TW202225104A - 超純水製造系統及超純水製造方法 - Google Patents

超純水製造系統及超純水製造方法 Download PDF

Info

Publication number
TW202225104A
TW202225104A TW110116860A TW110116860A TW202225104A TW 202225104 A TW202225104 A TW 202225104A TW 110116860 A TW110116860 A TW 110116860A TW 110116860 A TW110116860 A TW 110116860A TW 202225104 A TW202225104 A TW 202225104A
Authority
TW
Taiwan
Prior art keywords
water
ultrapure water
hydrogen peroxide
water production
ultrapure
Prior art date
Application number
TW110116860A
Other languages
English (en)
Inventor
宮澤浩紀
野口幸男
Original Assignee
日商野村微科學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81290336&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW202225104(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商野村微科學股份有限公司 filed Critical 日商野村微科學股份有限公司
Publication of TW202225104A publication Critical patent/TW202225104A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本發明的目的係在於使用超純水後,將含有過氧化氫之使用完畢的超純水作為超純水製造之被處理水進行再利用的超純水製造,能夠提供以簡單的結構,助於裝置及被處理水的清淨化之超純水的製造系統及製造方法。 一種超純水製造系統(1),係具有前處理部(2)、一次純水製造部(3)及二次純水製造部(4),用來製造超純水的超純水製造系統,其特徵為具有:儲藏部(5),其係設在前處理部(2)的前段或前處理部(2)與一次純水製造部(3)之間,能夠儲藏原水或被處理水;回收處理部(6),其係將超純水使用後獲得之含有過氧化氫的使用完畢的超純水一邊去除混入於該使用完畢的超純水中的雜質,一邊使過氧化氫的一部分或全部透過而作成回收水;及循環手段(7),其係將從該回收處理部(6)獲得的回收水回送循環至儲藏部(5)。

