TW202126715A - 透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜 - Google Patents

透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜 Download PDF

Info

Publication number
TW202126715A
TW202126715A TW109133044A TW109133044A TW202126715A TW 202126715 A TW202126715 A TW 202126715A TW 109133044 A TW109133044 A TW 109133044A TW 109133044 A TW109133044 A TW 109133044A TW 202126715 A TW202126715 A TW 202126715A
Authority
TW
Taiwan
Prior art keywords
transparent
polyurethane
solvent
film
compound
Prior art date
Application number
TW109133044A
Other languages
English (en)
Inventor
鳥羽正彦
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW202126715A publication Critical patent/TW202126715A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明之課題在於提供著色度(黃色度)較小的透明聚胺基甲酸酯及其製造方法以及包含透明聚胺基甲酸酯之熱硬化性組成物及使用其硬化膜作為保護膜之透明導電薄膜。 解決手段係使用藉由Fedors之推算法之SP值未達9.80之溶劑作為合成溶劑,而合成膜形成為厚度50μm時之b*值為0.25以下之(A)含羧基之透明聚胺基甲酸酯。其次,作成透明導電薄膜,其係包含透明基材及於透明基材上之至少一表面設置透明導電層,且於該透明導電層之與透明基材相反側之面形成熱硬化性組成物之硬化膜,該熱硬化性組成物包含(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。

