體再次被引回流到電鍍槽中作迴圈流動。During the electroplating process, the hollow structure of the insoluble anode is matched with the liquid suction port arranged on the side of the anode facing away from the cathode. The oxygen bubbles generated on the surface are sent to the direction away from the cathode through the pores formed by the hollow structure of the insoluble anode with the liquid flow, and are discharged to the gas-liquid separator for release. Reflow into the plating tank for circular flow.

實施例4Example 4

如圖4所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、不溶性陽極1、吸液管2、陰極鍍件4、反脈衝電鍍電源19與氣液分離器8。As shown in FIG. 4 , the optimized device for insoluble anodic acid sulfate copper electroplating in the present embodiment includes an electroplating tank 5 , an insoluble anode 1 , a liquid suction pipe 2 , a cathode plating member 4 , a reverse pulse electroplating power source 19 and a gas-liquid Separator 8.

電鍍槽5設置有吸液管2和噴液管10,吸液管2位於不溶性陽極1背向陰極鍍件4的一面,噴液管10裝置在不溶性陽極1面向陰極鍍件4的一面的兩極區域空間內;吸液管2通過管道和泵浦23連接氣液分離器8,且所述氣液分離器8通過液體回流迴圈管道9將處理後的液體回流至電鍍槽中;The electroplating tank 5 is provided with a liquid suction pipe 2 and a liquid spray pipe 10, the liquid suction pipe 2 is located on the side of the insoluble anode 1 facing away from the cathode plating member 4, and the liquid spray pipe 10 is installed on the two poles of the insoluble anode 1 facing the cathode plating member 4 side. In the regional space; the suction pipe 2 is connected to the gas-liquid separator 8 through the pipeline and the pump 23, and the gas-liquid separator 8 returns the treated liquid to the electroplating tank through the liquid return loop pipeline 9;

如圖21A、圖21B與圖21C所示,不溶性陽極為覆有塗層帶鏤空結構的鈦板。不溶性陽極1在面向陰極鍍件一面設有反脈衝保護屏網15,反脈衝保護屏網為與不溶性陽極1的鈦基材直接連接的無塗層鈦材凸起物,且凸起物的形狀結構為針刺狀和條狀,在其頂端通過網絲相連接而形成保護網罩;在不溶性陽極1遠離陰極的背後連接上導電體17,導電體17為一導電棒。從不溶性陽極1上部的饋線安裝孔設入饋電線路作從上饋電的結構改進。As shown in FIG. 21A , FIG. 21B and FIG. 21C , the insoluble anode is a coated titanium plate with a hollow structure. The insoluble anode 1 is provided with a reverse pulse protection screen 15 on the side facing the cathode plating piece, and the reverse pulse protection screen is an uncoated titanium protrusion directly connected to the titanium substrate of the insoluble anode 1, and the shape of the protrusion is The structure is needle-punched and strip-shaped, and the top end is connected by mesh to form a protective net cover; a conductor 17 is connected to the back of the insoluble anode 1 away from the cathode, and the conductor 17 is a conductive rod. The feeder installation hole on the upper part of the insoluble anode 1 is set into the feeder line to improve the structure of feeding power from above.

陰極鍍件4為帶有小通孔的一塊平整銅板。The cathode plating member 4 is a flat copper plate with small through holes.

反脈衝電鍍電源19的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the reverse pulse electroplating power source 19 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

根據表-1指定的各參數,採用實施例1所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中;在電鍍的作業前後對鍍液進行COD的檢測,通過前後的變化資料來初步判斷製程對電鍍添加劑的消耗狀況,將結果記錄於表-2中。According to the parameters specified in Table-1, the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 1 were used to carry out the electroplating operation, and the results were recorded in Table-1; the plating solution was tested for COD before and after the electroplating operation. , through the change data before and after to preliminarily judge the consumption of electroplating additives in the process, and record the results in Table-2.

電鍍過程中,不溶性陽極的鏤空結構與所述設置在陽極背向陰極方向一面的吸液管、設置在不溶性陽極面向陰極的一面的噴液管相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極鏤空結構所形成的孔隙送往遠離陰極的方向並外排到氣液分離器中釋放,氣液分離器中作分離釋放氣體後的液體再次被引回流到所述電鍍槽中作迴圈流動。在反脈衝電解過程中,反脈衝保護屏網能有效地減少不溶性陽極塗層表面的電化學析氫反應。During the electroplating process, the hollow structure of the insoluble anode cooperates with the suction pipe arranged on the side of the anode facing away from the cathode, and the liquid spray pipe arranged on the side of the insoluble anode facing the cathode, so that the liquid near the insoluble anode is generated by using power. Facing the liquid flow away from the cathode and passing through the anode pores, the oxygen bubbles generated on the anode surface are sent to the direction away from the cathode through the pores formed by the insoluble anode hollow structure with the liquid flow, and are discharged into the gas-liquid separator for release. The liquid after separation and release of gas in the gas-liquid separator is led back to the electroplating tank for circulating flow again. During the reverse pulse electrolysis process, the reverse pulse protection screen can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode coating.

實施例5Example 5

如圖5所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、不溶性陽極1、吸液管2、陰極鍍件4與反脈衝電鍍電源19。As shown in FIG. 5 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes an electroplating tank 5 , an insoluble anode 1 , a pipette 2 , a cathode plating member 4 and a reverse pulse electroplating power source 19 .

電鍍槽5中設有電鍍槽分隔物11將其分隔開為陽極電鍍槽區和陰極電鍍槽區,電鍍槽分隔物11具體為超濾膜和濾布的組合。陽極電鍍槽區設置內有吸液管2和噴液口10;噴液管10裝置在不溶性陽極1面向陰極鍍件4的一面的陽極電鍍槽區底部,並通過管道和泵浦23.1與遠離陰極電鍍槽區的陽極電鍍槽區一面相連接;吸液管2設有2個的吸液口並且位於不溶性陽極1背向陰極鍍件4的一面的位置;吸液管2通過連接有泵浦23.2的管道,將帶有氣泡的液體引流到陽極電鍍槽區中遠離陰極鍍件4處進行釋放氣體。The electroplating tank 5 is provided with an electroplating tank separator 11 to separate it into an anode electroplating tank area and a cathode electroplating tank area, and the electroplating tank partition 11 is specifically a combination of an ultrafiltration membrane and a filter cloth. The anode plating tank area is provided with a liquid suction pipe 2 and a liquid spray port 10; the liquid spray pipe 10 is installed at the bottom of the anodized plating tank area on the side of the insoluble anode 1 facing the cathode plating part 4, and is connected to the electrode away from the cathode through the pipeline and the pump 23.1. The anode plating tank area of the electroplating tank area is connected on one side; the suction pipe 2 is provided with two liquid suction ports and is located on the side of the insoluble anode 1 facing away from the cathode plating part 4; the suction pipe 2 is connected with a pump 23.2 The pipeline, the liquid with bubbles is drained to the anode plating tank area away from the cathode plating part 4 to release the gas.

如圖22A、圖22B、圖22C與圖22D所示,位於陽極電鍍槽區內的不溶性陽極1為覆有塗層的鈦網;不溶性陽極1四周邊沿處還焊接有封邊的定型框16,定型框16的材料為裸露鈦材;導電體17為網狀且四周邊用鈦網與定型框16作焊接的旁路結構導電體,導電體17位於不溶性陽極1在背向陰極鍍件4的一面;定型框16與導電體17的安裝結構是在不溶性陽極1背向陰極鍍件4一面作為板框在四周封邊焊接,三者成一個兩面相通網孔的方形盒並得到通電連接。導電體17上設有反脈衝保護屏網15,且安裝焊接在導電體17上;反脈衝保護屏網15是穿過不溶性陽極1的網孔且與其不接觸的無塗層鈦材尖刺。不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作從上饋電的結構改進。As shown in Fig. 22A, Fig. 22B, Fig. 22C and Fig. 22D, the insoluble anode 1 located in the anodizing tank area is a titanium mesh covered with a coating; The material of the setting frame 16 is exposed titanium material; the conductor 17 is a mesh-shaped conductor with a bypass structure welded around the titanium mesh and the setting frame 16. One side; the mounting structure of the shaping frame 16 and the conductor 17 is that the side of the insoluble anode 1 facing away from the cathode plating member 4 is welded around the edges as a plate frame, and the three are formed into a square box with meshes connected on both sides and are electrically connected. The conductor 17 is provided with an anti-pulse protective screen 15, which is mounted and welded on the conductor 17; the anti-pulse protective screen 15 is an uncoated titanium spike that passes through the mesh hole of the insoluble anode 1 and does not contact with it. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is set through it for structural improvement of feeding power from above.

陰極鍍件4在陰極電鍍槽區內,為帶有小孔的平整銅板。The cathode plating member 4 is a flat copper plate with small holes in the cathode plating tank area.

反脈衝電鍍電源19的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the reverse pulse electroplating power source 19 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

不溶性陽極酸性電鍍銅的優化方法,包括以下步驟: (1)根據表-1指定的電鍍液進行準備,分別將陽極電鍍液和陰極電鍍液倒入陽極電鍍槽區和陰極電鍍槽區中; (2)將不溶性陽極裝置安裝在電鍍槽中,並在不溶性陽極背向陰極的一面設置吸液管,將電鍍電源的正極與不溶性陽極連接,將電鍍電源的負極與鍍件連接; (3)往陰極電鍍液中投入適量的電鍍添加劑,接通電解電源進行電鍍生產作業; (4)電鍍完成後,將陰極鍍件取出;使用清水清洗所述陰極鍍件並利用熱風吹乾;並使用電腦顯微鏡觀察鍍層表面,將觀察的結果記錄於表-1中。 An optimized method for insoluble anodic acid copper electroplating, including the following steps: (1) Prepare according to the electroplating solution specified in Table-1, and pour the anodic electroplating solution and cathodic electroplating solution into the anodic electroplating tank area and the cathodic electroplating tank area respectively; (2) Install the insoluble anode device in the electroplating tank, and set a pipette on the side of the insoluble anode facing away from the cathode, connect the positive electrode of the electroplating power source to the insoluble anode, and connect the negative electrode of the electroplating power source to the plated part; (3) Put an appropriate amount of electroplating additives into the cathodic electroplating solution, and turn on the electrolytic power supply to carry out electroplating production operations; (4) After the electroplating is completed, take out the cathode plated parts; use clean water to clean the cathode plated parts and dry them with hot air; and use a computer microscope to observe the surface of the plating layer, and record the observation results in Table-1.

電鍍過程中,不溶性陽極的網狀結構與設置在陽極背向陰極方向一面的吸液管、設置在不溶性陽極面向陰極的一面底部的噴液管相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過陽極本體網孔和導電網孔的液流,使得陽極表面產生的氧氣泡更能集中地隨液流穿過不溶性陽極和導電體的網孔,送往遠離陰極的方向釋放。在反脈衝電解的情況下,反脈衝保護屏網的尖刺因與不溶性陽極無接觸,故將反脈衝電流從針刺尖端回流到導電體中從旁路引走,能有效地減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。而且電解槽分隔物的設計也能有效地降低電鍍添加劑的損耗。During the electroplating process, the mesh structure of the insoluble anode is matched with the suction pipe arranged on the side of the anode facing away from the cathode, and the liquid spray pipe arranged at the bottom of the side of the insoluble anode facing the cathode, and the liquid near the insoluble anode is generated by using power. Backward to the liquid flow away from the cathode and through the anode body mesh and conductive mesh, so that the oxygen bubbles generated on the anode surface can be more concentrated with the liquid flow through the insoluble anode and the mesh of the conductor, and sent to the direction away from the cathode freed. In the case of reverse-pulse electrolysis, since the spikes of the reverse-pulse protective screen are not in contact with the insoluble anode, the reverse-pulse current flows back from the needle stick tip to the conductor and is led away from the bypass, which can effectively reduce the insoluble anode. The electrochemical hydrogen evolution reaction occurs on the surface when the pole is turned to prevent the coating of the insoluble anode from peeling off. Moreover, the design of the cell separator can also effectively reduce the loss of electroplating additives.

實施例6Example 6

如圖6所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其與實施例5的裝置的不同之處在於: 電鍍槽分隔物11具體為PE濾板與陶瓷濾板的組合。 As shown in FIG. 6 , the optimized device for insoluble anodic acid sulfate copper electroplating of the present embodiment is different from the device of embodiment 5 in that: The electroplating tank separator 11 is specifically a combination of a PE filter plate and a ceramic filter plate.

噴液管10的管口設計為扁平喇叭口形狀,裝置在不溶性陽極1面向陰極鍍件4的一面的陽極電鍍槽區底部,噴液管10通過管道和泵浦23.1與遠離陰極電鍍槽區的陽極電鍍槽區一面相連接。吸液管2的管口為喇叭口形狀,位於不溶性陽極1背向陰極鍍件4的一面的位置;吸液管2通過連接有泵浦23.2的管道,將帶有氣泡的液體引流到陽極電鍍槽區中遠離陰極鍍件4處進行釋放氣體。The nozzle of the liquid spray pipe 10 is designed in the shape of a flat bell mouth, and is installed at the bottom of the anodizing tank area on the side of the insoluble anode 1 facing the cathode plating part 4. The anodizing bath areas are connected on one side. The mouth of the suction pipe 2 is in the shape of a bell mouth and is located on the side of the insoluble anode 1 facing away from the cathode plating part 4; the suction pipe 2 drains the liquid with bubbles to the anode plating through the pipeline connected with the pump 23.2 The gas release is carried out in the tank area away from the cathode plating member 4 .