Description

超純水製造系統及超純水製造方法
本發明係關於將使用過的超純水作為超純水製造的被處理水進行再利用之超純水製造系統及超純水製造方法。
一般,超純水係將原水藉由前處理部與一次純水製造部去除雜質而作成為純水,再將該純水藉由二次純水製造部進行清淨化處理進行製造,將此製造的超純水供給至點置系統(POU)。
一般,前處理部係將凝聚沉澱、砂過濾、活性碳吸附、pH調整等的處理裝置若干個組合而構成,一次純水製造部係將過濾分離處理裝置、吸附處理裝置、逆滲透膜(RO)裝置、紫外線氧化裝置、脫氣裝置、離子交換處理裝置等組合而構成,二次純水製造部係將紫外線氧化裝置、離子交換處理裝置、超過濾裝置等組合而構成。
又,在點置系統所使用的超純水(使用完畢的超純水)中,未混入有多量的藥品等之情況,亦有為了再次利用於超純水製造而被回收的情況。此時,從使用完畢的超純水,將混入的雜質去除並清淨化且進行回收處理,作為回收水回送至一次純水製造部。
例如,在半導體製造系統,在使用於半導體晶圓的洗淨之超純水,作為其洗淨藥品,添加使用SC-2、SPM、FPM等的藥液。因此,在使用完畢的超純水,含有硫酸、磷酸、氟酸等的酸,過氧化氫等。因此,在回收被用於半導體洗淨的超純水的情況,藉由去除來自於該洗淨藥液且因使用而混入的雜質之去除裝置,進行回收處理。
作為在這樣的回收處理所使用的雜質之去除裝置,例如超純水製造系統(例如參照專利文獻1)為眾所皆知,其具有用來去除過氧化氫的活性碳、和用來去除酸成分等的離子交換裝置,作為活性碳,組合使用對過氧化氫的分解能高與低2種的活性碳,完全地去除過氧化氫。
此去除裝置的結構係在回收處理部,進行離子交換裝置的處理前,設置活性碳。這是因為離子交換裝置對過氧化氫之耐性低,又,在離子交換裝置通水中,因過氧化氫分解而產生的氧造成離子交換裝置產生問題,為了維持其裝置壽命,可有效地實施離子交換處理,需要將用來去除過氧化氫的活性碳設在離子交換裝置的前段。
若進行使用這種活性碳的回收處理的話,在循環於一次純水製造部的回收水,含有過氧化氫的雜質幾乎被去除,再次作為超純水製造的被處理水使用的情況,不需要考量使用時之雜質的混入所造成的影響,可持續製造超純水,因此很理想。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2004-181364號公報
[發明所欲解決之課題]
然而,在再利用這種的回收水的情況,一般,回收水係暫時被儲存於用來與在前處理部獲得的前處理水混合之儲藏部,將在此儲藏部內混合的混合水作為被處理水使用,但,在這種儲藏部,由於混合獲得的混合水會滯留於儲藏部內一定時間,故,亦有微生物的繁殖、因該繁殖引起之有機物等的含有等產生污染的情況。一般作為對策,在儲藏部或其前段的任意場所,添加次氯酸鈉加以因應,但由於有回收水,故其添加量會增加。
又,與前述不同之其他課題,不論有無回收水,次氯酸鈉會成為後段的逆滲透裝置、離子交換樹脂裝置產生缺失之原因,故,需要在到達該等裝置前加以去除,但,若此去除不充分,則會成為後段裝置的問題。作為這些原因之一,由於回收水的量增減,故,有適當的次氯酸鈉的量變動的情況。
又,從去除的部分到逆滲透膜裝置等之路徑,成為可能引起微生物繁殖的環境。因此,例如在逆滲透膜裝置、其預過濾器等,經常發生因微生物的繁殖所引起之問題。
本發明者們為了解決前述課題而精心檢討的結果,發現完成本發明。亦即,本發明之目的係在於當使用超純水後,進行其回收時,藉由在含有過氧化氫的狀態下回收,能以簡單的結構有助於裝置的清淨化之超純水的製造系統及製造方法。 [解決問題之技術手段]
本發明的超純水製造系統係 具有前處理部、一次純水製造部及二次純水製造部,用來製造超純水的超純水製造系統,其特徵為具有: 儲藏部,其係設在前述前處理部的前段或前述前處理部與前述一次純水製造部之間,能夠儲藏原水或被處理水; 回收處理部,其係將前述超純水使用後獲得之含有過氧化氫的使用完畢的超純水一邊去除混入於該使用完畢的超純水中的雜質,一邊使前述過氧化氫的一部分或全部透過而作成回收水;及 循環手段,其係將從前述回收處理部所獲得的回收水回送循環至前述儲藏部。