Description

透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜
本發明有關透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及使用其硬化膜作為保護膜之透明導電薄膜。更詳言之,有關著色度(黃色度)較小的透明聚胺基甲酸酯及其製造方法以及包含透明聚胺基甲酸酯之熱硬化性組成物及使用其硬化膜作為保護膜之透明導電薄膜。
透明導電薄膜使用於液晶顯示器(LCD)、電漿顯示器面板(PDP)、有機電致發光型顯示器、太陽電池(PV)及觸控面板(TP)之透明電極、抗靜電(ESD)膜以及電磁波遮蔽(EMI)膜等之各種領域。作為該等透明導電薄膜,以往係使用利用ITO(氧化銦錫)者,但有銦的供給穩定性低、製造成本高、欠缺柔軟性及成膜時需要高溫之問題。因此,代替ITO之透明導電薄膜之探索活躍地進行。該等中,含有金屬奈米線之透明導電薄膜由於導電性、光學特性及柔軟性優異、可藉濕製程成膜、製造成本低、成膜時不須於高溫等,而適合作為代替ITO之透明導電薄膜。例如包含銀奈米線,具有高導電性、光學特性、柔軟性之透明導電薄膜為已知(參考專利文獻1)。
然而,含有銀奈米線之透明導電薄膜由於銀每質量之表面積大,容易與各種化合物反應故有欠缺環境耐性之問題,因步驟中使用之各種藥劑或洗淨液之影響、因長期保管所致之空氣中之氧或水分之影響等,而腐蝕奈米構造體,易使導電性降低。又,尤其於電子材料等之用途中,為了防止微粒子狀雜質或灰塵或塵埃等之附著或混入至基板表面,多數情況使用利用刷等之物理洗淨步驟,但藉由該步驟亦有造成表面損傷之問題。
為了解決此,進行各種保護膜之探討。具有作為透明導電薄膜之機能之保護膜亦必須為透明。另一方面,保護膜所用之樹脂一般已知會引起所謂黃變。黃變之情況,導致作為透明導電薄膜之性能降低(顯示器之畫質、太陽能電池之光電轉換效率之降低)。
專利文獻2中揭示使用具有特定骨架之材料(含有1,4-雙(異氰酸基甲基)環己烷之聚異氰酸酯)合成之適於光學薄膜之聚胺基甲酸酯彈性體,主要記載透明性、耐黃變性均優異。且,專利文獻3中揭示低硬度且兼具柔軟性與彈力性、於可塑劑及/或溶劑不滲出之適於光學相關用途之透明聚胺基甲酸酯樹脂之製造方法,於專利文獻4中揭示由軟質聚胺基甲酸酯所成之具有防霧濁作用之透明被覆塗層。該等均係藉由以特定比例調配具有特定化學構造之原料予以合成,而獲得透明聚胺基甲酸酯,但關於獨立之薄片或膜、成形品之用途或作為用以改良其他透明玻璃或塑膠基材之機械特性、濕潤性(防霧濁性)之被覆材使用、作為賦予透明導電薄膜之耐環境(溫度、濕度、自然光)性之保護膜的功能並未提及。 [先前技術文獻] [專利文獻]
專利文獻1:日本特表2010-507199號公報 專利文獻2:日本特開2011-236329號公報 專利文獻3:日本特開2005-272676號公報 專利文獻4:日本特開平2-20580號公報
[發明欲解決之課題]
本發明之課題在於提供著色度(黃色度)較小的透明聚胺基甲酸酯及其製造方法以及包含透明聚胺基甲酸酯之熱硬化性組成物及使用其硬化膜作為保護膜之透明導電薄膜。 [用以解決課題之手段]
本發明人等發現即使用以合成聚胺基甲酸酯所用之單體相同,藉由於特定合成條件下合成,亦可獲得著色度小透明性更優異之聚胺基甲酸酯,而適於透明導電薄膜之透明導電層保護膜用。
亦即,本發明具有以下態樣。
[1] 一種(A)含羧基之透明聚胺基甲酸酯,其特徵為膜形成為厚度50μm時之b*值為0.25以下。
[2] 如[1]之(A)含羧基之透明聚胺基甲酸酯,其中前述(A)含羧基之透明聚胺基甲酸酯係使用(a1)聚異氰酸酯化合物、(a2)多元醇化合物及(a3)含羧基之二羥基化合物作為單體而合成者。
[3] 如[2]之(A)含羧基之透明聚胺基甲酸酯,其中前述(a2)多元醇化合物係聚碳酸酯多元醇。
[4] 如[2]或[3]之(A)含羧基之透明聚胺基甲酸酯,其中前述(a1)聚異氰酸酯化合物係脂肪族聚異氰酸酯或脂環式聚異氰酸酯。
[5] 一種熱硬化性組成物,其包含膜形成為厚度50μm時之b*值為0.25以下之(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。
[6] 如[5]之熱硬化性組成物,其中進而包含(D)硬化促進劑。
[7] 如[5]或[6]之熱硬化性組成物,其中前述(B)環氧化合物係一個分子中具有3個以上環氧基之多官能環氧化合物。
[8] 一種透明導電薄膜,其具有透明基材、設置於透明基材上之至少一表面之透明導電層及設置於該透明導電層之與透明基材相反側之面的保護膜,其特徵係前述保護膜係熱硬化性組成物之硬化膜,該熱硬化性組成物包含膜形成為厚度50μm時之b*值為0.25以下之(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。
[9] 如[8]之透明導電薄膜,其中前述透明導電層包含金屬奈米線。
[10] 如[9]之透明導電薄膜,其中前述金屬奈米線為銀奈米線。
[11] 一種如[1]至[4]中任一項之(A)含羧基之透明聚胺基甲酸酯之製造方法,其特徵係使用藉由Fedors之推算法之SP值未達9.80之溶劑作為合成溶劑。
[12] 如[11]之透明聚胺基甲酸酯之製造方法,其中前述溶劑係選自由二乙醇單丁醚乙酸酯、1,4-丁二醇二乙酸酯、三丙二醇二甲醚、丙二醇二甲醚、二乙二醇二丁醚、三乙二醇二甲醚、二丙二醇二甲醚、三丙二醇二甲醚、乙酸正丙酯、乙酸正丁酯、1,4-二噁烷、甲基乙基酮、甲基異丁基酮、二異丁基酮、異佛酮、四氫呋喃、4-甲基四氫吡喃、環戊基甲基醚所成之群之任一者。
[13] 如[11]之透明聚胺基甲酸酯之製造方法,其中前述溶劑係4-甲基四氫吡喃或三乙二醇二甲醚。
[14] 如[11]之透明聚胺基甲酸酯之製造方法,其中前述溶劑為甲基四氫吡喃。 [發明效果]
依據本發明,可提供著色度(黃色度)較小的透明聚胺基甲酸酯及其製造方法以及包含透明聚胺基甲酸酯之熱硬化性組成物及使用其硬化膜作為保護膜之透明導電薄膜。
以下說明用以實施本發明之形態(以下稱為實施形態)。
<透明聚胺基甲酸酯及含其之熱硬化性組成物> 本發明之一態樣之(A)含羧基之透明聚胺基甲酸酯之特徵係膜形成為厚度50μm時之b*值為0.25以下。
作為形成透明導電薄膜之保護膜的樹脂,若為具有高絕緣性能、耐環境性(溫度、濕度、自然光等)之樹脂,則可無特別問題地使用,但若考慮對可撓性顯示器之適用,則適宜為具有適度柔軟骨架之聚胺基甲酸酯。且,為了防止對構成透明導電薄膜之透明導電層之損傷,較佳為塗佈於透明導電層上後可硬化之具有交聯基之硬化性樹脂。於透明導電層上形成保護膜之後,藉由進行交聯反應基之硬化,由於可提高耐擦傷性、耐溶劑性故而較佳。作為交聯反應基,考慮對自然光之耐性之情況,較佳為熱硬化之交聯反應基。
此等熱硬化性樹脂中,(A)含羧基之透明聚胺基甲酸酯由於具有柔軟性,藉由與具有環氧基或異氰酸基之化合物調配,而使該等交聯反應基(環氧基或異氰酸基)可與(A)含羧基之透明聚胺基甲酸酯之羧基交聯故而更佳。
(A)含羧基之透明聚胺基甲酸酯可自多元醇化合物、聚異氰酸酯化合物及含羧基之二羥基化合物合成。
透明導電性膜之保護膜較佳藉由將包含(A)含羧基之透明聚胺基甲酸酯之熱硬化性組成物印刷、塗佈於透明導電層上等而形成,並藉由使之硬化而形成。熱硬化性組成物較佳為包含(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑者,進而根據需要亦可包含(D)硬化促進劑。
上述之(A)含羧基之透明聚胺基甲酸酯,其重量平均分子量較佳為1,000~100,000,更佳為2,000~ 70,000,又更佳為3,000~50,000。此處,分子量係以凝膠滲透層析儀(以下記載為GPC)測定之聚苯乙烯換算之值。重量平均分子量未達1,000時,會損及印刷後之塗膜伸長度、可撓性以及強度,超過100,000時,除了聚胺基甲酸酯對溶劑之溶解性降低以外,由於即使溶解黏度亦過高,故就使用面有限制變大之情況。
本說明書中,只要未特別指明,則GPC之測定條件如以下。 裝置名:日本分光股份有限公司製HPLC單元HSS-2000 管柱:Shodex管柱LF-804 移動相:四氫呋喃 流速:1.0mL/min 檢測器:日本分光股份有限公司製RI-2031Plus 溫度:40.0℃ 試料量:試料循環100μL 試料濃度:調製為約0.1質量%
(A)含羧基之透明聚胺基甲酸酯之酸價較佳為10~140mg-KOH/g,更佳為15~130mg-KOH/g。酸價未達10mg-KOH/g時,除了硬化性變低以外,耐溶劑性亦變差。若超過140mg-KOH/g,則作為胺基甲酸酯樹脂對溶劑之溶解性低,且即使溶解黏度亦變過高,而難以處理。又,由於硬化物變過硬,故容易因基材膜而引起翹曲等之問題。
且,本說明書中,樹脂之酸價係藉由以下方法測定之值。 於100ml三角燒瓶中以精密天平精秤約0.2g試料,於其中添加乙醇/甲苯=1/2(質量比)之混合溶劑10ml並溶解。進而,於該容器中添加1~3滴作為指示劑之酚酞乙醇溶液,充分攪拌直至試料成為均一。將其以0.1N氫氧化鉀-乙醇溶液滴定,指示劑之微紅色持續30秒時為中和終點。由該結果使用下述計算式所得之值設為樹脂之酸價。 酸價(mg-KOH/g)=[B×f×5.611]/S B:0.1N氫氧化鉀-乙醇溶液之使用量(ml) f:0.1N氫氧化鉀-乙醇溶液之因子 S:試料之採取量(g)
更具體而言,(A)含羧基之透明聚胺基甲酸酯係使用(a1)聚異氰酸酯化合物、(a2)多元醇化合物及(a3)含羧基之二羥基化合物作為單體而合成之聚胺基甲酸酯。就耐光性之觀點,期望(a1)、(a2)、(a3)各不含芳香族化合物等之具有共軛性之官能基。以下針對各單體更詳細說明。
(a1)聚異氰酸酯化合物 作為(a1)聚異氰酸酯化合物,較佳為每1分子之異氰酸基為2個之二異氰酸酯。作為聚異氰酸酯化合物,舉例為脂肪族聚異氰酸酯、脂環式聚異氰酸酯等,可單獨使用該等之1種或可組合2種以上使用。於(A)含羧基之透明聚胺基甲酸酯不凝膠化之範圍,亦可少量使用具有3個以上異氰酸基之聚異氰酸酯。
作為脂肪族聚異氰酸酯舉例為例如1,3-三亞甲基二異氰酸酯、1,4-四亞甲基二異氰酸酯、1,6-六亞甲基二異氰酸酯、1,9-九亞甲基二異氰酸酯、1,10-十亞甲基二異氰酸酯、2,2,4-三甲基六亞甲基二異氰酸酯、2,4,4-三甲基六亞甲基二異氰酸酯、離胺酸二異氰酸酯、2,2’-二***二異氰酸酯、二聚酸二異氰酸酯等。