如圖23A、圖23B與圖23C所示,位於陽極電鍍槽區內的不溶性陽極1為覆有塗層的鏤空通孔鈦板;不溶性陽極1四周邊沿處還焊接有封邊的定型框16,定型框16的材料為裸露鈦材;導電體17為帶鏤空通孔的鈦板且四周邊與定型框16作焊接的旁路結構導電體,導電體17位於不溶性陽極1在背向陰極鍍件4的一面;使不溶性陽極1與定型框16和導電體17得到通電連接,三者接成一個兩面鏤空通孔鈦板相通而其它四面密閉的方形盒。導電體17上還設有作為反脈衝保護屏網15,且安裝焊接在導電體17上;反脈衝保護屏網15是穿過不溶性陽極1的鏤空通孔且與其不接觸的無塗層鈦材尖刺。不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進。As shown in Fig. 23A, Fig. 23B and Fig. 23C, the insoluble anode 1 located in the anodizing bath area is a hollow through-hole titanium plate covered with a coating; the insoluble anode 1 is also welded with an edge-sealing shaping frame 16 around the periphery. The material of the setting frame 16 is exposed titanium material; the conductor 17 is a titanium plate with hollow through holes and a bypass structure conductor with the four peripheries welded to the setting frame 16, and the conductor 17 is located in the insoluble anode 1 on the back of the cathode plating part. 4 side; the insoluble anode 1 is electrically connected with the shaping frame 16 and the conductor 17, and the three are connected to form a square box with two hollow through-hole titanium plates connected and the other four sides sealed. The conductor 17 is also provided with an anti-pulse protection screen 15, which is installed and welded on the conductor 17; the anti-pulse protection screen 15 is an uncoated titanium material that passes through the hollow through hole of the insoluble anode 1 and does not contact it. spikes. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is inserted through it for structural improvement.

陰極鍍件4在陰極電鍍槽區內,為帶有小孔的平整銅板。The cathode plating member 4 is a flat copper plate with small holes in the cathode plating tank area.

反脈衝電鍍電源19的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the reverse pulse electroplating power source 19 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

電鍍過程中,不溶性陽極的鏤空結構與設置在陽極背向陰極方向一面的喇叭吸液管、設置在不溶性陽極面向陰極的一面底部的扁平喇叭噴液管相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過不溶性陽極和導電體鏤空通孔的液流,使得陽極表面產生的氧氣泡更能集中地隨液流穿過不溶性陽極鏤空通孔送往遠離陰極的方向釋放。在反脈衝電解的情況下,反脈衝保護屏網的尖刺因與不溶性陽極無接觸,故將反脈衝電流從針刺尖端回流到導電板中從旁路引走,能有效地減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。而且電解槽分隔物的設計也能有效地降低電鍍添加劑的損耗。During the electroplating process, the hollow structure of the insoluble anode is matched with the horn pipette arranged on the side of the anode facing away from the cathode, and the flat horn pipette arranged at the bottom of the side of the insoluble anode facing the cathode. The liquid generates a liquid flow away from the cathode and through the hollow through holes of the insoluble anode and the conductor, so that the oxygen bubbles generated on the surface of the anode can be released more concentratedly with the liquid flow through the hollow through holes of the insoluble anode and sent to the direction away from the cathode. In the case of reverse-pulse electrolysis, the spikes of the reverse-pulse protective screen are not in contact with the insoluble anode, so the reverse-pulse current is returned from the needle stick tip to the conductive plate and led away from the bypass, which can effectively reduce the insoluble anode. The electrochemical hydrogen evolution reaction occurs on the surface when the pole is turned to prevent the coating of the insoluble anode from peeling off. Moreover, the design of the cell separator can also effectively reduce the loss of electroplating additives.

實施例7Example 7

如圖7所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、陽極盒13、陰極鍍件4、氣液分離器8與反脈衝電鍍電源19。As shown in FIG. 7 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes an electroplating tank 5 , an anode box 13 , a cathode plating member 4 , a gas-liquid separator 8 and a reverse pulse electroplating power source 19 .

電鍍槽5中設有一陽極盒13,陽極盒13面朝向陰極鍍件4的一面裝設有電鍍槽分隔物11,該電鍍槽分隔物11具體為陽離子交換膜;陽極盒13的內部空間為陽極電鍍槽區,在電鍍槽5中陽極盒13外的空間為陰極電鍍槽區。An anode box 13 is provided in the electroplating tank 5, and the side of the anode box 13 facing the cathode plating member 4 is provided with an electroplating tank partition 11, and the electroplating tank partition 11 is specifically a cation exchange membrane; the inner space of the anode box 13 is an anode In the electroplating tank area, the space outside the anode box 13 in the electroplating tank 5 is the cathode electroplating tank area.

如圖24A、圖24B與圖24C所示,陽極盒13連接有吸液管2和其內設置一個噴液口10;吸液管2有4個吸液口在陽極盒13內且位於不溶性陽極1背向陰極鍍件4的一面,噴液口10位於不溶性陽極1面向陰極鍍件4的一面;吸液管2通過管道與泵浦23和氣液分離器8連接,氣液分離器8再通過液體回流迴圈管道9與噴液口10連接,將釋氣處理後的液體回流至陽極盒13中。As shown in FIG. 24A, FIG. 24B and FIG. 24C, the anode box 13 is connected with a suction pipe 2 and a liquid ejection port 10 is arranged therein; the liquid suction pipe 2 has 4 liquid suction ports in the anode box 13 and located in the insoluble anode 1. The side facing away from the cathode plating member 4, the liquid spray port 10 is located on the side of the insoluble anode 1 facing the cathode plating member 4; The liquid return loop pipeline 9 is connected to the liquid ejection port 10 , and the liquid after degassing treatment is returned to the anode box 13 .

本實施例的不溶性陽極1為圖21A、圖21B與圖21C結構,是覆有塗層帶鏤空結構的鈦板;不溶性陽極1在面向陰極鍍件一面設有反脈衝保護屏網15,反脈衝保護屏網15為與不溶性陽極1的鈦基材直接連接的無塗層鈦材凸起物,並在各凸起物頂端使用鈦絲連結為通電網狀;不溶性陽極1在電鍍過程中與反脈衝電鍍電源19正極連接;在不溶性陽極1遠離陰極的背後連接上導電體17,導電體17為一導電棒。不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進。上述的陽極元件安裝在陽極盒13內,如圖24A、圖24B與圖24C所示。21A, 21B and 21C, the insoluble anode 1 in this embodiment is a titanium plate with a hollow structure covered with a coating; the insoluble anode 1 is provided with a reverse pulse protection screen 15 on the side facing the cathode plating part, and the reverse pulse The protective screen 15 is an uncoated titanium protrusion directly connected to the titanium base of the insoluble anode 1, and is connected to the top of each protrusion with a titanium wire to form a grid; The positive electrode of the pulse electroplating power supply 19 is connected; a conductor 17 is connected to the back of the insoluble anode 1 away from the cathode, and the conductor 17 is a conductive rod. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is inserted through it for structural improvement. The above-mentioned anode element is installed in the anode box 13, as shown in Figs. 24A, 24B and 24C.

陰極鍍件4在陰極電鍍槽區內,為帶有小孔的平整銅板,並與反脈衝電鍍電源19的負極相連接。The cathode plating member 4 is a flat copper plate with small holes in the cathode plating tank area, and is connected to the negative electrode of the reverse pulse plating power source 19 .

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

電鍍過程中,設置在陽極盒內不溶性陽極背向陰極方向一面的吸液管、設置在陽極盒內不溶性陽極面向陰極的一面底部的噴液口相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極鍍件並穿過陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極其結構所形成的孔隙送往氣液分離器中外排釋放,在將釋放氣體後的液體再次回流到陽極盒中。在反脈衝電解過程中,反脈衝保護屏網能有效地減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。帶有電解槽分隔物的陽極盒設計能有效降低電鍍添加劑的損耗。During the electroplating process, the suction pipe arranged on the side of the insoluble anode facing away from the cathode in the anode box cooperates with the liquid spray port arranged at the bottom of the side facing the cathode of the insoluble anode in the anode box. The liquid flow away from the cathode plating part and passing through the pores of the anode makes the oxygen bubbles generated on the anode surface pass through the pores formed by the structure of the insoluble anode with the liquid flow and are sent to the gas-liquid separator for discharge and release. The liquid is returned to the anode box again. In the process of reverse pulse electrolysis, the reverse pulse protection screen can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the electrode is turned, and prevent the coating of the insoluble anode from falling off. The anode box design with cell divider can effectively reduce the loss of plating additives.

實施例8Example 8

如圖8所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其與實施例7的裝置的不同之處在於: 電鍍槽分隔物11具體為反滲透膜和濾布的組合。 As shown in FIG. 8 , the optimized device for insoluble anodic acid sulfate copper electroplating of the present embodiment is different from the device of embodiment 7 in that: The plating tank separator 11 is specifically a combination of a reverse osmosis membrane and a filter cloth.

如圖25A與圖25B所示,陽極盒13連接有吸液管2和噴液管10,吸液管2的管口呈大喇叭形,噴液管10設有多個平行設置的管口。As shown in FIG. 25A and FIG. 25B , the anode box 13 is connected with a liquid suction pipe 2 and a liquid spray pipe 10 , the nozzle of the liquid suction pipe 2 is in the shape of a large trumpet, and the liquid spray pipe 10 is provided with a plurality of nozzles arranged in parallel.

本實施例採用與實施例5相同的陽極元件,包括不溶性陽極1、導電體17、定型框16與反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖22A、圖22B、圖22C與圖22D所示,該陽極元件安裝在陽極盒13內,如圖25A與圖25B所示。在電鍍過程中,不溶性陽極1和反脈衝電鍍電源19正極連接。This embodiment adopts the same anode element as that of Embodiment 5, including the insoluble anode 1, the conductor 17, the setting frame 16 and the back pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder circuit is set therefrom. For structural improvement, the structure is shown in Figure 22A, Figure 22B, Figure 22C and Figure 22D, the anode element is installed in the anode box 13, as shown in Figure 25A and Figure 25B. During the electroplating process, the insoluble anode 1 is connected to the positive electrode of the reverse pulse electroplating power source 19 .

陰極鍍件4為帶有小孔的平整銅板,設在陰極電鍍槽區內,在電鍍過程中與反脈衝電鍍電源19的負極作相連接。The cathode plating member 4 is a flat copper plate with small holes, which is arranged in the cathode plating tank area, and is connected with the negative electrode of the reverse pulse plating power source 19 during the plating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

電鍍過程中,本實施例採用如圖25A與圖25B所示的陽極盒結構,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極鍍件並穿過不溶性陽極和導電體網孔的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極和導電體的網孔送往氣液分離器中外排釋放,作釋放氣體後的液體再次回流到陽極盒中。在反脈衝電解過程中,反脈衝保護屏網能有效地減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。帶有電解槽分隔物的陽極盒設計能有效隔離電鍍液添加劑與陽極接觸以降低其損耗。During the electroplating process, this embodiment adopts the anode box structure as shown in FIG. 25A and FIG. 25B , by using power to make the liquid near the insoluble anode generate a liquid flow away from the cathode plating piece and passing through the insoluble anode and the mesh of the conductor. , so that the oxygen bubbles generated on the surface of the anode pass through the mesh of the insoluble anode and the conductor with the liquid flow and are sent to the gas-liquid separator for discharge and release, and the liquid after the gas is released is returned to the anode box again. In the process of reverse pulse electrolysis, the reverse pulse protection screen can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the electrode is turned, and prevent the coating of the insoluble anode from falling off. The anode box design with cell divider effectively isolates the bath additives from contact with the anode to reduce its loss.

實施例9Example 9

如圖9所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其與實施例7的裝置的不同之處在於其還包括液體噴射管14;而且: 電鍍槽分隔物11具體為陰離子交換膜和濾布的組合。 As shown in FIG. 9 , the optimized device for insoluble anodic acid sulfate copper electroplating of the present embodiment is different from the device of embodiment 7 in that it also includes a liquid injection pipe 14; and: The plating tank separator 11 is specifically a combination of an anion exchange membrane and a filter cloth.

如圖26A與圖26B所示,陽極盒13連接有吸液管2和噴液管10,在陽極盒13內,吸液管2的管口呈大喇叭形、噴液管10設有多個平行設置的管口。吸液管2通過管道與泵浦23.1和氣液分離器8連接,氣液分離器8再通過液體回流迴圈管道9與噴液管10連接,將處理後的液體回流至陽極盒13中;在陽極盒13朝向陰極鍍件4一面外的四周邊沿裝設有液體噴射管14,液體噴射管14與陰極電鍍槽區通過管道和泵浦23.2連接,使其朝向陰極鍍件4噴液。As shown in FIG. 26A and FIG. 26B , the anode box 13 is connected with a liquid suction pipe 2 and a liquid spray pipe 10. In the anode box 13, the nozzle of the liquid suction pipe 2 is in the shape of a large trumpet, and the liquid spray pipes 10 are provided with a plurality of Orifices arranged in parallel. The suction pipe 2 is connected with the pump 23.1 and the gas-liquid separator 8 through the pipeline, and the gas-liquid separator 8 is connected with the liquid spray pipe 10 through the liquid return loop pipeline 9, and the treated liquid is returned to the anode box 13; A liquid injection pipe 14 is installed on the periphery of the anode box 13 facing the cathode plating member 4 .

本實施例採用與實施例6相同的陽極元件,包括不溶性陽極1、導電體17、定型框16、反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖23A、圖23B與圖23C所示,該陽極元件安裝在陽極盒13內,如圖26A與圖26B所示。在電鍍過程中,不溶性陽極1和反脈衝電鍍電源19正極連接。This embodiment uses the same anode elements as in Embodiment 6, including an insoluble anode 1, a conductor 17, a setting frame 16, and a back-pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder circuit is set therefrom. For structural improvement, the structure is shown in Fig. 23A, Fig. 23B and Fig. 23C, the anode element is installed in the anode box 13, as shown in Fig. 26A and Fig. 26B. During the electroplating process, the insoluble anode 1 is connected to the positive electrode of the reverse pulse electroplating power source 19 .

陰極鍍件4為帶有多個小孔的平整銅板,設在陰極電鍍槽區內,在電鍍過程中與反脈衝電鍍電源19的負極作相連接。The cathode plating member 4 is a flat copper plate with a plurality of small holes, is arranged in the cathode plating tank area, and is connected with the negative electrode of the reverse pulse plating power source 19 during the plating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。在電鍍的作業前後對陰極電鍍液進行COD檢測,根據作業前後的資料變化來初步判定製程對電鍍添加劑的消耗狀況,並將結果記錄於表-2中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1. Before and after the electroplating operation, the cathodic plating solution is tested for COD, and the consumption of the electroplating additives in the process is preliminarily determined according to the data changes before and after the operation, and the results are recorded in Table-2.