本發明的超純水製造方法係 將原水在前處理部、一次純水製造部及二次純水製造部進行處理而製造超純水的超純水製造方法,其特徵為具有: 儲藏部,其係設在前述前處理部的前段或前述前處理部與前述一次純水製造部之間,能夠儲藏原水或被處理水, 藉由回收處理部,將前述超純水使用後獲得之含有過氧化氫的使用完畢的超純水進行處理,一邊去除混入於該使用完畢的超純水中的雜質,一邊使前述過氧化氫的一部分或全部透過而作成回收水, 將前述回收水回送循環至前述儲藏部。 [發明效果]
若依據本發明,可將使用於半導體製造等之使用完畢的超純水在包含有含於其中的過氧化氫之狀態下進行回收並循環,再利用於超純水的製造者,藉此,在超純水製造製程,能以簡單的裝置結構,抑制細菌產生、繁殖等,可減低有機物的含有量。
又,藉此,變得不需要在回收處理部設置以往使用於回收時之活性碳裝置,能夠縮小裝置的設置空間,能夠謀求相應的成本降低。
以下,一邊參照圖面,一邊說明關於本發明的超純水製造系統及超純水製造方法的實施形態。
(超純水製造系統) 本實施形態的超純水製造系統,如圖1所示,為具有前處理裝置2、一次純水製造部3、二次純水製造部4、儲藏部5、回收處理部6、循環手段7所構成之超純水製造系統1。以下,詳細地說明關於各結構。
本實施形態之前處理裝置2,係能與以往習知的超純水製造系統所使用之前處理裝置相同的結構,未特別限定。
前處理部2係去除原水中的懸浮物質而生成前處理水,將此前處理水供給至一次純水製造部3。前處理部2係可適宜選擇例如用來去除原水中的懸浮物質之砂過濾裝置、精密過濾裝置等來構成,且可因應需要,具備進行原水的溫度調整之熱交換器等來構成。再者,依據原水的水質,亦可省略前處理部2。
本實施形態之一次純水製造部3,係能與以往習知的超純水製造系統所使用之一次純水製造部相同的結構,未特別限定。
一次純水製造部3係去除前處理水中的雜質,製造純水。此一次純水製造部3係為例如將逆滲透膜裝置、脫氣裝置(脫碳酸等、真空脫氣裝置、脫氣膜裝置等)、離子交換裝置(陽離子交換樹脂裝置、陰離子交換樹脂裝置、混床式離子交換樹脂裝置等、電去離子裝置等)、紫外線氧化裝置中的1個以上予以適宜組合而構成。一次純水製造部3係將前處理水中的離子成分及非離子成分、溶解氣體去除而製造一次純水,再將此一次純水供給至二次純水製造部4。
作為一次純水製造部3,例如可舉出強鹼性陰離子交換樹脂裝置、2B3T型裝置(強酸性陽離子交換樹脂裝置、脫碳酸塔、鹼性陰離子交換裝置)、逆滲透膜裝置、紫外線氧化裝置、混床式離子交換樹脂裝置、脫氣膜裝置等,可適宜選擇這些裝置而構成。且,可因應需要,具備進行被處理水的溫度調整之熱交換器等。
本實施形態之二次純水製造部4,係能與以往習知的超純水製造系統所使用之二次純水製造部相同的結構,未特別限定。
二次純水製造部4係去除一次純水中的微量雜質,製造超純水。此二次純水製造部4係為例如可舉出超過濾膜裝置、熱交換器、紫外線氧化裝置、過氧化氫去除裝置、脫氣膜裝置、非再生型混床式離子交換樹脂裝置(Polisher)等,可適宜選擇這些裝置而構成。且,可因應需要,具備進行被處理水的溫度調整之熱交換器等。
本實施形態之儲藏部5係設在前處理部2與一次純水製造部3之間,分別被供給有在前處理部2處理的前處理水與在後述的回收處理部6獲得的回收水,將該等混合而作為一次純水製造部以後之被處理水進行儲存的槽或坑。
再者,儲藏部5係在圖1中,顯示設在前處理部2與一次純水製造部3之間的例子,但,亦可設在前處理部2的前段,先暫時將原水供給至儲藏部5,在將其與在回收處理部6獲得的回收水混合。
本實施形態之回收處理部6係為用來將從含有過氧化氫之使用完畢的超純水,一邊去除因使用所混入的雜質,一邊使過氧化氫透過,作為再次製造超純水的被處理水進行回收。
在此所使用的使用完畢的超純水,例如可舉出在半導體製造工廠等使用於半導體晶圓的洗淨等,此時混入有使用的藥品等之超純水。當進行半導體晶圓的洗淨時,作為其洗淨藥品,添加使用SC-2、SPM、FPM等的藥液。因此,在使用完畢的超純水,含有硫酸、磷酸、氟酸等的酸,並且含有過氧化氫等。
在此情況,在回收處理部6,作成為去除使用完畢的超純水所含有的硫酸、磷酸、氟酸等之酸,可使過氧化氫透過之裝置結構。作為此回收處理部6,如圖1所示,顯示將膜處理裝置61與逆滲透膜裝置62(第1逆滲透膜裝置)以此順序進行配置的結構。