作為脂環式聚異氰酸酯舉例為例如1,4-環己烷二異氰酸酯、1,3-雙(異氰酸基甲基)環己烷、1,4-雙(異氰酸基甲基)環己烷、3-異氰酸基甲基-3,5,5-三甲基環己基異氰酸酯(IPDI,異佛酮二異氰酸酯)、雙-(4-異氰酸基環己基)甲烷(氫化MDI)、氫化(1,3-或1,4-)二甲苯二異氰酸酯、降冰片烷二異氰酸酯(NBDI)等。
此處,作為(a1)聚異氰酸酯化合物,藉由使用異氰酸基(-NCO基)中之碳原子以外之碳原子數為6~30之脂環式化合物,由實施形態之聚胺基甲酸酯樹脂形成之保護膜尤其於高溫高濕時之信賴性高,有利於電子機器零件之構件。
作為(a1)聚異氰酸酯化合物亦可使用具有芳香環之芳香族、芳香脂肪族之聚異氰酸酯化合物,但就耐候性・耐光性之觀點,作為(a1)聚異氰酸酯化合物較佳使用不具有芳香環之化合物。使用芳香族聚異氰酸酯、芳香脂肪族聚異氰酸酯之情況,於(a1)聚異氰酸酯化合物中,相對於(a1)聚異氰酸酯化合物之總量(100mol%),含50mol%以下,較佳含30mol%以下,更佳含10mol%以下。
(a2)多元醇化合物 (a2)多元醇化合物(但於(a2)多元醇化合物中,不含後述之(a3)含羧基之二羥基化合物)之數平均分子量(目錄值)通常為250~50,000,較佳為400~10,000,更佳為500~ 5,000。
(a2)多元醇化合物較佳為於兩末端具有羥基之二醇化合物。例如為聚碳酸酯多元醇、聚醚多元醇、聚酯多元醇、聚內酯多元醇。該等中若考慮作為保護膜之耐水性、絕緣信賴性、與基材之密著性之均衡,則較佳為聚碳酸酯多元醇。
上述聚碳酸酯多元醇可以碳原子數3~18之二醇作為原料,與碳酸酯或碳醯氯反應而獲得,例如以下述構造式(1)表示。
Figure 02_image001
式(1)中,R3 係自對應之二醇(HO-R3 -OH)去除羥基後之殘基,n3 為正整數,較佳為2~50。
式(1)表示之聚碳酸酯多元醇具體而言可藉由使用1,3-丙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、3-甲基-1,5-戊二醇、1,8-辛二醇、1,3-環己烷二甲醇、1,4-環己烷二甲醇、1,9-壬二醇、2-甲基-1,8-辛二醇、1,10-十亞甲基二醇或1,2-十四烷二醇等作為原料而製造。
上述聚碳酸酯多元醇亦可為於其骨架中具有複數種伸烷基之聚碳酸酯多元醇(共聚合聚碳酸酯多元醇)。使用共聚合聚碳酸酯多元醇大多情況基於防止(A)含羧基之透明聚胺基甲酸酯結晶化之觀點為有利。且若考慮對溶劑之溶解性,則較佳併用具有分支骨架、於分支鏈之末端具有羥基之聚碳酸酯多元醇。
上述聚醚多元醇化合物係使碳原子數2~12之二醇脫水縮合,或使碳原子數2~12之環氧乙烷(oxirane)化合物、氧雜環丁烷化合物、或四氫呋喃化合物開環聚合所得者,例如以下述構造式(2)表示。
Figure 02_image003
式(2)中,R4 係自對應之二醇(HO-R4 -OH)去除羥基後之殘基,n4 為正整數,較佳為4~50。上述碳原子數2~12之二醇可單獨使用一種而為均聚物,亦可藉由併用2種以上而為共聚物。
作為上述式(2)表示之聚醚多元醇,具體舉例為聚乙二醇、聚丙二醇、聚-1,2-丁二醇、聚四亞甲基二醇(聚1,4-丁二醇)、聚-3-甲基四亞甲基二醇、聚新戊二醇等之聚烷二醇。又,基於提高聚醚多元醇之疏水性為目的,亦可使用該等之共聚物,例如1,4-丁二醇與新戊二醇之共聚物等。
上述聚酯多元醇係使二羧酸及二醇脫水縮合或使二羧酸之低級醇之酯化物與二醇之酯交換反應所得者,例如以下述構造式(3)表示。
Figure 02_image005
式(3)中,R5 係自對應之二醇(HO-R5 -OH)去除羥基後之殘基,R6 係自對應之二羧酸(HOCO-R6 -COOH)去除2個羧基後之殘基,n5 為正整數,較佳為2~50。
作為上述二醇(HO-R5 -OH),具體舉例為乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、3-甲基-1,5-戊二醇、1,8-辛二醇、1,3-環己烷二甲醇、1,4-環己烷二甲醇、1,9-壬二醇、2-甲基-1,8-辛二醇、1,10-十亞甲基二醇或1,2-十四烷二醇、2,4-二乙基-1,5-戊二醇、丁基乙基丙二醇、1,3-環己烷二甲醇、二乙二醇、三乙二醇、二丙二醇等。
又,作為上述二羧酸(HOCO-R6 -COOH),具體舉例為琥珀酸、戊二酸、己二酸、壬二酸、癸二酸、癸烷二羧酸、十三烷二酸、1,4-環己烷二羧酸、六氫苯二甲酸、甲基四氫苯二甲酸、內亞甲基四氫苯二甲酸、甲基內亞甲基四氫苯二甲酸、氯菌酸(Chloredic acid)、富馬酸、馬來酸、依康酸、檸康酸。
上述聚內酯多元醇係藉由內酯之開環聚合物與二醇之縮合反應、或二醇與羥基烷酸之縮合反應所得者,例如以下構造式(4)表示。
Figure 02_image007
式(4)中,R7 係自對應之羥基烷酸(HO-R7 -COOH)去除羥基及羧基後之殘基,R8 係自對應之二醇(HO-R8 -OH)去除羥基後之殘基,n6 為正整數,較佳為2~50。作為二醇(HO-R8 -OH)舉例為與前述之二醇(HO-R5 -OH)相同者。
作為上述羥基烷酸(HO-R7 -COOH)具體舉例為3-羥基丁酸、4-羥基戊酸、5-羥基己酸等。作為內酯舉例為ε-己內酯。
(a3)含羧基之二羥基化合物 作為(a3)含羧基之二羥基化合物就可控制交聯點之方面,較佳為具有2個之選自羥基、碳原子數為1或2之羥基烷基之任一者之分子量為200以下之羧酸或胺基羧酸。具體舉例為2,2-二羥甲基丙酸(DMPA)、2,2-二羥甲基丁酸(DMBA)、N,N-雙羥基乙基甘胺酸、N,N-雙羥基乙基丙胺酸等,其中,基於對溶劑之溶解度,特佳為2,2-二羥甲基丙酸、2,2-二羥甲基丁酸。該等之(a3)含羧基之二羥基化合物可單獨使用1種或組合2種以上使用。
前述之(A)含羧基之透明聚胺基甲酸酯可僅由上述3成分((a1)、(a2)及(a3))而合成。且亦可進而與(a4)單羥基化合物及/或(a5)單異氰酸酯化合物一起反應而合成。基於耐光性之觀點,較佳使用分子內不含芳香環或碳-碳雙鍵之化合物。
(a4)單羥基化合物 作為(a4)單羥基化合物舉例為乙醇酸、羥基特戊酸等具有羧酸之化合物。
(a4)單羥基化合物可單獨使用1種或組合2種以上使用。
此外,作為(a4)單羥基化合物舉例為甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、戊醇、己醇、辛醇等。
(a5)單異氰酸酯化合物 作為(a5)單異氰酸酯化合物舉例為己基異氰酸酯、十二烷基異氰酸酯等。
上述(A)含羧基之透明聚胺基甲酸酯可藉由在如二丁基錫二月桂酸酯之習知胺基甲酸酯觸媒存在下或不存在下,使用適當有機溶劑,使上述之(a1)聚異氰酸酯化合物、(a2)多元醇化合物及(a3)含羧基之二羥基化合物反應而合成,但於無觸媒下反應者,並無必要考慮最終之錫等混入而較適宜。
合成上述(A)含羧基之透明聚胺基甲酸酯之際所用之有機溶劑係與異氰酸酯化合物之反應性低,不降低生成之聚胺基甲酸酯之溶解性者,較佳為不含胺等之鹼性官能基,沸點為50℃以上,較佳80℃以上,更佳100℃以上之溶劑,此外,較佳使用藉由Fedors之推算法之SP值未達9.80之溶劑。SP(Solubility Parameters,溶解度參數)值係成為2成分系溶液之溶解度標準之值,SP值相近之物質具有容易混合之傾向。
SP值(δ)係由Hildebrand、Scott提出之藉由正規溶液(regular solution)(溶質與溶劑之間的凝集力僅為倫敦分散力(狹義之凡德瓦爾(Van der Waals)力),並無靜電相互作用、締合(氫鍵)、偶極相互作用等之作用的溶液)論由如以下之式之凝集能密度之平方根而定義之值。 δ=(ΔE/V)1/2 =[(ΔH-RT)/V)]1/2 其中,V表示溶劑之分子容,ΔE表示凝集能(蒸發能),ΔH表示蒸發焓,R表示氣體常數,T表示絕對溫度。SP值之SI單位係(J/cm3 )1/2 、(MPa)1/2 ,但本說明書中係使用以往慣用而使用之(cal/cm3 )1/2 。SP值係由用以使1cm3 之液體蒸發所必要之蒸發潛熱而算出。
由上述定義之SP值雖限定於可測定沸點之已知液體,但基於適用於聚合物或各種化合物等之目的,由測定聚合物對於SP值已知之溶劑的溶解度等之方法,以不矛盾之方式導出。作為其一之SP值推算法,有Fedors之推算法。
Fedors認為凝集能密度與莫耳分子容之兩者依存於取代基種類及數量,而提案以下之式與每取代基之特定常數。 δ=[(Σei )/Σvi )]1/2 其中,Σei 表示凝集能,Σvi 表示莫耳分子容。凝集能之單位多數情況為J/mol,但本說明書中使用過去使用之cal/mol。
作為一例,顯示1-辛醇之計算例。由於係由-CH3 (ei =1125 cal/mol,vi =33.5cm3 /mol)為1個單位,-CH2 -(ei =1180cal/mol,vi =16.1 cm3 /mol)為7個單位,-OH(ei = 7120cal/mol,vi =10.0cm3 /mol)為1個單位所構成,故Σei = 1125×1+1180×7+7120×1=16505cal/mol,Σvi =33.5×1+16.1×7+10.0×1=156.2cm3 /mol,δ=(16505/156.2)1/2 =10.28(cal/ cm3 )1/2
Fedors之推算法及每取代基之特定常數(ei 、vi )記載於R.F. Fedors: Polym. Eng. Sci., 14[2], 147-154 (1974)。
本發明人等使用各種溶劑實施(A)含羧基之透明聚胺基甲酸酯之合成的結果,發現根據使用之溶劑而所得之(A)含羧基之透明聚胺基甲酸酯之色調不同。亦即,發現使用上述藉由Fedors之推算法之SP值未達9.80之溶劑,獲得黃色度(b*值)較小的(A)含羧基之透明聚胺基甲酸酯。
