TW202228845A - 微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法 - Google Patents

微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法 Download PDF

Info

Publication number
TW202228845A
TW202228845A TW110137619A TW110137619A TW202228845A TW 202228845 A TW202228845 A TW 202228845A TW 110137619 A TW110137619 A TW 110137619A TW 110137619 A TW110137619 A TW 110137619A TW 202228845 A TW202228845 A TW 202228845A
Authority
TW
Taiwan
Prior art keywords
droplet
composition
drive
droplets
sequence
Prior art date
Application number
TW110137619A
Other languages
English (en)
Inventor
理查 J 二世 鮑里尼
路克 M 斯羅敏斯基
提摩西 J 歐馬利
大衛 茲多莫斯基
Original Assignee
英商核酸有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商核酸有限公司 filed Critical 英商核酸有限公司
Publication of TW202228845A publication Critical patent/TW202228845A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一種電潤濕系統,其用於致動第一組成物及第二組成物之液滴。該系統包括:複數個電極,其經組態以操控微流體空間中之流體液滴,每一電極耦接至將驅動電壓施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表。該處理單元經組態以:接收該第一組成物之第一化學物種及第一組成物參數之資料;接收該第二組成物之第二化學物種及第二組成物參數之資料;使第一驅動序列與該第一化學物種及該第一組成物參數相關;使第二驅動序列與該第二化學物種及該第二組成物參數相關;及將該第一驅動序列及該第二驅動序列輸出至該等電極。