在此,作為膜處理裝置61,可舉出精密過濾膜(MF)、超過濾膜(UF)等,可去除使用完畢的超純水中所含有的微粒子,且配置於逆滲透膜裝置62的前段。再者,膜處理裝置並非為必要元件。
又,作為逆滲透膜裝置62,可舉出在水處理使用之習知的逆滲透膜裝置,未特別限定。此逆滲透膜裝置62,由於可一邊去除來自於酸之離子成分,一邊不會去除過氧化氫而使其透過,為可理想適用於本實施形態之回收處理部的裝置。
關於這一點,在先前技術文獻所記載的專利文獻1,採用離子交換樹脂裝置,但由於藉由此離子交換樹脂裝置會某種程度分解去除過氧化氫,故,在本實施形態的回收處理部,不設置離子交換樹脂裝置為佳。
在此回收處理部6,不具有可去除受載有活性碳、鈀、白金等之觸媒樹脂等的過氧化氫之裝置為佳。但,即使為可去除過氧化氫的一部分者,只要可使讓其殘餘部分透過的話,則亦可設置。 因此,活性碳裝置不在回收處理部6使用為佳,但,若使用活性碳裝置的情況,在此活性碳裝置,亦可藉由將使用完畢的超純水以空間速度SV=40hr -1以上透過,使回收水中含有過氧化氫。
再者,在以往這種的回收操作,必須去除過氧化氫,一般會在回收處理部設置活性碳裝置,但,如本實施形態的理想態樣的說明,在不設置活性碳裝置的情況,可縮小相應的裝置之設置面積,可謀求裝置全體的簡單化的這一點上極佳。
在前述回收處理部6獲得的回收水係藉由循環手段7,循環至儲藏部5。此循環手段7係以可使回收水朝儲藏部5流通的配管構成。
在此,作為循環手段7,亦可具有調整朝儲藏部5供給的回收水之流量的流量調整手段。作為流量調整手段,例如圖1所示,以設有閥V1為例,在此情況,能夠調整從前處理部2所供給的被處理水之量與從循環手段7所供給的回收水之量,藉此,能夠調整混合水的過氧化氫濃度。作為此閥V1,能進行流量調整即可,可採用習知的閥等。
(超純水製造方法) 其次,針對本發明的一實施形態之超純水製造方法,以使用如圖1所示的超純水製造系統的情況為例進行說明。
首先,將原水供給至前處理部2,去除原水中的懸浮物質而獲得前處理水。此時,作為原水,可使用自來水、井水、地下水、工業用水等。此前處理水被供給至儲藏部5。
其次,從儲藏部5將前處理水朝一次純水製造部送出,使用逆滲透膜裝置、離子交換裝置等,去除前處理水中的總有機碳(TOC)成分、離子成分等,製造一次純水。進一步,將所獲得的一次純水送出至二次純水製造部,去除一次純水中的極微量雜質,製造超純水(二次純水)。
此時,所獲得的一次純水的水質,例如阻抗率為17MΩ・cm以上,所獲得的超純水(二次純水)的水質,例如阻抗率為18MΩ・cm以上。
所獲得的超純水,被供給至使用場所(點置系統:POU),因應各種目的進行使用。又,此時,如前述記載,例如在使用於半導體晶圓的洗淨的情況,該使用完畢的超純水係含有過氧化氫,成為本實施形態之回收對象。這樣的使用完畢的超純水,被送出至本實施形態的超純水製造裝置之回收處理部,去除酸成分、其他的雜質等而成為回收水。此回收水含有過氧化氫。
藉由循環手段7將此回收水送出循環至儲藏部5。供給成朝儲藏部5循環之回收水,係與前處理水混合,再次作為超純水製造的被處理水被利用。再者,如前述記載,本實施形態之回收水含有過氧化氫,因此,在將其循環之儲藏部內,藉由其殺菌作用,能有效地抑制細菌的產生、繁殖等。
又,在本實施形態,在儲藏部5將前處理水與回收水混合,但一般在前處理水,含有用來殺菌之次氯酸鹽(例如次氯酸鈉(NaClO)等),又,在回收水含有過氧化氫(H 2O 2),均含有具有殺菌作用之成分,在儲藏部5內,形成為可抑制細菌的產生、繁殖等的狀態。
又,前處理水所含有的次氯酸鹽,係為已在前處理利用於殺菌處理後的殘留成分,過氧化氫的殺菌作用較次氯酸鹽低。又,由於將前處理水與回收水混合,故,各自的濃度會因應混合的量而降低。
但,如本實施形態所示,本發明者們發現,在將前處理水與回收水混合的情況,超出僅將該等成分簡單地相加的作用,能夠獲得理想的殺菌作用。此殺菌作用提升的理由,可如以下所述。
如前述記載,在儲藏部5,藉由前處理水與回收水的混合,在該混合水中,次氯酸鹽與過氧化氫共存,該等化合物產生反應而產生單重態氧( 1O 2)或OH自由基(・OH)。單重態氧( 1O 2)或OH自由基(・OH)的活性皆高,具有有機物的分解等的作用,因此,在儲藏部5內的殺菌處理,比起單獨的次氯酸鹽、單獨的過氧化氫,可顯著提升,能產生理想的殺菌作用。