該SP值更佳為7.00以上且未達9.50,又更佳為7.50以上未達9.00。作為藉由Fedors之推算法之SP值未達9.80之溶劑舉例為丙二醇單甲醚乙酸酯(SP值8.73)、二乙醇單***乙酸酯(SP值9.01)、二乙醇單丁醚乙酸酯(SP值8.94)、1,4-丁二醇二乙酸酯(SP值9.64)、三丙二醇二甲醚(SP值8.06)、或丙二醇二甲醚(SP值7.52)、二乙二醇二甲醚(SP值8.10)、二乙二醇二丁醚(SP值8.29)、三乙二醇二甲醚(SP值8.37)、二丙二醇二甲醚(SP值7.88)、三丙二醇二甲醚(SP值8.06)、乙酸正丙酯(SP值8.72)、乙酸正丁酯(SP值8.70)、1,4-二噁烷(SP值8.64)、甲基乙基酮(SP值8.98)、甲基異丁基酮(SP值8.68)、二異丁基酮(SP值8.50)、異佛酮(SP值9.20)、四氫呋喃(SP值8.28)、4-甲基四氫吡喃(SP值8.13)、環戊基甲基醚(SP值8.13)等。該等中較佳為二乙醇單丁醚乙酸酯、1,4-丁二醇二乙酸酯、三丙二醇二甲醚、丙二醇二甲醚、二乙二醇二丁醚、三乙二醇二甲醚、二丙二醇二甲醚、三丙二醇二甲醚、乙酸正丙酯、乙酸正丁酯、1,4-二噁烷、甲基乙基酮、甲基異丁基酮、二異丁基酮、異佛酮、四氫呋喃、4-甲基四氫吡喃、環戊基甲基醚。如後述,若合成溶劑使用三乙二醇二甲醚或4-甲基四氫吡喃,則可得到透明的合成液,就製造透明聚胺基甲酸酯而言較佳。更佳之溶劑為4-甲基四氫吡喃。
合成上述(A)含羧基之透明聚胺基甲酸酯之際的原料饋入進行順序並未特別限定,但通常先饋入(a2)多元醇化合物及(a3)含羧基之二羥基化合物,使之溶解或分散於上述溶劑後,於20~150℃,更佳60~120℃,邊滴下(a1)聚異氰酸酯化合物邊添加,隨後,於30~160℃,更佳於50~130℃使該等反應。
原料之饋入莫耳比,係對應於目的之聚胺基甲酸酯之分子量及酸價而調節,但於聚胺基甲酸酯導入(a4)單羥基化合物之情況,必須以使聚胺基甲酸酯分子之末端成為異氰酸基之方式,以(a1)聚異氰酸酯化合物相較於(a2)多元醇化合物及(a3)含羧基之二羥基化合物更為過量使用(異氰酸基比羥基合計更為過量)。於聚胺基甲酸酯導入(a5)單異氰酸酯化合物之情況,必須以使聚胺基甲酸酯分子之末端成為羥基之方式,以(a1)聚異氰酸酯化合物少於(a2)多元醇化合物及(a3)含羧基之二羥基化合物而使用(異氰酸基少於羥基合計)。
具體而言,該等之饋入莫耳比係(a1)聚異氰酸酯化合物之異氰酸基:((a2)多元醇化合物之羥基+(a3)含羧基之二羥基化合物之羥基)為0.5~1.5:1,較佳為0.8~1.2:1,更佳為0.95~1.05:1。
又,(a2)多元醇化合物之羥基:(a3)含羧基之二羥基化合物之羥基為1:0.1~30,較佳為1:0.3~10。
使用(a4)單羥基化合物之情況,係(a1)聚異氰酸酯化合物之莫耳數,相較於((a2)多元醇化合物+(a3)含羧基之二羥基化合物)之莫耳數更為過量,(a4)單羥基化合物較佳以相對於異氰酸基之過量莫耳數,為0.5~1.5倍莫耳量,較佳0.8~1.2倍莫耳量使用。
使用(a5)單異氰酸酯化合物之情況,係((a2)多元醇化合物+(a3)含羧基之二羥基化合物)之莫耳數相較於(a1)聚異氰酸酯化合物之莫耳數更為過量,較佳以相對於羥基之過量莫耳數,為0.5~1.5倍莫耳量,較佳0.8~1.2倍莫耳量使用。
為了於(A)含羧基之透明聚胺基甲酸酯導入(a4)單羥基化合物,為了於(a2)多元醇化合物及(a3)含羧基之二羥基化合物與(a1)聚異氰酸酯化合物之反應大致結束之時點,使(A)含羧基之透明聚胺基甲酸酯之兩末端殘存之異氰酸基與(a4)單羥基化合物反應,而於反應溶液中於20~150℃,更佳70~120℃滴下(a4)單羥基化合物,隨後於同溫度保持而完成反應。
為了於(A)含羧基之透明聚胺基甲酸酯導入(a5)單異氰酸酯化合物,為了於(a2)多元醇化合物及(a3)含羧基之二羥基化合物與(a1)聚異氰酸酯化合物之反應大致結束之時點,使(A)含羧基之透明聚胺基甲酸酯之兩末端殘存之羥基與(a5)單異氰酸酯化合物反應,而於反應溶液中於20~150℃,更佳50~120℃滴下(a5)單異氰酸酯化合物,隨後於同溫度保持而完成反應。
作為上述(B)環氧化合物,可舉例為雙酚A型環氧化合物、氫化雙酚A型環氧樹脂、雙酚F型環氧樹脂、酚醛清漆型環氧樹脂、酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、N-縮水甘油型環氧樹脂、雙酚A之酚醛清漆型環氧樹脂、二甲酚型環氧樹脂、乙二醛型環氧樹脂、含胺基環氧樹脂、橡膠改質環氧樹脂、二環戊二烯酚型環氧樹脂、矽氧改質環氧樹脂、ε-己內酯改質環氧樹脂、含縮水甘油基之脂肪族環氧樹脂、含縮水甘油基之脂環式環氧樹脂等之一分子中具有2個以上環氧基之環氧化合物。
尤其更適宜使用一分子中具有3個以上環氧基之多官能環氧化合物。作為此等環氧化合物舉例為例如EHPE(註冊商標)3150(DAICEL股份有限公司製)、jER(註冊商標)604(三菱化學股份有限公司製)、EPICLON(註冊商標) EXA-4700(DIC股份有限公司製)、EPICLON(註冊商標) HP-7200(DIC股份有限公司製)、季戊四醇四縮水甘油醚、季戊四醇三縮水甘油醚、TEPIC(註冊商標)-S(日產化學股份有限公司製)等。
(A)含羧基之透明聚胺基甲酸酯相對於上述(B)環氧化合物之調配比例,以聚胺基甲酸酯中之羧基相對於(B)環氧化合物之環氧基之當量比計,較佳為0.5~1.5,更佳為0.7~1.3,又更佳為0.9~1.1。
作為上述(D)硬化促進劑,舉例為三苯膦、三丁膦等之膦系化合物(北興化學工業股份有限公司製)、CURAZOLE(註冊商標)(咪唑系環氧樹脂硬化劑:四國化成工業股份有限公司製)、2-苯基-4-甲基-5-羥基甲基咪唑、U-CAT(註冊商標) SA系列(DBU鹽:SAN APRO股份有限公司製)、U-CAT(註冊商標)5003(膦系化合物:SAN APRO股份有限公司製)等。作為該等之使用量,使用量若過少則無添加效果,使用量若過多則電絕緣性降低,故相對於(A)與(B)之合計質量,使用0.1~10質量%,更佳為0.5~6質量%,又更佳為0.5~5質量%,特佳為0.5~3質量%。
又,亦可併用硬化助劑。作為硬化助劑舉例為多官能硫醇化合物或氧雜環丁烷化合物等。作為多官能硫醇化合物舉例為季戊四醇四(3-巰基丙酸酯)、三-[(3-巰基丙醯氧基)-乙基]-異氰尿酸酯、三羥甲基丙烷三(3-巰基丙酸酯)、CURRANTS(註冊商標)MT系列(昭和電工股份有限公司製)等。作為氧雜環丁烷化合物舉例為ARON OXETANE (註冊商標)系列(東亞合成股份有限公司製)、ETERNACOLL(註冊商標) OXBP或OXMA(宇部興產股份有限公司製)。作為該等之使用量,使用量若過少則無添加效果,使用量若過多則硬化速度過快,處理性降低,故相對於(B)之質量,較佳使用0.1~10質量%,更佳使用0.5~6質量%。
上述熱硬化性組成物(有時稱為保護膜墨水)中較佳含有(C)溶劑95.0質量%以上99.9質量%以下,更佳含96質量%以上99.7質量%以下,又更佳含97質量%以上99.5質量%以下。作為(C)溶劑,較佳直接使用(A)含羧基之透明聚胺基甲酸酯之合成所用之溶劑,但為了調整聚胺基甲酸酯樹脂之溶解性或印刷性,亦可使用其他溶劑。可使用之其他溶劑亦可為(A)含羧基之透明聚胺基甲酸酯之合成所用之較佳溶劑之SP值之範圍以外之溶劑。若考慮保護膜用之熱硬化性組成物之安定性,溶劑之沸點較佳為60℃至300℃,更佳為70℃至250℃。沸點未達60℃之情況,印刷時容易乾燥,容易產生不均。沸點高於300℃時,由於乾燥、硬化時需要於高溫下長時間之加熱處理,故不利於工業上生產。
作為此等溶劑,可使用丙二醇單甲醚乙酸酯(沸點146℃)、γ-丁內酯(沸點204℃)、二乙二醇單***乙酸酯(沸點218℃)、三丙二醇二甲醚(沸點243℃)等之聚胺基甲酸酯合成中所用之溶劑,或丙二醇二甲醚(沸點97℃)、二乙二醇二甲醚(沸點162℃)等之醚系溶劑、異丙醇(沸點82℃)、第三丁醇(沸點82℃)、丙二醇單甲醚(沸點120℃)、1-己醇(沸點151℃)、二乙二醇單甲醚(沸點194℃)、二乙二醇單***(沸點196℃)、二乙二醇單丁醚(沸點230℃)、三乙二醇(沸點276℃)、乳酸乙酯(沸點154℃)等之含羥基溶劑、甲基乙基酮(沸點80℃)、乙酸乙酯(沸點77℃)、乙酸正丙酯(沸點102℃)。該等溶劑可單獨使用1種,亦可混合2種以上使用。混合2種以上之情況,除了(A)含羧基之透明聚胺基甲酸酯之合成所用之溶劑以外,考慮使用之聚胺基甲酸酯樹脂、環氧樹脂等之溶解性,較佳併用不引起凝集或沉澱等、具有羥基之沸點超過100℃之溶劑,或基於保護膜墨水之乾燥性之觀點,較佳併用沸點為100℃以下之溶劑。
上述保護膜墨水,較佳以(C)溶劑之含有率為95.0質量%以上99.9質量以下之方式調配上述(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。進而根據需要,亦可調配(D)硬化促進劑。調配硬化促進劑(D)之情況,調配後可攪拌成均一後使用。
此等保護墨水中之固形分濃度亦根據期望膜厚或印刷方法而異,但較佳為0.1~10質量%,更佳為0.5質量%~5質量%。固形分濃度若為0.1~10質量%之範圍,則塗佈於透明導電薄膜上之情況不會發生因膜厚過厚所致之未產生電性接觸之缺點,且獲得具有充分耐候性・耐光性之保護膜。
又,保護膜墨水中若含有鹵素,則作成透明導電薄膜之保護膜的情況,由於鹵素殘存於保護膜中,對導電部造成不良影響,故鹵素含量越低越佳。作為保護膜墨水中含有之鹵素量,較佳為200質量ppm以下,更佳為100質量ppm以下,又更佳為50質量ppm以下,特佳為10ppm以下。(B)環氧化合物較佳使用未使用表氯醇作為合成原料之製法,例如藉由含碳-碳雙鍵之化合物之以過氧化氫等之過氧化物氧化等而製造之不含鹵素之環氧化合物。
使用上述之保護膜墨水,藉由棒塗佈印刷法、凹版印刷法、噴墨法、狹縫塗佈法等之印刷法,於形成有透明導電層之基材上形成印刷圖型,使此印刷圖型之溶劑乾燥並去除後,根據需要進行加熱處理而硬化成為保護膜。上述保護膜藉由形成於在透明基材上形成之透明導電層上,可獲得光照射後之薄片電阻及霧濁變化較少,具有具備保護膜之透明導電層之透明導電薄膜。本說明書中所謂「透明」意指全光線透過率為75%以上。
又,保護膜墨水藉由加熱而硬化之情況,係於溫度100℃以下且加熱時間10分鐘以下之條件加熱。