Description

微流體系統中試劑特異驅動EWOD(介電質上電潤濕)陣列的方法
數位微流體(DMF)裝置使用獨立電極以在受限環境中推進、***及接合液滴,藉此提供「晶片上實驗室(lab-on-a-chip)」。數位微流體裝置已用以致動廣泛範圍之體積(nL至μL)且被替代地稱作介電質上電潤濕或「EWoD」,以進一步將該方法與依賴於電泳流動及/或微型泵之競爭性微流體系統區分開。在電潤濕中,將連續或脈衝式電信號施加至液滴,從而導致該液滴之接觸角度切換。能夠電潤濕疏水性表面之液體通常包括極性溶劑,諸如水或離子液體,且常常以離子物種為特徵,正如電解質之水溶液之狀況。Wheeler在「Digital Microfluidics」(Annu. Rev. Anal. Chem. 2012年,5:413-40)中提供了電潤濕技術之2012檢閱。該技術允許以微小數量之樣品及試劑兩者執行樣品製備、分析及合成化學。近年來,使用電潤濕在微流體胞元中進行控制液滴操控已變得具有商業可行性,且現在存在可獲自較大生命科學公司,諸如Oxford Nanopore之產品。
存在EWoD數位微流體裝置之兩個主要架構,亦即,開放系統及封閉系統。通常,兩個EWoD組態包括底板,該底板之特徵在於推進電極之堆疊、絕緣體介電層及提供工作表面之疏水層。然而,封閉系統之特徵亦在於與底板平行之頂板且包括用作所有推進電極之共同反電極的頂部電極。頂板及底板以隔開關係設置,該隔開關係界定微流體區以准許在底部電極陣列與頂部電極之間施加推進電壓的情況下在該微流體區內進行液滴運動。將液滴置放於工作表面上,且電極一旦經致動就可導致液滴取決於所施加電壓而變形及自表面潤濕或去潤濕。當正驅動裝置之電極矩陣時,DMF之每一像素接收電壓脈衝(亦即,與彼像素相關聯之兩個電極之間的電壓差)或電壓脈衝之時間序列(亦即,「波形」或「驅動序列(drive sequence/driving sequence)」)以便實現自像素之一種電潤濕狀態至另一種電潤濕狀態之轉變。
關於EWoD之大部分文獻報導涉及所謂的「分段式」裝置,藉以運用控制器直接驅動十至數百個電極。雖然分段式裝置易於製造,但電極之數目受到空間及驅動約束限制,且裝置需要針對特定應用進行設計。因此,可證實在分段式裝置中執行大規模並行分析、反應等相對成問題。相比而言,「主動矩陣」裝置(亦稱為主動矩陣EWoD、亦稱為AM-EWoD)裝置可具有數千、數十萬或甚至數百萬可定址電極且提供可用於許多不同應用之通用面板。
AM-EWoD之電極通常藉由電晶體矩陣(諸如薄膜電晶體(TFT))切換,但亦可使用機電開關。基於TFT之薄膜電子件可用以藉由使用與AM顯示技術中所使用之電路配置極類似的電路配置來控制電壓脈衝至EWoD陣列之定址。TFT陣列對於此應用係高度符合需要的,此係由於具有數千個可定址像素,藉此允許液滴程序之大規模並行化。驅動電路可整合至AM-EWoD陣列基板上,且基於TFT之電子件良好地適合於AM-EWoD應用。
在一第一態樣中,提供一種用於致動第一組成物之液滴及第二組成物之液滴的電潤濕系統。該系統包括:複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT)。該處理單元經組態以:接收該第一組成物之第一化學物種及第一組成物參數之輸入資料;接收該第二組成物之第二化學物種及第二組成物參數之輸入資料;使第一驅動序列與該第一化學物種及該第一組成物參數相關;使第二驅動序列與該第二化學物種及該第二組成物參數相關;及將該第一驅動序列及該第二驅動序列輸出至該複數個電極。
在第二態樣中,提供一種用於對電潤濕系統中之第一組成物及第二組成物執行液滴操作的方法。該電潤濕系統包含:複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與化學物種及組成物參數相關之查找表(LUT)。該方法包含:接收該第一組成物之第一化學物種及第一組成物參數之輸入資料;接收該第二組成物之第二化學物種及第二組成物參數之輸入資料;使第一驅動序列與該第一組成物之該第一化學物種及第一組成物參數相關;使第二驅動序列與該第二組成物之該第二化學物種及第二組成物參數相關;及將該第一驅動序列及該第二驅動序列輸出至該複數個電極。
在第三態樣中,提供一種用於致動混合液滴之電潤濕系統,該系統包括:複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT)。該處理單元經組態以:提供具有第一組成物、第一體積及第一組成物參數之第一液滴,其中該第一組成物、第一體積及第一組成物參數中之至少一者與用於該電潤濕系統之第一驅動序列相關;提供具有第二組成物、第二體積及第二組成物參數之第二液滴,其中該第二組成物、第二體積及第二組成物參數中之至少一者與用於該電潤濕系統之第二驅動序列相關;混合該第一液滴與該第二液滴以產生混合液滴;及用第三驅動序列驅動該混合液滴,該第三驅動序列為該第一驅動序列及該第二驅動序列之預定加權平均。
在第四態樣中,提供一種用於致動至少一種組成物之液滴的電潤濕系統,該系統包括:複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),該處理單元經組態以:接收該至少一種組成物之化學物種及組成物參數之輸入資料;使驅動序列與該化學物種及該組成物參數相關;及將該驅動序列輸出至該複數個電極。
在第五態樣中,提供一種用於致動至少一種組成物之液滴的電潤濕系統,該系統包括:複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及處理單元,其可操作地連接至使驅動序列與組成物識別資料相關之查找表(LUT),該處理單元經組態以:接收識別該至少一種組成物之輸入資料;使驅動序列與識別該至少一種組成物之該資料相關;及將該驅動序列輸出至該複數個電極,以致動該至少一種組成物之液滴。
定義除非另外指出,否則以下術語具有所指示之含義。
關於一或多個電極之「致動」或「啟動」意謂實現一或多個電極之電氣狀態之改變,該改變在液滴存在的情況下引起液滴之操控。電極之啟動可使用交流電(AC)或直流電(DC)來實現。在使用AC信號的情況下,可使用任何合適頻率。
「液滴」意謂電潤濕疏水性表面且至少部分地由載體流體及/或在一些情況下氣體或氣體混合物(諸如環境空氣)定界的液體體積。舉例而言,液滴可完全被載體流體包圍或可由載體流體以及EWoD裝置之一或多個表面定界。液滴可採取廣泛多種形狀;非限制性實例包括大體圓盤形、塊形、截斷球體、橢球形、球形、部分壓縮球體、半球形、卵形、圓柱形及在液滴操作期間形成之各種形狀,液滴操作諸如合併或***或由於此類形狀與EWoD裝置之一或多個工作表面接觸而形成。液滴可包括典型的極性流體,諸如水,如水性或無水組成物之狀況,或可為包括水性及無水組分之混合物或乳液。液滴亦可包括分散液及懸浮液,例如水溶劑中之磁性珠粒。在各種實施例中,液滴可包括生物樣品,諸如全血、淋巴液、血清、血漿、汗液、淚液、唾液、痰液、腦脊髓液、羊膜液、***、***分泌物、漿液、滑液、心包液、腹膜液、胸膜液、滲出液、泌出物、囊液、膽液、尿液、胃液、腸液、糞樣品、含有單一或多個細胞之液體、含有細胞器之液體、流體化組織、流體化生物體、含有多細胞生物體之液體、生物拭子及生物洗液。此外,液滴可包括一或多種試劑,諸如水、去離子水、生理鹽水溶液、酸性溶液、鹼性溶液、清潔劑溶液及/或緩衝液。液滴內容物之其他實例包括試劑,諸如用於生物化學協定、核酸擴增協定、基於親和力之分析協定、酶分析協定、基因定序協定、蛋白質定序協定及/或用於生物流體分析之協定的試劑。試劑之其他實例包括生物化學合成方法中使用之試劑,諸如用於合成應用於分子生物學及醫學、核酸分子中之寡核苷酸之試劑。寡核苷酸可含有天然或化學修飾鹼基且最常用作反義寡核苷酸、小型干擾治療性RNA (siRNA)及其生物活性共軛物、用於DNA定序及擴增之引子、用於經由分子雜交偵測互補DNA或RNA之探針、用於在用於基因編輯之技術(諸如CRISPR-Cas9)之背景中之突變及限制位點的靶向引入及用於合成人工基因的工具。在其他實例中,液滴內容物可包括用於肽及蛋白質產生之試劑,例如藉由化學合成、在活生物體(諸如細菌或酵母細胞)中之表現或藉由在活體外系統中使用生物機構來進行。
術語「DMF裝置」、「EWoD裝置」及「液滴致動器」意謂用於操控液滴之裝置。對於液滴致動器之實例,參見Pamula等人之於2005年6月28日發佈之名為「Apparatus for Manipulating Droplets by Electrowetting-Based Techniques」的美國專利第6,911,132號;Pamula等人之於2006年8月31日公佈之名為「Apparatuses and Methods for Manipulating Droplets on a Printed Circuit Board」的美國專利公開案第20060194331號;Pollack等人之於2007年10月25日公佈之名為「Droplet-Based Biochemistry」的國際專利公開案第WO/2007/120241號;Shenderov之於2004年8月10日發佈之名為「Electrostatic Actuators for Microfluidics and Methods for Using Same」的美國專利第6,773,566號;Shenderov之於2003年5月20日發佈之名為「Actuators for Microfluidics Without Moving Parts」的美國專利第6,565,727號;Kim等人之於2003年11月6日公佈之名為「Electrowetting-driven Micropumping」的美國專利公開案第20030205632號;Kim等人之於2006年7月27日公佈之名為「Method and Apparatus for Promoting the Complete Transfer of Liquid Drops from a Nozzle」的美國專利公開案第20060164490號;Kim等人之於2007年2月1日公佈之名為「Small Object Moving on Printed Circuit Board」的美國專利公開案第20070023292號;Shah等人之於2009年11月19日公佈之名為「Method for Using Magnetic Particles in Droplet Microfluidics」的美國專利公開案第20090283407號;Kim等人之於2010年4月22日公佈之名為「Method and Apparatus for Real-time Feedback Control of Electrical Manipulation of Droplets on Chip」的美國專利公開案第20100096266號;Velev之於2009年6月16日發佈之名為「Droplet Transportation Devices and Methods Having a Fluid Surface」的美國專利第7,547,380號;Sterling等人之於2007年1月16日發佈之名為「Method, Apparatus and Article for Microfluidic Control via Electrowetting, for Chemical, Biochemical and Biological Assays and the Like」的美國專利第7,163,612號;Becker等人之於2010年1月5日發佈之名為「Method and Apparatus for Programmable Fluidic Processing」的美國專利第7,641,779號;Becker等人之於2005年12月20日發佈之名為「Method and Apparatus for Programmable Fluidic