且,所產生的單重態氧( 1O 2)或OH自由基(・OH)的一部分會與水中的有機物(TOC成分)產生反應。其結果,形成為能以逆滲透膜裝置、離子交換裝置等容易去除的形態,因此,亦可期待逆滲透膜裝置、離子交換裝置等之處理水的TOC的降低。
再者,此時,回收水的過氧化氫之濃度,理想為2~50ppm,更理想為4~20ppm。若濃度為此範圍內的話,則藉由與前處理水中的次氯酸鹽之反應,能夠有效地產生單重態氧或OH自由基。此時,前處理水的次氯酸鹽之濃度,理想為0.05~10ppm,更理想為0.1~2ppm。即使為這個量的添加量,也由於次氯酸鹽與過氧化氫會產生反應,故,次氯酸鹽幾乎消失。再者,次氯酸鹽之添加量,係予以適宜調整成在藉由過氧化氫之分解,次氯酸不會殘留的程度為佳。
又,儲藏部5之前處理水的供給量與回收水之供給量,作成將該等混合後的混合水之過氧化氫的濃度成為1~10ppm的量為佳(此過氧化氫的濃度可藉由前處理水與回收水的混合比例算出)。為了作成這樣的濃度,例如將回收水的供給量對前處理水的供給量之比(回收水的供給量/前處理水的供給量),理想為設成10/90~50/50,更理想為設成20/80~40/60。
使用如以上這樣的超純水的製造裝置及製造方法,既可將使用完畢的超純水所含有的過氧化氫利用於殺菌處理,又可作為用來製造超純水的被處理水再利用,極為理想。又為了獲得這樣的作用,對於以往之再利用使用完畢的超純水之超純水製造裝置,例如能夠省略活性碳裝置等,能將回收處理部的裝置結構簡單化。
(變形例) 再者,在前述說明,提及次氯酸鹽藉由會與過氧化氫之反應,幾乎消失的情況,但,亦考量會有依據條件、缺陷等,次氯酸鹽殘留而含於一次純水製造部的情況。 因此,在前述說明的第1實施形態,於一次純水製造部,設置用來去除次氯酸鹽之活性碳裝置為佳。此時,在一次純水製造部,一般設有逆滲透膜裝置(以下稱為第2逆滲透膜裝置),活性碳裝置係設在此第2逆滲透膜裝置的前段。藉由這樣的配置,能夠抑制因從儲藏部5供給至一次純水製造部之被處理水中的次氯酸鹽所引起之第2逆滲透膜裝置的劣化。
作為此活性碳裝置,能採用使用於水處理的習知之活性碳,例如可舉出棕櫚殼活性碳、煤炭系活性碳等。這些活性碳,內部形成有無數10~10000Å左右(大部分為10~20Å)的細孔,具有500~1500m 2左右的比表面積。為了作成為高分解能,亦可受載有白金、鈀、銀等的分解觸媒。再者,本說明書中之活性碳的細孔分布及比表面積,係藉由氮氣(N 2)、氬氣(Ar)等之吸附法、或水銀壓入法測定到的值。
再者,在一次純水製造部,若可去除次氯酸鹽的話,亦可在此活性碳裝置,使過氧化氫透過而去除。次氯酸鹽的大部分係在儲藏部5及其後段與過氧化氫產生反應而消失,去除稍許殘留的次氯酸鹽即可,因此,在活性碳裝置的去除容易進行。因此,此活性碳裝置之空間速度係可在SV=5~40hr -1的範圍使用。在一般使用的SV=5~10hr -1之情況,過氧化氫也與次氯酸鹽一同被去除,在高流速之SV=10~40hr -1的情況,不僅可去除次氯酸鹽,又可使過氧化氫變得容易透過。因此,藉由變更此活性碳裝置之處理條件,能夠調整流動至後段的被處理水中之過氧化氫濃度。藉由流動至後段的被處理水中之過氧化氫的濃度作成為0.1~1ppm,能夠進行活性碳裝置與後段的逆滲透膜裝置等之間的細菌產生、繁殖等之抑制,能夠使後段的逆滲透膜裝置等進行穩定運轉。
在此活性碳裝置,以高流速的SV=10~40hr -1進行處理的情況,作為使用的活性碳裝置,採用20~1000Å的細孔的比例為提高成10Vol%以上、理想為提高成20Vol%以上的活性碳,或具有受載有白金、鈀、銀這樣的分解觸媒之高分解能的活性碳為佳。
作為改變細孔分布而提高對過氧化氫的分解能之活性碳,例如可舉出卡爾岡碳素日本社(Calgon Carbon Japan)所販售的人馬(CENTAUR)(商品名)。又,作為受載有過氧化氫高分解觸媒之活性碳,例如可舉出可樂麗化學(Kuraray Chemical)(股)公司製造的T-SB(商品名)。
再者,為了調整過氧化氫濃度,亦可設置活性碳以外之過氧化氫去除裝置(H 2O 2去除裝置)。此過氧化氫去除裝置係為分解去除水中的過氧化氫,例如可舉出藉由鈀(Pd)、白金(Pt)等受載樹脂,將過氧化氫分解去除之金屬觸媒受載樹脂裝置,在表面填充具有亞硫酸基及/或亞硫酸氫基之還原性樹脂的還原性樹脂裝置等。