上述透明導電層可藉由將導電性墨水印刷於透明基材上而製作。尤其使用銀奈米線作為導電性墨水製作透明導電層之情況,由於銀奈米線之每單位質量之表面積大,微細配線等於高溫高濕時之絕緣信賴性低,故上述實施形態之保護膜墨水的保護為有效。
接著針對可設置上述保護膜之透明導電薄膜加以說明。透明導電薄膜具備:透明基材與於透明基材之至少一主面設置透明導電層,於透明導電層之與透明基材相反側之面之上述保護膜。透明導電薄膜於其單面或雙面亦可以具有保護機能之剝離(可分離)膜被覆。
<透明基材> 透明基材較佳為全光線透過率為80%以上。可適當使用例如聚酯(聚對苯二甲酸乙二酯[PET]、聚萘二甲酸乙二酯[PEN]等)、聚碳酸酯、丙烯酸樹脂(聚甲基丙烯酸甲酯[PMMA]等)、環烯烴聚合物等之樹脂膜。又,該等透明基材,於不損及光學特性、電氣特性或耐彎曲性之範圍,亦可具備單一或複數之易接著、光學調整(防眩、抗反射等)、硬塗覆等機能之層,亦可具備於單面或兩面。該等樹脂膜中,基於優異之光透過性(透明性)或柔軟性、機械特性等之方面,較佳使用聚對苯二甲酸乙二酯、環烯烴聚合物。作為環烯烴聚合物可使用降冰片烯之氫化開環茂金屬聚合型環烯烴聚合物(ZEONOR(註冊商標,日本ZEON股份有限公司製)、ZEONEX(註冊商標,日本ZEON股份有限公司製)、ARTON(註冊商標,JSR股份有限公司製)等)或降冰片烯/乙烯加成共聚型環烯烴聚合物(APEL(註冊商標,三井化學股份有限公司製)、TOPAS(註冊商標,POLYPLASTIC股份有限公司製))。該等中玻璃轉移溫度(Tg)為90~170℃者由於可耐受拉出配線或連接器部分等之後步驟中之加熱故而較佳,更佳為125~145℃者。厚度較佳為1~200μm,更佳為5~150μm,又更佳為8~100μm。
<透明導電層> 作為構成透明導電層之導電性纖維,舉例為金屬奈米線、碳纖維等,可適當使用金屬奈米線。金屬奈米線為直徑係奈米等級之尺寸的金屬,且係具有線狀形狀之導電性材料。又,本實施形態中,亦可與金屬奈米線一起(混合)或替代金屬奈米線而使用多孔或非多孔之具有管狀形狀之導電性材料的金屬奈米管。本說明書中,「線狀」與「管狀」均係線狀,但前者意味中央並非中空,而後者意味中央為中空。性狀可為柔軟,亦可為剛直。前者稱為「狹義之金屬奈米線」,後者稱為「狹義之金屬奈米管」,以下本說明書中,「金屬奈米線」係以包含狹義之金屬奈米線與狹義之金屬奈米管之意義而使用。狹義之金屬奈米線、狹義之金屬奈米管可單獨使用,亦可混合使用。
作為金屬奈米線之製造方法,可使用習知製造方法。例如銀奈米線可使用多元醇(Poly-ol)法,於聚乙烯吡咯啶酮存在下藉由使硝酸銀還原而合成(參考Chem. Mater., 2002, 14, 4736)。金奈米線亦同樣,可藉由於聚乙烯吡咯啶酮存在下藉由使氯金酸水合物還原而合成(參考J. Am. Chem. Soc., 2007, 129, 1733)。關於銀奈米線及金奈米線之大規模合成及純化技術詳細記述於國際公開第2008/073143號說明書及國際公開第2008/046058號說明書。具有多孔構造之金奈米線可以銀奈米線為鑄模,藉由使氯金酸溶液還原而合成。此處,鑄模所用之銀奈米線係藉由與氯金酸之氧化還原反應而溶出於溶液中,結果可為具有多孔構造之金奈米管(參考J.Am. Chem. Soc., 2004, 126, 3892-3901)。
金屬奈米線之徑粗細的平均較佳為1~500 nm,更佳為5~200nm,又更佳為5~100nm,特佳為10~50 nm。又,金屬奈米線之長軸長的平均平均較佳為1~100 μm,更佳為1~80μm,又更佳為2~70μm,特佳為5~50μm。金屬奈米線之徑粗細平均及長軸長的平均滿足上述範圍,並且較佳長寬比之平均大於5,更佳為10以上,又更佳為100以上,特佳為200以上。此處,長寬比係金屬奈米線之徑的平均徑近似於b,長軸之平均長近似於a之情況,以a/b求出之值。a及b可使用掃描型電子顯微鏡(SEM)及光學顯微鏡測定。具體而言,b(平均徑)可使用電場射出型掃描電子顯微鏡JSM-7000F(日本電子股份有限公司製),測定任意選擇之100根銀奈米線尺寸(徑),求出其算術平均值。又,a(平均長)之算出,可使用形狀測定雷射顯微鏡VK-X200(KEYENCE股份有限公司製),測定任意選擇之100根銀奈米線尺寸(長),求出其算術平均值。
作為此等金屬奈米線之材料,舉例為自金、銀、鉑、銅、鎳、鐵、鈷、鋅、釕、銠、鈀、鎘、鋨、銦所成之群選出之至少1種及組合該等金屬而成之合金等。為了獲得具有低表面電阻且高全光線透過率之塗膜,較佳包含至少1種之金、銀及銅之任一者。該等金屬由於導電性高,故獲得一定表面電阻之際,可減少表面上所佔之金屬密度,故可實現高的全光線透過率。該等金屬中,更佳包含金或銀之至少1種。作為最適態樣,舉例為銀之奈米線。
透明導電層包含導電性纖維與黏合劑樹脂。作為黏合劑樹脂,若為具有本發明課題之耐彎曲性及透明性者,則可未特別限制地使用,但使用利用多元醇法之金屬奈米線作為導電性纖維之情況,基於與其製造用溶劑(多元醇)之相容性之觀點,較佳使用於醇、水或醇與水之混合溶劑中可溶之黏合劑樹脂。具體而言可使用聚-N-乙烯基吡咯啶酮、甲基纖維素、羥乙基纖維素、羧甲基纖維素之水溶性纖維素系樹脂、丁縮醛樹脂、聚-N-乙烯基乙醯胺(PNVA(註冊商標))。聚-N-乙烯基乙醯胺係N-乙烯基乙醯胺(NVA)之均聚物,但亦可使用N-乙烯基乙醯胺(NVA)為70莫耳%以上之共聚物。作為可與NVA共聚合之單體舉例為例如N-乙烯基甲醯胺、N-乙烯基吡咯啶酮、丙烯酸、甲基丙烯酸、丙烯酸鈉、甲基丙烯酸鈉、丙烯醯胺、丙烯腈等。共聚合成分之含量若變多,則由於有所得透明導電薄膜之薄片電阻變高,銀奈米線與基板之密著性降低之傾向,且亦有耐熱性(開始熱分解之溫度)降低之傾向,故源自N-乙烯基乙醯胺之單體單位於聚合物中較佳含有70莫耳%以上,更佳含有80莫耳%以上,又更佳含有90莫耳%以上。此等聚合物之絕對分子量之以重量平均分子量計較佳為3萬~400萬,更佳為10萬~300萬,又更佳為30萬~150萬。絕對分子量係藉由以下方法測定者。
<絕對分子量測定> 於下述溶離液中溶解黏合劑樹脂,靜置20小時。該溶液中之黏合劑樹脂濃度為0.05質量%。 將其以0.45μm膜過濾器過濾,以GPC-MALS對濾液實施測定。 GPC:昭和電工股份有限公司製Shodex(註冊商標)SYSTEM 21 管柱:TOSOH股份有限公司製TSKgel(註冊商標) G6000PW 管柱溫度:40℃ 溶離液:0.1mol/L,NaH2 PO4 水溶液+0.1mol/L Na2 HPO4 水溶液 流速:0.64mL/min 試料注入量:100μL MALS檢測器:Wyatt Technology Corporation,DAWN(註冊商標) DSP 雷射波長:633nm 多角度套入法:Berry法
上述樹脂亦可單獨使用,亦可組合2種以上使用。組合2種以上之情況,單純混合即可,亦可使用共聚物。
上述透明導電層係藉由將包含上述導電性纖維、黏合劑樹脂及溶劑之導電性墨水印刷於透明基材之至少一主面上,乾燥去除溶劑而形成。
作為溶劑,若為導電性纖維顯示良好分散性,且溶解黏合劑樹脂之溶劑,則未特別限定,但於使用藉由多元醇法合成之金屬奈米線作為導電性纖維之情況,基於與其製造用溶劑(多元醇法)之相溶性之觀點,較佳為醇、水或醇與水之混合溶劑。如前述黏合劑樹脂亦較佳使用於醇、水或醇與水之混合溶劑中可溶之黏合劑樹脂。就可容易控制黏合劑樹脂之乾燥速度之觀點,更佳使用醇與水之混合溶劑。作為醇包含至少1種以Cn H2n+1 OH(n為1~3之整數)表示之碳原子數為1~3之飽和一價醇(甲醇、乙醇、正丙醇及異丙醇)[以下簡單記為「碳原子數為1~3之飽和一價醇」]。碳原子數為1~3之飽和一價醇於全部醇中較佳含40質量%以上。若使用碳原子數為1~3之飽和一價醇,則由於乾燥變容易故步驟上較方便。作為醇,可與碳原子數為1~3之飽和一價醇以外之醇併用。作為可併用之碳原子數為1~3之飽和一價醇以外之醇,舉例為乙二醇、丙二醇、乙二醇單甲醚、乙二醇單***、丙二醇單甲醚、丙二醇單***等。藉由與上述碳原子數為1~3之飽和一價醇併用,可調整乾燥速度。又,混合溶劑中之全部醇含有率適宜為5~90質量%。混合溶劑中之醇含有率未達5質量%或超過90質量%時,塗佈之際會發生條紋花樣(塗佈斑)之缺點。
上述導電性墨水可藉由以自轉公轉攪拌機等攪拌上述黏合劑樹脂、導電性纖維及溶劑並混合而製造。導電性墨水中所含之黏合劑樹脂含量較佳為0.01至1.0質量%之範圍。導電性墨水中所含之導電性纖維含量較佳為0.01至1.0質量%之範圍。作為導電性纖維與黏合劑樹脂之調配比(質量比),黏合劑樹脂相對於導電性纖維較佳為0.1~10。導電性墨水中含有之溶劑含量較佳為98.0至99.98質量%之範圍。
又,前述保護膜墨水同樣於導電性墨水中含有鹵素時,作成透明導電薄膜之導電層之情況,由於鹵素殘存於導電膜中,對導電部造成不良影響,故鹵素含量較低較佳。
導電性墨水之印刷可藉由棒塗佈法、旋轉塗佈法、噴霧塗佈法、凹版法、狹縫塗佈法等之印刷法進行。關於此時形成之印刷膜或圖型形狀並未特別限定,但舉例為形成於基材上之配線、電極圖型之形狀或作為被覆基材全面或一部分面之膜(整面圖型)之形狀等。所形成之圖型可藉由加熱使溶劑乾燥而導電化。溶劑乾燥後所得之透明導電層或透明導電圖型之較佳厚度係隨所使用之導電性纖維之直徑或期望之表面電阻值而異,但可為10~300 nm,更佳為30~200nm。若厚於10nm,則由於導電性纖維之交點數增加故顯示良好導電性。且若薄於300nm,則由於光容易透過而抑制導電性纖維所致之反射故顯示良好光學特性。所形成之透明導電層或透明導電圖型可藉由加熱使溶劑乾燥而導電化,但亦可根據需要對透明導電層或透明導電圖型進行適當光照射。 [實施例]
以下,具體說明本發明之實施例。又,以下實施例係為了容易理解本發明者,本發明並未受限於該等實施例。
<(A)含羧基之透明聚胺基甲酸酯之合成例> 合成例1. 於具備攪拌裝置、溫度計、冷凝器之2L三頸燒瓶中,饋入作為(a2)多元醇化合物之C-1015N(KURARAY股份有限公司製,聚碳酸酯二醇,於主骨架具有1,9-壬二醇與2-甲基-1,8-辛二醇,分子量1000(目錄值)) 23.23g、作為(a3)含羧基之二羥基化合物之2,2-二羥甲基丁酸(DMBA)(湖州長盛化工公司製) 15g及作為溶劑之丙二醇單甲醚乙酸酯(PMA(SP值:8.73)) 86.8g,於90℃下使前述2,2-二羥甲基丁酸溶解。