電鍍過程中,本實施例採用如圖26A與圖26B所示的陽極盒結構,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極鍍件並穿過不溶性陽極和導電體的鏤空通孔的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極和導電體的鏤空通孔送往氣液分離器中外排釋放,作分離釋放氣體後的液體再次回流到陽極盒中。在反脈衝電解過程中,反脈衝保護屏網能有效地減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。陽極盒外的液體噴射管通過泵浦向陰極鍍件噴射電鍍液,使電鍍液湧入陰極鍍件的小孔內部令孔隙內部的鍍液得到補充更新。另外帶有電鍍槽分隔物的陽極盒設計能有效隔離電鍍液添加劑與陽極接觸以降低其損耗。During the electroplating process, this embodiment adopts the anode box structure as shown in Fig. 26A and Fig. 26B, by using the power to make the liquid near the insoluble anode generate a hole that faces away from the cathode plating member and passes through the hollow through holes of the insoluble anode and the conductor. The liquid flow causes the oxygen bubbles generated on the anode surface to pass through the hollow through holes of the insoluble anode and the conductor with the liquid flow to the gas-liquid separator for discharge and release, and the liquid after separation and release of gas is returned to the anode box again. In the process of reverse pulse electrolysis, the reverse pulse protection screen can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the electrode is turned, and prevent the coating of the insoluble anode from falling off. The liquid spray tube outside the anode box sprays the electroplating solution to the cathode plating piece through the pump, so that the electroplating solution pours into the inside of the small hole of the cathode plating piece, so that the plating solution inside the hole is replenished and renewed. In addition, the anode box design with the plating tank divider can effectively isolate the plating solution additives from contacting the anode to reduce its loss.

實施例10Example 10

如圖10所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其與實施例7的裝置的不同之處在於還包括液體噴射管14;而且: 電鍍槽分隔物11具體為雙極膜和濾布的組合。 As shown in FIG. 10 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment is different from the device in Embodiment 7 in that it also includes a liquid injection pipe 14; and: The plating tank separator 11 is specifically a combination of a bipolar membrane and a filter cloth.

如圖27A與圖27B所示,陽極盒13內連接有吸液管2和其內設有一個噴液口10,吸液管2在陽極盒13內有4個管口,位於不溶性陽極1背向陰極鍍件4的一側,噴液口10位於不溶性陽極1面向陰極鍍件4的一側。吸液管2通過管道與泵浦23.1和氣液分離器8連接,氣液分離器8再通過液體回流迴圈管道9與噴液口10連接,將處理後的液體回流至陽極盒13中。在陽極盒13朝向陰極鍍件4一面外的四周邊沿裝設有液體噴射管14,液體噴射管14與陰極電鍍槽區通過管道和泵浦23.2連接,使其朝向陰極鍍件4噴液。As shown in FIG. 27A and FIG. 27B , the anode box 13 is connected with a suction pipe 2 and has a liquid spray port 10 therein. The suction pipe 2 has four nozzles in the anode box 13 , which are located on the back of the insoluble anode 1 . To the side of the cathode plating member 4 , the liquid spray port 10 is located on the side of the insoluble anode 1 facing the cathode plating member 4 . The liquid suction pipe 2 is connected to the pump 23.1 and the gas-liquid separator 8 through a pipeline, and the gas-liquid separator 8 is connected to the liquid ejection port 10 through the liquid return loop pipeline 9 to return the treated liquid to the anode box 13. A liquid injection pipe 14 is installed on the periphery of the anode box 13 facing the cathode plating member 4 . The liquid injection pipe 14 is connected to the cathode plating tank area through pipes and a pump 23.

本實施例採用與實施例3相同的陽極元件包括不溶性陽極1、定型框16、反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖20A與圖20B所示,該陽極元件安裝在陽極盒13內,如圖27A與圖27B所示。在電鍍過程中,不溶性陽極1和反脈衝電鍍電源19正極連接。In this embodiment, the same anode elements as in Embodiment 3 are used, including an insoluble anode 1, a setting frame 16, and a back-pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is inserted through it for structural improvement. As shown in FIGS. 20A and 20B, the anode element is installed in the anode box 13, as shown in FIGS. 27A and 27B. During the electroplating process, the insoluble anode 1 is connected to the positive electrode of the reverse pulse electroplating power source 19 .

陰極鍍件4為帶有多個小孔的平整銅板,設在陰極電鍍槽區內,在電鍍過程中與反脈衝電鍍電源19的負極作相連接。The cathode plating member 4 is a flat copper plate with a plurality of small holes, is arranged in the cathode plating tank area, and is connected with the negative electrode of the reverse pulse plating power source 19 during the plating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。在電鍍的作業前後對陰極電鍍液進行COD檢測,根據作業前後的資料變化來初步判定製程對電鍍添加劑的消耗狀況,並將結果記錄於表-2中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1. Before and after the electroplating operation, the cathodic plating solution is tested for COD, and the consumption of the electroplating additives in the process is preliminarily determined according to the data changes before and after the operation, and the results are recorded in Table-2.

電鍍過程中,本實施例採用如圖27A與圖27B所示的陽極盒結構,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過陽極鏤空通孔的液流,使得陽極表面產生的氧氣泡隨液流穿過不溶性陽極的鏤空通孔送往氣液分離器中外排釋放,作分離釋放氣體後的液體再次回流到陽極盒中。在反脈衝電解過程中,反脈衝保護屏網能減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。陽極盒外面的液體噴射管通過泵浦向陰極鍍件噴射電鍍液,使電鍍液湧入陰極鍍件的小孔內部令孔隙內部的鍍液得到補充更新。另外帶有電鍍槽分隔物的陽極盒設計能有效隔離電鍍液添加劑與陽極接觸以降低其損耗。During the electroplating process, this embodiment adopts the anode box structure as shown in FIG. 27A and FIG. 27B , by using power to make the liquid near the insoluble anode generate a liquid flow away from the cathode and through the hollow through holes of the anode, so that the surface of the anode generates a liquid flow. The oxygen bubbles of the insoluble anode pass through the hollow through holes of the insoluble anode with the liquid flow and are sent to the gas-liquid separator to be discharged and released, and the liquid after separation and release of gas is returned to the anode box again. In the process of reverse pulse electrolysis, the reverse pulse protection screen can reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the electrode is turned, and prevent the coating of the insoluble anode from falling off. The liquid spray tube outside the anode box sprays the electroplating solution to the cathode plating piece through the pump, so that the electroplating solution pours into the inside of the small hole of the cathode plating piece, so that the plating solution inside the hole is replenished and renewed. In addition, the anode box design with the plating tank divider can effectively isolate the plating solution additives from contacting the anode to reduce its loss.

實施例11Example 11

如圖11A與圖11B所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、陽極盒13、陰極鍍件4、電鍍電源6與氣液分離器8。As shown in FIG. 11A and FIG. 11B , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes electroplating tank 5 , anode box 13 , cathode plating member 4 , electroplating power source 6 and gas-liquid separator 8 .

電鍍槽5中設有三個陽極盒13,陽極盒13面朝向陰極鍍件4的一面均為電鍍槽分隔物11,電鍍槽分隔物11具體為陽離子交換膜;陽極盒13的內部空間為陽極電鍍槽區,電鍍槽5中陽極盒13以外的空間為陰極電鍍槽區。There are three anode boxes 13 in the electroplating tank 5, and the side of the anode box 13 facing the cathode plating part 4 is an electroplating tank partition 11, and the electroplating tank partition 11 is specifically a cation exchange membrane; the inner space of the anode box 13 is an anode plating The tank area, the space other than the anode box 13 in the electroplating tank 5 is the cathode electroplating tank area.

如圖24A、圖24B與圖24C所示,每個陽極盒13連接有吸液管2和其內設置一個噴液口,與實施例7的陽極盒13的結構相同。各個陽極盒13的吸液管2管道分別接有一個泵浦,然後與氣液分離器8作連接;處於高於電鍍液面的氣液分離器8通過液體回流迴圈管道9與各個陽極盒13的噴液口10連接,將經作釋氣處理的液體回流至各陽極盒13中。As shown in FIGS. 24A , 24B and 24C , each anode box 13 is connected with a liquid suction pipe 2 and a liquid ejection port is arranged therein, which is the same as that of the anode box 13 in Example 7. The suction pipes 2 of each anode box 13 are respectively connected with a pump, and then connected with the gas-liquid separator 8; The liquid ejection port 10 of 13 is connected, and the liquid that has been degassed is returned to each anode box 13 .

陰極電鍍槽區中設有檢測裝置21和攪拌裝置24,檢測裝置21包括比重計、光電比色計、酸度計,攪拌裝置24為回流液體攪拌裝置。陰極電鍍槽區依次與溢出緩衝槽38、泵浦23.4、篩檢程式33.1、電鍍液再生裝置20、帶泵浦液體流量調節器30和篩檢程式33.2作迴圈回路連接;陰極電鍍槽區中的陰極電鍍液溢出到溢出緩衝槽38中被泵浦23.4經篩檢程式33.1處理後泵送回電鍍液再生裝置20中。其中帶泵浦液體流量調節器30的投料動作由自動檢測投控器34根據檢測裝置21測得的結果發出指令進行控制,使陰極電鍍液得到銅源補充。電鍍槽5的上方設置有尾氣抽排系統25。A detection device 21 and a stirring device 24 are arranged in the cathode electroplating tank area. The detection device 21 includes a hydrometer, a photoelectric colorimeter, and an acidity meter. The stirring device 24 is a reflux liquid stirring device. The cathode electroplating tank area is connected to the overflow buffer tank 38, the pump 23.4, the screening program 33.1, the electroplating solution regeneration device 20, the liquid flow regulator 30 with the pump, and the screening program 33.2 in sequence as a loop circuit; in the cathode plating tank area The cathodic plating bath overflows into the overflow buffer tank 38 and is pumped 23.4 back to the bath regeneration device 20 after being processed by the screening procedure 33.1. The feeding action of the liquid flow regulator 30 with the pump is controlled by the automatic detection and control device 34 according to the results measured by the detection device 21 to issue instructions to control the cathodic electroplating solution to be supplemented by the copper source. A tail gas extraction system 25 is provided above the electroplating tank 5 .

本實施例採用與實施例4相同的陽極元件包括不溶性陽極1、導電體17、反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖21A、圖21B與圖21C所示,該陽極元件安裝在陽極盒13內,如圖24A、圖24B與圖24C所示。在電鍍過程中,不溶性陽極1和電鍍電源19正極連接。In this embodiment, the same anode elements as in Embodiment 4 are used, including an insoluble anode 1, a conductor 17, and a back-pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is inserted through it for structural improvement. As shown in Figs. 21A, 21B and 21C, the anode element is installed in the anode box 13, as shown in Figs. 24A, 24B and 24C. During the electroplating process, the insoluble anode 1 and the electroplating power source 19 are connected positively.

陰極鍍件4為一塊平整銅板,設在陰極電鍍槽區內,在電鍍過程中與電鍍電源19的負極作相連接。The cathode plating member 4 is a flat copper plate, located in the cathode plating tank area, and connected to the negative electrode of the electroplating power source 19 during the electroplating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

電鍍過程中,陽極盒內的不溶性陽極背向遠離陰極方向一面的吸液管和設置在陽極盒內不溶性陽極面向陰極的一面底部的噴液口相配合,通過採用動力令不溶性陽極附近的液體產生背向遠離陰極並穿過不溶性陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流被送往氣液分離器中作氣體釋放,釋放氣體後的液體再次回流到陽極盒中。帶有電鍍槽分隔物的陽極盒設計能將陰陽電解液作分離,並能有效降低電鍍添加劑的損耗。另外對氣液分離器中所排出的氣體收集後可再進一步處理。During the electroplating process, the suction pipe on the side facing away from the cathode of the insoluble anode in the anode box cooperates with the liquid spray port at the bottom of the side facing the cathode of the insoluble anode in the anode box, and the liquid near the insoluble anode is generated by using power. The liquid flow away from the cathode and passing through the pores of the insoluble anode causes the oxygen bubbles generated on the anode surface to be sent to the gas-liquid separator with the liquid flow for gas release, and the liquid after the gas is released is returned to the anode box again. The anode box design with electroplating tank divider can separate the anolyte and anolyte, and can effectively reduce the loss of electroplating additives. In addition, the gas discharged from the gas-liquid separator can be collected and further processed.

實施例12Example 12

如圖12所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、陽極盒13、陰極鍍件4、氣液分離器8與反脈衝電鍍電源19。As shown in FIG. 12 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes an electroplating tank 5 , an anode box 13 , a cathode plating member 4 , a gas-liquid separator 8 and a reverse pulse electroplating power source 19 .

電鍍槽5中設有六個陽極盒13,陽極盒13面朝向陰極鍍件4的一面為電鍍槽分隔物11,電鍍槽分隔物11為陰離子交換膜和濾布的組合;陽極盒13的內部空間為陽極電鍍槽區,電鍍槽5中陽極盒13以外的餘空間為陰極電鍍槽區。陰極電鍍槽區設有檢測裝置21,檢測裝置21包括液位計、氧化還原電位計、光電比色計、pH計和溫度計,檢測裝置21連接自動檢測投料控制器34以控制電鍍槽的液位、溫度調節、電源輸出電流,檢測鍍液濃度、電鍍時間等製程參數,使電鍍按製程要求進行。The electroplating tank 5 is provided with six anode boxes 13, and the side of the anode box 13 facing the cathode plating member 4 is an electroplating tank partition 11, and the electroplating tank partition 11 is a combination of an anion exchange membrane and a filter cloth; the interior of the anode box 13 The space is the anode plating tank area, and the remaining space outside the anode box 13 in the plating tank 5 is the cathode plating tank area. The cathode electroplating tank area is provided with a detection device 21. The detection device 21 includes a liquid level meter, a redox potentiometer, a photoelectric colorimeter, a pH meter and a thermometer. The detection device 21 is connected to the automatic detection and feeding controller 34 to control the liquid level of the plating tank. , temperature adjustment, power output current, detection of plating solution concentration, plating time and other process parameters, so that electroplating is carried out according to the process requirements.

