TW202106637A - 製造玻璃帶的設備和方法 - Google Patents

製造玻璃帶的設備和方法 Download PDF

Info

Publication number
TW202106637A
TW202106637A TW109123993A TW109123993A TW202106637A TW 202106637 A TW202106637 A TW 202106637A TW 109123993 A TW109123993 A TW 109123993A TW 109123993 A TW109123993 A TW 109123993A TW 202106637 A TW202106637 A TW 202106637A
Authority
TW
Taiwan
Prior art keywords
guide body
stretching
nozzle opening
glass
fine
Prior art date
Application number
TW109123993A
Other languages
English (en)
Inventor
亞力山大 加拉基
克利斯汀 布賴特巴赫
霍爾格 休尼烏斯
烏爾里奇 蘭格
沃爾夫岡 默西
格雷戈爾 羅塞爾
沃爾克 塞伯特
霍爾格 偉格納
Original Assignee
德商首德公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商首德公司 filed Critical 德商首德公司
Publication of TW202106637A publication Critical patent/TW202106637A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

本發明的目的是提供一種用於拉伸玻璃帶的設備,該設備改善了玻璃帶的形狀且避免了玻璃缺陷。為了此目的,提供一種用於從熔融玻璃(5)中拉伸玻璃帶(3)的設備(1),該設備(1)包括用於容納熔融玻璃(5)的拉伸槽(7),其具有熔融玻璃(5)可通過而向下排出的下噴嘴口(9),其中,該設備包括從拉伸槽(7)之噴嘴口(9)向下突伸出的導向體(11),其中,導向體(11)係被支撐成與噴嘴口(9)的邊緣(90、92)隔開,從而在導向體(11)和噴嘴口(9)的邊緣(90、92)之間界定出兩個噴嘴狹槽(94、96),其中,導向體(11)係至少沿著噴嘴口(9)的中心部分以自支撐的方式懸掛。