Processing」的美國專利第6,977,033號;Decre等人之於2008年2月12日發佈之名為「System for Manipulation of a Body of Fluid」的美國專利第7,328,979號;Yamakawa等人之於2006年2月23日公佈之名為「Chemical Analysis Apparatus」的美國專利公開案第20060039823號;Wu之於2011年3月3日公佈之名為「Digital Microfluidics Based Apparatus for Heat-exchanging Chemical Processes」的美國專利公開案第20110048951號;Fouillet等人之於2009年7月30日公佈之名為「Electrode Addressing Method」的美國專利公開案第20090192044號;Fouillet等人之於2006年5月30日發佈之名為「Device for Displacement of Small Liquid Volumes Along a Micro-catenary Line by Electrostatic Forces」的美國專利第7,052,244號;Marchand等人之於2008年5月29日公佈之名為「Droplet Microreactor」的美國專利公開案第20080124252號;Adachi等人之於2009年12月31日公佈之名為「Liquid Transfer Device」的美國專利公開案第20090321262號;Roux等人之於2005年8月18日公佈之名為「Device for Controlling the Displacement of a Drop Between Two or Several Solid Substrates」的美國專利公開案第20050179746號;及Dhindsa等人之「Virtual Electrowetting Channels: Electronic Liquid Transport with Continuous Channel Functionality」(實驗室晶片,10:832-836(2010年))。
「液滴操作」意謂在微流體裝置上之一或多個液滴之任何操控。液滴操作可例如包括:將液滴裝載至DMF裝置中;自源儲集器分配一或多個液滴;使液滴***、分離或分割成兩個或多於兩個液滴;在任何方向上將液滴自一個位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;攪動液滴;使液滴變形;使液滴保持在適當位置;培育液滴;加熱液滴;使液滴汽化;冷卻液滴;安置液滴;將液滴輸送出微流體裝置;本文所描述之其他液滴操作;及/或前述之任何組合。術語「合併(merge/merging)」、「組合(combine/combining)」及其類似者用於描述自兩個或多於兩個液滴產生一個液滴。應理解,當此類術語參考兩個或多於兩個液滴使用時,可使用足以引起兩個或多於兩個液滴組合成一個液滴之液滴操作的任何組合。舉例而言,「將液滴A與液滴B合併」可藉由輸送液滴A與靜止液滴B接觸、輸送液滴B與靜止液滴A接觸或輸送液滴A及B彼此接觸來達成。術語「***」、「分離」及「分割」並不意欲暗示關於所得液滴體積之任何特定結果(亦即,所得液滴體積可相同或不同)或關於所得液滴數目之任何特定結果(所得液滴數目可為2、3、4、5或更多)。術語「混合」係指在液滴內引起一或多個組分之更均勻分佈的液滴操作。「裝載」液滴操作之實例包括但不限於微透析裝載、壓力輔助裝載、機器人裝載、被動裝載及吸液管裝載。液滴操作可為電極介導的。在一些狀況下,液滴操作係藉由在表面上使用親水性及/或疏水性區及/或藉由物理障礙進一步促進。
「閘極驅動器」為引導高電流驅動輸入以用於高功率電晶體(諸如耦接至EWoD像素電極之TFT)之閘極的裝置。「源極驅動器」為引導高電流驅動輸入以用於高功率電晶體之源極的裝置。「頂部平面共同電極驅動器」為產生高電流驅動輸入以用於EWoD裝置之頂部平面電極的功率放大器。
「驅動序列」或「脈衝序列」表示用以致動微流體裝置中之像素的相對於時間曲線之整個電壓。通常,如下文所說明,此序列將包含複數個元素;其中此等元素係基本上矩形(亦即,其中給定元素包含施加恆定電壓一段時間),該等元素可被稱為「電壓脈衝」或「驅動脈衝」。術語「驅動方案」表示足以在給定液滴操作過程中實現對一或多個液滴之一或多個操控的一或多個驅動序列之集合。術語「訊框」表示微流體裝置中之所有像素列的單次更新。
「核酸分子」為單股或雙股、有義或反義DNA或RNA之統稱。此類分子由核苷酸構成,該等核苷酸為由以下三個部分製成之單體:5-碳糖、磷酸酯基及含氮鹼基。若糖為核糖基,則聚合物為核糖核酸(ribonucleic acid,RNA);若糖源自呈去氧核糖形式之核糖,則聚合物為去氧核糖核酸(deoxyribonucleic acid,DNA)。核酸分子之長度不同,在通常用於基因測試、研究及鑒識之約10至25個核苷酸之寡核苷酸至具有大約1,000個、10,000個核苷酸或更多核苷酸之序列的相對較長或極長原核及真核基因範圍內。核酸分子之核苷酸殘基可為全部天然存在的或至少部分地經化學修飾,以例如減緩活體內降解。可例如藉由引入核苷有機硫代磷酸鹽(PS)核苷酸殘基來對分子主鏈進行修飾。核酸分子之適用於醫學應用之另一修飾為2'糖修飾。咸信修飾2'位置糖藉由增強治療性寡核苷酸之標靶結合能力而提高治療性寡核苷酸之有效性,尤其在反義寡核苷酸療法中。最常用修飾中之兩者為2'-O-甲基及2'-氟。
當呈任何形式之液體(例如液滴或連續體,不論移動或靜止)被描述為「在」電極、陣列、矩陣或表面「之上」、「之處」或「上方」時,此類液體可與電極/陣列/矩陣/表面直接接觸或可與插在液體與電極/陣列/矩陣/表面之間的一或多個層或膜接觸。
當液滴被描述為「在」微流體裝置「中」、「之上」或「裝載在」微流體裝置「上」時,應理解,液滴以促進使用裝置以在液滴上進行一或多個液滴操作之方式配置於裝置上,液滴以促進感測液滴之性質或來自液滴之信號之方式配置於裝置上,及/或已在液滴致動器上使液滴經受液滴操作。
當參考複數個物品使用時,「每一」意欲識別集合中之個別物品,但未必係指該集合中之每一物品。若明確揭示內容或上下文另外清楚地規定,則可出現例外狀況。
詳細描述在一個態樣中,本申請案係關於新穎的可調適EWoD裝置,其經程式化以針對不同液滴內容物及其他變數個別地修整其驅動方案。亦提供用於操作該等裝置之可程式化處理及控制單元。自操作觀點,與此新穎方法相關聯之資料處理步驟通常包括:(i)判定哪些像素由液滴佔據;(ii)確定物質之哪一組成物佔據一或多個像素之區域;及(iii)哪些類型之脈衝序列(若存在)待應用於液滴。因而,可基於包括液滴組成物、陣列上之液滴位置及待執行之操作之變數來選擇每一驅動脈衝之電壓及持續時間。調整處置液滴之方式以適合於多種化學及生物試劑及產物的能力使得該裝置能夠完成每個所要液滴操作。在各種實施例中,本發明適用於開放或封閉架構且可實施於類似的分段及主動矩陣裝置中,包括(但不僅包括)矩陣之電晶體為TFT的AM-EWoD系統。在一項實施例中,該裝置用以執行多種不同的化學或生物分析且提供對儲存可程式化指令之記憶體之存取,該等可程式化指令特別適合於該等分析中之每一者中所使用的試劑組成物中之每一者。
閘極線定址圖1A展示在實例傳統封閉EWoD裝置 100中之胞元的圖解橫截面,其中液滴 104在側面上由載體流體 102包圍且包夾於頂部疏水層 107與底部疏水層 110之間。推進電極 105可由電晶體陣列直接驅動或切換,該等電晶體陣列經配置以藉由資料(源極)及閘極(選擇)線驅動,很像液晶顯示器(LCD)及有機發光二極體(OLED)中之主動矩陣,從而產生所謂的主動矩陣(AM) EWoD。典型胞元間距通常在約50 µm至約500 µm之範圍內。
存在驅動封閉系統EWoD之兩個主要模式:「DC頂部平面」及「頂部平面切換(TPS)」。圖1B說明在DC頂部平面模式中之EWoD操作,其中頂部平面電極 106例如藉由接地而設定為零伏特之電位。結果,橫越胞元所施加之電位為主動像素上之電壓,亦即,像素 101具有與頂部平面不同的電壓使得導電液滴被吸引至電極。在主動矩陣TFT裝置中,此將EWoD胞元中之像素驅動電壓限制為約±15 V,此係因為在常用非晶矽(a-Si) TFT中,歸因於在高電壓操作下之TFT電氣不穩定性,最大電壓在約15 V至約20 V之範圍內。圖1C展示藉由TPS驅動胞元,在此狀況下,藉由對與主動像素異相之頂部電極供電使得頂部平面電壓附加至由TFT供應之電壓而使驅動電壓加倍至±30 V。
非晶矽TFT板通常每像素僅具有一個電晶體,但亦考慮具有兩個或多於兩個電晶體之組態。如圖1D中所說明,將電晶體連接至閘極線、源極線(亦被稱作「資料線」)及推進電極。當在TFT閘極上存在足夠大的正電壓時,則在源極線與像素之間存在低阻抗(Vg「接通」),因此源極線上之電壓經傳送至像素之電極。當在TFT閘極上存在負電壓時,則TFT具有高阻抗且電壓經儲存於像素儲存電容器上且在其他像素經定址時不受源極線上之電壓影響(Vg「斷開」)。若不需要移動,或若液滴意欲移動遠離推進電極,則在像素電極上存在0 V (亦即,相對於頂板無電壓差)。理想情況下,TFT應充當數位開關。實務上,當TFT處於「接通」設定中時仍存在一定量的電阻,因此像素需要時間來充電。另外,當TFT處於「斷開」設定中時電壓可自Vs漏洩至Vp,從而造成串擾。增大儲存電容器之電容C s會降低串擾,但代價為致使像素較難以充電。
TFT陣列之驅動器自處理單元接收與液滴操作相關之指令。處理單元可為例如通用電腦、專用電腦、個人電腦或提供處理能力,諸如儲存、解譯及/或執行軟體指令以及控制裝置之總體操作的其他可程式資料處理設備。處理單元耦接至記憶體,該記憶體包括用以引導處理單元執行各種操作之可程式化指令,該等操作諸如但不限於向TFT驅動器提供根據本文中之實施例引導其產生電極驅動信號之輸入指令。該記憶體可實體地位於DMF裝置中或與該裝置介接之電腦或電腦系統中,且保持作為由該裝置執行之一或多個任務之工作集合之部分的程式及資料。舉例而言,記憶體可儲存用以進行結合液滴操作集合所描述之驅動方案的可程式化指令。處理單元執行該等可程式化指令以產生控制輸入,該等控制輸入經遞送至驅動器以實施與給定液滴操作相關聯之一或多個驅動方案。
圖2為AM-EWoD推進電極陣列中之控制液滴操作的例示性TFT背板之圖解視圖。在此組態中,EWoD裝置之元件以如由TFT陣列之源極線及閘極線所界定之矩陣形式配置。源極線驅動提供對應於液滴操作之源極位準。閘極線驅動器提供用於開啟電極之待在操作過程中致動的電晶體閘極之信號。圖僅展示用於圖中所展示之彼等資料線及閘極線的信號線。閘極線驅動器可整合於單個積體電路中。類似地,資料線驅動器可整合於單個積體電路中。積體電路可包括完整的閘極及源極驅動器總成連同控制器。市售控制器/驅動器晶片包括由Ultrachip Inc.(加利福尼亞州,聖荷西)商品化的控制器/驅動器晶片,諸如UC8152、480通道閘極/源極可程式化驅動器。圖2之矩陣由1024條源極線及總共768條閘極線製成,但任一數目可改變以適合於DMF裝置之大小及空間解析度。矩陣之每一元件含有屬於圖1D中所說明之類型的用於控制對應像素電極之電位之TFT,且每一TFT連接至閘極線中之一者及源極線中之一者。
試劑特異驅動設定檔如上文所提及,本申請係關於經程式化以實施驅動方案集合之可調適DMF裝置,該等驅動方案經特別修整以個別地適合於任何數目個不同液滴組成物及組成物參數中之一或多者。圖3A為示意性地說明用於儲存試劑特異驅動方案之實例系統的方塊圖。處理單元操作性地耦接至非揮發性記憶體,其中試劑特異驅動設定檔儲存於可搜尋查找表中。每一設定檔包括可特定適合於給定試劑之性質的一或多個驅動方案。更廣泛而言,術語「試劑特異驅動設定檔」擴展至適用於在DMF裝置中操控之任何組成物的設定檔,包括處於特定濃度之試劑、兩種或多於兩種試劑之混合物及/或一或多種反應產物。查找表中亦可包括用於調適設定檔之驅動方案以適合於DMF裝置或其部件中之任一者之溫度、環境濕度及可能影響液滴操作之其他非固有變數的一或多個調諧函數或表。其他試劑特異驅動設定檔可取決於例如載體流體之類型、試劑之pH值、試劑之黏度或試劑之離子濃度。