以目視確認已溶解後,藉由滴加漏斗,以30分鐘滴下作為(a1)聚異氰酸酯化合物之DESMODUR(註冊商標)-W((雙-(4-異氰酸基環己基)甲烷)、Sumika Covestro Urethane股份有限公司製) 32.78g。滴加結束後,升溫至100℃,於100℃進行反應7小時,以IR確認異氰酸基大致消失後,添加異丁醇0.5g,進而於100℃進行反應2小時。
以使固形分濃度成為35質量%之方式,追加作為溶劑之PMA 45.1g,攪拌直至均一。所得(A)含羧基之透明聚胺基甲酸酯之重量平均分子量為32300。
合成例2~13. 除了使用表1所示之原料以外,與合成例1同樣合成(A)含羧基之透明聚胺基甲酸酯。表中之合成例1使用之C-1015N以外之(a2)多元醇化合物之主骨架與分子量分別如以下。 UC-100:聚伸烷基碳酸酯二醇,分子量1000(目錄值)(宇部興產股份有限公司製) PH-50:聚伸烷基碳酸酯二醇,分子量500(目錄值)(宇部興產股份有限公司製) G3450J:聚伸烷基碳酸酯二醇,分子量800(目錄值)(旭化成化學股份有限公司製) T5651:聚伸烷基碳酸酯二醇,分子量1000(目錄值)(旭化成化學股份有限公司製)
合成例14~23 除了上述合成例1之溶劑變更為如表2所示以外,同樣進行合成。又,沸點為100℃以下之溶劑的情況,反應溫度係於比沸點低5℃之條件下反應。
表中之簡寫示於以下。又,NPAc係使用昭和電工股份有限公司製者,但其他溶劑係使用自富士軟片和光純藥股份有限公司購入者。 PGDM:丙二醇二甲醚(SP值:7.52) DEGDM:二乙二醇二甲醚(SP值:8.1) CPME:環戊基甲基醚(SP值:8.13) MTHP:4-甲基四氫吡喃(SP值:8.13) TEGDM:三乙二醇二甲醚(SP值:8.37) NPAc:乙酸正丙酯(SP值:8.72) BCA:二乙二醇單丁醚乙酸酯(SP值:8.94) ECA:二乙二醇單***乙酸酯(SP值:9.01) BDDA:1,4-丁二醇二乙酸酯(SP值:9.64) NMP:N-甲基吡咯啶酮(SP值:11.52)
<外觀檢查> 將合成例1~23所得之各聚胺基甲酸酯溶液之目視外觀示於表1及表2。 表1之合成例1~8中,可知僅改變多元醇、聚異氰酸酯、二羧酸、酸價等之條件,所得樹脂外觀並未變化。合成例1、2、3、5、8與合成例9~13,可知僅變更各合成時之溶劑,但有著色之狀況。
又,由表2可知即使所得樹脂骨架相同,僅改變溶劑,外觀亦有顯著變化。
由該等結果可知合成時使用之溶劑對著色造成大幅影響,於探討範圍內並非起因於特定樹脂構造。又關於白濁或乳白,係起因於樹脂彼此之相溶性,由於設為最終所用之形狀的膜狀之情況成為透明故無問題,作成保護膜墨水組成物之際,由於藉由添加良溶劑而消除混濁,故亦無任何問題。
Figure 02_image009
Figure 02_image011
<光學特性評價> 實施例1 於合成例14所得之固形分濃度35質量%之聚胺基甲酸酯樹脂溶液10g中,添加1-己醇(東洋合成化學工業公司製) 10g,以AS ONE製攪拌振盪機攪拌3小時,設為固形分濃度17.5質量%。隨後使用附測微計之膜塗覆器(TAKUMI技研股份有限公司製),於未進行表面處理之COP膜(日本ZEON股份有限公司製ZF14-100,厚100μm)以濕膜厚300μm予以塗佈,於100℃乾燥30分鐘。將於COP膜上所得之透明聚胺基甲酸酯膜自COP剝離,以測微計測定之膜厚為50μm。使用該膜切出3cm×3cm之尺寸的試驗片依據JIS Z8722之色測定法使用日本電色工業製色彩色差計COH7700,將光源設為D65,測定色彩色差(b*值)。
實施例2~10、比較例1、2 除了使用表3所示之各合成例所得之聚胺基甲酸酯樹脂溶液以外,與實施例1同樣測定。結果示於表3。
Figure 02_image013
由表3可知實施例1~10中,適於用以獲得光學特性尤其是b*值為0.25以下且無色透明之膜。
<保護膜用熱硬化性組成物> 調製例1 添加作為(A)含羧基之透明聚胺基甲酸酯之合成例14所得之35質量%聚胺基甲酸酯樹脂溶液10g、作為(B)環氧樹脂之季戊四醇四縮水甘油醚(昭和電工股份有限公司製) 0.49g、作為(D)硬化促進劑之U-CAT(註冊商標) 5003為0.24g、作為(C)溶劑之1-己醇65.19g、乙酸乙酯(富士軟片和光純藥公司製) 65.19g,以攪拌振盪機攪拌2小時以使均一。所得保護膜墨水之鹵素含量為10質量ppm以下。鹵素原子之含量係依據JIS K7243-3測定之值。
調製例2~12 除了聚胺基甲酸酯樹脂溶液分別替代為表4所示者以外,與調製例1同樣製作組成物。
調製例13、14 除了聚胺基甲酸酯樹脂溶液分別替代為表4所示者,硬化促進劑替代為U-CAT(註冊商標) SA102(SAN APRO股份有限公司製)以外,與調製例1同樣製作組成物。
調製例15 除了聚胺基甲酸酯樹脂溶液分別替代為表4所示者,不使用硬化促進劑以外,與調製例1同樣製作組成物。
<透明導電薄膜> <銀奈米線之製作> 將聚乙烯吡咯啶酮K-90(日本觸媒(股)製)(0.98g)、AgNO3 (1.04g)及FeCl3 (0.8mg)溶解於乙二醇(250ml),於150℃加熱反應1小時。使所得銀奈米線粗分散液分散於甲醇2000ml中,流入桌上小型試驗機(日本礙子股份有限公司製,使用陶瓷膜過濾器CEFILT,膜面積0.24m2 ,孔徑2.0μm,尺寸ϕ30mm×250mm,過濾差壓0.01MPa),以循環流速12L/min,分散液溫度25℃,實施橫向流過濾(cross flow filtration)去除雜質後,濃縮至全體量為100g,獲得銀奈米線(平均直徑:26nm,平均長度:20μm)之甲醇分散液。所得銀奈米線之平均徑之算出係使用電場射出型掃描顯微鏡JSM-7000F(日本電子股份有限公司製),測定任意選擇之100根銀奈米線尺寸,求出其算術平均值。又,所得銀奈米線之平均長之算出係使用形狀測定雷射顯微鏡VK-X200 (KENYENCE股份有限公司製),測定任意選擇之100根銀奈米線尺寸,求出其算術平均值。又,上述甲醇、乙二醇、AgNO3 、FeCl3 係使用富士軟片和光純藥股份有限公司試藥。
<導電性墨水(銀奈米線墨水)製作> 將以上述多元醇法合成之銀奈米線之甲醇分散液11g (銀奈米線濃度0.62質量%)、水3.5g、乙醇10.8g(富士軟片和光純藥股份有限公司製)、丙二醇單甲醚(PGME,富士軟片和光純藥股份有限公司製) 12.8g、丙二醇1.2g(PG,旭玻璃股份有限公司製)、PNVA(註冊商標)水溶液(昭和電工股份有限公司製,固形分濃度10質量%,重量平均分子量90萬) 0.7g混合,以攪拌振盪器VMR-5R(AS ONE股份有限公司製)於室溫、大氣環境下攪拌1小時(旋轉速度100 rpm),製作銀奈米線墨水40g。
<透明導電層(銀奈米線層)之形成> 使用電漿處理裝置(積水化學工業股份有限公司製AP-T03)進行電漿處理(使用氣體:氮氣,搬送速度:50mm/ sec,處理時間:6秒,設定電壓:400V),於作為透明基材之A4尺寸的環烯烴聚合物膜ZF14-050(日本ZEON股份有限公司製厚50μm)上,使用TQC自動膜塗覆器標準(COTEC股份有限公司製)與無線棒塗佈器OSP-CN-22L(COTEC股份有限公司製),以濕膜厚成為22μm之方式於透明基材(ZF14-050)全面塗佈銀奈米線墨水(塗佈速度500mm/sec)。隨後,以恆溫器HISPEC HS350(楠本化成股份有限公司製)於80℃、大氣環境下熱風乾燥1分鐘,形成銀奈米線層(乾燥後膜厚:90nm)。膜厚係使用基於光干涉法之膜厚測定系統F20-UV(FILMETRICS股份有限公司製)進行測定。改變測定部位,使用3點測定之平均值作為膜厚。解析係使用450nm至800nm之光譜。依據該測定系統,可直接測定形成於透明基材(ZF14-050)上之銀奈米線墨水塗膜(透明導電層)之膜厚(Tc)。
<保護膜之形成(透明導電薄膜之製作)> 實施例11 於形成於透明基材上之銀奈米線層之上,藉由TQC自動膜塗覆器標準(COTEC股份有限公司製),使用無線棒塗佈器OSP-CN-10M以濕膜厚成為5μm之方式塗佈表4所示之調製例1之保護膜用熱硬化性組成物。隨後,以恆溫器HISPEC HS350(楠本化成股份有限公司製)於80℃、大氣環境下熱風乾燥(熱硬化)1分鐘,形成保護膜(乾燥後膜厚:90nm)。保護膜之膜厚係與前述銀奈米線墨水塗膜之膜厚同樣使用基於光干涉法之膜厚測定系統F20-UV (FILMETRICS股份有限公司製)進行測定。改變測定部位,使用3點測定之平均值作為膜厚。解析係使用450nm至800nm之光譜。依據該測定系統,由於可直接測定形成於透明基材上之銀奈米線墨水塗膜(透明導電層)之膜厚(Tc)與形成於其上之保護膜膜厚(Tp)之總膜厚(Tc+Tp),故藉由自該測定值減去先前測定之銀奈米線墨水塗膜(透明導電層)之膜厚(Tc)而獲得保護膜膜厚(Tp)。
實施例12~23、比較例3、4 除了保護膜用組成物分別替代為表4所示者以外,與實施例11同樣製作透明導電薄膜。
<表面電阻測定> 自於上述A4尺寸全面塗佈之銀奈米線塗膜切出3cm×3cm之試驗片,將手動式非破壞電阻測定器EC-80P (NAPSON股份有限公司製)之端子碰觸至試驗片中心部進行測定。任一膜均顯示約40Ω/□之薄片電阻值。
<全光線透過率、濁度測定、色彩測定(b*)> 使用上述3cm×3cm之試驗片,依據JIS Z8722之色測定法、JIS K7361-1之透明材料之全光線透過率測定法、JIS K7136之透明材料之濁度求出方法,使用色彩色差計COH7700(日本電色工業股份有限公司製),將光源設為D65,測定全光線透過率、濁度、色彩色差(b*值)。測定結果彙總示於表4。
Figure 02_image015
由表4可知自使用SP值為9.80以上之溶劑合成之樹脂調製之附保護膜之透明導電薄膜外觀產生虹斑或霧濁,b*值超過1.00。尤其使用SP值超過10之NMP之情況,濁度亦為超過2.0之值,可知不適於透明導電薄膜。相對於此,如實施例11~23之使用SP值未達9.80之溶劑合成保護膜樹脂之情況,濁度為2.0以下,b*值未達1.00可知適於透明導電薄膜。