Description

製造玻璃帶的設備和方法
本發明總體上涉及玻璃製造。更具體地,本發明涉及採用下拉製程製造玻璃帶。
已知各種用於製造玻璃帶的拉伸製程。除浮法製程外,也採用垂直拉伸製程,例如溢流熔融製程和下拉製程。浮法製程特別用於待製造的寬玻璃片。該技術的缺點在於:因為玻璃帶的一面暴露,而另一面與錫槽接觸,所以玻璃的兩面在性能上有很大不同。除此之外,也會導致玻璃支承在錫槽上的那面受到錫污染。
相比之下,下拉製程可用於製造表面完全相似的玻璃帶。此外,下拉製程特別適合於製造很薄的玻璃和寬玻璃帶。
在下拉製程中,拉伸槽確保玻璃均勻向下分佈到噴嘴狹槽,玻璃在熱成形溫度下通過該噴嘴狹槽排出。在沒有導向體(也稱為內噴嘴的葉片體)的下拉情況下,由於玻璃在拉伸頭區域的停留時間短,因此所生產的物品的表面品質較差,尤其是具有細紋,也稱為波紋。通過這種方式,無法有效地消除在噴嘴出口處的玻璃的撕裂邊緣上產生的不均勻現象。此外,在這種情況下,該製程要求噴嘴具有狹槽形狀,該狹槽形狀必須與各種情況下待形成的厚度相適應。一旦待形成的厚度尺寸發生變化,就會因為調機時間和材料要求增加而導致停機。
使用導向體可以改善這種狀況。然而,更一般的情況下,導向體會影響熔融玻璃在拉伸槽中的流動,從而可能導致厚度變化和玻璃缺陷(例如,特別是條紋)。
因此,本發明的目的是提供一種用於拉伸玻璃帶的裝置及相應的方法,該裝置及相應的方法提高了玻璃帶的形狀精度、尺寸一致性並且避免了玻璃缺陷。該目的是通過獨立請求項的標的實現的。在相應的附屬請求項中說明了其它有利的實施例。因此,本發明提供了一種用於從熔融玻璃拉伸玻璃帶的設備,該設備包括用於容納熔融玻璃的拉伸槽,該拉伸槽具有較佳為間隙狀或狹槽狀的下噴嘴口,熔融玻璃可以通過該下噴嘴口向下排出。該設備還包括導向體,該導向體從拉伸槽的噴嘴口向下突伸出。導向體係被支撐成與噴嘴口的邊緣隔開,從而在導向體和噴嘴口的邊緣之間界定出兩個噴嘴狹槽。同時,導向體在其兩個相對端部得到支撐,使得導向體以自支撐的方式沿著噴嘴口懸掛。
在自支撐懸掛的情況下,特別是對於寬玻璃帶,由於高溫拉伸過程中的機械負荷,設備的某些部分可能會隨著時間的流逝而發生蠕變變形,影響噴嘴和導向體的幾何形狀。特別是在要加工具有高軟化溫度的玻璃時,會出現該問題。為此,根據一個較佳實施例,可以想到:導向體包括作為載體材料的細晶粒穩定的金屬。
因為導向體沿著噴嘴狹槽以自支撐的方式延伸,也就是說,避免了在裝有熔融玻璃的拉伸槽內設置用於導向體的支撐裝置或支柱,因此,熔融玻璃的流動不受此類結構的影響。通過這種方式,實現了非常均勻的玻璃流動,並且拉伸出厚度相對均勻的玻璃帶。但是,一方面由於導向體本身的重量,另一方面由於玻璃帶的拉出,彎矩因端部的懸掛而作用在導向體上,這可能造成導向體的蠕變變形。通過導向體的支撐結構中的細晶粒穩定的金屬,可以防止這種蠕變變形。
上述裝置可以實施用於製造玻璃帶的方法,其中,將熔融玻璃送入拉伸槽,拉伸槽具有供熔融玻璃排出的下噴嘴口,其中,在拉伸槽內佈置導向體,且該導向體從拉伸槽的噴嘴口向下突伸出,導向體係被支撐成與噴嘴口的邊緣隔開,從而在導向體和噴嘴口的邊緣之間界定出兩個噴嘴狹槽,其中,導向體通過其兩個相對側端被懸掛,使其以自支撐的方式沿著噴嘴口延伸,亦即,沿著其縱向延伸,以及其中,熔融玻璃自拉伸槽從噴嘴狹槽中分為兩條支流流出,並沿著導向體之從噴嘴口突伸出的部分流動,該等支流在導向體的下端處匯合,形成拉伸頭(drawing onion),從拉伸頭中拉出玻璃帶,以及其中,藉由玻璃帶的拉出而作用在導向體上的拉力係被導向體在其側端處的懸掛所吸收。
與未使用導向體的玻璃帶拉伸製程相比,使用導向體的下拉製程由於拉伸槽開口更大且產品表面品質更好而可以實現更高的玻璃產量。因為熔融玻璃從噴嘴流出後在導向體上的停留時間延長。另一個優點在於:在這種情況下,可以在溫度升高的情況下在噴嘴區域中進行操作,因為103.5 dPa∙s至104.5 dPa∙s的成形黏度不需要在噴嘴狹槽中實現,僅需在導向體的下邊緣實現。對於結晶敏感的玻璃和玻璃陶瓷,這是非常有利的,並且可以提高產量。與採用陶瓷溢流槽的溢流熔融製程相比,下拉製程(無論是否採用導向體)的優勢在於:沒有中心條紋或中心條紋(這是由槽的陶瓷引起的)減少。因此,沿厚度方向的玻璃組分均勻性非常高。而且,由於目前提出的自支撐懸掛,導向體不會在玻璃中造成任何不均勻性。此外,該製程具有高度的靈活性,因為在該製程停止之後,可以更換這些工具,也可以以後再次使用這些工具。此外,珠狀件的厚度相對減小,這尤其使得更容易將玻璃帶偏轉到退火爐出口的水平下游處進行進一步加工,特別地,還提高了效率和產量。
根據一個實施例,至少一種細晶粒穩定形式的以下貴金屬合金用於導向體,並且可選地,還用於拉伸槽,特別是噴嘴口附近的拉伸槽部分:0%≤x≤100%、0%≤y≤20%、0%≤z≤20%的Ptx Rhy AuZ , 0%≤u≤100%,0%≤v≤20%的Ptu Irv 合金。 如果不進行細晶粒穩定化,在超過1100℃的高溫下,尤其是在超過1250℃的臨界溫度下,這些合金無法再完全穩定地抵抗蠕變過程,隨著時間的推移,這會加劇工具的變形。然而,此處所述的裝置通常允許在高於1100℃的成形溫度下從玻璃中拉伸玻璃帶,而並不限於上述特定合金。在本揭示中,成形溫度是指玻璃具有104 dPa·s的黏度時的溫度。