查找表可以檔案系統之形式保持或位於與一或多個電腦系統相關聯之虛擬記憶體中,且可以多種方式配置,諸如實體上位於電腦系統內部、直接附接至CPU匯流排、附接至周邊匯流排或位於可操作地連接至電腦系統的基於雲端之儲存平台中。對於參與液滴操作之每一新試劑、混合物或產物,自表中可得到之彼等試劑特異設定檔當中選擇適合之試劑特異設定檔。試劑特異設定檔可包括組成物參數,諸如pH值、溫度、流變性質,諸如黏度、離子強度、電導率及在特定波長下之吸收率,以及與對應試劑之電潤濕回應相關之其他參數。在液滴操作開始之前或開始時,可將來自設定檔或其相關部分之驅動方案裝載至暫時記憶體中以供處理單元後續使用。
微流體空間中之液滴之遷移率受到包括但不限於以下各者之參數影響:液滴溶劑(例如水)中之試劑濃度、離子強度、界面活性劑添加劑之濃度及化學性質、液滴流變性、試劑電荷,該試劑電荷又可能受液滴之pH值及裝置內之溫度或溫度梯度影響。在試劑使用之前,可量測每一試劑類型之此等及其他性質,且作出關於哪一驅動設定檔通常將最佳地適合於給定試劑或混合物之判定。替代地,可在DMF裝置上藉由應用可用驅動設定檔中之每一者直接測試試劑之液滴,直至找到具有最佳效能之設定檔且用將設定檔與試劑匹配之程式碼或其他識別資料標註該設定檔以供未來使用。此後,對於DMF裝置中之試劑之所有後續操控,使用者可指定在裝置中之特定位置處使用哪個驅動設定檔。
圖3B為說明用於藉由保存至試劑特異驅動設定檔之序列驅動來操作電潤濕系統之實例方法 300的流程圖。將系統中關於待致動之液滴之特性的資料輸入至電潤濕系統之處理單元( 302)。該資料通常包括液滴中所含有之化學物種(例如液滴中所遞送之一或多種試劑)的身分標識、相關化學物種之各別濃度及/或與化學物種濃度相關或影響液滴遷移率及化學性質(例如,pH值、溫度、流變性質,諸如黏度、離子強度、電導率及在特定波長下之吸收率)的其他組成物參數。處理單元接著在查找表中搜尋試劑特異設定檔( 304),且使相關液滴資料(諸如其含有哪些試劑化學物種及其各別濃度)與一或多個驅動序列相關( 306)。接著將驅動序列輸出至電潤濕系統之電極( 308)。
每一試劑之液滴可藉由特別適合於其特性之驅動序列予以致動。此新穎能力尤其有利,此係因為針對不同化學組成物實施相同驅動方案可引起對組成物物中之一或多者之次佳液滴致動。另外,適合於一種組成物之電壓範圍及衝擊長度可誘發另一者中之不合需要之電化學反應。此繼而可導致進一步反應,從而導致DMF裝置之工作表面腐蝕。舉一代表性實例,如圖3C中所說明,驅動方案A在應用於第一試劑1時令人滿意地執行,但在應用於第二試劑2時導致工作表面上之腐蝕。此問題係藉由方案B驅動含有試劑2之液滴來解決,該方案B相比於方案A具有較長持續時間之脈衝但具有較低電壓。相比而言,含有第三試劑3之液滴當藉由流程A或B致動時緩慢及遲緩地移動。然而,發現藉由高電壓之脈衝序列而特性化之方案C修補了此問題,而不會擾亂試劑3之化學性質或引起腐蝕。
在另一非排他性實施例中,針對每一個別試劑類型定製完整的試劑驅動設定檔且將其添加至查找表。每一試劑經由橫跨寬電壓、極性及脈衝持續時間之集合移動、***、分配、混合及保持測試來執行,以識別具有最佳適合於彼試劑之脈衝序列的驅動方案。此自訂試劑設定檔接著經添加至查找表且藉由程式碼或其他標註資訊項而與一或多種試劑匹配,不論何時彼試劑待用於DMF裝置上時皆由處理單元調用。儲存於查找表中之試劑(及(如上文所解釋)兩種或多於兩種試劑及/或產物之任何混合物)設定檔之數目將接著高達具有針對其所判定之試劑驅動設定檔的試劑或混合物之數目。使用者可指定與在DMF裝置中之特定位置處將使用之試劑相關聯的程式碼或其他標註資訊項。在一項實施例中,不存在從中選擇最適合於液滴之一個試劑設定檔的試劑設定檔之有限標準集合。實情為,可針對每一新試劑個別地產生特定試劑驅動設定檔。
對於某些類別之液滴組成物,適合之驅動設定檔已經係熟知的,且選擇適當驅動序列不需要關於化學物種或組成物參數之資料。典型實例係由在生物化學或生物分子應用中充當溶劑及其他角色之標準化緩衝水溶液提供,該等應用例如核酸擴增、基於親和力之分析、酶分析、基因定序、蛋白質定序、肽及蛋白質合成及/或生物流體之分析,其中緩衝液通常自商業供應商批量採購。在此類情況下,可藉由用匹配組成物與查找表中之預選驅動設定檔的程式碼或其他識別資料來標記或標註標準化組成物來達成更簡單及加速處理。當標準化組成物之液滴參與液滴操作時,處理單元使識別資料與預選的驅動設定檔中之一或多個驅動序列相關。由於標準化組成物及驅動設定檔已經匹配,因此處理單元不再需要針對驅動設定檔搜尋查找表並選擇擬合標準化組成物之化學物種及參數的驅動序列。
圖11包括根據一例示性實施例的使用驅動設定檔之方法的流程圖( 1100)。當使用者輸入所要液滴操作( 1102)時,處理單元經程式化以搜尋並識別查找表中之適用試劑設定檔( 1104),接著自該等設定檔選擇最佳地適合於待在操作中操控之組成物(例如,試劑、產物及/或混合物)之一或多個驅動方案( 1106)。處理單元接著將該等方案之驅動序列組合在一起( 1108)以形成經執行以實施液滴操作之驅動協定。處理單元計算與該等驅動序列相關之變數,諸如計算對應電壓序列之脈衝中之每一者的極性、頻率及振幅( 1110)。接著,處理單元將指令輸出至控制器( 1112),且控制器將信號輸出至驅動器( 1114),該等信號又影響特定像素電極( 1116)處之依據時間而變化的電壓。
驅動方案給定液滴操作可取決於與彼液滴操作相關聯之操控數目而需要不同複雜度的驅動方案。為此目的,在查找表之每一試劑特異驅動設定檔中包括驅動方案集合以促進液滴操作。典型液滴操作包括上文所概述之液滴操作,即:將液滴裝載至DMF裝置中;自儲集器分配一或多個液滴;使液滴***、分離或分割成兩個或多於兩個液滴;在任何方向上將液滴自一個位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;攪動液滴;使液滴變形;使液滴保持在適當位置;培育液滴;加熱液滴;冷卻液滴;安置液滴;將液滴輸送出DMF裝置;及/或前述之任何組合。
定義在給定液滴操作過程中應用之驅動序列集合所需之資料以與該操作匹配之驅動方案之形式儲存。取決於操作之要求及複雜度,驅動方案可包括自僅一個至大量驅動序列中之任一者。在一些情況下,可較佳的是儲存多個驅動序列資料集以允許諸如溫度及濕度之環境變數變化。替代地,驅動方案可包括調諧函數,該等調諧函數經應用以改變定義該驅動方案之驅動序列之一或多個係數以適合不同的環境條件。
根據代表性實施例,提供例示性驅動方案,下文中被稱作「運動方案」,該驅動方案經實施於DMF裝置中以用於將給定組成物之液滴自一位置移動至另一位置。該方案包括指定經應用以致動組成物液滴之脈衝的量值、持續時間、極性及其他相關特性之一或多個驅動序列。其他相關資料亦可包括於該方案中,例如像素之移動速度,此意謂施加電壓設定檔自當前被液滴佔據之一個像素集合如何快速移動至當前未被液滴佔據之鄰近像素集合(液滴接下來將移動至該鄰近像素集合),及如何快速地改變液滴之後邊緣上之電壓以迫使液滴離開先前位置。對於匹配單一像素之大小的小滴,此為直接的,亦即,啟動位置以移向及關斷當前佔據之像素及其他鄰近像素。對於具有佔據多個像素之佔據面積的小滴,幾何圖案、數目及像素被開啟及關斷之時序的變化皆為可經最佳化以適合於任何類型之液滴組成物的參數。在一個代表性實例中,用於具有界面活性劑(例如0.05 wt% Tween 20)之去離子水的運動方案包括在+/-30 V下之簡單50 Hz方波交替脈衝序列。脈衝序列可產生於TFT陣列及頂部平面切換(TPS)上以反轉極性。
將驅動脈衝施加至像素可引起由像素表面上殘餘電荷之累積引起的有害副作用,其易於引起非想要的電化學反應及/或表面及電極降級。為了最小化EWoD裝置之損壞而可採取的一種方法涉及確保給定驅動方案為電荷中性的,此係因為對於驅動方案中之任何任意脈衝序列,電荷表面密度之總改變等於零。當液滴操作之總驅動方案為電荷中性的時,且甚至當方案之所有驅動序列各自個別地為電荷中性時,使像素表面及底層電極之電化學損壞的機會最小化。
作為起點及第一近似,可藉由確保給定驅動方案係「衝擊平衡的」來嘗試電荷中性,此係因為對於屬於該方案的驅動序列中之任何任意脈衝序列,總施加衝擊(亦即,施加電壓相對於時間之積分)等於零。此在圖4中進行例示,在該圖中正脈衝與負脈衝之數目及持續時間相等。存在使裝置中之衝擊為零的其他方式,其中脈衝之數目及持續時間可能不同,但每一正脈衝之電壓與持續時間之乘積的總和等於負驅動脈衝之電壓與持續時間之乘積的相同總和。然而,對於許多試劑,衝擊平衡脈衝可能並非電荷中性的,此係因為其歸因於正電壓脈衝與負電壓脈衝之不對稱效應而仍在表面上留下殘餘電荷。在此類情況下,可施加除衝擊平衡以外的額外正或負校正脈衝以獲得表面上之電荷平衡。在一代表性實例中,藉由應用衝擊平衡驅動方案,接著藉由熟習此項技術者已知之方法中之一者量測殘餘表面電荷之量來進行第一次嘗試。若偵測到不可接受的表面電荷密度,則可在進一步反覆中添加校正性脈衝,直至達至電荷平衡為止,藉此產生衝擊不平衡但電荷中性的驅動序列。此方法確保由DMF裝置之任何像素經歷之殘餘電荷為空或至少藉由已知值定界,而不論彼像素經歷之確切轉變序列如何。
亦應注意,對於較複雜試劑及試劑組合,藉由應用完全衝擊平衡驅動方案或甚至單一驅動序列而可能未必總是有可能獲得所要液滴運動。此可能尤其發生在含有酶、核酸分子(如DNA或RNA聚核苷酸)、天然或合成聚合材料及膠體(諸如官能化磁性珠粒)之水性混合物中。舉例而言,時間敏感反應設定檔可能需要試劑液滴以僅藉由脈衝不平衡驅動方案或序列才可達到之速度改變位置。在每一對脈衝之後將不為衝擊中性的典型驅動序列係以被稱為「脈寬調變」(PWM)重複信號之形式提供。在此實例中,負脈衝之數目與正脈衝之數目相同,但持續時間較長。隨著時間推移之淨結果向像素表面賦予負衝擊,如圖5中所說明。在其他實施例中,PWM包括改變脈衝與靜止之平衡以改變隨著時間推移之有效衝擊,且亦可在一個極性之脈衝頻率高於另一極性之頻率的情況下改變淨衝擊平衡。
在衝擊不平衡伴隨有不合需要之表面電荷積聚之情況下,正及負脈衝持續時間的差異將在試劑之增強移動與對EWoD裝置之電化學損壞的可能性之間產生取捨。取決於隨著時間推移之殘餘電荷之量值,裝置可維持變得不可逆之電化學損壞。為了解決或至少改善此缺點,可將足以部分或完全移除殘餘電荷的相反極性之一或多個電荷校正脈衝在液滴已開始移動之前添加至驅動序列之開始,或在液滴已移動至新位置之後添加至序列末端。此類型之簡單校正脈衝在圖6中加以展示。在小滴已移動至一位置且周圍像素已被關斷之後,可使用幾乎任何的校正脈衝且其並不使液滴移動。因而,可使用更複雜的校正脈衝序列以產生電荷中性脈衝序列,且不同電壓之脈衝亦可用作校正工具。
在另一實施例中,提供另一例示性方案,下文中被稱作「分配方案」,以用於自儲集器分配所要試劑之液滴。此類型之方案通常係藉由具有比前述運動方案更複雜的性質之驅動序列來特性化,且會需要額外資訊來完全適用於每一試劑或試劑混合物。然而,自運動方案導出的關於液滴遷移率之資訊仍可證實適用於選擇最佳適合於分配相同或類似組成物之液滴的驅動方案。
應用分配方案以自通常大的儲集器體積移動試劑等分試樣以形成致動頸部。液滴被裂解,且頸部之流體返回至儲集器。在小滴可自頸部頭端成功地裂解之前所需的致動頸部之長度可為試劑相依的。分配設定檔可指定致動之頸部長度,其依據像素數目及在可安全地假定液滴已與儲集器完全分離之前需要經過的持續時間來表示。對於上述具有濃度為0.05 wt%的Tween 20的水滴,3個像素之頸部長度及500 ms之時間間隔通常足以裂解液滴。
