TW202029522A - 氮化物半導體基板 - Google Patents

氮化物半導體基板 Download PDF

Info

Publication number
TW202029522A
TW202029522A TW108136477A TW108136477A TW202029522A TW 202029522 A TW202029522 A TW 202029522A TW 108136477 A TW108136477 A TW 108136477A TW 108136477 A TW108136477 A TW 108136477A TW 202029522 A TW202029522 A TW 202029522A
Authority
TW
Taiwan
Prior art keywords
layer
initial
initial layer
nitride semiconductor
carbon concentration
Prior art date
Application number
TW108136477A
Other languages
English (en)
Other versions
TWI728498B (zh
Inventor
阿部芳久
江里口健一
小宮山純
Original Assignee
日商闊斯泰股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019170218A external-priority patent/JP7179706B2/ja
Application filed by 日商闊斯泰股份有限公司 filed Critical 日商闊斯泰股份有限公司
Publication of TW202029522A publication Critical patent/TW202029522A/zh
Application granted granted Critical
Publication of TWI728498B publication Critical patent/TWI728498B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本發明提供一種能夠有效率地減少縱向之漏電流之氮化物半導體基板。本發明之氮化物半導體基板係於Si單晶基板上依序積層有均由氮化物半導體構成之緩衝層以及動作層,前述緩衝層包含與前述Si單晶基板相接而形成之單層之第一初期層以及形成於前述第一初期層上之單層之第二初期層,前述第一初期層係由AlN形成,前述第二初期層係由Alz Ga1-z N(0.12≦z≦0.65)形成,且於將X軸設為z×100且將Y軸設為前述第二初期層中的碳濃度之X-Y圖表中,X為12以上至65以下,Y為Y=1E+17×exp(-0.05×X)與Y=1E+21×exp(-0.05×X)之範圍內。