在流入至活性碳裝置的水中幾乎不存在次氯酸的情況,亦可在活性碳裝置設置旁通管,使用此旁通管,調整過氧化氫濃度。 殘留的過氧化氫,在逆滲透膜裝置等的後段,進一步使用過氧化氫去除手段加以去除即可。作為此過氧化氫去除手段,例如藉由鈀(Pd)、白金(Pt)等受載樹脂,將過氧化氫分解去除之金屬觸媒受載樹脂裝置,在表面填充具有亞硫酸基及/或亞硫酸氫基之還原性樹脂的還原性樹脂裝置,以及在前述回收處理部、一次純水製造部作過說明的活性碳裝置等。 [實施例]
以下,針對本發明,一邊參照實施例及比較例一邊進行說明。再者,本發明係不限於這樣的實施例之範圍者。
(實施例1) 使用如圖1所示的超純水製造裝置,製造超純水,將其使用於半導體製造裝置之半導體晶圓的洗淨(SPM洗淨)。洗淨後的使用完畢的超純水,含有硫酸、磷酸、過氧化氫等,藉由回收處理部將其進行處理,獲得回收水。再者,使用於回收處理部之裝置,如以下所述。
<回收處理部> 膜處理裝置61:3M公司製袋形過濾器 1μm 逆滲透膜裝置62:低壓RO(東麗(股)製、商品名:TM720D ) 運轉壓0.6MPa
依據膜處理裝置61、逆滲透膜裝置62(第1逆滲透膜裝置)的順序進行處理所獲得之回收水中的過氧化氫濃度為20ppm,將此回收水 循環供給至儲藏部5。在儲藏部5,將在前處理部所獲得的前處理水與回收水混合,將其作為被處理水,持續地進行超純水的製造。混合比為前處理水:回收水=4:1。
再者,將此時的前處理水的次氯酸鈉濃度、回收水之過氧化氫濃度顯示於表1。又,分別測定儲存部5內的混合水與設在一次純水製造部之逆滲透膜裝置(第2逆滲透膜裝置)的入口之生菌數、原水與第2逆滲透膜裝置的出口之TOC濃度,顯示於表1。
次氯酸鈉濃度的測定:對前處理水,使用餘氯計(DPD(二乙基對苯二胺法)法,柴田科學(股)公司製、簡易水質試劑盒)進行測定。 過氧化氫濃度:對回收水,使用過氧化氫在線測量裝置(NOXIA®)(野村微科學(股)公司製)進行測定。 生菌數的測定:使用原水與在第2逆滲透膜裝置的入口採取到的樣品,再使用培養法(標準瓊脂培養基、32度下培養7天)進行測定。 TOC的測定:在原水與第2逆滲透膜裝置的出口,使用Sievers M9e(蘇伊士(Suez)公司製)進行測定。
(比較例1) 對於實施例1,除了將回收處理部作成為依序連接活性碳裝置(三菱化學製造,商品名:Diahope 006和Calgon Carbon Japan製,商品名:人馬(CENTAUR)的雙層,體積比2:1)、弱鹼性陰離子交換裝置(陶氏杜邦公司製造,商品名:A368D)的裝置結構以外,其餘與實施例1相同,一邊混合回收水一邊進行超純水的製造。 與實施例1同樣地,針對水質進行測定,一併顯示於表1。
(比較例2) 除了對前處理水添加亞硫酸,去除次氯酸鈉以外,其餘與實施例1同樣地,一邊混合回收水一邊進行超純水的製造。 與實施例1同樣地,針對水質進行測定,一併顯示於表1。
[表1]
      NaClO (ppm) H 2O 2(ppm) 生菌 (CFU/mL) TOC (ppb)
前處理水 回收水 儲藏部內 RO入口 儲藏部內 RO出口
實施例1 NaClO+H 2O 2 0.2 20 700 1,100 1,300 19
比較例1 只有NaClO 0.2 0 1,700 4,300 1,300 30
比較例2 只有H 2O 2 0 20 2,200 5,500 1,300 32
由以上可知,在將含有過氧化氫的使用完畢的超純水回收而進行再利用之超純水製造裝置,當進行回收處理時,使含有過氧化氫的狀態下進行循環而作成被處理水,藉此,在與原水或前處理水混合後,可抑制生菌數、TOC等。 此時,能夠省略一般進行回收處理時所設置之活性碳裝置,能夠將裝置簡單化,並且可縮小設置面積。
1:超純水製造系統 2:前處理部 3:一次純水製造部 4:二次純水製造部 5:儲藏部 6:回收處理部 7:循環手段 61:膜處理裝置 62:第1逆滲透膜裝置
[圖1]係顯示本發明的一實施形態之超純水製造系統的概略結構之圖。
1:超純水製造系統
2:前處理部
3:一次純水製造部
4:二次純水製造部
5:儲藏部
6:回收處理部
7:循環手段
61:膜處理裝置
62:第1逆滲透膜裝置