圖7展示藉由致動PM-EWoD裝置中之像素電極而致動離開儲集器之簡單三像素頸部。在直接驅動組態中,每一液滴之佔據面積通常覆蓋一個像素之面積。因而,在約一個像素直徑之解析度下控制頸部形成之程序。此頸部長度允許液滴自分段式DMF裝置上之頸部頭端裂解。因此,量測依據液滴直徑之近似數目而變化的致動頸部之長度係較簡單的。在圖8中所展示之實例中,具有濃度為0.05 vol%的Tween 20界面活性劑的簡單水擴展以在具有TFT陣列之AM-EWoD裝置上形成頸部。在基於TFT之架構中,液滴可比單個像素電極大得多,因此在塑形頸部方面存在更多的靈活性。取決於液滴相對於儲集器之大小及液滴之其他性質(例如表面張力及黏度),會需要不同大小之頸部。因此,與典型分段式/直接驅動方法相比,TFT架構通常提供在塑形及調諧頸部方面最高的靈活性。
已發現包括聚核苷酸或其他聚合材料通常致使液滴更難以自儲集器裂解。此可藉由增加致動頸部長度且允許較長時間間隔以確保液滴已完全裂解來解決。
在某些實施例中,針對液滴可被直接吸入微流體空間而非自儲集器裂解之情況提供「裝載方案」。此為將各種材料裝載至微流體裝置之像素陣列上的常見方式且通常需要不同於經應用以在陣列內之各位置之間移動液滴的脈衝序列。液滴可自陣列之邊緣或自頂板中之排放孔拉入微流體空間。若材料提供於實體地觸摸陣列之邊緣之位置中,則可應用鄰近於邊緣之位置處的像素之重複脈衝以遍及陣列抽吸液滴。通常,將試劑裝載至微流體空間中之能力受到其化學成分的強烈影響,且一些材料需要較長脈衝及較高電壓。因而,試劑特異「裝載方案」可經特定修整以適合於多樣化的試劑組成物。
根據另一實施例,提供一種用於將兩個或多於兩個液滴合併在一起之「合併方案」。一或多個驅動序列包括於此類型之方案中,該一或多個驅動序列用於移動微流體空間內之不同試劑之液滴以及合併運動驅動序列以用於將液滴實體地組合在一起。合併不同試劑可引起產物液滴之遷移率不同於原始液滴,因此會需要合併方案以適應於此類遷移率改變。此可藉由包括針對產物液滴之內容物特定調配及最佳化之驅動方案來達成。
在兩個或多於兩個反應物液滴合併之後,可藉由應用下文被稱作「混合方案」之驅動序列來獲得產物液滴內之一或多個組分的均勻分佈。液滴之實體混合通常取決於液滴中所含有之試劑。可改變諸如混合運動圖案之重複數目、混合時間及在混合期間之小滴之伸長率的變數以適應各種試劑。在一種易於混合之極端情況下,合併同一試劑之兩個液滴可能根本不需要混合方案、不需要額外的擴散時間且不需要造成混合之液滴伸長;在另一極端情況下,含有相異的高分子量聚合物之溶液的兩個小滴很可能需要重複執行混合運動圖案、較長的混合時間及藉由混合產生的液滴之多次伸長。舉例而言,圖9中示意性地說明之混合方案包括混合運動圖案之兩次重複,藉以產物液滴 90隨後移動至直徑大致為液滴直徑之長度兩倍的正方形 92之四個拐角中的每一者。
液滴伸長通常適用於佔據面積大到足以覆蓋DMF裝置中之至少四個像素的液滴。在一項實施例中,混合方案包括圖10中示意性地說明之類型的液滴伸長驅動序列。在圖10A中所描繪之初始階段中,液滴之形狀對稱且遍及2×2像素正方形散佈。應用伸長驅動序列,從而拉伸液滴以形成寬度為一個像素且長度為四個像素的線性組態(圖10B)。接著應用第二驅動序列以恢復圖10A之原始組態,且可重複該程序直至達成令人滿意的混合程度。可將此方法應用於覆蓋高度為n個像素且長度為n個像素之正方形區域之佔據面積的任何液滴,n為自然數。伸長驅動序列拉伸液滴以得到高度為1個像素且長度為n 2個像素的線性配置,接著第二驅動序列恢復原始的對稱液滴幾何形狀。此處,亦可重複該程序直至混合完成。如上文所預期,含有不同試劑之液滴合併可引起具有與原始液滴不同之遷移率的產物液滴。為了促進混合,可藉由與原始試劑液滴相關之驅動序列之加權平均形成混合驅動序列。在圖10C之代表性實例中,第一試劑之液滴與第二試劑之液滴合併。可看到,針對第一試劑之實例最佳化且應用的驅動序列之特徵在於比第二試劑高的電壓之脈衝。在合併之後,此差異藉由應用由第一序列與第二序列之加權平均形成之混合序列來考量。在此實例中,第三驅動序列之脈衝在數目及頻率上與在第一試劑及第二試劑驅動序列中相同。然而,在第三序列中施加之脈衝電壓為第一及第二試劑驅動序列之加權平均值,藉此提供較佳適合於混合物之驅動方案。在其他非排他性方法中,加權平均可應用於脈衝長度及/或頻率,從而產生脈衝長度及/或頻率與第一序列及第二序列中之任一者或兩者不同的混合序列。
在另一實施例中,提供「***方案」,其可經實施以用於將液滴***成兩個或多於兩個液滴。如上文所預期,術語「***」並不意欲暗示關於所得液滴體積之任何特定結果(亦即,所得液滴體積可相同或不同)或關於所得液滴數目之任何特定結果(所得液滴數目可為2、3、4、5或更多)。此類型之方案中包括用於在微流體空間內伸長液滴以形成經切斷以得到兩個產物液滴之頸部的一或多個驅動序列。不同液滴組分之分離可引起產物液滴具有與原始液滴不同的內容物。以含有磁性響應珠粒之液滴作為實例,***方案可涉及藉由施加磁場將珠粒固定在單個地點處且***液滴以得到含有珠粒之第一產物液滴及不含珠粒之第二產物液滴。在所要產物複合物共價結合或吸附至珠粒表面的情況下,此程序允許將複合物與液滴之其他組分分離。
在多個例示性實施例中,可藉由實施下文中被稱作「保持方案」來將液滴保持在適當位置且防止其進行非想要的漂移。由於不向液滴賦予運動,因此含有有限持續時間之間歇性單個脈衝的脈衝序列通常係足夠的。對於含有界面活性劑之許多溶液,單個短的負驅動脈衝足以使液滴保持在適當位置,即使在關斷電壓脈衝之後亦如此。液滴保持在適當位置直至施加正脈衝。通常,在約200 ms之持續時間內處於約-30 V之電位的單個脈衝足以保持含有界面活性劑之液滴。若小滴為純水或如可在一些洗滌溶液中使用的具有緩衝液之水,則會需要具有交替極性以避免擴展直流偏壓對裝置造成損壞之恆定保持電壓來保持液滴,此係由於單個負脈衝通常不將此類型液滴保持在適當位置。若控制器能夠施加可變電位,則保持電壓可小於移動電壓,但若在控制器中僅得到此等電壓,則保持電壓可與移動電壓相同。對於每種類型之試劑液滴,可開發適合的驅動序列且將其保存至查找表。
實例現在給出以下實例(但僅作為說明)以展示根據本發明之各種實施例的特別較佳方法之細節。
實例 1藉由將金屬氧化物介電材料沈積至長度為5.61吋的正方形TFT陣列上,接著是Teflon AF® (聚[4,5-二氟-2,2-雙(三氟甲基)-1,3-二氧雜環戊二烯-co-四氟乙烯],(Sigma-Aldrich Inc.,密蘇里州聖路易斯))之疏水性塗層來製備DMF裝置表面。在水中製備Tris-HCl 0.01 M的第一溶液且藉由添加無機酸使其pH值達到4。藉由經由添加Tween 20 (聚氧乙烯(20)脫水山梨糖醇單月桂酸酯)將第一溶液之一部分修飾為0.05 wt%之最終濃度來形成第二溶液。對第一溶液及第二溶液兩者開發及測試保持方案。每一保持方案之特徵在於間歇性驅動序列,其中液滴下方之電極首先經致動,接著在保持之其餘持續時間內保持閒置。如本文中所預期,特性化驅動序列之間歇性程度與閒置所耗費之總時間部分成正比。舉例而言,如圖12中示意性地說明,具有為2之間歇性值的驅動序列在保持之持續時間的二分之一內致動電極,而為3之值適用於其中在持續時間的三分之一內致動電極的驅動序列,等等。
第一溶液及第二溶液兩者之儲集器在DMF裝置之微流體測試中形成且藉由具有增大間歇性之保持方案來測試。當應用於第一溶液時,具有低於4之間歇性值的保持方案使DMF效能降級,直至在連續驅動5至6小時內總是發生完全故障。然而,如圖13A至圖13E中所描繪,當保持方案之間歇性值增大至4時,獲得改良之結果。圖13A為在時間零(T0)之後不久的DMF之圖像,其中第一溶液裝載於第一儲集器(「無Tween」)中且第二溶液裝載於第二儲集器(「0.05% Tween」)中。自每一儲集器分配兩個液滴,且藉由應用間歇性值為4的保持方案而使其保持在適當的位置。在操作1小時之後,如圖13B中所展示,0.05% Tween液滴開始自其經指派位置顯著漂移,從而指示效能降級及需要間歇性降至為2之值以恢復穩定性且停止漂移。在約4小時之後,0.05% Tween儲集器開始鼓泡及拉絲直至在6小時時觀測到完全故障及儲集器漂移(圖13C)。在約24小時之後,僅有可能自無Tween儲集器分配1個液滴,且表面降解係顯而易見的,在存在或已經存在Tween溶液的區域中出現深色條痕(圖13D)。然而,液滴之大小非常一致且不存在由於表面降解而鼓泡或疏水性增加的跡象。因此,為了試圖判定儲集器是否填充不足,液滴分配體積改變成6×6像素,且儲集器在24小時及超出24小時恢復分配2個液滴(圖13E)。可看到,無Tween儲集器展現出無鼓泡、拉絲或漂移之跡象。
如自前述實驗結果所看到,具有至少4之間歇性的驅動序列可使得能夠操控三緩衝液滴持續24小時或更多持續時間,而DMF效能並不降低。較低程度之間歇性,儘管在使液滴保持在適當位置中更有效,但似乎造成過度明顯的降解及早期系統性故障。將間歇性增大至大於4(例如5、10或更大)之程度很可能導致更慢的效能損失,但以限制液滴漂移之功效較低為代價。總之,較低間歇性係與較高功效但較快降解相關聯,且反之亦然。因而,可藉由在給定組成物上測試不同間歇性之驅動序列直至找到令人滿意的方案從而在此兩個競爭要求之間取得平衡。此後,驅動序列可成為保持方案之部分,保持方案為與組成物相關聯之驅動設定檔之部分。
實例 2在實例1之DMF陣列上進行搜尋最佳適合於分配含有Tween 20作為界面活性劑的水性液滴之驅動方案。將0.1 wt% Tween水溶液沈積至陣列邊緣上之兩個儲集器中,接著各自測試表1之驅動序列以用於將液滴自儲集器分配至陣列中。該表列出在每一序列過程中在每一訊框處所施加的脈衝之電壓。如上文所揭示,脈衝電壓為與像素相關聯之兩個電極之間的電位差:
驅動序列 訊框序列 ( 脈衝電壓 )
1 高、低、0、高、低、0……
2 高、低、高、0、低、高、低、0……
表1
圖14為在測試每一序列之後DMF陣列之俯視圖。液滴之成功分配以綠色框出,而故障以紅色框出。可看到,驅動序列2未能分配兩個儲集器。相比而言,驅動序列1成功地分配所有儲集器,藉此證實其適合於Tween 20水溶液。應理解,驅動序列不限於特定電壓值。舉例而言,高電壓可為+40V、+35V、+30V、+28V、+27V、+25V、+24V、+22V、+20V、+18V、+16V或+15V,且對應低電壓可與對應高電壓正負號相反,亦即,-40V、-35V、-30V、-28V、-27V、-25V、-24V、-22V、-20V、-18V、-16V或-15V。
對於熟習此項技術者將顯而易見,可在不脫離本發明之範疇之情況下在上文所描述之本發明之特定實施例中進行眾多改變及修改。因此,全部前述描述應以說明性意義而非限制性意義來解釋。如自上文之教示應理解,本發明之實施於處理單元上之功能態樣可使用任何適當實施環境或程式設計語言,諸如C、C++、Cobol、Pascal、Java、Java-Script、HTML、XML、dHTML、組合或機器碼程式設計及其類似者來實施或實現。前述專利及申請案之所有內容以全文引用之方式併入本文中。在本申請案之內容與以引用方式併入本文中之專利及申請案中之任一者之間存在任何不一致性之情況下,本申請案之內容應主導解決此類不一致性所必需之程度。