Claims (14)

  1. 一種(A)含羧基之透明聚胺基甲酸酯,其特徵為膜形成為厚度50μm時之b*值為0.25以下。
  2. 如請求項1之(A)含羧基之透明聚胺基甲酸酯,其中前述(A)含羧基之透明聚胺基甲酸酯係使用(a1)聚異氰酸酯化合物、(a2)多元醇化合物及(a3)含羧基之二羥基化合物作為單體而合成者。
  3. 如請求項2之(A)含羧基之透明聚胺基甲酸酯,其中前述(a2)多元醇化合物係聚碳酸酯多元醇。
  4. 如請求項2或3之(A)含羧基之透明聚胺基甲酸酯,其中前述(a1)聚異氰酸酯化合物係脂肪族聚異氰酸酯或脂環式聚異氰酸酯。
  5. 一種熱硬化性組成物,其包含膜形成為厚度50μm時之b*值為0.25以下之(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。
  6. 如請求項5之熱硬化性組成物,其中進而包含(D)硬化促進劑。
  7. 如請求項5或6之熱硬化性組成物,其中前述(B)環氧化合物係一個分子中具有3個以上環氧基之多官能環氧化合物。
  8. 一種透明導電薄膜,其具有透明基材、設置於透明基材上之至少一表面之透明導電層及設置於該透明導電層之與透明基材相反側之面的保護膜,其特徵係 前述保護膜係熱硬化性組成物之硬化膜,該熱硬化性組成物包含膜形成為厚度50μm時之b*值為0.25以下之(A)含羧基之透明聚胺基甲酸酯、(B)環氧化合物及(C)溶劑。
  9. 如請求項8之透明導電薄膜,其中前述透明導電層包含金屬奈米線。
  10. 如請求項9之透明導電薄膜,其中前述金屬奈米線為銀奈米線。
  11. 一種如請求項1至4中任一項之(A)含羧基之透明聚胺基甲酸酯之製造方法,其特徵係使用藉由Fedors之推算法之SP值未達9.80之溶劑作為合成溶劑。
  12. 如請求項11之透明聚胺基甲酸酯之製造方法,其中前述溶劑係選自由二乙醇單丁醚乙酸酯、1,4-丁二醇二乙酸酯、三丙二醇二甲醚、丙二醇二甲醚、二乙二醇二丁醚、三乙二醇二甲醚、二丙二醇二甲醚、三丙二醇二甲醚、乙酸正丙酯、乙酸正丁酯、1,4-二噁烷、甲基乙基酮、甲基異丁基酮、二異丁基酮、異佛酮、四氫呋喃、4-甲基四氫吡喃、環戊基甲基醚所成之群之任一者。
  13. 如請求項11之透明聚胺基甲酸酯之製造方法,其中前述溶劑係4-甲基四氫吡喃或三乙二醇二甲醚。
  14. 如請求項11之透明聚胺基甲酸酯之製造方法,其中前述溶劑為甲基四氫吡喃。
TW109133044A 2019-09-26 2020-09-24 透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜 TW202126715A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175994 2019-09-26
JP2019-175994 2019-09-26