陽極盒13結構如圖26A與圖26B所示,陽極盒13連接有吸液管2和噴液管10,與實施例9的陽極盒13的結構相同。各陽極盒13中的吸液管2分別通過管道接有一個泵浦23,然後與暫存槽32相連接;其中泵浦23.1、23.2、23.3將液體泵送到暫存槽32.1中,泵浦23.4、23.5、23.6將液體送至暫存槽32.2中。兩個暫存槽的液體通過泵浦23.7和管道帶著氣泡被引至氣液分離器8中,而氣液分離器8中存有金屬銅31;此方法是充分利用陽極電鍍液裡的硫酸和氧氣來參與銅金屬的化學反應制得硫酸銅溶液。陽極電鍍液在氣液分離器8中作化學反應,並於氣液分離器8中釋放氣體後再通過泵浦23.8和液體回流迴圈管道9引流到各陽極盒13的噴液管10,將液體泵流至陽極盒13內。各陽極盒13朝向陰極鍍件4一面外的四周邊沿分別裝設有液體噴射管14,液體噴射管14與陰極電鍍槽區連接,使其通過程式進行動作控制朝向陰極鍍件4噴液。The structure of the anode box 13 is shown in FIGS. 26A and 26B . The anode box 13 is connected with a liquid suction pipe 2 and a liquid spray pipe 10 , which is the same as that of the anode box 13 in the ninth embodiment. The suction pipes 2 in each anode box 13 are respectively connected with a pump 23 through the pipeline, and then connected with the temporary storage tank 32; wherein the pumps 23.1, 23.2, 23.3 pump the liquid into the temporary storage tank 32.1, and the pump 23.4, 23.5, 23.6 send the liquid to the temporary storage tank 32.2. The liquid of the two temporary storage tanks is led to the gas-liquid separator 8 with air bubbles through the pump 23.7 and the pipeline, and the metal copper 31 is stored in the gas-liquid separator 8; this method is to make full use of the sulfuric acid in the anode plating solution. and oxygen to participate in the chemical reaction of copper metal to obtain copper sulfate solution. The anodic plating solution is chemically reacted in the gas-liquid separator 8, and the gas is released in the gas-liquid separator 8 and then drained to the liquid spray pipe 10 of each anode box 13 through the pump 23.8 and the liquid return loop pipe 9, and the The liquid is pumped into the anode box 13 . Each anode box 13 is provided with liquid injection pipes 14 on the periphery of the outer side facing the cathode plating member 4 .

本實施例採用與實施例6相同的陽極元件,包括不溶性陽極1、導電體17、定型框16與反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖23A、圖23B與圖23C所示,該陽極元件安裝在陽極盒13內,如圖26A與圖26B所示。在電鍍過程中,不溶性陽極1和電鍍電源19正極連接。This embodiment uses the same anode elements as in Embodiment 6, including an insoluble anode 1, a conductor 17, a shaping frame 16, and a back-pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder circuit is set therefrom. For structural improvement, the structure is shown in Fig. 23A, Fig. 23B and Fig. 23C, the anode element is installed in the anode box 13, as shown in Fig. 26A and Fig. 26B. During the electroplating process, the insoluble anode 1 and the electroplating power source 19 are connected positively.

陰極鍍件4為帶有多個小孔的平整銅板,設在陰極電鍍槽區內,在電鍍過程中與電鍍電源19的負極作相連接。The cathode plating member 4 is a flat copper plate with a plurality of small holes, is arranged in the cathode plating tank area, and is connected to the negative electrode of the electroplating power source 19 during the electroplating process.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

根據表-1指定的各參數,重複實施例1所述酸性電鍍銅的優化方法步驟,並將結果記錄於表-1中。According to the parameters specified in Table-1, repeat the optimization method steps of acid copper electroplating described in Example 1, and record the results in Table-1.

電鍍過程中,通過採用動力令陽極盒中的不溶性陽極附近的液體產生背向遠離陰極並穿過陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流被送往到兩個暫存槽後再泵送入氣液分離器中參與銅金屬的化學反應。在氣液分離器中溶液在釋放氣體後將其再次泵回到各個陽極盒中。在反脈衝電解過程中,反脈衝保護屏網能減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。陽極盒外面的液體噴射管通過泵浦向陰極鍍件噴射電鍍液,使電鍍液湧入陰極鍍件的小孔內部令孔隙內部的鍍液得到補充更新,同時也對鍍液進行攪拌。電鍍過程中,陰極鍍件可單向平行移動或者雙向來回平行作移動,以獲得更均勻的鍍層。另外,帶有電鍍槽分隔物的陽極盒阻止電鍍陰極液進入陽極電鍍槽區既能有效降低電鍍添加劑的損耗,又方便收集陽極盒中帶氣泡的陽極電鍍液,用於參與暫存槽的銅金屬化學反應而制得更多的硫酸銅溶液。During the electroplating process, the liquid near the insoluble anode in the anode box is powered to generate a liquid flow away from the cathode and through the anode pores, so that the oxygen bubbles generated on the anode surface are sent to the two temporary storage tanks with the liquid flow. Then it is pumped into the gas-liquid separator to participate in the chemical reaction of copper metal. In the gas-liquid separator the solution after releasing the gas is pumped back into the individual anode boxes again. In the process of reverse pulse electrolysis, the reverse pulse protection screen can reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the electrode is turned, and prevent the coating of the insoluble anode from falling off. The liquid spray tube outside the anode box sprays the electroplating solution to the cathode plating piece through the pump, so that the electroplating solution pours into the inside of the small hole of the cathode plating piece, so that the plating solution inside the pores is replenished and updated, and the plating solution is also stirred. During the electroplating process, the cathode plating parts can be moved in parallel in one direction or in two directions in parallel to obtain a more uniform coating. In addition, the anode box with the electroplating tank separator prevents the electroplating catholyte from entering the anode plating tank area, which can effectively reduce the loss of electroplating additives and facilitate the collection of the anodic plating solution with bubbles in the anode box for the copper participating in the temporary storage tank. Metal chemical reaction to produce more copper sulfate solution.

實施例13Example 13

如圖13所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其包括電鍍槽5、陽極盒13、陰極鍍件4與氣液分離器8,兩個反脈衝電鍍電源19。As shown in FIG. 13 , the optimized device for insoluble anodic acid sulfate copper electroplating in this embodiment includes an electroplating tank 5 , an anode box 13 , a cathode plating member 4 , a gas-liquid separator 8 , and two reverse pulse electroplating power sources 19 .

電鍍槽5中設有六個陽極盒13,陽極盒13面朝向陰極鍍件的一面為電鍍槽分隔物11,電鍍槽分隔物11為雙極膜和濾布的組合;陽極盒13的內部空間為陽極電鍍槽區,電鍍槽5中除陽極盒13以外的空間為陰極電鍍槽區。陰極電鍍槽區設有檢測裝置21,檢測裝置21包括液位計、比重計、酸度計,檢測裝置21連接自動檢測投料控制器34,自動檢測投料控制器34根據所述檢測裝置21測得的資料進行製程上電鍍電流控制和鍍液參數的控制和報警。The electroplating tank 5 is provided with six anode boxes 13, and the side of the anode box 13 facing the cathode plating piece is an electroplating tank partition 11, and the electroplating tank partition 11 is a combination of a bipolar membrane and a filter cloth; the inner space of the anode box 13 It is an anode plating tank area, and the space other than the anode box 13 in the plating tank 5 is a cathode plating tank area. The cathode electroplating tank area is provided with a detection device 21. The detection device 21 includes a liquid level gauge, a hydrometer and an acidity meter. The detection device 21 is connected to the automatic detection and feeding controller 34. The data is used to control and alarm the electroplating current control and bath parameters in the process.

陽極盒13結構與實施例10相同,如圖27A與圖27B所示,各陽極盒13分別連接有吸液管2和其內設有一個噴液口10,吸液管2在陽極盒13內有4個管口,位於不溶性陽極1背向陰極鍍件4的一面,噴液口10位於不溶性陽極1面向陰極鍍件4的一面。吸液管2均通過管道與氣液分離器8連接,將溢出液體引流到其中作釋氣分離。在氣液分離器8中通過釋氣的液體使用泵浦23.1泵經過固液分離篩檢程式33回流入迴圈管道9,液體回流迴圈管9連接上各陽極盒13中的噴液口10,將釋氣處理後的液體回流至陽極盒13中。在陽極盒13朝向陰極鍍件4一面外的四周邊沿裝設有液體噴射管14,液體噴射管14與陰極電鍍槽區通過管道和泵浦23.2連接,液體噴射管14的噴射動作通過自動檢測投料控制器34的設定程式進行朝向陰極鍍件4噴液的動作。The structure of the anode box 13 is the same as that of the embodiment 10. As shown in FIG. 27A and FIG. 27B , each anode box 13 is respectively connected with a liquid suction pipe 2 and has a liquid spray port 10 therein, and the liquid suction pipe 2 is in the anode box 13. There are four nozzles, which are located on the side of the insoluble anode 1 facing away from the cathode plating member 4 , and the liquid spray port 10 is located on the side of the insoluble anode 1 facing the cathode plating member 4 . The suction pipes 2 are all connected to the gas-liquid separator 8 through pipes, and the overflowing liquid is drained into them for release gas separation. The degassed liquid in the gas-liquid separator 8 flows back into the loop pipe 9 through the solid-liquid separation screening program 33 using the pump 23.1, and the liquid return loop pipe 9 is connected to the liquid ejection port 10 in each anode box 13 , the liquid after degassing treatment is returned to the anode box 13 . A liquid injection pipe 14 is installed on the periphery of the anode box 13 facing the cathode plating part 4. The liquid injection pipe 14 is connected to the cathode plating tank area through a pipeline and a pump 23.2. The injection action of the liquid injection pipe 14 is automatically detected and fed. The setting program of the controller 34 performs the operation of spraying the liquid toward the cathode plating member 4 .

本實施例採用與實施例3相同的陽極元件包括不溶性陽極1、定型框16與反脈衝保護屏網15,不溶性陽極1上部設有饋線安裝孔,並從中設入饋電線路作結構改進,結構如圖20A與圖20B所示,該陽極元件安裝在陽極盒13內,如圖27A與圖27B所示。In this embodiment, the same anode elements as in Embodiment 3 are used, including the insoluble anode 1, the shaping frame 16 and the back-pulse protection screen 15. The upper part of the insoluble anode 1 is provided with a feeder installation hole, and a feeder line is inserted through it for structural improvement. As shown in FIGS. 20A and 20B, the anode element is installed in the anode box 13, as shown in FIGS. 27A and 27B.

陰極鍍件4為帶有多個小孔的平整銅板,設在陰極電鍍槽區內。The cathode plating member 4 is a flat copper plate with a plurality of small holes, and is arranged in the cathode plating tank area.

在電鍍過程中,不溶性陽極1的鈦基材分別和對應設置的兩個反脈衝電鍍電源19的正極連接,而四個陰極鍍件4與兩個反脈衝電鍍電源的陰極共接。During the electroplating process, the titanium base material of the insoluble anode 1 is respectively connected to the positive poles of the two reverse pulse electroplating power sources 19 arranged correspondingly, and the four cathode plating pieces 4 are commonly connected to the cathodes of the two reverse pulse electroplating power sources.

根據表-1指定的各參數,採用實施例5所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 5, and the results were recorded in Table-1.

電鍍過程中,通過採用動力使噴液口噴出溶液令陽極盒中的不溶性陽極附近的液體產生背向遠離陰極並穿過陽極孔隙的液流,使得陽極表面產生的氧氣泡隨液流送往氣液分離器中作氣體外排釋放,釋放氣體後的液體再次回流到電鍍槽的各陽極盒中。在電鍍反脈衝電解過程中,反脈衝保護屏網能減少不溶性陽極的表面在轉極時發生電化學析氫反應,避免不溶性陽極的塗層脫落。陽極盒外面的液體噴射管通過泵浦向陰極鍍件噴射電鍍液,使電鍍液湧入陰極鍍件的小孔內部令孔隙內部的鍍液得到補充更新。電鍍進行時其陰極鍍件在電鍍槽中作單向或雙向來回的平行移動,並且根據陰極電鍍製程品質要求對各個電鍍電源進行各自輸出電流大小值的調整,以獲得更佳的陰極鍍層。另外多個帶有電鍍槽分隔物的陽極盒設計能有效降低電鍍添加劑的損耗。During the electroplating process, the liquid near the insoluble anode in the anode box generates a liquid flow away from the cathode and through the pores of the anode by using the power to spray the solution from the liquid nozzle, so that the oxygen bubbles generated on the anode surface are sent to the gas with the liquid flow. The gas is discharged and released in the liquid separator, and the liquid after the gas is released is returned to each anode box of the electroplating tank again. In the process of electroplating reverse pulse electrolysis, the reverse pulse protection screen can reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode when the pole is turned, and prevent the coating of the insoluble anode from falling off. The liquid spray tube outside the anode box sprays the electroplating solution to the cathode plating piece through the pump, so that the electroplating solution pours into the inside of the small hole of the cathode plating piece, so that the plating solution inside the hole is replenished and renewed. When the electroplating is in progress, the cathode plating parts move in parallel in one or two directions in the electroplating tank, and according to the quality requirements of the cathode plating process, the output current of each electroplating power source is adjusted to obtain a better cathode plating layer. In addition, multiple anode box designs with plating tank dividers can effectively reduce the loss of plating additives.

實施例14Example 14

如圖16所示,為本發明不溶性陽極酸性硫酸鹽電鍍銅的優化裝置的基礎實施例,其包括電鍍槽5、不溶性陽極1、吸液管2、陰極鍍件4與電鍍電源6。As shown in FIG. 16 , it is a basic embodiment of an optimized device for insoluble anodic acid sulfate copper electroplating, which includes an electroplating tank 5 , an insoluble anode 1 , a pipette 2 , a cathode plating member 4 and an electroplating power source 6 .

電鍍槽5裡設置有吸液管2,吸液管2位於不溶性陽極1背向陰極鍍件4的一面,不溶性陽極1為覆有塗層的鈦網。A liquid suction pipe 2 is arranged in the electroplating tank 5, and the liquid suction pipe 2 is located on the side of the insoluble anode 1 facing away from the cathode plating member 4, and the insoluble anode 1 is a titanium mesh covered with a coating.

不溶性陽極1的結構如圖18A與圖18B所示,其為覆有塗層的鈦材,結構為帶鏤空通孔的板狀物,且從陽極極板的上部的饋線安裝孔設入饋電線路作結構改進。The structure of the insoluble anode 1 is shown in Fig. 18A and Fig. 18B , which is a titanium material covered with a coating, and the structure is a plate with hollow through holes. Road for structural improvement.