本發明包括以下實施例 1.1    一種用於致動第一組成物之液滴及第二組成物之液滴的電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),該處理單元經組態以: 接收該第一組成物之第一化學物種及第一組成物參數之輸入資料; 接收該第二組成物之第二化學物種及第二組成物參數之輸入資料; 使第一驅動序列與該第一化學物種及該第一組成物參數相關; 使第二驅動序列與該第二化學物種及該第二組成物參數相關;及 將該第一驅動序列及該第二驅動序列輸出至該複數個電極。 2.1.   如實施例1.1之電潤濕系統,其中該處理單元經進一步組態以: 使該第一化學物種及該第一組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 接收用於該第一組成物之液滴操作之輸入資料; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該第一驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該第一驅動序列。 3.1.   如實施例2.1之電潤濕系統,其中用於該第一組成物之該液滴操作係選自由以下各項組成之群組:將液滴裝載至該微流體空間中;自儲集器分配一或多個液滴;將液滴***成兩個或多於兩個液滴;將液滴自一位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;使液滴變形;將液滴保持在適當位置;加熱液滴;冷卻液滴;將液滴輸送出該微流體空間;及其組合。 4.1.   如實施例1.1之電潤濕系統,其中該查找表(LUT)呈檔案系統之形式或位於與一或多個電腦系統相關聯之虛擬記憶體中。 5.1.   如實施例1.1之電潤濕系統,其中該複數個電極為主動矩陣介電質上電潤濕(AM-EWoD)裝置中之像素電極,其中該等像素電極係由電晶體矩陣切換且該矩陣之每一電晶體可操作地連接至閘極線、源極線及像素電極。 6.1.   如實施例1.1之電潤濕系統,其中該第一組成物參數及該第二組成物參數係獨立地選自由化學物種濃度、流變性質、pH值、溫度、離子強度、電導率、吸光度及其組合組成之群組。 7.1.   如實施例1.1之電潤濕系統,其中該第一組成物參數為該第一組成物中之該第一化學物種的濃度且該第二組成物參數為該第二組成物中之該第二化學物種的濃度。 8.1.   一種用於對電潤濕系統中之第一組成物及第二組成物執行液滴操作的方法,該電潤濕系統包含: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及組成物參數相關之查找表(LUT), 該方法包含: 接收該第一組成物之第一化學物種及第一組成物參數之輸入資料; 接收該第二組成物之第二化學物種及第二組成物參數之輸入資料; 使第一驅動序列與該第一組成物之該第一化學物種及第一組成物參數相關; 使第二驅動序列與該第二組成物之該第二化學物種及第二組成物參數相關;及 將該第一驅動序列及該第二驅動序列輸出至該複數個電極。 9.1.   如實施例8.1之方法,其中該液滴操作係選自由以下各項組成之群組:將液滴裝載至該微流體空間中;自儲集器分配一或多個液滴;將液滴***成兩個或多於兩個液滴;將液滴自一位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;使液滴變形;將液滴保持在適當位置;加熱液滴;冷卻液滴;將液滴輸送出該微流體空間;及其組合。 10.1. 如實施例8.1之方法,其中該複數個電極為主動矩陣介電質上電潤濕(AM-EWoD)裝置中之像素電極,其中該等像素電極係由電晶體矩陣切換且該矩陣之每一電晶體可操作地連接至閘極線、源極線及像素電極。 11.1. 如實施例8.1之方法,其進一步包含: 使該第一化學物種及該第一組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 接收用於該第一組成物之液滴操作之輸入資料; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該第一驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該第一驅動序列。 12.1. 如實施例11.1之方法,其中該試劑特異驅動方案為用於將液滴自一第一位置移動至第二位置之運動方案。 13.1. 如實施例12.1之方法,其中該運動方案包含電荷中性驅動序列。 14.1. 如實施例12.1之方法,其中該運動方案包含脈寬調變驅動序列。 15.1. 如實施例12.1之方法,其中該運動方案包含校正脈衝。 16.1. 如實施例11.1之方法,其中該試劑特異驅動方案為用於自儲集器分配液滴之分配方案。 17.1. 如實施例11.1之方法,其中該試劑特異驅動方案為用於將兩個或多於兩個液滴合併在一起之合併方案。 18.1. 如實施例11.1之方法,其中該試劑特異驅動方案為用於混合由兩個或多於兩個反應物液滴合併形成之液滴的混合方案。 19.1. 如實施例11.1之方法,其中該混合方案包含液滴伸長驅動序列。 20.1. 如實施例11.1之方法,其中該試劑特異驅動方案為包含間歇單脈衝之保持方案。 21.1. 如實施例8.1之方法,其中該第一組成物參數及該第二組成物參數係獨立地選自由化學物種濃度、流變性質、pH值、溫度、離子強度、電導率、吸光度及其組合組成之群組。 22.1. 如實施例8.1之方法,其中該第一組成物參數為該第一組成物中之該第一化學物種的濃度,且該第二組成物參數為該第二組成物中之該第二化學物種的濃度。 23.1. 一種用於致動混合液滴之電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),其中該處理單元經組態以: 提供具有第一組成物、第一體積及第一組成物參數之第一液滴,其中該第一組成物、第一體積及第一組成物參數中之至少一者與用於該電潤濕系統之第一驅動序列相關; 提供具有第二組成物、第二體積及第二組成物參數之第二液滴,其中該第二組成物、第二體積及第二組成物參數中之至少一者與用於該電潤濕系統之第二驅動序列相關; 混合該第一液滴與該第二液滴以產生混合液滴;及 用第三驅動序列驅動該混合液滴,該第三驅動序列為該第一驅動序列及該第二驅動序列之預定加權平均。 24.1. 如實施例23.1之電潤濕系統,其中該第一組成物參數及該第二組成物參數係獨立地選自由化學物種濃度、流變性質、pH值、溫度、離子強度、電導率、吸光度及其組合組成之群組。 25.1. 如實施例23.1之電潤濕系統,其中該第一組成物參數為該第一組成物中之該第一化學物種的濃度且該第二組成物參數為該第二組成物中之該第二化學物種的濃度。 26.1. 一種用於致動至少一種組成物之液滴的電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),該處理單元經組態以: 接收該至少一種組成物之化學物種及組成物參數之輸入資料; 使驅動序列與該化學物種及該組成物參數相關;及 將該驅動序列輸出至該複數個電極。 27.1. 如實施例26.1之電潤濕系統,其中該處理單元經進一步組態以: 使該化學物種及該組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 接收用於該至少一種組成物之液滴操作之輸入資料; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係來自該至少一個試劑特定驅動設定檔;及 在將該第一驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該驅動序列。 28.1. 一種用於執行液滴操作之電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種相關之查找表(LUT),該處理單元經組態以: 接收待對至少一種組成物之至少一個液滴執行之液滴操作的輸入資料; 接收該至少一種組成物之化學物種之輸入資料; 使至少一個驅動序列與該液滴操作相關; 形成包括該至少一個驅動序列之驅動協定;及 將該至少一個驅動序列輸出至該複數個電極,以執行該驅動協定且執行該液滴操作。 29.1. 如實施例28.1之電潤濕系統,其中該LUT進一步使驅動序列與液滴操作相關。 30.1. 如實施例28.1之電潤濕系統,其中該複數個電極為主動矩陣介電質上電潤濕(AM-EWoD)裝置中之像素電極,其中該等像素電極係由電晶體矩陣切換且該矩陣之每一電晶體可操作地連接至閘極線、源極線及像素電極。 31.1. 如實施例30.1之電潤濕系統,其中該電晶體矩陣之該等電晶體為薄膜電晶體(TFT)。 32.1. 如實施例28.1之電潤濕系統,其中該處理單元經進一步組態以: 使該化學物種與該LUT中之至少一個試劑特異驅動設定檔相關; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該驅動序列。 33.1. 如實施例28.1之電潤濕系統,其中: 該查找表(LUT)進一步使驅動序列與該至少一種組成物之至少一個組成物參數相關;且 該處理單元經進一步程式化以: 接收該至少一種組成物之組成物參數之輸入資料;及 使該至少一種組成物之該組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該驅動序列。 34.1. 如實施例28.1之電潤濕系統,該處理單元經進一步組態以: 接收待對第二組成物之至少一個液滴執行之第二液滴操作的輸入資料; 接收該第二組成物之第二化學物種之輸入資料; 使至少第二驅動序列與該第二液滴操作相關; 使在該驅動協定中包括該至少該第二驅動序列。 35.1. 一種用於致動至少一種組成物之液滴的電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與組成物識別資料相關之查找表(LUT),該處理單元經組態以: 接收識別該至少一種組成物之輸入資料; 使驅動序列與識別該至少一種組成物之該資料相關;及 將該驅動序列輸出至該複數個電極,以致動該至少一種組成物之液滴。 36.1. 如實施例35.1之電潤濕系統,其中該至少一種組成物為緩衝水溶液。
90:產物液滴 92:正方形 100:EWoD裝置 101:像素 102:載體流體 104:液滴 105:推進電極 106:頂部平面電極 107:頂部疏水層 108:介電層 110:底部疏水層 300:方法 302:步驟 304:步驟 306:步驟 308:步驟 1100:流程圖 1102:步驟 1104:步驟 1106:步驟 1108:步驟 1110:步驟 1112:步驟 1114:步驟 1116:步驟 TFT:薄膜電晶體
圖1A為實例EWoD裝置之胞元的圖解橫截面。圖1B說明具有DC頂部平面之EWoD操作。圖1C說明具有頂部平面切換(TPS)之EWoD操作。圖1D為連接至閘極線、源極線及推進電極之TFT的示意圖。 圖2為AM-EWoD推進電極陣列中之控制液滴操作的例示性TFT背板之示意性說明。 圖3A為示意性地說明用於儲存及擷取任何數目個試劑特異驅動方案之系統的圖。圖3B為用於使輸入液滴資料與驅動序列相關以待輸出至DMF電極之例示性方法的流程圖。圖3C為各自特定適合於一類液滴組成物之驅動序列的例示性集合。 圖4說明電荷中性脈衝序列。 圖5說明非衝擊平衡脈衝序列。 圖6說明具有校正、平衡脈衝之脈衝序列。 圖7展示致動離開儲集器以裂解液滴之簡單三像素頸部。 圖8展示形成長度為兩個液滴直徑的頸部以便成功地***液滴。 圖9示意性地說明液滴混合圖案。 圖10A展示液滴混合圖案之第一步驟。圖10B展示在應用伸長驅動序列之後的圖10B之液滴。圖10C說明實例加權平均驅動序列之產生。 圖11包括根據一例示性實施例的使用驅動設定檔之方法的流程圖。 圖12為具有不同間歇性值之驅動序列的示意性說明。 圖13A為DMF裝置之俯視圖。第一儲集器裝載有0.01 M的Tris-HCl水溶液(「無Tween」)。第二儲集器包括藉由添加濃度為0.05%之Tween 20 (「0.05% Tween」)而修飾的第一儲集器之溶液。圖13B為在操作約1小時之後所描繪的圖13A之DMF。圖13C為在操作約6小時之後獲取的圖像。圖13D為在操作約24小時之後獲取的圖像。圖13E為在操作約25小時之後獲取的圖像。 圖14為在測試兩種不同分配方案之後的圖13A至圖13E之DMF裝置的俯視圖。液滴之成功分配的實例以綠色框出。未能分配之儲集器以紅色框出。
300:方法
302:步驟
304:步驟
306:步驟
308:步驟