Publications (1)

Publication Number Publication Date
TW202126715A true TW202126715A (zh) 2021-07-16

Family

ID=75165760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133044A TW202126715A (zh) 2019-09-26 2020-09-24 透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜

Country Status (3)

Country Link
JP (1) JPWO2021060149A1 (zh)
TW (1) TW202126715A (zh)
WO (1) WO2021060149A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017218A (ja) * 2013-07-12 2015-01-29 株式会社クラレ 4−メチルテトラヒドロピランを溶媒とするカチオン重合方法
US10811165B2 (en) * 2014-12-05 2020-10-20 Kuraray Co., Ltd. Insulation material
JP6543005B2 (ja) * 2016-12-01 2019-07-10 昭和電工株式会社 透明導電基板及びその製造方法
US10995235B2 (en) * 2016-12-01 2021-05-04 Showa Denko K.K. Composition for forming protective film for electroconductive pattern, protective film for electroconductive pattern, method for producing protective film, and method for producing transparent electroconductive film

Also Published As

Publication number Publication date
WO2021060149A1 (ja) 2021-04-01
JPWO2021060149A1 (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6543005B2 (ja) 透明導電基板及びその製造方法
CN112292265B (zh) 透明导电膜叠层体及其加工方法
WO2020171022A1 (ja) 透明導電基体及びこれを含むタッチパネル
CN114555366B (zh) 透明导电膜层合体及其加工方法
TWI745988B (zh) 透明導電膜之製造方法
TW202126715A (zh) 透明聚胺基甲酸酯及其製造方法,以及包含透明聚胺基甲酸酯之熱硬化性組成物及透明導電薄膜
TWI749570B (zh) 透明導電膜之製造方法
CN112970075B (zh) 透明导电膜的制造方法
JP7435831B2 (ja) 透明導電フィルム積層体
JP2024067269A (ja) 透明導電フィルム積層体及びその製造方法並びに成形用透明導電フィルム積層体
TWI775458B (zh) 透明導電基體
CN211578399U (zh) 透明导电基板
JP2023095255A (ja) ヒータ