在使用葉片體或導向體的下拉製程中,拉伸槽、狹槽式噴嘴和導向體形成一個系統,該系統影響黏性玻璃的厚度分佈(縱向和橫向分佈)。在此,該系統良好的長期穩定性是非常有利的。即使在高拉伸力的情況下,當前所述的組件也可以使用運用導向體的下拉方法 。根據一個實施例,可以設想:以每1000 mm玻璃帶寬度大於100 N的拉力從噴嘴或拉伸槽中拉出玻璃帶。對於熱成形溫度超過1200℃的玻璃,這甚至也是可能的。
在1450℃的熱成形溫度下,在受到拉力的組件區域中使用具有夾層結構和細晶粒穩定貴金屬組件的葉片或導向體時,即使在製備超過兩周後,也未觀察到品質臨界變形。
特別地,適用於細晶粒穩定的載體材料的金屬包括鉑和鉑合金,尤其是Pt、PtRh、PtAu、PtRhAu和PtIr,較佳具有上述百分比。可以通過熔融冶金製程或粉末冶金製程生產載體材料。較佳將奈米顆粒用於細晶粒穩定化。ZrO2 非常適合用作細晶粒的材料。特別地,當金屬熔融時或當合金混合熔融時,可以添加細晶粒,使其分佈在熔體中。通常,也可以採用粉末冶金法生產細晶粒穩定組件。為此,將金屬顆粒和細晶粒混合,並將混合物燒結在一起。
完全由細晶粒穩定的金屬製成的導向體特別穩定。
根據另一個實施例,導向體可由多個部件組成,在這種情況下,至少一個部件或組件是由細晶粒穩定的金屬製成的。在這種情況下,特別地,該導向體是由細晶粒穩定的金屬和另一種材料製成的夾層結構。另一種材料可以是金屬或非金屬的耐高溫材料。通常也可以在陶瓷表面覆蓋穩定合金或部分穩定合金,以增強其抗蠕變性並防止陶瓷腐蝕。因此,根據一個實施例,導向體包括至少一個陶瓷元件,該陶瓷元件塗覆有細晶粒穩定的金屬。
完全由細晶粒穩定的金屬製成的導向體的實施例的變體具有穩定性增強的優點。其缺點是:由於穩定材料的浮動效應和脆性增強,增加了材料成本且降低了可焊性。
就材料成本和可焊性而言,較佳的是包括導向體的夾層結構或與非細晶粒穩定的金屬組合的另一種變體,但其預期的使用壽命較短。此類穩定材料的供應商為例如Umicore、Furuya、Heraeus、Tanaka,每個供應商都有其各自的材料(例如,Umicore的PtRh10 FKS Rigilit、PtRh10 FKS Saeculit;Heraeus的PtRh10 DPH或DPH-A等)。具有高抗蠕變性的貴金屬例如純銥不太適合,因為它們不抗氧化。
圖1示出了用於從熔融玻璃5中拉伸玻璃帶3的設備1的某些部分。設備1包括用於容納熔融玻璃5的拉伸槽7,在其下端處具有噴嘴口9,熔融玻璃5可以通過該噴嘴口向下排出。導向體11佈置在拉伸槽7的內部,且從拉伸槽7的噴嘴口9向下突伸出。當導向體11延伸穿過噴嘴口時,將其細分為兩個噴嘴狹槽94、96。熔融玻璃5從噴嘴狹槽94、96中分成兩條支流50、52流出,這兩條支流沿著導向體11向下流動,且在導向體11之突伸出噴嘴口9的部分100的下端處匯合。兩條支流匯合並藉由拉伸形成玻璃帶的區域稱為拉伸頭15。在拉伸過程中,玻璃帶3的厚度隨著玻璃的拉伸而減小。同時,隨著其與噴嘴口9之間的距離增加,玻璃溫度降低,並且相應地黏度增加直到固化。
通常較佳的是,導向體11從噴嘴口9突伸出至少30 mm,較佳至少80 mm。這確保了熔融玻璃在導向體11上的良好分佈,從而防止玻璃帶的厚度發生變化。
不限於所示例子,可能有利的是,導向體11包括阻體101,該阻體101佈置在拉伸槽7內且由導向體11上端的增厚部分組成,與導向體11的下鄰接部分相比,使熔融玻璃5的流動橫截面變窄。可將導向體11的下部稱為翅片或葉片103。因此,更一般地,根據本發明的一個實施例,提出以下建議:導向體11包括阻體101和佈置在該阻體101下方的葉片103,以及阻體101的寬度大於葉片103的寬度,以限制拉伸槽7中的流動橫截面。
較佳地,從噴嘴口9到阻流體或阻體101的下邊緣的距離通常為至少3 mm,較佳為至少8 mm。
為了拉出玻璃帶3,可提供拉伸裝置17,該拉伸裝置可包括例如一對或多對從動輥。拉伸使拉力施加在玻璃帶3上,該拉力通常至少主要作用在導向體11上。除了重力之外,該拉力也作用在相同的方向上。為了固定導向體11並吸收這些作用力,可使用由熔融玻璃5包圍的支柱將導向體11支撐在拉伸槽中。這種支撐在機械上是非常穩定的。但是,有人已經發現這可能對玻璃帶3的品質產生不利影響。與此相反,本發明總體上設想至少沿著噴嘴口9的中心部分以自支撐的方式懸掛導向體11。根據另一個實施例,尤其可以想到:通過拉伸形成玻璃帶3,其具有厚度均勻的中心區域和厚度大於中心區域厚度的兩個邊緣側的珠狀件,以及將導向體11懸掛使其至少沿著噴嘴口之形成厚度均勻的中心區域的部分以自支撐方式延伸。
圖2示出了根據一個實施例的處於懸掛狀態的導向體11和玻璃帶3的橫截面。該玻璃帶3包括中心區域30以及邊緣上的珠狀件31、33,沿著該中心區域,玻璃帶3的厚度完全不會發生變化或僅略有變化。中心區域30是所謂的品質區域,由該品質區域生產待製造的玻璃製品。通常,分離珠狀件31、33,並且可將珠狀件的玻璃重新熔融並放回拉伸槽7中。將導向體11懸掛在底座19上。支撐區域21(其中作用在導向體11的力在該區域被傳遞至底座19)離側邊足夠近,使得這些區域位於品質區域或中心區域30的外部。在這些區域21之間,導向體11是自支撐的,也就是說沒有另外的懸掛點。圖3示出了該實施例的具體實施方式。
圖3是穿過拉伸槽的剖面示意圖,其中剖切方向以具有垂直剖切平面的噴嘴口9為中心。在拉伸槽7之設有噴嘴口的底部70上放置有支撐元件23,導向體11支承在這些支撐元件上。如圖所示,支撐元件23可放置成靠近噴嘴口9處且跨過噴嘴口9。導向體11在支撐元件23上的支撐點形成支承區域,特別是導向體11的支撐區域21。