Claims (20)

  1. 一種用於致動至少一種組成物之液滴的電潤濕系統,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),該處理單元經組態以: 接收該至少一種組成物之化學物種及組成物參數之輸入資料; 使驅動序列與該化學物種及該組成物參數相關;及 將該驅動序列輸出至該複數個電極。
  2. 如請求項1之電潤濕系統,其用於致動第一組成物之液滴及第二組成物之液滴,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),該處理單元經組態以: 接收該第一組成物之第一化學物種及第一組成物參數之輸入資料; 接收該第二組成物之第二化學物種及第二組成物參數之輸入資料; 使第一驅動序列與該第一化學物種及該第一組成物參數相關; 使第二驅動序列與該第二化學物種及該第二組成物參數相關;及 將該第一驅動序列及該第二驅動序列輸出至該複數個電極。
  3. 如請求項1之電潤濕系統,其用於致動混合液滴,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及至少一個組成物參數相關之查找表(LUT),其中該處理單元經組態以: 提供具有第一組成物、第一體積及第一組成物參數之第一液滴,其中該第一組成物、第一體積及第一組成物參數中之至少一者與用於該電潤濕系統之第一驅動序列相關; 提供具有第二組成物、第二體積及第二組成物參數之第二液滴,其中該第二組成物、第二體積及第二組成物參數中之至少一者與用於該電潤濕系統之第二驅動序列相關; 混合該第一液滴與該第二液滴以產生混合液滴;及 用第三驅動序列驅動該混合液滴,該第三驅動序列為該第一驅動序列及該第二驅動序列之預定加權平均。
  4. 如請求項1之電潤濕系統,其用於執行液滴操作,該系統包括: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種相關之查找表(LUT),該處理單元經組態以: 接收待對至少一種組成物之至少一個液滴執行之液滴操作的輸入資料; 接收該至少一種組成物之化學物種之輸入資料; 使至少一個驅動序列與該液滴操作相關; 形成包括該至少一個驅動序列之驅動協定;及 將該至少一個驅動序列輸出至該複數個電極,以執行該驅動協定且執行該液滴操作。
  5. 如前述請求項中任一項之電潤濕系統,其中該處理單元經進一步組態以: 使該第一化學物種及該第一組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 接收用於該第一組成物之液滴操作之輸入資料; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該第一驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該第一驅動序列。
  6. 如前述請求項中任一項之電潤濕系統,其中用於該第一組成物之該液滴操作係選自由以下各項組成之群組:將液滴裝載至該微流體空間中;自儲集器分配一或多個液滴;將液滴***成兩個或多於兩個液滴;將液滴自一位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;使液滴變形;將液滴保持在適當位置;加熱液滴;冷卻液滴;將液滴輸送出該微流體空間;及其組合。
  7. 如前述請求項中任一項之電潤濕系統,其中該查找表(LUT)呈檔案系統之形式或位於與一或多個電腦系統相關聯之虛擬記憶體中。
  8. 如前述請求項中任一項之電潤濕系統,其中該複數個電極為主動矩陣介電質上電潤濕(AM-EWoD)裝置中之像素電極,其中該等像素電極係由電晶體矩陣切換且該矩陣之每一電晶體可操作地連接至閘極線、源極線及像素電極。
  9. 如請求項2之電潤濕系統,其中該第一組成物參數及該第二組成物參數係獨立地選自由化學物種濃度、流變性質、pH值、溫度、離子強度、電導率、吸光度及其組合組成之群組。
  10. 如請求項9之電潤濕系統,其中該第一組成物參數為該第一組成物中之該第一化學物種的濃度且該第二組成物參數為該第二組成物中之該第二化學物種的濃度。
  11. 一種用於對電潤濕系統中之第一組成物及第二組成物執行液滴操作的方法,該電潤濕系統包含: 複數個電極,其經組態以操控微流體空間中之流體液滴,其中每一電極耦接至經組態以將驅動電壓選擇性地施加至該電極之電路系統;及 處理單元,其可操作地連接至使驅動序列與化學物種及組成物參數相關之查找表(LUT), 該方法包含: 接收該第一組成物之第一化學物種及第一組成物參數之輸入資料; 接收該第二組成物之第二化學物種及第二組成物參數之輸入資料; 使第一驅動序列與該第一組成物之該第一化學物種及第一組成物參數相關; 使第二驅動序列與該第二組成物之該第二化學物種及第二組成物參數相關;及 將該第一驅動序列及該第二驅動序列輸出至該複數個電極。
  12. 如請求項11之方法,其中該液滴操作係選自由以下各項組成之群組:將液滴裝載至該微流體空間中;自儲集器分配一或多個液滴;將液滴***成兩個或多於兩個液滴;將液滴自一位置移動至另一位置;將兩個或多於兩個液滴合併或組合成單個液滴;稀釋液滴;混合液滴;使液滴變形;將液滴保持在適當位置;加熱液滴;冷卻液滴;將液滴輸送出該微流體空間;及其組合。
  13. 如請求項11之方法,其進一步包含: 使該第一化學物種及該第一組成物參數與該LUT中之至少一個試劑特異驅動設定檔相關; 接收用於該第一組成物之液滴操作之輸入資料; 使該液滴操作之該輸入資料與適用於該液滴操作之至少一個試劑特異驅動方案相關,其中該試劑特異驅動方案係選自該至少一個試劑特定驅動設定檔;及 在將該第一驅動序列輸出至該複數個電極之前,自該至少一個試劑特異驅動方案選擇該第一驅動序列。
  14. 如請求項12之方法,其中該運動方案包含電荷中性驅動序列。
  15. 如請求項12之方法,其中該運動方案包含脈寬調變驅動序列。
  16. 如請求項12之方法,其中該運動方案包含校正脈衝。
  17. 如請求項12之方法,其中該試劑特異驅動方案為用於自儲集器分配液滴之分配方案。
  18. 如請求項12之方法,其中該試劑特異驅動方案為用於將兩個或多於兩個液滴合併在一起之合併方案。
  19. 如請求項12之方法,其中該試劑特異驅動方案為用於混合由兩個或多於兩個反應物液滴合併形成之液滴的混合方案。
  20. 如請求項12之方法,其中該混合方案包含液滴伸長驅動序列。
TW110137619A 2020-10-08 2021-10-08 微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法 TW202228845A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063089066P 2020-10-08 2020-10-08
US63/089,066 2020-10-08