電鍍電源6的正極和負極在電鍍過程中分別與不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the electroplating power source 6 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

所述的陰極鍍件4為一塊平整銅板。The cathode plating member 4 is a flat copper plate.

根據表-1指定的各參數,採用實施例1所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 1, and the results were recorded in Table-1.

實施例15Example 15

如圖17所示,為本實施例的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其與實施例1的裝置的不同之處在於: 採用反脈衝電鍍電源19代替電鍍電源6。 As shown in FIG. 17 , the optimized device for insoluble anodic acid sulfate copper electroplating of the present embodiment is different from the device of embodiment 1 in that: The electroplating power source 6 is replaced by a reverse pulse electroplating power source 19 .

如圖20A與圖20B所示,不溶性陽極1為覆有塗層的鈦材,結構為帶鏤空通孔的板狀物,四邊周圍焊接有定型框16,定型框16為非導電材料;在不溶性陽極1上和定型框16中安裝上放電尖刺作為反脈衝保護屏網15,從陽極極板的上部的饋線安裝孔設入饋電線路作結構改進。As shown in FIGS. 20A and 20B , the insoluble anode 1 is a titanium material covered with a coating, the structure is a plate with hollow through holes, and a setting frame 16 is welded around the four sides, and the setting frame 16 is a non-conductive material; Discharge spikes are installed on the anode 1 and in the sizing frame 16 as a back-pulse protection screen 15, and are inserted into the feeder line from the feeder installation hole on the upper part of the anode plate for structural improvement.

所述的反脈衝電鍍電源19的正極和負極在電鍍過程中分別與所述的不溶性陽極1和陰極鍍件4相連接。The positive and negative electrodes of the reverse pulse electroplating power source 19 are respectively connected to the insoluble anode 1 and the cathode plating member 4 during the electroplating process.

所述的陰極鍍件4為一塊平整銅板。The cathode plating member 4 is a flat copper plate.

根據表-1指定的各參數,採用實施例1所述不溶性陽極酸性電鍍銅優化方法的步驟進行電鍍作業,並將結果記錄於表-1中。According to the parameters specified in Table-1, the electroplating operation was carried out using the steps of the optimization method for insoluble anodic acid copper electroplating described in Example 1, and the results were recorded in Table-1.

比較例1Comparative Example 1

如圖14所示,為一種現有技術的不溶性陽極酸性硫酸鹽電鍍銅的裝置,其包括有電鍍槽5、不溶性陽極1、陰極鍍件4與反脈衝電鍍電源19。As shown in FIG. 14 , it is a prior art device for insoluble anodic acid sulfate electroplating copper, which includes an electroplating tank 5 , an insoluble anode 1 , a cathode plating member 4 and a reverse pulse electroplating power source 19 .

電解槽5安裝有不溶性陽極14和陰極鍍件4。The electrolytic cell 5 is equipped with an insoluble anode 14 and a cathode plating member 4 .

不溶性陽極1為覆有塗層的鈦材,陰極鍍件4為帶有多個小孔的平整銅板。The insoluble anode 1 is a titanium material covered with a coating, and the cathode plating member 4 is a flat copper plate with a plurality of small holes.

不溶性陽極1與反脈衝電鍍電源19的正極連接,陰極鍍件4與電源19的負極連接。The insoluble anode 1 is connected to the positive electrode of the reverse pulse electroplating power source 19 , and the cathode plating member 4 is connected to the negative electrode of the power source 19 .

根據表-1指定的各參數,合上反脈衝電鍍電源19進行電鍍作業,將結果記錄於表-1中。在電鍍的作業前後對陰極鍍液進行COD檢測,根據作業前後的資料變化來初步判定製程對電鍍添加劑的消耗狀況,並將結果記錄於表-2中。According to the parameters specified in Table-1, turn on the reverse pulse electroplating power source 19 to carry out the electroplating operation, and record the results in Table-1. Conduct COD detection on the cathode plating solution before and after the operation of electroplating, and preliminarily determine the consumption of electroplating additives in the process according to the data changes before and after the operation, and record the results in Table-2.

本比較例因陰極鍍件和不溶性陽極間的電鍍液中存在大量氣泡影響到電場電流分佈,並且在反脈衝的情況下不溶性陽極塗層表面析氫反應嚴重,上述兩個因素使得鍍層不均勻和陽極塗層受損脫落。In this comparative example, the presence of a large number of air bubbles in the electroplating solution between the cathode plating piece and the insoluble anode affects the electric field current distribution, and the hydrogen evolution reaction on the surface of the insoluble anode coating is serious under the condition of reverse pulse. The above two factors make the coating uneven and anode. The coating is damaged and peeled off.

比較例2Comparative Example 2

如圖15所示,為本發明的現有技術比較例2的一種不溶性陽極酸性電鍍銅裝置。其與比較例1的裝置的不同之處在於其還包括有電鍍槽分隔物11、攪拌裝置24與鈦籃39。As shown in FIG. 15 , it is an insoluble anodic acid copper electroplating device of the prior art comparative example 2 of the present invention. It differs from the device of Comparative Example 1 in that it also includes a plating tank partition 11 , a stirring device 24 and a titanium basket 39 .

電解槽5安裝有鈦籃39,其鈦籃內裝設有不溶性陽極1,鈦籃39週邊包有中性濾膜11,鈦籃39和中性濾膜11包圍的內部空間為陽極電鍍槽區,所述電鍍槽中其餘空間為陰極電鍍槽區;電鍍槽5內還安裝有攪拌裝置24和陰極鍍件4。The electrolytic cell 5 is equipped with a titanium basket 39, the titanium basket is equipped with an insoluble anode 1, the titanium basket 39 is surrounded by a neutral filter membrane 11, and the inner space surrounded by the titanium basket 39 and the neutral filter membrane 11 is the anode plating tank area , the remaining space in the electroplating tank is the cathode electroplating tank area; the electroplating tank 5 is also equipped with a stirring device 24 and a cathode plating member 4 .

不溶性陽極1為覆有塗層的鈦材,陰極鍍件4為帶有多個小孔的平整銅板。The insoluble anode 1 is a titanium material covered with a coating, and the cathode plating member 4 is a flat copper plate with a plurality of small holes.

不溶性陽極1和鈦籃39與反脈衝電鍍電源19的正極連接,陰極鍍件4與反脈衝電源19的負極連接。The insoluble anode 1 and the titanium basket 39 are connected to the positive electrode of the reverse pulse electroplating power source 19 , and the cathode plating member 4 is connected to the negative electrode of the reverse pulse power source 19 .

根據表-1指定的各參數,開啟攪拌裝置24,合上反脈衝電鍍電源19進行電鍍作業,將結果記錄於表-1中。According to the parameters specified in Table-1, the stirring device 24 was turned on, and the reverse pulse electroplating power supply 19 was turned on to carry out the electroplating operation, and the results were recorded in Table-1.

本比較例因陰、陽極間的電鍍液中存在大量氣泡影響到電場電流分佈,並且在反脈衝的情況下陽極塗層表面析氫反應嚴重。上述兩個因素使到鍍層不均勻和陽極塗層受損脫落。In this comparative example, the presence of a large number of air bubbles in the electroplating solution between the cathode and the anode affects the electric field current distribution, and the reaction of hydrogen evolution on the surface of the anode coating is serious in the case of reverse pulse. The above two factors lead to uneven coating and damage to the anode coating.

本發明的實施例和對比例的製程條件為: (1)電鍍電流為2A/dm 2; (2)反脈衝的電源工作時,正向電流為2A/dm 2,反脈衝電流為6A/dm 2,正向電流和反脈衝電流的時間比例為20:1; (3)電鍍時間40分鐘,溫度為30℃;4酸性鍍銅電鍍液包括: CuSO 4200g/L H 2SO 460g/L Cl -70g/L 市售高力牌鍍銅電鍍添加劑9mg/L。 The process conditions of the embodiment of the present invention and the comparative example are: (1) the electroplating current is 2A/dm 2 ; (2) when the power supply of the reverse pulse is working, the forward current is 2A/dm 2 and the reverse pulse current is 6A/dm 2 2. The time ratio of forward current and reverse pulse current is 20:1; (3) The electroplating time is 40 minutes, and the temperature is 30°C; 4. The acid copper plating solution includes: CuSO 4 200g/L H 2 SO 4 60g/L Cl - 70g/L Commercially available Gaoli brand copper plating additive 9mg/L.

鍍層狀態及均勻性的鑒定方法: 電鍍作業完成後,對經過電鍍作業的陰極鍍件從上至下取均勻三點位置進行切片和打磨,並採用顯微鏡對切片的鍍層進行觀察和厚度測量;對於帶有小孔的陰極鍍件,還需觀察對孔內狀態以及鍍銅情況;測得的結果以及得出的結論見表-1。 Identification method of coating state and uniformity: After the electroplating operation is completed, the cathodic plated parts that have undergone the electroplating operation are sliced and polished from top to bottom at three even positions, and the sliced coating is observed and thickness measured with a microscope; for the cathodic plated parts with small holes, It is also necessary to observe the state of the hole and the copper plating; the measured results and the conclusions drawn are shown in Table-1.

陽極塗層狀態的鑒定方法: 在電鍍作業後,用肉眼對陽極塗層進行觀察,並採用刷子輕刷塗層測試是否出現塗層脫落現象;得出的結論見表-1。 Identification method of anode coating state: After the electroplating operation, observe the anode coating with the naked eye, and use a brush to lightly brush the coating to test whether the coating peels off; the conclusions drawn are shown in Table-1.

電鍍光亮劑消耗情況的鑒定方法: 分別在電鍍作業前以及電鍍作業後採用國標COD檢測方法對電鍍液或者陰極電鍍液的COD值進行檢測,通過電鍍前後電鍍液或者電鍍陰極液的COD值變化差對電鍍光亮劑的消耗情況作出評價;得出的結論見表-2。 Identification method of electroplating brightener consumption: The COD value of the electroplating solution or the cathodic electroplating solution is detected by the national standard COD detection method before and after the electroplating operation, respectively, and the consumption of the electroplating brightener is evaluated by the difference in the COD value of the electroplating solution or electroplating catholyte solution before and after electroplating. ; The conclusions drawn are shown in Table-2.

表-1 系統 電鍍液 鍍層厚度(μm) 鍍層表面品質 陽極塗層狀態 實施例1 酸性鍍銅電鍍液 15.5 14.9 14.3 鍍層均勻平整 完好無受損 實施例2 酸性鍍銅電鍍液 15.1 15.0 15.1 鍍層均勻平整 完好無受損 實施例3 酸性鍍銅電鍍液 15 15 15 鍍層均勻平整 完好無受損 實施例4 陽極電鍍液:酸性硫酸銅溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例5 陽極電鍍液:酸性硫酸銅溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例6 陽極電鍍液:酸性鍍銅電鍍液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例7 陽極電鍍液:硫酸溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例8 陽極電鍍液:酸性硫酸銅溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例9 陽極電鍍液:酸性鍍銅電鍍液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例10 陽極電鍍液:硫酸 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔完整鍍通 完好無受損 實施例11 陽極電鍍液:酸性鍍銅電鍍液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整 完好無受損 實施例12 陽極電鍍液:酸性硫酸銅溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔內鍍銅貫通品質高 完好無受損 實施例13 陽極電鍍液:硫酸溶液 陰極電鍍液:酸性鍍銅電鍍液 15 15 15 鍍層均勻平整,直徑0.2mm深2mm小孔內鍍銅貫通品質高 完好無受損 實施例14 酸性鍍銅電鍍液 15.6 14.8 14.3 鍍層均勻平整 完好無受損 實施例15 酸性鍍銅電鍍液 15.2 15.0 14.8 鍍層均勻平整 輕刷後,陽極塗層上部位置有輕微脫落現象 比較例1 酸性鍍銅電鍍液 14.1 15.3 16.4 鍍層表面粗糙,直徑0.2mm深2mm小孔內鍍層未鍍通 輕刷後,塗層有明顯脫落現象 比較例2 陽極電鍍液:酸性鍍銅電鍍液 陰極電鍍液:酸性鍍銅電鍍液 13.6 15.2 16.9 鍍層表面粗糙,直徑0.2mm深2mm小孔內鍍層未鍍通 輕刷後,塗層有明顯脫落現象 Table 1 system Electroplating solution Plating thickness (μm) coating surface quality state of anode coating superior middle Down Example 1 Acid copper plating solution 15.5 14.9 14.3 The coating is even and flat intact Example 2 Acid copper plating solution 15.1 15.0 15.1 The coating is even and flat intact Example 3 Acid copper plating solution 15 15 15 The coating is even and flat intact Example 4 Anodizing bath: acid copper sulfate solution cathodic bath: acid copper plating bath 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 5 Anodizing bath: acid copper sulfate solution cathodic bath: acid copper plating bath 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 6 Anodic plating solution: Acid copper plating solution Cathodic plating solution: Acid copper plating solution 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 7 Anodizing solution: sulfuric acid solution Cathodic plating solution: acid copper plating solution 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 8 Anodizing bath: acid copper sulfate solution cathodic bath: acid copper plating bath 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 9 Anodic plating solution: Acid copper plating solution Cathodic plating solution: Acid copper plating solution 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 10 Anodizing bath: sulfuric acid Cathodic bath: acid copper plating bath 15 15 15 The coating is uniform and flat, and the small holes with a diameter of 0.2mm and a depth of 2mm are completely plated through. intact Example 11 Anodic plating solution: Acid copper plating solution Cathodic plating solution: Acid copper plating solution 15 15 15 The coating is even and flat intact Example 12 Anodizing bath: acid copper sulfate solution cathodic bath: acid copper plating bath 15 15 15 The coating is uniform and flat, and the copper plating in the small hole with a diameter of 0.2mm and a depth of 2mm is of high quality. intact Example 13 Anodizing solution: sulfuric acid solution Cathodic plating solution: acid copper plating solution 15 15 15 The coating is uniform and flat, and the copper plating in the small hole with a diameter of 0.2mm and a depth of 2mm is of high quality. intact Example 14 Acid copper plating solution 15.6 14.8 14.3 The coating is even and flat intact Example 15 Acid copper plating solution 15.2 15.0 14.8 The coating is even and flat After light brushing, the upper part of the anode coating has a slight peeling phenomenon Comparative Example 1 Acid copper plating solution 14.1 15.3 16.4 The surface of the coating is rough, and the coating is not plated through in the small hole with a diameter of 0.2mm and a depth of 2mm. After light brushing, the coating has obvious peeling phenomenon Comparative Example 2 Anodic plating solution: Acid copper plating solution Cathodic plating solution: Acid copper plating solution 13.6 15.2 16.9 The surface of the coating is rough, and the coating is not plated through in the small hole with a diameter of 0.2mm and a depth of 2mm. After light brushing, the coating has obvious peeling phenomenon