根據本發明的一個實施例,不限於所示的例子,通常可以想到:拉伸噴嘴中的導向體11位於支撐元件23上,且在支撐區域21之間以自支撐的方式由支撐元件23保持。
通常,較佳地,將導向體11設計成使得當以每1000 mm玻璃帶寬度大於100 N的拉力從拉伸槽7拉出玻璃帶時,導向體11不會明顯彎曲。
圖4示意性地示出了另一個特佳的實施例的例子。在此,示出了拉伸槽7的透視圖。該視圖還示出了入口74,通過該入口74將熔融玻璃引入到拉伸槽7中。在此例子中,兩個端板71側向封閉拉伸槽7。端板71具有開口72,導向體11的懸桿或懸臂110、111穿過開口72突伸出。這些懸臂110、111位於佈置在拉伸槽7外部的底座19上。導向體11以自支撐方式懸掛在其間的支撐區域21因此係位於拉伸槽7的外部,並因此也位於在拉伸槽7中向下流動的熔融玻璃的外部。因此,不限於所示出的例子,根據用於拉伸玻璃帶的設備的一個實施例,可以想到:將導向體11支撐在拉伸槽7的外部。在這種情況下,特別地,導向體以自支撐的方式延伸跨過拉伸槽7的整個內部。通過這種方式,防止玻璃流動受到底座的影響。這樣可以確保玻璃品質的一致性並防止出現條紋。
該裝置還具有另一個優點。通過這種方式,將導向體11的底座與拉伸槽7分離,使得可以在不移除導向體11的情況下,更換拉伸槽的部分。這尤其適用於噴嘴狹槽或拉伸槽7之界定出該噴嘴狹槽9的部分。在所示的例子中,可以在不移除導向體11的情況下,更換底板97、98,或更通常地更換包括該底板的壁的某些部分。這樣可以更換底板,從而改變噴嘴口9的寬度,而在更換期間不必移除導向體11。不限於圖4的具體例子,因此,根據本發明的另一個實施例,可以想到:拉伸槽構造成可以更換拉伸槽7之界定出噴嘴口9的某些部分,而導向體11仍位於其底座中。
然而,以自支撐方式安裝導向體11,在重力和拉伸裝置17施加的力的影響下,隨著時間的推移,可能發生蠕變變形,特別是在熱熔融玻璃的情況下。為了減少組件在受到高溫、自身重量和拉伸力的應力作用時產生的蠕變效應,提高葉片體和噴嘴材料的加工穩定性,從而延長設備1的使用壽命,根據一個較佳實施例,可以想到:導向體11包括細晶粒穩定的金屬。
在這方面,圖5示出了適用於玻璃製造的幾種合金的蠕變速率
Figure 02_image001
的測量值與所施加的機械張力
Figure 02_image003
的函數關係圖。所有讀數均在1400℃的材料溫度下採集。曲線(a)示出了非細晶粒穩定的常規鉑銠合金的測量值。曲線(b)和(c)表示兩種不同的細晶粒穩定合金的測量值。在5 MPa的機械應力下,曲線(b)表示的合金的蠕變速率已經比非細晶粒穩定材料的蠕變速率低兩個數量級。對於測量值由曲線(c)表示的材料,該值甚至大於5個數量級,儘管與非細晶粒穩定材料的情況相比,此處的蠕變速率隨著應力的增加而增加的更快。通過為了實現穩定而添加的顆粒的數量、類型和大小,可以影響並調整細晶粒穩定合金的性能。在任何情況下,將細晶粒穩定合金用於導向體,可以加工成形溫度超過1100℃、甚至1400℃或更高的玻璃,如圖5所示。
細晶粒穩定的金屬的例子包括:例如,Umicore的以名稱PtRh10 FKS Rigilit、PtRh10 FKS Saeculit銷售的材料和Heraeus的以名稱PtRh10 DPH或DPH-A銷售的材料。除了圖5中的測量值所基於的PtRh合金外,還可以使用Pt、PtAu、PtRhAu和PtIr作為細晶粒穩定材料。通常,穩定顆粒可以由氧化顆粒組成或包括氧化顆粒。例如,ZrO2 顆粒是合適的。
具有高抗蠕變性的貴金屬例如純銥不是首選的替代品,因為它們通常抗氧化性較差。通常也可以在陶瓷上塗覆穩定或部分穩定合金,以增強抗蠕變性並防止陶瓷腐蝕。
根據一個實施例,導向體11完全由細晶粒穩定材料製成。通過這種方式,其在高溫下具有特別高的抗蠕變性能。但是,這樣增加了材料成本。而且,由於穩定顆粒可能會浮起,因此由細晶粒穩定合金製成的部分不容易焊接,這顯著降低了焊接區域的穩定性。此外,由於微結構中包含的顆粒,這些穩定金屬比非穩定材料更脆。
因此,根據另一個實施例,可以設想:提供一種多件式導向體11,其包括至少一個由細晶粒穩定的金屬製成的組件。多件式結構的優點是材料成本較低,但其使用壽命較短。在這種情況下,特別地,該導向體可包括夾層結構,該夾層結構由細晶粒穩定的金屬和至少一種其它材料製成。蠕變變形在承受高拉伸應力的區域尤其重要。因此,根據另一個實施例,可以想到:導向體11由多件部件組成,並且導向體11的下部是由細晶粒穩定材料製成的部分。術語「下部」是指導向體11之處於其安裝狀態的部分的位置。
在圖4的例子中,導向體11包括在此較厚的上部112和下部114,下部114包括從噴嘴口9突伸出的導向體11的部分100。由於導向體11的自身重量和拉伸裝置17施加在玻璃帶上的力,該下部114受到拉伸應力。如圖1的例子所示,由於厚度尺寸較大,部分112界定出阻體101。從噴嘴口突伸出的下部100具有葉片103的形狀。
現在將更詳細地說明導向體11和噴嘴口9的形狀和結構的幾個實施例。通常,可以優化工具的形狀,以提高其穩定性。而且,可以調整壓力分佈並且改善熔融玻璃的混合。
例如,如果導向體11在噴嘴狹槽內以厚度不足的簡單金屬片的形式存在,則在例如每1000 mm玻璃帶寬度超過100 N的高載荷及1200℃以上的高溫下,會導致拉伸方向的縱向和橫向上的不穩定性。這將導致噴嘴狹槽寬度的變化,從而導致拉伸過程中的不穩定性。通過調整導向體11的形狀,可以充分提高穩定性。