Claims (14)

  1. 一種超純水製造系統,係具有前處理部、一次純水製造部及二次純水製造部,用來製造超純水的超純水製造系統,其特徵為具有: 儲藏部,其係設在前述前處理部的前段或前述前處理部與前述一次純水製造部之間,能夠儲藏原水或被處理水; 回收處理部,其係將前述超純水使用後獲得之含有過氧化氫的使用完畢的超純水一邊去除混入於該使用完畢的超純水中的雜質,一邊使前述過氧化氫的一部分或全部透過而作成回收水;及 循環手段,其係將從前述回收處理部所獲得的回收水回送循環至前述儲藏部。
  2. 如請求項1的超純水製造系統,其中,前述回收處理部係具有第1逆滲透膜裝置。
  3. 如請求項1或2的超純水製造系統,其中,前述回收處理部不具有活性碳裝置。
  4. 如請求項1至3中任一項的超純水製造系統,其中,前述一次純水製造部係具有第2逆滲透膜裝置,在該第2逆滲透膜裝置的前段具有次氯酸去除裝置。
  5. 如請求項4的超純水製造系統,其中,前述次氯酸去除裝置為活性碳裝置。
  6. 如請求項5的超純水製造系統,其中,前述活性碳裝置為高分解型活性碳裝置。
  7. 如請求項1至6中任一項的超純水製造系統,其中,在前述儲藏部,具有流量調整手段,其可將前述回收水的供給量對前述原水或被處理水的供給量調整為10/90~50/50後進行供給。
  8. 一種超純水製造方法,係將原水在前處理部、一次純水製造部及二次純水製造部進行處理而製造超純水的超純水製造方法,其特徵為具有: 具有儲藏部,其係設在前述前處理部的前段或前述前處理部與前述一次純水製造部之間,能夠儲藏原水或被處理水, 藉由回收處理部,將前述超純水使用後獲得之含有過氧化氫的使用完畢的超純水進行處理,一邊去除混入於該使用完畢的超純水中的雜質,一邊使前述過氧化氫的一部分或全部透過而作成回收水, 將前述回收水回送循環至前述儲藏部。
  9. 如請求項8的超純水製造方法,其中,前述回收處理部係具有第1逆滲透膜裝置。
  10. 如請求項8或9的超純水製造方法,其中,前述回收水的過氧化氫濃度為2~50ppm。
  11. 如請求項8至10中任一項的超純水製造方法,其中,在前述儲藏部內,在前述前處理裝置所處理獲得的前處理水與前述回收水混合之混合水的過氧化氫濃度為1~10ppm。
  12. 如請求項8至11中任一項的超純水製造方法,其中,前述一次純水製造部係具有第2逆滲透膜裝置、和位在其前段之次氯酸去除裝置, 藉由前述次氯酸去除裝置,去除含於前述回收水之次氯酸鹽。
  13. 如請求項12的超純水製造方法,其中,前述次氯酸去除裝置為活性碳裝置。
  14. 如請求項13的超純水製造方法,其中,在前述活性碳裝置,以SV=5~40h -1進行被處理水的通水。
TW110116860A 2020-10-22 2021-05-11 超純水製造系統及超純水製造方法 TW202225104A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020177465A JP7171671B2 (ja) 2020-10-22 2020-10-22 超純水製造システム及び超純水製造方法
JP2020-177465 2020-10-22