表-2 系統 電鍍液COD值(mg/L) 結論 電鍍前 電鍍後 電鍍前後差值 比較例1 5122 4889 233 電鍍添加劑損耗量較大 實施例1 4933 4721 212 電鍍添加劑損耗量較大 實施例4 5320 5111 209 電鍍添加劑損耗量較大 實施例9 4902 4837 65 電鍍添加劑損耗量少 實施例10 5076 5002 74 電鍍添加劑損耗量少 Table 2 system Electroplating solution COD value (mg/L) in conclusion Before electroplating After electroplating Difference before and after electroplating Comparative Example 1 5122 4889 233 The loss of electroplating additives is large Example 1 4933 4721 212 The loss of electroplating additives is large Example 4 5320 5111 209 The loss of electroplating additives is large Example 9 4902 4837 65 Less loss of plating additives Example 10 5076 5002 74 Less loss of plating additives

由上表-1可見,將本發明實施例1-15與現有技術比較例1-2所電鍍所得鍍層品質的比較:實施例1-15電鍍所得鍍層測得的三點(上、中、下)厚度資料更為平均,均優於比較例1。其中,實施例2-13中均設有起到饋線作用的定型框或者導電體及其連接點,電鍍所得的鍍層整體厚度一致,且表面平整、小孔鍍通連貫。而比較例1-2在電鍍工作時受氣泡影響鍍液中的電流分佈,所得鍍層表面粗糙且厚度不均勻,小孔內的鍍通情況也不理想。如此可見,採用本發明製程得出的鍍層更加均勻、平整,通孔貫通品質更高。說明本發明對析氣的不溶性陽極電鍍銅製程作改進後,能有效提高電鍍品質,滿足電鍍工業對高品質產品的要求。As can be seen from the above table-1, the comparison of the quality of the coating obtained by electroplating in Example 1-15 of the present invention and the prior art Comparative Example 1-2: the three points (upper, middle, lower) measured by the coating obtained by electroplating in Example 1-15. ) thickness data are more average, all better than Comparative Example 1. Among them, Examples 2-13 are all provided with a shaping frame or conductors and their connection points that function as feeders. The overall thickness of the plating obtained by electroplating is uniform, the surface is flat, and the small holes are plated through continuously. On the other hand, in Comparative Example 1-2, the current distribution in the plating solution was affected by the bubbles during the electroplating operation, and the obtained plating layer had a rough surface and uneven thickness, and the plating through the small holes was not satisfactory. It can be seen that the coating layer obtained by the process of the present invention is more uniform and flat, and the through-hole quality is higher. It is illustrated that the present invention can effectively improve the electroplating quality after improving the gas evolution insoluble anodic copper electroplating process, and meet the requirements of the electroplating industry for high-quality products.

由上表-1可見,將同樣採用了反脈衝電鍍電源的本發明實施例4-10、實施例12-13、實施例15與現有技術比較例1-2作陽極塗層狀態比較:本發明實施例4-10、實施例12-13、實施例15的不溶性陽極上均設置有反脈衝保護屏網,其中本發明實施例4-10、實施例12-13電鍍作業完成後不溶性陽極塗層均完整無脫落,本發明實施例15因缺少旁路設計所以電鍍作業完成後不溶性陽極塗層上部位置輕刷後有輕微脫落;而比較例1-2的不溶性陽極由於沒有反脈衝保護屏網對不溶性陽極塗層進行保護,電鍍作業完成後用刷子輕刷都有明顯的塗層脫落現象。由此可以說明,本發明的不溶性陽極設置有反脈衝保護屏網時能有效減少不溶性陽極塗層表面的電化學析氫反應,從而延長不溶性陽極的使用壽命。As can be seen from the above table-1, Examples 4-10, 12-13, and 15 of the present invention, which have also adopted the reverse pulse electroplating power supply, are compared with the prior art Comparative Examples 1-2 as anode coating states: the present invention The insoluble anodes of Examples 4-10, 12-13, and 15 are all provided with a reverse pulse protection screen, wherein the insoluble anode coatings of Examples 4-10 and 12-13 of the present invention are completed after the electroplating operation is completed They were all intact and did not fall off. Example 15 of the present invention lacked a bypass design, so after the electroplating operation was completed, the upper part of the insoluble anode coating had a slight peeling off after light brushing; while the insoluble anode of Comparative Example 1-2 had no reverse pulse protection. The insoluble anode coating is used for protection. After the electroplating operation is completed, the coating will peel off with a light brush. It can be shown that the insoluble anode of the present invention can effectively reduce the electrochemical hydrogen evolution reaction on the surface of the insoluble anode coating when the reverse pulse protection screen is provided, thereby prolonging the service life of the insoluble anode.

由於業界所採用的電鍍添加劑為有機化合物,故其消耗情況可以通過電鍍液的COD值變化對應體現,即是,電鍍液的COD值下降越快說明電鍍液中的電鍍添加劑消耗速度越快。由上表-2可見,將本發明電鍍槽中設置有電鍍槽分隔物的實施例9和實施例10,與比較例1、電鍍槽中沒有設置電鍍槽分隔物的實施例1和實施例4作比較:實施例9和實施例10中電鍍作業前後分別測得的陰極電鍍液COD值相差不超過80mg/L,證明其電鍍添加劑損耗量少。比較例1、實施例1和實施例4中電鍍作業前後分別測得的電鍍液COD值均相差200mg/L以上,說明其電鍍添加劑損耗量大。由此可以證明,本發明的電鍍槽中設置有電鍍槽分隔物時能有效節省電鍍添加劑用料。Since the electroplating additives used in the industry are organic compounds, their consumption can be reflected by the changes in the COD value of the electroplating solution. That is, the faster the COD value of the electroplating solution decreases, the faster the electroplating additives in the electroplating solution are consumed. It can be seen from the above table-2 that Examples 9 and 10, which are provided with a plating tank separator in the electroplating tank of the present invention, are compared with Comparative Example 1 and Examples 1 and 4 in which no plating tank partitions are provided in the electroplating tank. For comparison: in Example 9 and Example 10, the difference between the COD values of the cathodic electroplating solutions measured before and after the electroplating operation is no more than 80 mg/L, which proves that the loss of electroplating additives is small. In Comparative Example 1, Example 1 and Example 4, the COD values of the electroplating solutions measured before and after the electroplating operation were all different by more than 200 mg/L, indicating that the loss of electroplating additives was large. Therefore, it can be proved that the electroplating tank separator of the present invention can effectively save the materials used for electroplating additives.

此外,現有技術的比較例1與本發明的實施例9和實施例10的基礎設置最為相似。然而,實施例9和實施例10無論是鍍層均勻度、小孔鍍通情況、陽極塗層狀態、電鍍添加劑的消耗情況都要優於比較例1。In addition, the prior art Comparative Example 1 is most similar to the basic settings of Examples 9 and 10 of the present invention. However, Example 9 and Example 10 are better than Comparative Example 1 in terms of coating uniformity, small hole plating through, anode coating state, and consumption of electroplating additives.

本發明可用其他的不違背本發明的精神或主要特徵的具體形式來概述。本發明的上述實施例都只能認為是對本發明的說明而不是限制。因此凡是依據本發明的實質技術對以上實施例所作的任何細微修改、等同變化與修飾,均屬於本發明技術方案的範圍內。The present invention may be summarized in other specific forms that do not depart from the spirit or main characteristics of the invention. The above-mentioned embodiments of the present invention can only be considered as an illustration rather than a limitation of the present invention. Therefore, any minor modifications, equivalent changes and modifications made to the above embodiments according to the essential technology of the present invention fall within the scope of the technical solutions of the present invention.

1:不溶性陽極 1-1:不溶性陽極上的鏤空通孔 2:吸液管、吸液口 3:饋線安裝孔 4:陰極鍍件 5:電鍍槽 6:電鍍電源 7:酸性硫酸鹽鍍銅電鍍液 8:氣液分離器 9:液體回流迴圈管道 10:噴液管、噴液口 11、11.1、11.2:電鍍槽分隔物 12:陽極槽電鍍液 13、13.1、13.2、13.3、13.4、13.5、13.6:陽極盒 14:液體噴射管 15:反脈衝保護屏網 16:定型框 17:導電體 18:固定裝置 19、19.1、19.2:反脈衝電鍍電源 20:電鍍液再生裝置 21:檢測裝置 22:液體循環管 23:耐腐蝕泵浦 23.1、23.2、23.3、23.4、23.5、23.6、23.7、23.8:泵浦 24、24.1、24.2:攪拌裝置 25:抽氣罩 26、27、28:電鍍添加劑 29:變頻泵 30:帶泵浦液體流量調節器 31:銅金屬塊 32、32.1、32.2:暫存槽 33、33.1、33.2:固液分離篩檢程式 34:自動檢測投料控制器 35:流量計 36:溫度冷熱交換器 37:陽極塗層 38:溢出緩衝槽 39:鈦籃 A:側面 A-A、B-B:剖線 1: Insoluble anode 1-1: Hollow through hole on insoluble anode 2: Pipette, suction port 3: Feeder mounting holes 4: Cathode plating 5: Electroplating tank 6: Electroplating power supply 7: Acid sulfate copper plating solution 8: Gas-liquid separator 9: Liquid return loop pipeline 10: spray pipe, spray port 11, 11.1, 11.2: Electroplating tank dividers 12: Anode bath plating solution 13, 13.1, 13.2, 13.3, 13.4, 13.5, 13.6: anode box 14: Liquid injection pipe 15: Anti-pulse protection screen 16: Shape box 17: Conductor 18: Fixtures 19, 19.1, 19.2: Reverse pulse electroplating power supply 20: Electroplating solution regeneration device 21: Detection device 22: Liquid circulation pipe 23: Corrosion resistant pump 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.7, 23.8: Pumping 24, 24.1, 24.2: stirring device 25: Exhaust Hood 26, 27, 28: Electroplating additives 29: Variable frequency pump 30: With pump liquid flow regulator 31: Copper metal block 32, 32.1, 32.2: staging slot 33, 33.1, 33.2: solid-liquid separation screening program 34: Automatic detection of feeding controller 35: Flowmeter 36: Temperature cold heat exchanger 37: Anodized coating 38: overflow buffer slot 39: Titanium Basket A: side A-A, B-B: section line

以下通過附圖對本發明作進一步的說明。 圖1為本發明實施例1的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖2為本發明實施例2的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖3為本發明實施例3的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖4為本發明實施例4的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖5為本發明實施例5的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖6為本發明實施例6的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖7為本發明實施例7的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖8為本發明實施例8的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖9為本發明實施例9的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖10為本發明實施例10的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖11A與圖11B為本發明實施例11的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中圖11B為依據圖11A的側面A的側視示意圖。 圖12為本發明實施例12的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖13為本發明實施例13的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖14為現有技術比較例1的不溶性陽極酸性電鍍銅裝置。 圖15為現有技術比較例2的不溶性陽極酸性電鍍銅裝置。 圖16為本發明實施例14的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖17為本發明實施例15的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置。 圖18A與圖18B為本發明實施例1中不溶性陽極的示意圖,其中圖18B為依據圖18A的剖線A-A的剖面示意圖。 圖19A、圖19B與圖19C為本發明實施例2中不溶性陽極的示意圖,其中圖19C為依據圖19A的剖線A-A的剖面示意圖。 圖20A與圖20B為本發明實施例3中不溶性陽極的示意圖,其中圖20B為依據圖20A的剖線A-A的剖面示意圖。 圖21A、圖21B與圖21C為本發明實施例4中不溶性陽極的示意圖,其中圖21B為依據圖21A的剖線A-A的剖面示意圖。 圖22A、圖22B、圖22C與圖22D為本發明實施例5中不溶性陽極的示意圖,其中圖22B為依據圖22A的剖線A-A的剖面示意圖,圖22C為依據圖22A的剖線B-B的剖面示意圖。 圖23A、圖23B與圖23C為本發明實施例6中不溶性陽極的示意圖,其中圖23B為依據圖23A的剖線A-A的剖面示意圖,圖23C為依據圖23A的剖線B-B的剖面示意圖。 圖24A、圖24B與圖24C為本發明實施例7和實施例11中不溶性陽極盒結構的示意圖,其中圖24B為依據圖24A的剖線A-A的剖面示意圖。 圖25A與圖25B為本發明實施例8中不溶性陽極盒結構的示意圖,其中圖25B為依據圖25A的剖線A-A的剖面示意圖。 圖26A與圖26B為本發明實施例9和實施例12中不溶性陽極盒結構的示意圖,其中圖26B為依據圖26A的剖線A-A的剖面示意圖。 圖27A與圖27B為本發明實施例10和實施例13中不溶性陽極盒結構的示意圖,其中圖27B為依據圖27A的剖線A-A的剖面示意圖。 The present invention will be further described below with reference to the accompanying drawings. FIG. 1 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 1 of the present invention. FIG. 2 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 2 of the present invention. FIG. 3 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 3 of the present invention. FIG. 4 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 4 of the present invention. FIG. 5 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 5 of the present invention. FIG. 6 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 6 of the present invention. FIG. 7 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 7 of the present invention. FIG. 8 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 8 of the present invention. FIG. 9 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 9 of the present invention. FIG. 10 is an optimized device for insoluble anodic acid sulfate copper electroplating according to Example 10 of the present invention. 11A and FIG. 11B are the optimized apparatus for insoluble anodic acid sulfate copper electroplating according to Embodiment 11 of the present invention, wherein FIG. 11B is a schematic side view of side A according to FIG. 11A . FIG. 12 is an optimized device for copper electroplating with insoluble anodic acid sulfate in Example 12 of the present invention. FIG. 13 is an optimized device for copper electroplating with insoluble anodic acid sulfate in Example 13 of the present invention. FIG. 14 is an insoluble anodic acid copper electroplating apparatus of Comparative Example 1 of the prior art. FIG. 15 is an insoluble anodic acid copper electroplating apparatus of Comparative Example 2 of the prior art. FIG. 16 is an optimized device for copper electroplating with insoluble anodic acid sulfate in Example 14 of the present invention. FIG. 17 is an optimized device for copper electroplating with insoluble anodic acid sulfate in Example 15 of the present invention. 18A and 18B are schematic views of the insoluble anode in Example 1 of the present invention, wherein FIG. 18B is a schematic cross-sectional view according to the line A-A of FIG. 18A . 19A , 19B and 19C are schematic views of the insoluble anode in Example 2 of the present invention, wherein FIG. 19C is a schematic cross-sectional view according to the line A-A of FIG. 19A . 20A and 20B are schematic views of the insoluble anode in Example 3 of the present invention, wherein FIG. 20B is a schematic cross-sectional view according to the line A-A of FIG. 20A . 21A , 21B and 21C are schematic views of the insoluble anode in Example 4 of the present invention, wherein FIG. 21B is a schematic cross-sectional view according to the line A-A of FIG. 21A . 22A, 22B, 22C and 22D are schematic diagrams of the insoluble anode in Example 5 of the present invention, wherein FIG. 22B is a schematic cross-sectional view according to the line A-A of FIG. 22A, and FIG. 22C is a cross-sectional view according to the line B-B of FIG. 22A Schematic. 23A, 23B and 23C are schematic views of the insoluble anode in Example 6 of the present invention, wherein FIG. 23B is a schematic cross-sectional view according to the line A-A of FIG. 23A, and FIG. 23C is a schematic cross-sectional view according to the line B-B of FIG. 23A. 24A , 24B and 24C are schematic views of the structure of the insoluble anode box in Example 7 and Example 11 of the present invention, wherein FIG. 24B is a schematic cross-sectional view according to the line A-A of FIG. 24A . 25A and 25B are schematic views of the structure of the insoluble anode box in Example 8 of the present invention, wherein FIG. 25B is a schematic cross-sectional view according to the line A-A of FIG. 25A . 26A and 26B are schematic diagrams of the structure of the insoluble anode box in Example 9 and Example 12 of the present invention, wherein FIG. 26B is a schematic cross-sectional view according to the line A-A of FIG. 26A . 27A and 27B are schematic views of the structure of the insoluble anode box in Example 10 and Example 13 of the present invention, wherein FIG. 27B is a schematic cross-sectional view according to the line A-A of FIG. 27A .