圖6示出了用於拉伸玻璃帶3的設備1的一個實施例,該設備1包括導向體11,該導向體11也具有增厚的上部,如圖4所示的例子。在圖6的例子中,該上部是蘑菇形的。而且,圖6的例子也示出了多件式導向體11。然而,在此,各個組件不彼此疊放,下部114由細晶粒穩定的金屬製成。更確切地說,圖6中所示的導向體11的例子被構造為夾層結構。通常,為此目的,提供導向體11,該導向體11包括由襯裡117包圍的內部115,如該例子中所示。較佳地,該襯裡由細晶粒穩定的金屬製成。這甚至允許將不理想或不利於玻璃接觸的材料用於內部115。因此,導向體11可包括至少一個陶瓷元件,該陶瓷元件塗覆有該細晶粒穩定的金屬。在這種情況下,內部115由陶瓷材料製成,而襯裡117由細晶粒穩定的金屬製成。
另一個選擇是將高度抗蠕變的金屬用於芯部或內部115,但是其不太適合與熔融玻璃5接觸。在此,考慮的是已經提到的高度抗蠕變的貴金屬,例如純銥。因此,根據一個實施例,提出以下建議:導向體包括由銥製成的內部115,該內部115被襯裡117包圍。然後,至少在受到拉伸應力的區域中,襯裡117還可包含細晶粒穩定的金屬。
通過由噴嘴狹槽和拉伸槽內的阻流體組成的系統的幾何結構可以調整壓力條件。流動阻力和靜壓在拉伸槽的端部處,亦即,在噴嘴口處,形成所需的超壓。這確保了玻璃在葉片體上的均勻分佈。拉伸槽內的導向體上的阻流體的幾何設計和噴嘴狹槽寬度(狹槽式噴嘴與拉伸槽出口處的導向體之間的間距)的設計提供了調節壓降的方法,使得噴嘴出口處的熔融玻璃幾乎不變寬,以避免潤濕噴嘴狹槽邊緣的下側。
圖7示出另一個實施例的例子。原則上,該例子基於以下事實:在從噴嘴口9突伸出的導向體11的上方,另一導向體12佈置在拉伸槽7的內部,且較佳地同樣以自支撐的方式,與從噴嘴口9突伸出的導向體11隔開。另一導向體12用於額外地混合熔融玻璃5。但是,特別地,另外的導向體12也可用來影響熔融玻璃5的流動阻力。
噴嘴狹槽寬度的設置也會影響噴嘴下邊緣的撕裂角度的大小。如果該角度太小,則在噴嘴邊緣的下方可能發生玻璃潤濕,這可能導致結晶和玻璃缺陷。因此,不限於示例性實施例,根據本發明的一個實施例,可以想到:調節拉伸槽中的熔融玻璃5的壓降,以避免潤濕靠近噴嘴口9的拉伸槽7的下側區域。除了一個或多個導向體的位置和形狀以外,還可以通過熔融玻璃的溫度來調節壓降。
在拉伸槽7中呈導向體11(也可選地另一導向體12)之形式的內部阻流體的另一個優點在於:在長期使用過程中,如果存在或發生與使用壽命相關的工具變形(例如,拉伸槽凸起補償、葉片體下降、葉片體傾斜等),則玻璃品質(例如,厚度變化)的靈敏度降低,因為在內部阻流體的下方產生了一種補償體積,在流經噴嘴狹槽之前,玻璃質量可以根據其橫向分佈而實現均勻化(僅適用於拉伸槽中葉片與阻流體的厚度比<1的情況)。
通過目前所述調整,工具的使用壽命可以延長至少一個數量級,這穩定了產品品質,同時節約了成本。此外,可以增加帶的寬度,因為即使在隨後增加拉伸載荷的情況下,幾何形狀的適應和穩定合金的使用使得彎曲或蠕變變形不太明顯。如在目前為止所示的示例性實施例中實施的那樣,對拉伸槽7中的導向體11的機械穩定增厚通常也有助於延長使用壽命。因此,不限於特定的示例性實施例,根據另一個實施例,可以想到:導向體11在拉伸槽7內部的厚度大於其在噴嘴口9處的厚度。在圖7所示的例子中,也界定阻體101的增厚部118具有圓柱形狀。
為了避免在導向體11的端部出現不穩定的流動型態,位於導向體11的下端處的急劇變細的撕裂邊緣13是有利的,正如目前為止繪示的圖1、4、6和7的例子所示的情況。也就是說,撕裂邊緣13形成為切削邊緣。會聚至撕裂邊緣13的表面130、131可以是平的、凸的或凹的。在圖7的例子中,表面130、131是平的。
圖8示出了導向體的例子,該導向體具有板狀增厚部118,使得導向體11的上端為T形。該例子還示出了會聚至撕裂邊緣13的表面130、131,這些表面在此為凹形的。
由於機械原因,增厚是有利的,但不是強制性的。圖9示出了一個示例性實施例,其中,與靠近噴嘴狹槽的導向體11的厚度相比,拉伸槽7內的導向體11厚度沒有增加。確切地說,導向體11為片狀或板狀,具有基本一致的厚度,且在其下端處具有會聚至撕裂邊緣13之位於切削邊緣處的表面130、131。特別地,該實施例的優點在於:只要合適地懸掛導向體11,就可以很容易將其從噴嘴口9移除。不限於所示出的例子,並且也不管導向體11是否具有增厚部118,至少導向體11的延伸穿過噴嘴口9的部分較佳具有從0.5 mm到20 mm的厚度。
此外,在該設備的所有實施例中,導向體11不必都延伸至拉伸槽7的內部。而是,導向體11的上端也可位於噴嘴口9的內部。圖10中示出了一個這樣的實施例。在此,優點還在於;可以很容易地更換導向體11,可選地甚至在操作期間更換。然而,在此,流阻基本上僅受噴嘴口9的剩餘間隙寬度的限制。特別地,如圖10的例子所示,如果使用更厚的導向體,可替代地或除了夾層結構以外,導向體11可以是至少部分中空的。在圖10的例子中示出了該選項。因此,導向體11具有空腔25。如果導向體11由包圍空腔25的金屬片形成,則其優點是其自身重量相對較小。
如圖11的俯視圖所示,噴嘴口9可具有位於底板的狹槽狀開口的形狀,特別地,其在側向上是封閉的。然後,如圖所示,將導向體11保持在中心,較佳地不與該開口的邊緣接觸,從而界定出噴嘴狹槽94、96。其寬度由噴嘴口9的寬度和導向體11的厚度確定。