Publications (1)

Publication Number Publication Date
TW202225104A true TW202225104A (zh) 2022-07-01

Family

ID=81290336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116860A TW202225104A (zh) 2020-10-22 2021-05-11 超純水製造系統及超純水製造方法

Country Status (6)

Country Link
US (1) US20230242419A1 (zh)
JP (1) JP7171671B2 (zh)
KR (1) KR20230097014A (zh)
CN (1) CN116322947A (zh)
TW (1) TW202225104A (zh)
WO (1) WO2022085227A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447212B2 (ja) 2002-12-03 2010-04-07 野村マイクロ・サイエンス株式会社 超純水の製造方法及び超純水製造装置
JP6161954B2 (ja) * 2013-05-24 2017-07-12 野村マイクロ・サイエンス株式会社 超純水製造装置及び超純水製造方法
JP6279295B2 (ja) * 2013-11-22 2018-02-14 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
JP2015157262A (ja) * 2014-02-25 2015-09-03 野村マイクロ・サイエンス株式会社 水処理装置、水処理方法及び超純水製造システム

Also Published As

Publication number Publication date
WO2022085227A1 (ja) 2022-04-28
JP2022068664A (ja) 2022-05-10
KR20230097014A (ko) 2023-06-30
US20230242419A1 (en) 2023-08-03
JP7171671B2 (ja) 2022-11-15
CN116322947A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JPH0647105B2 (ja) 純水又は超純水の精製方法及び装置
US20090127201A1 (en) Process and Apparatus for Removing Hydrogen Peroxide
JP2005538827A (ja) 水からの有機不純物除去方法
WO2005095280A1 (ja) 超純水製造装置
JP5441714B2 (ja) 純水の製造方法およびその装置、オゾン水製造方法およびその装置、並びに洗浄方法およびその装置
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
CN115279701B (zh) 水回收***以及水回收方法
JPH0638953B2 (ja) 高純度水の製造装置
JPH0649190B2 (ja) 高純度水の製造装置
JP2002210494A (ja) 超純水製造装置
TW202225104A (zh) 超純水製造系統及超純水製造方法
WO2022024815A1 (ja) 純水製造装置及び超純水製造装置並びに純水製造方法及び超純水製造方法
JP5061410B2 (ja) 超純水製造装置及び超純水製造方法
JP6924300B1 (ja) 排水処理方法、超純水製造方法及び排水処理装置
JP4848641B2 (ja) 純水製造方法及び装置
JP3387311B2 (ja) 超純水製造装置
JP5782675B2 (ja) 水処理方法及び超純水製造方法
JP2021181069A (ja) ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JPH10216749A (ja) 超純水製造装置
JP3992996B2 (ja) 排水処理方法及び装置
JP2002307080A (ja) 超純水製造装置
CN212269740U (zh) 一种超纯水制造***
JP4792834B2 (ja) 機能性水製造システム
JP2008086854A (ja) 純水製造装置
JPS6242787A (ja) 高純度水の製造装置