Description

氮化物半導體基板
本發明係關於一種用於高速及高耐壓元件等之氮化物半導體基板,詳細而言,本發明係關於一種於由矽(Si)所構成之異質基板上使氮化鎵(GaN)積層而構成之氮化物半導體基板。
使GaN積層於Si單晶基板上之氮化物半導體基板通常係藉由有機氣相成長(MOCVD(Metal-Organic Chemical Vapour Deposition;金屬有機化學氣相沈積))法製造。此時,公知有於Si單晶上形成由氮化鋁(AlN)層及氮化鋁鎵(AlGaN)層所構成之初期層的技術。
於日本特開2014-17422號公報中,作為良好地保持化合物半導體的結晶性,且亦抑制電流崩潰(current collapse)之產生,抑制洩漏電流(off-leak current)而實現高耐壓之可靠性高之化合物半導體裝置,揭示有下述化合物半導體裝置:於Si基板上含有化合物半導體積層結構,前述化合物半導體積層結構具有以AlN為材料之第一緩衝層以及形成於第一緩衝層的上方且以AlGaN為材料之第二緩衝層,且第二緩衝層越自其下表面朝向上表面而越高濃度地含有碳。
於日本特開2016-219690號公報中,作為13族氮化物半導體基板的製作例,有下述記載:首先,作為基底基板1,將直徑6吋、主面的面方位為(111)、摻硼且電阻率0.004Ωcm之矽單晶基板設置於MOCVD裝置內,使用三甲基鋁(TMA)、氨(NH3 )作為原料氣體,使碳濃度1×1018 atoms/cm3 、厚度100nm之AlN單晶層於1000℃氣相成長,以後之13族氮化物半導體層之形成係全部將成長溫度之基準設為1000℃,對前述成長溫度以1℃至15℃之範圍加以微調整,藉此於前述AlN單晶層上使用三甲基鎵(TMG)、TMA、NH3 作為原料氣體使碳濃度5×1019 atoms/cm3 、厚度300nm之Alx Ga1-x N單晶層(x=0.1)氣相成長,從而形成初期核形成層2。
最初形成於Si單晶基板上之AlN層係越以高溫予以成膜,越可獲得優質之結晶品質(高結晶性、良好之表面平坦性),但另一方面,Si之蝕刻速度亦變高。因此,通常AlN之成膜溫度受到限制,故而難可謂充分確保AlN層表面的平坦性。若前述AlN層表面的平坦性不良,則產生應用於應力控制之(Al)GaN與AlN之超晶格結構混亂,致使應力控制沒有功效之問題。
因此,為了使AlN層的粗糙表面平坦化,通常於前述AlN層上形成AlGaN層。對於前述AlGaN層而言,不僅要求膜之平坦化,而且鑒於用於橫型電子裝置而亦要求為高電阻。
AlN的帶隙大於GaN而電阻非常高。然而,由於於AlGaN層混入有GaN成分,故而帶隙與AlN相比而稍變小,從而使電阻降低。另外,由於前述AlGaN層亦為接近Si單晶基板之層,故而前述AlGaN層之結晶中位錯多,前述位錯使電阻降低。
針對上述般之問題,應用摻雜碳等能夠補償電子之雜質而增大電阻之方法。然而,若摻雜高濃度之碳則導致結晶品質之降低。因此,AlGaN層必須設為適度之Al組成來增大帶隙,且設為無需摻雜高濃度之碳的狀態。
然而,關於前述AlGaN層的Al組成與碳濃度之關係,難可謂於技術上已確立。例如,於日本特開2014-17422號公報中,Alx Ga1-x N為200nm左右之厚度,且為0.8≦x≦0.9左右(例如x=0.9左右),C濃度為5×1017 /cm3 至3×1018 /cm3 左右(例如1×1018 /cm3 左右)。然而,前述AlGaN層中,無法充分減少向Si單晶基板之漏電流。
另外,於日本特開2016-219690號公報中,使用碳濃度5×1019 atoms/cm3 、厚度300nm之Alx Ga1-x N單晶層(x=0.1),但前述情形時,反而使碳濃度過高,難可謂充分確保AlGaN層的結晶性。
鑒於上述情況,本發明之目的尤其在於提供一種結晶性高之氮化物半導體基板,係使GaN積層於Si單晶基板上之氮化物半導體基板,且藉由適當調整初期AlGaN層的成膜條件,將Al組成以及雜質碳濃度設為某一定範圍內,而於用作橫型裝置時抑制縱向之洩漏。
本發明之氮化物半導體基板係於Si單晶基板上依序積層有均由氮化物半導體構成之緩衝層以及動作層;前述緩衝層包含與前述Si單晶基板相接而形成之單層之第一初期層以及形成於前述第一初期層上之單層之第二初期層;前述第一初期層係由AlN形成;前述第二初期層係由Alz Ga1-z N(0.12≦z≦0.65)形成,且於將X軸設為z×100且將Y軸設為前述第二初期層中的碳濃度之X-Y圖表中,X為12以上至65以下,Y為Y=1E+17×exp(-0.05×X)與Y=1E+21×exp(-0.05×X)之間之範圍內。
藉由具有前述緩衝層、前述動作層、前述第一初期層以及前述第二初期層之構成,尤其於使GaN積層於Si單晶基板上之氮化物半導體基板中,於用作橫型裝置時抑制縱向之洩漏。