Publications (1)

Publication Number Publication Date
TW202228845A true TW202228845A (zh) 2022-08-01

Family

ID=78302807

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137619A TW202228845A (zh) 2020-10-08 2021-10-08 微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法

Country Status (5)

Country Link
US (1) US20220111387A1 (zh)
EP (1) EP4225500A1 (zh)
CN (1) CN116635152A (zh)
TW (1) TW202228845A (zh)
WO (1) WO2022074399A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11977908B2 (en) * 2021-07-09 2024-05-07 Dish Wireless L.L.C. Streamlining the execution of software such as radio access network distributed units

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565727B1 (en) 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6294063B1 (en) 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing
AU2001280796A1 (en) 2000-07-25 2002-02-05 The Regents Of The University Of California Electrowetting-driven micropumping
US6773566B2 (en) 2000-08-31 2004-08-10 Nanolytics, Inc. Electrostatic actuators for microfluidics and methods for using same
AU2002359508A1 (en) 2001-11-26 2003-06-10 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
FR2841063B1 (fr) 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
US6911132B2 (en) 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US7547380B2 (en) 2003-01-13 2009-06-16 North Carolina State University Droplet transportation devices and methods having a fluid surface
DE602004021624D1 (de) 2003-11-17 2009-07-30 Koninkl Philips Electronics Nv System zur handhabung einer fluidmenge
FR2866493B1 (fr) 2004-02-16 2010-08-20 Commissariat Energie Atomique Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
FR2872715B1 (fr) 2004-07-08 2006-11-17 Commissariat Energie Atomique Microreacteur goutte
FR2872809B1 (fr) 2004-07-09 2006-09-15 Commissariat Energie Atomique Methode d'adressage d'electrodes
JP2006058031A (ja) 2004-08-17 2006-03-02 Hitachi High-Technologies Corp 化学分析装置
US7458661B2 (en) 2005-01-25 2008-12-02 The Regents Of The University Of California Method and apparatus for promoting the complete transfer of liquid drops from a nozzle
ES2390800T3 (es) 2005-01-28 2012-11-16 Duke University Aparatos y métodos para manipular gotitas en una placa de circuito impreso
US20070023292A1 (en) 2005-07-26 2007-02-01 The Regents Of The University Of California Small object moving on printed circuit board
US7815871B2 (en) * 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet microactuator system
CA2680061C (en) 2006-04-18 2015-10-13 Duke University Droplet-based biochemistry
CN101490562B (zh) 2006-07-10 2012-12-19 株式会社日立高新技术 液体输送设备
WO2008055256A2 (en) 2006-11-02 2008-05-08 The Regents Of The University Of California Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip
US20080215705A1 (en) * 2007-02-07 2008-09-04 Wayne Po-Wen Liu Remotely controlled real-time and virtual lab experimentation systems and methods
CN101679932A (zh) 2007-06-27 2010-03-24 数字化生物*** 用于热交换化学过程的基于数字微流体的装置
US8093064B2 (en) 2008-05-15 2012-01-10 The Regents Of The University Of California Method for using magnetic particles in droplet microfluidics
US20130168250A1 (en) * 2010-09-16 2013-07-04 Advanced Liquid Logic Inc Droplet Actuator Systems, Devices and Methods
US8173000B1 (en) * 2011-01-18 2012-05-08 Sharp Kabushiki Kaisha Active matrix device and method of driving the same
US9458543B2 (en) * 2012-12-04 2016-10-04 Sharp Kabushiki Kaisha Active matrix electrowetting-on-dielectric device
US20170056887A1 (en) * 2015-08-28 2017-03-02 Sharp Kabushiki Kaisha Droplet microfluidic device and methods of sensing the results of an assay therein
US10450598B2 (en) * 2015-09-11 2019-10-22 Illumina, Inc. Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest
US10330920B2 (en) * 2017-04-04 2019-06-25 Sharp Life Science (Eu) Limited Droplet actuation method for a microfluidic device
US10386379B1 (en) * 2018-01-29 2019-08-20 Stratuscent Inc. Chemical sensing system
US11360045B2 (en) * 2018-07-31 2022-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated biological sensing platform
US10981168B2 (en) * 2018-12-03 2021-04-20 Sharp Life Science (Eu) Limited AM-EWOD array element circuitry with integrated sensing and method of sensing droplet merging

Also Published As

Publication number Publication date
WO2022074399A1 (en) 2022-04-14
EP4225500A1 (en) 2023-08-16
CN116635152A (zh) 2023-08-22
US20220111387A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
TWI767566B (zh) 主動矩陣介電濕潤系統及其驅動方法
TWI795730B (zh) 用於介電濕潤陣列之高頻交流電驅動的鎖存電晶體驅動
US20230118235A1 (en) Microfluidic devices containing reversibly pinned droplet samples and methods
TW202235160A (zh) 用於數位微流體裝置之介電層
TW202228845A (zh) 微流體系統中試劑特異驅動ewod(介電質上電潤濕)陣列的方法
US11946901B2 (en) Method for degassing liquid droplets by electrical actuation at higher temperatures
WO2022162377A1 (en) Actuation reduction strategies for droplet motion on high-density electrode arrays for digital microfluidics
US12027130B2 (en) Latched transistor driving for high frequency AC driving of EWoD arrays
US20210394190A1 (en) Intermittent driving patterns for extended holding of droplets in a digital microfluidic device
WO2023201006A1 (en) Method for reagent-specific driving ewod arrays in microfluidic systems
US20220008921A1 (en) Spatial and temporal necking for robust multi-size dispensing of liquids on high electrode density electro-wetting arrays
TW202340793A (zh) 使用頂部平面切換之高電壓驅動