1:不溶性陽極 1: Insoluble anode

1-1:不溶性陽極上的鏤空通孔 1-1: Hollow through hole on insoluble anode

2:吸液管、吸液口 2: Pipette, suction port

4:陰極鍍件 4: Cathode plating

5:電鍍槽 5: Electroplating tank

6:電鍍電源 6: Electroplating power supply

7:酸性硫酸鹽鍍銅電鍍液 7: Acid sulfate copper plating solution

8:氣液分離器 8: Gas-liquid separator

23:耐腐蝕泵浦 23: Corrosion resistant pump

26:電鍍添加劑 26: Plating Additives

Claims (20)

一種不溶性陽極酸性硫酸鹽電鍍銅的優化製程,包括電鍍槽(5)、電鍍電源(6)、不溶性陽極(1)以及陰極鍍件(4),以酸性硫酸鹽鍍銅電鍍液作為電鍍液,其中, 採用材料為覆有塗層的鈦材且形狀為網狀或者帶鏤空結構的板狀作為所述不溶性陽極(1),然後將所述不溶性陽極(1)和所述陰極鍍件(4)安裝在電鍍槽中;並在所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面增設至少一個吸液管(2)或至少一個吸液口(2),以使所述電鍍液通過所述吸液管(2)或所述吸液口(2)的溢流或/和電動吸液方式產生液流; 接通所述電鍍電源(6)進行電鍍生產作業,同時,通過所述吸液管(2)或所述吸液口(2)的溢流或/和採用動力的方式吸走所述電鍍液,使所述電鍍槽(5)中的所述電鍍液形成流向所述吸液管(2)或所述吸液口(2)的液流,相應地,再添加電鍍液進入所述電鍍槽(5)中以維持所述電鍍槽(5)內的所述電鍍液的量,直到完成電鍍將所述陰極鍍件(4)取出。 An optimized process for insoluble anodic acid sulfate copper electroplating, comprising an electroplating tank (5), an electroplating power source (6), an insoluble anode (1) and a cathode plating piece (4), and an acid sulfate copper electroplating solution is used as the electroplating solution, in, The insoluble anode (1) is used as the insoluble anode (1), and then the insoluble anode (1) and the cathode plating part (4) are installed In the electroplating tank; and at least one suction pipe (2) or at least one suction port (2) is added on the side of the insoluble anode (1) facing away from the cathode plating member (4), so that the The electroplating solution generates a liquid flow through the overflow of the liquid suction pipe (2) or the liquid suction port (2) or/and the electric liquid suction method; The electroplating power supply (6) is turned on to carry out the electroplating production operation, and at the same time, the electroplating solution is sucked away through the overflow of the liquid suction pipe (2) or the liquid suction port (2) or/and by means of power , so that the electroplating liquid in the electroplating tank (5) forms a liquid flow to the liquid suction pipe (2) or the liquid suction port (2), and accordingly, the electroplating liquid is added into the electroplating tank. In (5), the amount of the electroplating solution in the electroplating tank (5) is maintained until the electroplating is completed, and the cathode plating member (4) is taken out. 如請求項1所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中在所述不溶性陽極(1)面向所述陰極鍍件(4)的那一面增設至少一個噴液管(10)或至少一個噴液口(10),所述噴液管(10)或所述噴液口(10)與外接的噴液管路相連,用以朝向所述不溶性陽極(1)噴液,與所述吸液管(2)或所述吸液口(2)配合,在所述不溶性陽極(1)附近產生更穩定可控的遠離陰極鍍件(4)的液流。The optimized process for insoluble anodic acid sulfate copper electroplating according to claim 1, wherein at least one liquid spray pipe (10) or at least one liquid spray pipe (10) is added on the side of the insoluble anode (1) facing the cathode plating part (4). A liquid spraying port (10), the liquid spraying pipe (10) or the liquid spraying port (10) is connected with an external liquid spraying pipeline, for spraying liquid towards the insoluble anode (1), and is connected with the liquid spraying pipe (10). The liquid suction pipe (2) or the liquid suction port (2) cooperate to generate a more stable and controllable liquid flow away from the cathode plating member (4) in the vicinity of the insoluble anode (1). 如請求項2所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中增設氣液分離器(8),使所述吸液管(2)或所述吸液口(2)通過連接管道將從所述電鍍槽(5)吸出的氣液混合物流體排入到所述氣液分離器(8)中;所述氣液混合物在所述氣液分離器(8)中作分離釋放氣體後,所述氣液混合物中的液體再次被引回流到所述電鍍槽(5)中作迴圈流動。The optimized process for electroplating copper with insoluble anodic acid sulfate according to claim 2, wherein a gas-liquid separator (8) is added, so that the suction pipe (2) or the suction port (2) is connected to the pipe The gas-liquid mixture fluid sucked out from the electroplating tank (5) is discharged into the gas-liquid separator (8); after the gas-liquid mixture is separated in the gas-liquid separator (8) to release the gas, The liquid in the gas-liquid mixture is drawn back into the electroplating tank (5) again for circulating flow. 如請求項3所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中將所述電鍍槽(5)用電鍍槽分隔物(11)將其分隔開為陽極電鍍槽區和陰極電鍍槽區的兩個區域;所述陽極電鍍槽區中的所述電鍍液為陽極電鍍液,所述陽極電鍍液為含有無機酸和/或無機鹽的水溶液,或者採用酸性硫酸鹽鍍銅電鍍液;所述陰極電鍍槽區中的所述電鍍液為酸性硫酸鹽鍍銅電鍍液;電鍍過程中,所述不溶性陽極(1)和所述陰極鍍件(4)分別隔離置於所述陽極電鍍槽區和所述陰極電鍍槽區中;所述吸液管(2)或所述吸液口(2)以及所述噴液管(10)或所述噴液口(10)設置在所述陽極電鍍槽區內。The optimized process for insoluble anodic acid sulfate copper electroplating according to claim 3, wherein the electroplating tank (5) is separated into an anodic plating tank area and a cathodic plating tank area by an electroplating tank separator (11). two areas; the electroplating solution in the anodic plating tank area is an anodic electroplating solution, and the anodic electroplating solution is an aqueous solution containing an inorganic acid and/or an inorganic salt, or an acidic sulfate copper plating electroplating solution is used; The electroplating solution in the cathode electroplating tank area is an acid sulfate copper plating electroplating solution; during the electroplating process, the insoluble anode (1) and the cathode plating member (4) are separately placed in the anode electroplating tank area. and in the cathode electroplating tank area; the liquid suction pipe (2) or the liquid suction port (2) and the liquid spray pipe (10) or the liquid spray port (10) are arranged in the anode plating within the tank. 如請求項4所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中所述陽極電鍍槽區採用陽極盒(13)的形式並安裝在所述電鍍槽(5)中以對所述陽極電鍍槽區和所述陰極電鍍槽區作分隔,其中,所述陽極盒(13)為立方體型盒狀,所述不溶性陽極(1)位於所述陽極盒(13)中,所述陽極盒(13)面朝向所述陰極鍍件(4)的那一面為電鍍槽分隔物(11),所述陽極盒(13)的內部空間為所述陽極電鍍槽區,所述電鍍槽(5)中、所述陽極盒(13)以外的空間為所述陰極電鍍槽區;所述吸液管(2)或所述吸液口(2)設置在所述陽極盒(13)上,其中所述吸液管(2)或所述吸液口(2)位於所述陽極盒(13)內所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面的空間或盒壁上;另外,所述噴液管(10)或所述噴液口(10)位於所述陽極盒(13)內所述不溶性陽極(1)面向所述陰極鍍件(4)那一面與相鄰盒壁之間的區域中。An optimized process for insoluble anodic acid sulfate copper electroplating as claimed in claim 4, wherein the anodizing bath area is in the form of an anode box (13) and is installed in the electroplating bath (5) for electroplating the anodization The tank area and the cathode electroplating tank area are separated, wherein the anode box (13) is in the shape of a cube-shaped box, the insoluble anode (1) is located in the anode box (13), and the anode box (13) ) facing the cathode plating member (4) is the plating tank separator (11), the inner space of the anode box (13) is the anode plating tank area, in the plating tank (5), The space other than the anode box (13) is the cathode electroplating tank area; the suction pipe (2) or the suction port (2) is arranged on the anode box (13), wherein the suction pipe (2) or the suction port (2) The liquid pipe (2) or the liquid suction port (2) is located in the space or the box wall of the side of the insoluble anode (1) facing away from the cathode plating member (4) in the anode box (13); In addition, the liquid spray pipe (10) or the liquid spray port (10) is located in the anode box (13) on the side of the insoluble anode (1) facing the cathode plating member (4) and the adjacent box in the area between the walls. 如請求項1~5中任一請求項所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中在所述不溶性陽極(1)的邊沿增設定型框(16),所述定型框(16)採用具有陽性不溶性、耐熱耐酸且剛性強的材料。The optimized process for insoluble anode acid sulfate copper electroplating according to any one of claims 1 to 5, wherein a setting frame (16) is added on the edge of the insoluble anode (1), and the setting frame (16) ) using materials with positive insolubility, heat and acid resistance and strong rigidity. 如請求項6所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面的表面連接有與所述電鍍電源(6)的正極連通的導電體(17)。The optimized process for insoluble anodic acid sulfate copper electroplating according to claim 6, wherein the surface of the side of the insoluble anode (1) facing away from the cathode plating member (4) is connected to the electroplating power source (6). ) of the positive connected conductor (17). 如請求項7所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中所述不溶性陽極(1)和/或所述定型框(16)和/或所述導電體(17)面向所述陰極鍍件(4)那一面上設有反脈衝保護屏網(15),所述反脈衝保護屏網(15)為無塗層鈦材凸起物或凸起的網狀物/條狀物。The optimized process for insoluble anodic acid sulfate copper electroplating according to claim 7, wherein the insoluble anode (1) and/or the shaping frame (16) and/or the electrical conductor (17) face the cathode A back-pulse protection screen (15) is provided on the side of the plating piece (4), and the back-pulse protection screen (15) is an uncoated titanium protrusion or a raised mesh/strip. 如請求項8所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中當所述反脈衝保護屏網(15)設在所述不溶性陽極(1)上,所述反脈衝保護屏網(15)為設置在所述不溶性陽極(1)面向所述陰極鍍件(4)那一面上的所述無塗層鈦材凸起物或所述凸起的網狀物/條狀物且與所述不溶性陽極(1)的所述鈦材直接連接;當所述反脈衝保護屏網(15)設在所述定型框(16)上且所述定型框(16)為裸露鈦材或者覆有塗層的鈦材時,所述反脈衝保護屏網(15)除了與所述不溶性陽極(1)的所述鈦材直接連接外,或者單獨與所述定型框(16)的所述鈦材連接,又或者同時與所述不溶性陽極(1)的所述鈦材以及所述定型框(16)的所述鈦材連接;當所述反脈衝保護屏網(15)設置在所述導電體(17)上,將所述反脈衝保護屏網(15)穿過所述不溶性陽極(1)的網孔或所述鏤空結構以伸出所述不溶性陽極(1)的表面朝向所述陰極鍍件(4)。The optimized process for insoluble anode acid sulfate copper electroplating according to claim 8, wherein when the reverse pulse protection screen (15) is arranged on the insoluble anode (1), the reverse pulse protection screen (15) ) is the uncoated titanium protrusion or the raised mesh/stripe disposed on the side of the insoluble anode (1) facing the cathodic plating member (4) and is related to the The titanium material of the insoluble anode (1) is directly connected; when the anti-pulse protection screen (15) is set on the shaping frame (16) and the shaping frame (16) is bare titanium material or covered with When the titanium material is coated, the anti-pulse protection screen (15) is not only directly connected with the titanium material of the insoluble anode (1), or is independently connected with the titanium material of the setting frame (16) connected, or at the same time connected with the titanium material of the insoluble anode (1) and the titanium material of the setting frame (16); when the anti-pulse protection screen (15) is arranged on the conductor (17), passing the reverse pulse protection screen (15) through the mesh of the insoluble anode (1) or the hollow structure to extend out of the surface of the insoluble anode (1) toward the cathode plating pieces (4). 如請求項9所述的不溶性陽極酸性硫酸鹽電鍍銅的優化製程,其中所述凸起物的形狀是凸點狀、尖刺狀或豎條狀;所述凸起的網狀物/條狀物則是在所述不溶性陽極(1)和/或所述定型框(16)和/或所述導電體(17)面向所述陰極鍍件(4)那一面上伸向所述陰極鍍件(4)方向的支持腳端固定的網狀物,或者是與所述凸起物上部相互連接形成的網狀物或者條狀物,所述網狀物或者所述條狀物構成的平面與所述不溶性陽極(1)的表面平行或者基本平行。The optimized process for insoluble anodic acid sulfate copper electroplating according to claim 9, wherein the shape of the protrusions is a bump shape, a spike shape or a vertical strip shape; the raised mesh/stripe shape Then, the insoluble anode (1) and/or the sizing frame (16) and/or the conductor (17) extends to the cathode plating piece on the side facing the cathode plating piece (4). (4) A mesh fixed at the end of the support foot in the direction, or a mesh or strip formed by interconnecting the upper part of the protrusion, and the plane formed by the mesh or the strip is the same as the The surfaces of the insoluble anode (1) are parallel or substantially parallel. 一種不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,包括電鍍槽(5)、不溶性陽極(1)、陰極鍍件(4)、電鍍電源(6),其中所述電鍍槽(5)、內還設置有至少一個吸液管(2)或至少一個吸液口(2),所述吸液管(2)或所述吸液口(2)位於所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面,用於使電鍍液通過所述吸液管(2)或所述吸液口(2)的溢流或/和電動吸液方式在所述電鍍槽(5)內產生液流; 所述不溶性陽極(1)為覆有塗層的鈦材,且所述不溶性陽極(1)形狀為網狀或者帶鏤空結構的板狀; 所述電鍍電源(6)的正極和負極在電鍍過程中分別與所述不溶性陽極(1)和所述陰極鍍件(4)連接。 