在圖12所示的實施例中,提供了雙部件噴嘴平臺,噴嘴狹槽94、96的寬度w可調節。為此,將底板97、98構造為可移動的,使得其可垂直於狹槽狀噴嘴口9的縱向延伸方向移位。位移方向用底板上的雙箭頭表示。更一般地,不限於所示出的例子,拉伸槽可包括可移動的底板97、98,用於調節板與導向體11之間的間隔,並由此調節噴嘴狹槽94、96的寬度。因此,製造玻璃帶3的方法還可包括調整噴嘴狹槽94、96的寬度的步驟。例如,可以採用該調節方式,以控制玻璃帶的產量和/或厚度。在一個實施例中,噴嘴狹槽寬度,亦即,這些噴嘴狹槽的寬度,在4 mm至15 mm的範圍內,最佳在6 mm至10 mm的範圍內。
另一種用於調節或控制玻璃帶厚度的可用方法是調節熔融玻璃的溫度。在這方面,通過以自支撐的方式穿過拉伸槽來懸掛導向體11來取得另一種特別的優勢。在這種情況下,可以通過導向體的底座19或通過單獨的連接件饋送電流,從而直接對導向體進行傳導加熱。在這種情況下,電流將垂直於玻璃帶的拉伸方向並且也垂直於熔融玻璃5的流動方向流過導向體11。因此,在圖4所示的例子中,電流將從底座19通過支撐在底座中的懸臂110通入導向體11,並通過相對的懸臂111和相關的底座19從導向體11中引出。
根據本發明的另一個實施例,以特定的方式調節拉伸槽中的壓降,以提高玻璃帶的形狀精度和尺寸一致性。這種調節方法可以防止在拉伸槽中產生負壓。這種負壓可能使拉伸槽發生機械變形,也可能影響玻璃厚度。而且,局部負壓可能導致拉伸槽中熔融玻璃的流動型態不穩定,也可能導致玻璃厚度不均勻或玻璃缺陷。現在將參照圖13所示的拉伸槽7的剖視示意圖更詳細地說明根據該實施例的調節方式。該圖示出了拉伸槽7的剖視圖,其顯示出用於計算拉伸槽中的壓降的尺寸。
與圖1中的例子類似,拉伸槽7的上部由管狀部分或歧管76形成,該管狀部分或歧管通往向下延伸至拉伸槽7的底部70的腔室75中。腔室75的橫截面比歧管76的橫截面小。因此,腔室75的寬度DA 小於歧管76的直徑。由於橫截面小,將主要沿著腔室75發生壓力變化。特別的貢獻來自於其中導向體11或若干導向體進一步使腔室變窄的部分。根據一個實施例,調節拉伸槽中的溫度,以滿足以下條件:
Figure 02_image005
在以上關係式中,
Figure 02_image007
為熔融玻璃的體積流量,B 為沿著噴嘴口方向或沿著垂直於拉伸方向的玻璃帶方向的拉伸槽7的寬度,
Figure 02_image009
為熔融玻璃的黏度,DS 為腔室75的局部寬度,DL 為導向體11的局部厚度,
Figure 02_image011
是熔融玻璃的密度,g 是重力加速度,h 是腔室75的高度。對在垂直方向z 上的部分HL HS 進行積分。也可以對兩個或兩個以上的子部分進行積分,在這種情況下,必須添加子積分。如果設置多個導向體,則該情況如圖7的例子中所示,多個導向體在垂直方向上彼此隔開。
符號pu 表示2000 Pa的壓力值。該值表明仍可承受的負壓。因此,關係式的右側表示熔融玻璃的靜水壓力減去仍可承受的負壓pu 。該項是一個常數。前因子
Figure 02_image013
定義了玻璃帶的厚度,該厚度是預先確定的,使得該前因子也代表常數。另一方面,對於厚度給定的玻璃帶,通過溫度可以控制的是與溫度密切相關的黏度
Figure 02_image009
。也可以不同地局部地控制溫度。另外,拉伸槽中的溫度可能會沿垂直方向變化。因此,黏度可與位置相關,
Figure 02_image009
=
Figure 02_image009
(z )。因此,在積分中也可以考慮這種相關性。
因此,根據一個實施例,可以想到的是:拉伸槽7包括腔室75,導向體11佈置在腔室75中,且腔室的下端具有噴嘴口9,以及調節拉伸槽7中熔融玻璃5的溫度,使得其與溫度相關的黏度滿足上述關係。
對於本領域技術人員將顯而易見的是,本發明不限於圖式中所繪示的具體示例性實施例,而是可以以各種方式變化。特別地,不同的實施例也可以彼此組合。
1:拉伸玻璃帶的設備 3:玻璃帶 5:熔融玻璃 7:拉伸槽 9:噴嘴口 11、12:導向體 13:撕裂邊緣 15:拉伸頭 17:拉伸裝置 19:底座 21:支撐區域 23:支撐元件 25:空腔 30:3的中心區域 31、32:3的珠狀件 50、52:5的支流 70:7的底部 71:側端板 72:71的開口 74:通往7的入口 75:腔室 76:歧管 90、92:94、96的邊緣 94、96:噴嘴狹槽 97、98:底板 100:11的從9中伸出的部分 101:阻體 103:葉片 110、111:11的懸臂 112:11的上部 114:11的下部 115:11的內部 117:11的襯裡 118:增厚部 130、131:11的會聚在撕裂邊緣13處的表面
現在將參考所附圖式更詳細地解釋本發明,其中: 圖1是具有導向體的拉伸槽的剖視圖; 圖2示出了處於懸掛狀態的導向體和玻璃帶的橫截面; 圖3是沿著噴嘴口截取的穿過拉伸槽的縱向截面圖; 圖4是具有導向體的拉伸槽的透視圖; 圖5示出了幾種合金的蠕變率的測定值與機械張力的函數關係圖; 圖6至圖10示出了具有導向體的不同實施例的裝置; 圖11和圖12示出噴嘴口的實施例; 圖13是示出用來計算拉伸槽中之壓降的參數的拉伸槽的剖視圖。
1:拉伸玻璃帶的設備
3:玻璃帶
5:熔融玻璃
7:拉伸槽
9:噴嘴口
11:導向體
15:拉伸頭
17:拉伸裝置
50、52:5的支流
90:94、96的邊緣
94、96:噴嘴狹槽
100:11的從9中伸出的部分

Claims (16)

  1. 一種用於從熔融玻璃(5)拉伸玻璃帶(3)的設備(1),該設備(1)包括一用於容納熔融玻璃(5)的拉伸槽(7),其具有該熔融玻璃(5)可通過而向下排出的一下噴嘴口(9),該設備包括一導向體(11),其從該拉伸槽(7)之該噴嘴口(9)向下突伸出,其中,該導向體(11)係被支撐成與該噴嘴口(9)的邊緣(90、92)隔開,從而在該導向體(11)和該噴嘴口(9)的該等邊緣(90、92)之間界定出兩個噴嘴狹槽(94、96),其中,該導向體(11)係至少沿著該噴嘴口(9)的中心部分以自支撐的方式懸掛。
  2. 如前述請求項之設備(1),其中,該導向體(11)係支撐在該拉伸槽(7)的外部,並且係以自支撐的方式延伸跨過該拉伸槽(7)的內部。
  3. 如前述請求項中任一項之設備(1),其中,該拉伸槽(7)係構造成該拉伸槽(7)之界定出該噴嘴口(9)的部分可以被更換,而該導向體(11)仍位於其底座中。
  4. 如前述請求項中任一項之設備,其中,該導向體(11)包括一細晶粒穩定的金屬。
  5. 如前述請求項之設備(1),其中,該細晶粒穩定的金屬是合金。
  6. 如前述兩項請求項中任一項之設備(1),其包括具有至少一個以下特徵之一細晶粒穩定的金屬: -該細晶粒穩定的金屬是金屬Pt、PtRh、PtAu、PtRhAu、PtIr中之一者; -該細晶粒穩定的金屬含有ZrO2 顆粒。
  7. 如前述請求項中任一項之設備(1),其具有至少一個以下特徵: -該導向體(11)完全由該細晶粒穩定的金屬製成; -該導向體(11)為多件體,且包括至少一個由該細晶粒穩定的金屬製成的組件; -該導向體是由該細晶粒穩定的金屬和另一種材料製成的夾層結構; -該導向體(11)具有被一襯裡(117)包圍的內部(115); -該導向體包括至少一個塗覆有該細晶粒穩定的金屬的陶瓷組件; -該導向體(11)從該噴嘴口(9)突伸出至少30 mm,較佳至少80 mm; -該導向體(11)在該拉伸槽(7)內的厚度大於其在該噴嘴口(9)處的厚度; -該導向體下端處的撕裂邊緣(13)形成為一切削邊緣。
  8. 如前述請求項中任一項之設備(1),其中,該拉伸槽(7)內佈置有另一導向體(12),該另一導向體(12)位於從該噴嘴口(9)突伸出的該導向體(11)的上方並與從該噴嘴口(9)突伸出的該導向體(11)隔開。
  9. 如前述請求項中任一項之設備,其中,該導向體(11)包括一阻體(101)和一佈置在該阻體(101)下方的葉片(103),其中,該阻體(101)的寬度大於該葉片(103)的寬度。
  10. 一種用於製造玻璃帶(3)的方法,其中,將熔融玻璃(5)送入一拉伸槽(7),該拉伸槽(7)具有供該熔融玻璃(5)排出的下噴嘴口(9),其中,在該拉伸槽(7)內佈置有從該拉伸槽(7)之該噴嘴口(9)向下突伸出的一導向體(11),該導向體(11)係被支撐成與該噴嘴口(9)的邊緣(90、92)隔開,從而在該導向體(11)和該噴嘴口(9)的該等邊緣(90、92)之間界定出兩個噴嘴狹槽(94、96),其中,該導向體(11)係至少沿著該噴嘴口(9)的中心部分以自支撐的方式懸掛,以及其中,該熔融玻璃(5)自該拉伸槽(7)從該等噴嘴狹槽(94、96)分為兩條支流(50、52)流出,並沿著該導向體(11)之從該噴嘴口(9)突伸出的部分(100)流動,其中,該等支流在該導向體(11)的下端處匯合而形成一拉伸頭(15),從該拉伸頭(15)中拉出玻璃帶(3),以及其中,該玻璃帶(3)的拉伸在該導向體(11)上施加一拉力,該拉力係被該導向體(11)在其側端(110、111)處的懸掛所吸收。
  11. 如前述請求項之方法,其中,藉由拉伸形成玻璃帶(3),其包括厚度均勻的中心區域和厚度大於該中心區域(30)厚度的兩個邊緣側珠狀件(31、33),其中,該導向體(11)係懸掛以便至少沿著該噴嘴口之上方形成有厚度均勻的該中心區域的部分而自支撐。
  12. 如前述請求項之方法,其包括從具有高於1100℃之成形溫度的玻璃中拉伸玻璃帶(3)。
  13. 如前述請求項中任一項之方法,其中,該導向體(11)位於該噴嘴口(9)中的支撐元件(23)上,並以自支撐的方式被保持在該等支撐元件(23)上的支撐區域(21)之間。
  14. 如前述請求項中任一項之方法,其具有至少一個以下特徵: -以每1000 mm玻璃帶寬度大於100 N的拉力將該玻璃帶從該拉伸槽(7)拉出; -調節該拉伸槽(7)中之該熔融玻璃(5)的壓降,從而避免該拉伸槽(7)之靠近該噴嘴口(9)的下側區域潤濕。
  15. 如前述請求項中任一項之方法,其中,通過該導向體(11)的底座供應電流,以便直接傳導加熱該導向體(11)。
  16. 如前述請求項中任一項之方法,其中,該拉伸槽(7)包括其中佈置有該導向體(11)及在其下端處具有該噴嘴口(9)的一腔室(75),其中,該拉伸槽(7)中之該熔融玻璃(5)的溫度係調節成使得其與溫度相關的黏度
    Figure 03_image015
    滿足以下關係:
    Figure 03_image017
    其中,
    Figure 03_image019
    是該熔融玻璃的體積流量,B 是沿著該噴嘴口(9)方向的該拉伸槽(7)的寬度,DS 是該腔室(75)的局部寬度,DL 是該導向體(11)的局部厚度,
    Figure 03_image011
    是該熔融玻璃的密度,g 是重力加速度,h 是該腔室(75)的高度,及pu 是2000 Pa的壓力。
TW109123993A 2019-07-24 2020-07-16 製造玻璃帶的設備和方法 TW202106637A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019120065.2A DE102019120065A1 (de) 2019-07-24 2019-07-24 Vorrichtung und Verfahren zur Herstellung von Glasbändern
DE102019120065.2 2019-07-24