An optimization device for insoluble anodic acid sulfate copper electroplating, comprising an electroplating tank (5), an insoluble anode (1), a cathode plating piece (4), and an electroplating power source (6), wherein the electroplating tank (5) is further provided inside There is at least one pipette (2) or at least one pipette (2), the pipette (2) or the pipette (2) being located on the insoluble anode (1) facing away from the cathode plating The side of the piece (4) is used to make the electroplating solution pass through the pipette (2) or the overflow of the suction port (2) or/and the electric suction method in the electroplating tank (5) produce flow; The insoluble anode (1) is a titanium material covered with a coating, and the shape of the insoluble anode (1) is a net shape or a plate shape with a hollow structure; The positive and negative electrodes of the electroplating power source (6) are respectively connected to the insoluble anode (1) and the cathode plating member (4) during the electroplating process. 如請求項11所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述電鍍槽(5)內設置有至少一個噴液管(10)或至少一個噴液口(10),所述噴液管(10)或所述噴液口(10)設置在所述不溶性陽極(1)面向所述陰極鍍件(4)的那一面的所述不溶性陽極(1)與所述陰極鍍件(4)之間的區域空間內,所述噴液管(10)或所述噴液口(10)外接噴液管路,用於向所述不溶性陽極(1)噴液;所述裝置採用回流系統,由動力源和連接管道組成,所述裝置的一端連接所述吸液管(2)或所述吸液口(2),所述裝置的另一端連通所述噴液管(10)或所述噴液口(10),利用所述回流系統使由所述吸液管(2)或所述吸液口(2)吸走的所述電鍍液再回流入所述電鍍槽(5)中,形成所述電鍍槽(5)內的所述電鍍液流向所述不溶性陽極(1)處的所述吸液管(2)或所述吸液口(2)的液流。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 11, wherein the electroplating tank (5) is provided with at least one liquid spray pipe (10) or at least one liquid spray port (10), the spray The insoluble anode (1) and the cathode plating member ( 4) In the area space between, the liquid spray pipe (10) or the liquid spray port (10) is connected to an external spray pipe for spraying liquid to the insoluble anode (1); the device adopts a backflow The system is composed of a power source and a connecting pipe, one end of the device is connected to the liquid suction pipe (2) or the liquid suction port (2), and the other end of the device is connected to the liquid spray pipe (10) or The liquid ejection port (10) uses the return system to make the electroplating solution sucked up by the liquid suction pipe (2) or the liquid suction port (2) back into the electroplating tank (5) In the process, the liquid flow of the electroplating solution in the electroplating tank (5) to the liquid suction pipe (2) or the liquid suction port (2) at the insoluble anode (1) is formed. 如請求項12所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述吸液管(2)或所述吸液口(2)通過連接管道與氣液分離器(8)相連接;所述氣液分離器(8)還再通過泵浦和所述連接管道與所述電鍍槽(5)連通以構成所述回流系統,將釋放氣體處理後的液體排回到所述電鍍槽(5)中作迴圈流動。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 12, wherein the liquid suction pipe (2) or the liquid suction port (2) is connected to the gas-liquid separator (8) through a connecting pipe; The gas-liquid separator (8) is further communicated with the electroplating tank (5) through the pump and the connecting pipeline to form the return system, and the liquid after gas release treatment is discharged back to the electroplating tank ( 5) in the loop flow. 如請求項13所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中在所述電鍍槽(5)中設置電鍍槽分隔物(11),將所述電鍍槽(5)分隔開為陽極電鍍槽區和陰極電鍍槽區。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 13, wherein an electroplating tank partition (11) is provided in the electroplating tank (5) to separate the electroplating tank (5) into anodes Electroplating bath area and cathode plating bath area. 如請求項14所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述陽極電鍍槽區和所述陰極電鍍槽區的分隔採用在所述電鍍槽(5)中安裝陽極盒(13)的方式來進行分隔:所述陽極盒(13)為立方體型盒狀,所述不溶性陽極(1)位於所述陽極盒(13)中,所述陽極盒(13)面朝向所述陰極鍍件(4)的那一面為所述電鍍槽分隔物(11),所述陽極盒(13)的內部空間為所述陽極電鍍槽區,所述電鍍槽(5)中除所述陽極盒(13)以外的其餘空間為所述陰極電鍍槽區;所述吸液管(2)或所述吸液口(2)設置在所述陽極盒(13)上,其中所述吸液管(2)或所述吸液口(2)位於陽極盒(13)相對所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面的空間或者盒壁上;所述陽極盒(13)內還設置有所述噴液管(10)或所述噴液口(10),其中所述噴液管(10)或所述噴液口(10)位於陽極盒(13)內所述不溶性陽極(1)面向所述陰極鍍件(4)的那一面與相鄰盒壁之間的區域中。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 14, wherein said anodizing bath area and said cathodic electroplating bath area are separated by installing an anode box (13) in said electroplating bath (5) The way to separate: the anode box (13) is a cube-shaped box, the insoluble anode (1) is located in the anode box (13), and the anode box (13) faces the cathode plating part The side of (4) is the electroplating tank partition (11), the inner space of the anode box (13) is the anode plating tank area, and the anode box (13) is removed from the electroplating tank (5). The remaining space other than ) is the cathode electroplating tank area; the suction pipe (2) or the suction port (2) is arranged on the anode box (13), wherein the suction pipe (2) Or the liquid suction port (2) is located in the space or on the box wall of the anode box (13) opposite to the side of the insoluble anode (1) facing away from the cathode plating member (4); the anode box (13) The liquid spray pipe (10) or the liquid spray port (10) is also provided inside, wherein the liquid spray pipe (10) or the liquid spray port (10) is located in the anode box (13) of the insoluble In the area between the side of the anode ( 1 ) facing the cathode plating ( 4 ) and the adjacent box wall. 如請求項15所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述陽極盒(13)朝向所述陰極鍍件(4)的那一面的外側面邊沿四周裝設有液體噴射管(14),並且各液體噴射管(14)中裝置有流量調節器,以便作向所述陰極鍍件(4)的所述電鍍液的噴射效果的調節。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 15, wherein a liquid injection pipe ( 14), and each liquid injection pipe (14) is provided with a flow regulator, so as to adjust the injection effect of the electroplating solution to the cathode plating part (4). 如請求項16所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述不溶性陽極(1)上還設有反脈衝保護屏網(15),所述反脈衝保護屏網(15)是設置在所述不溶性陽極(1)面向所述陰極鍍件(4)的那一面上的無塗層鈦材凸起物,所述凸起物與所述不溶性陽極(1)的所述鈦材直接連接,並且所述凸起物的形狀是凸點狀、尖刺狀或豎條狀,或與所述形狀連接的網狀/條狀。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 16, wherein the insoluble anode (1) is further provided with a back-pulse protection screen (15), and the back-pulse protection screen (15) is Uncoated titanium material protrusions arranged on the side of the insoluble anode (1) facing the cathode plating member (4), the protrusions and the titanium material of the insoluble anode (1) Direct connection, and the shape of the protrusions is a bump, a spike or a vertical strip, or a mesh/strip connected to the shape. 如請求項17所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述不溶性陽極(1)的邊沿處還設置有定型框(16)。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 17, wherein a shaping frame (16) is further provided at the edge of the insoluble anode (1). 如請求項18所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中所述不溶性陽極(1)背向所述陰極鍍件(4)的那一面安裝連接有與所述電鍍電源(6)正極連通的導電體(17)。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 18, wherein the side of the insoluble anode (1) facing away from the cathode plating member (4) is installed and connected to the electroplating power supply (6) A conductor (17) connected to the positive electrode. 如請求項19所述的不溶性陽極酸性硫酸鹽電鍍銅的優化裝置,其中將具有所述反脈衝保護網(15)、所述定型框(16)、所述導電體(17)的所述不溶性陽極(1)和所述吸液管(2)或所述吸液口口(2)、所述噴液管(10)或所述噴液口(10)的不溶性陽極元件安裝在所述具有所述液體噴射管(14)的所述陽極盒(13)中作為陽極槽區總成。The optimized device for insoluble anodic acid sulfate copper electroplating according to claim 19, wherein the insolubility of the reverse pulse protection net (15), the shaping frame (16), and the electrical conductor (17) will be provided. The anode (1) and the liquid suction pipe (2) or the liquid suction port (2), the liquid spray pipe (10) or the insoluble anode element of the liquid spray port (10) are installed in the The anode box (13) of the liquid injection pipe (14) serves as an anode tank assembly.
TW110149594A 2020-12-31 2021-12-30 An improved process and device for copper electroplating with sulfate bath and insoluble anode TWI806328B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011645410.3 2020-12-31
CN202011645410 2020-12-31
CN202110392113.0 2021-04-12
CN202110392113 2021-04-12

Publications (2)

Publication Number Publication Date
TW202229649A true TW202229649A (en) 2022-08-01
TWI806328B TWI806328B (en) 2023-06-21

Family

ID=82259067

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110149594A TWI806328B (en) 2020-12-31 2021-12-30 An improved process and device for copper electroplating with sulfate bath and insoluble anode

Country Status (4)

Country Link
US (1) US20240060202A1 (en)
CN (1) CN116685721A (en)
TW (1) TWI806328B (en)
WO (1) WO2022143860A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668099B2 (en) * 1991-11-01 1997-10-27 鶴見曹達株式会社 Pretreatment device for plating solution and electrode for electrolysis
CN1122119C (en) * 1995-06-20 2003-09-24 阿托特德国有限公司 Method and appts. for metal layer by electrolytic deposition
CN107313085B (en) * 2016-04-26 2019-10-22 中国科学院金属研究所 The copper electroplating filling method of fine blind hole in a kind of high density circuit board
CN109056002B (en) * 2017-07-19 2022-04-15 叶旖婷 Acid copper electroplating process and device adopting through hole isolation method
CN208762590U (en) * 2018-09-19 2019-04-19 安徽宏实自动化装备有限公司 A kind of novel electroplating device

Also Published As

Publication number Publication date
CN116685721A (en) 2023-09-01
US20240060202A1 (en) 2024-02-22
TWI806328B (en) 2023-06-21
WO2022143860A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
CN104862767B (en) Copper plating tank
CN101435095B (en) Method for electroplating metal on surface of stephanoporate metal product
CN204874804U (en) Copper facing groove
TWI648435B (en) Acidic copper plating process using infused anode and its equipment
CN207109132U (en) A kind of copper plating device for coordinating cupric oxide powder supplement copper ion using insoluble anode
CN113818055A (en) Method and device for adjusting components of acid copper electroplating solution or electroplating supplementary solution of insoluble anode
CN205688030U (en) A kind of copper refining electrolysis bath circulating remove impurity formula
CN217378068U (en) Electroplating equipment
CN102108531A (en) Impurity removing method for nickel electroplating solution and impurity removing equipment thereof
TWI806328B (en) An improved process and device for copper electroplating with sulfate bath and insoluble anode
CN111020652B (en) Jet-flow type electrochemical deposition equipment
CN114790567A (en) Electroplating equipment
JP5898346B2 (en) Operation method of anode and electrolytic cell
CN206266741U (en) Electrolysis chrome liquor impurity removing equipment
CN108914178A (en) A method of it is uneven to solve galvanoplastic preparation wick thickness
KR100426159B1 (en) Electrodeposition method of metal film and apparatus therefor
CN208414614U (en) Electroplanting device
KR200358909Y1 (en) Electroplating apparatus obtain two-sided uniform plated layer
CN219449919U (en) Device for carrying out horizontal convection circulation on electroplating liquid medicine
CN219793162U (en) High-speed copper plating device
CN216639701U (en) Electrochemical polishing solution circulating filter device
CN217895781U (en) Electroplating device with metal ion supply mechanism
CN109811367A (en) A kind of uniform vertical becomes a mandarin the electrolytic cell of charging
CN208632265U (en) A kind of electroplating wastewater nickel recyclable device
CN217997399U (en) Ferric iron dissolves copper circulation system