Publications (1)

Publication Number Publication Date
TW202106637A true TW202106637A (zh) 2021-02-16

Family

ID=71670158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123993A TW202106637A (zh) 2019-07-24 2020-07-16 製造玻璃帶的設備和方法

Country Status (7)

Country Link
US (1) US20210024400A1 (zh)
EP (1) EP3770124A1 (zh)
JP (1) JP2021020846A (zh)
KR (1) KR20210013533A (zh)
CN (1) CN112279497B (zh)
DE (1) DE102019120065A1 (zh)
TW (1) TW202106637A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123655A1 (de) 2020-09-10 2022-03-10 Schott Ag Vorrichtung und Verfahren zum Bearbeiten von Glasschmelzen mit metallischen Schmelzkontakt-Bauteilen
WO2024078642A1 (zh) * 2022-12-13 2024-04-18 青岛融合光电科技有限公司 载板玻璃制造装置及制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE506472C (de) * 1925-06-26 1930-09-04 Edward Danner Verfahren und Einrichtung zur Herstellung eines endlosen Glasbandes
DE1596484B1 (de) * 1967-07-18 1971-10-28 Jenaer Glaswerk Schott & Gen Vorrichtung zum herstellen von scheiben aus glas durch aus ziehen nach unten
DE10064977C1 (de) * 2000-12-23 2002-10-02 Schott Glas Vorrichtung zum Herstellen von dünnen Glasscheiben
DE10348098B4 (de) * 2003-10-11 2006-04-20 Schott Ag Vorrichtung und Verfahren zum Herstellen von Rohren oder Stäben sowie Verwendung
CN101679095B (zh) * 2007-05-11 2012-09-05 康宁股份有限公司 用改进的端部支承条件控制溢流槽下弯
US8677783B2 (en) * 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
TWI591026B (zh) * 2011-11-30 2017-07-11 康寧公司 用於自連續移動之玻璃帶移除邊緣部分之設備及方法
CN113056442A (zh) * 2018-11-21 2021-06-29 肖特股份有限公司 用于制造薄玻璃的方法和装置以及薄玻璃带

Also Published As

Publication number Publication date
KR20210013533A (ko) 2021-02-04
DE102019120065A1 (de) 2021-01-28
EP3770124A1 (de) 2021-01-27
US20210024400A1 (en) 2021-01-28
CN112279497A (zh) 2021-01-29
JP2021020846A (ja) 2021-02-18
CN112279497B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP5281569B2 (ja) エッジ安定性が増大したガラス基板の成形装置および方法
TW202106637A (zh) 製造玻璃帶的設備和方法
JP5724552B2 (ja) 薄板ガラス製造装置
CN102112404B (zh) 浮法玻璃的制造装置及制造方法
JP6964602B2 (ja) ガラスを処理する方法及び装置
JP2009035466A (ja) ガラス製造装置の成形部及びガラス成形品の製造方法
US10221085B2 (en) Apparatus and methods for processing molten material
JP7404443B2 (ja) ガラス成形装置
US20200095152A1 (en) Methods and apparatuses for controlling glass flow into glass forming machines
JP2019518703A (ja) ガラス供給を方向付けるための装置および方法
CN112839801B (zh) 用于形成层压玻璃片的方法和设备
CN107683264A (zh) 具有流通能力的玻璃制造设备和方法
JP5936724B2 (ja) ガラス製造装置の成形部
US20210024399A1 (en) Apparatus and method for producing glass ribbons
CN112279496B (zh) 制造玻璃带的设备和方法
KR20190079410A (ko) 유리 제조 장치
KR20220161355A (ko) 유리 용융 시스템에서 결함을 감소시키기 위한 장치 및 방법
KR20210028257A (ko) 유체 유동을 통한 기판 포장 장치 및 방법
JP2008280194A (ja) ガラス流路及びその流路を使用した光学ガラス成形体の製造方法
JP2009107890A (ja) ガラス流路、ガラス製造装置、およびガラス製造方法
JP2009107889A (ja) ガラス流路、ガラス製造装置、およびガラス製造方法
JP2015110519A (ja) ガラス製造装置の成形部