較佳為更具有與前述第二初期層相接之層,與前述第二初期層相接之層係由Alc1 Ga1-c1 N形成,且於將X軸設為c1×100且將Y軸設為與前述第二初期層相接之層中的碳濃度之X-Y圖表中,X為0以上至20以下,Y為Y=8E+18×exp(-0.03×X)與Y=4E+20×exp(-0.03×X)之間之範圍內。
較佳為與前述第二初期層相接之層的碳濃度低於前述第二初期層的碳濃度。
根據本發明,於使III族氮化物半導體膜應用於橫型裝置用之情形時,藉由適當調整第二初期層的成膜條件,將Al組成以及雜質碳濃度設為某一定範圍內,而於用作橫型裝置時能夠抑制縱向之洩漏,且使耐壓特性變得更優異。而且,第二初期層之結晶性高,藉此使形成於前述第二初期層上之氮化物半導體層亦成為高品質。
以下,一邊使用圖式一邊對本發明之氮化物半導體基板進行詳細說明。前述氮化物半導體基板係於Si單晶基板上依序積層有均由氮化物半導體構成之緩衝層以及動作層,且前述緩衝層包含與前述Si單晶基板相接而形成之單層之第一初期層以及形成於前述第一初期層上之單層之第二初期層,前述第一初期層係由AlN形成,前述第二初期層係由Alz Ga1-z N(0.12≦z≦0.65)形成,且於將X軸設為z×100且將Y軸設為前述第二初期層中的碳濃度之X-Y圖表中,X為12以上至65以下,Y為Y=1E+17×exp(-0.05×X)與Y=1E+21×exp(-0.05×X)之間之範圍內。
圖1係表示本發明之氮化物半導體基板的一態樣之剖面概略圖。此處,使用HEMT(High Electron Mobility Transistor;高電子遷移率電晶體)結構進行說明。亦即,作為氮化物半導體基板W,於基底基板S的一個主面上積層有緩衝層B,於前述緩衝層B上形成有動作層G。
此處,本發明所顯示之概略圖係為了說明而將形狀示意性地簡化且強調,細部的形狀、尺寸以及比率係與實際不同。另外,對相同構成省略符號,進而不記載無需說明之其他構成。
於本發明中,基底基板S為Si單晶。最初形成於異質基板上之層當然係充分考慮異質基板之本性而選擇、設計,故而基底基板S之其他物性值並無特別限定。
例如,Si單晶所含之雜質的種類或其濃度、碳濃度、氮濃度、氧濃度、缺陷密度以及Si單晶的製造方法能夠根據所要求之規格而任意選擇。另外,對於供形成氮化物半導體層之面,亦可以-4°至4°之範圍具有傾斜角(off angle)。
緩衝層B為積層有多個氮化物半導體層之結構,前述氮化物半導體層之結構能夠根據用途或目的利用公知之方法而形成。例如,如日本特開2016-219690號公報所記載般,最初形成適當之初期層後,積層一層以上的組成或雜質濃度互不相同之氮化物半導體層可謂合適。
此處,作為氮化物半導體,可例示:Ga、Al、銦(In)等13族元素與氮等15族元素之組合。
動作層G係作為裝置發揮功能之層、以及前述層上所附帶之各種層的總稱。圖1所示之HEMT中,電子過渡層101以及電子供給層102相當於動作層G。進而,亦可於前述動作層G上具備由GaN等所構成之帽層。
氮化物半導體基板W的用途雖並無特別限制,可謂特別適合作為可實現高頻化、高耐壓化之功率裝置用。
本發明中,緩衝層B包含與Si單晶基板相接而形成之單層之第一初期層、以及形成於第一初期層上之單層之第二初期層。亦即,於基底基板S之正上方,依序積層有單層之第一初期層11與單層之第二初期層12。
第一初期層11係由AlN形成。本發明中之第一初期層11具有公知之技術中般之作用,亦即具有防止Si與Ga直接反應之作用。再者,第一初期層11只要最低限度地具有作為Si單晶正上方的層之功能即可,不僅可由Al比100%之AlN構成,而且亦可由使Al比100%降低2%至3%之AlGaN形成。
由於上述同樣之理由,第一初期層11並不要求為嚴格之單一層,亦容許含有少許之組成梯度。另外,亦可於不損及本發明之功效之範圍內,存在於藉由MOCVD法連續地形成層時不可避免地混入之各種元素(Si、Ga、C等)。
第一初期層11的層厚並無特別限定,大致為40nm至150nm,較佳為80nm至120nm之範圍。
而且,第二初期層12係由Alz Ga1-z N(0.12≦z≦0.65)形成。前述第二初期層之目的在於使第一初期層11的粗糙表面平坦化。藉由形成第一初期層11以及第二初期層12,而可獲得由減少位錯密度等所得之結晶性提高、以及抑制伴隨厚膜化之翹曲的功效。
若第二初期層12的Al比z大於0.65,則難以確保第二初期層12之良好的表面平坦性。另一方面,若z低於0.12,則與第一初期層11之晶格常數差過於擴大,因此會有引起位錯頻發或龜裂產生的疑慮。
第二初期層12的層厚亦無特別限定,大致為50nm至450nm,較佳為200nm至350nm之範圍。
第二初期層12亦與第一初期層11同樣地,不要求為嚴格之單一層,容許含有少許之組成梯度。
而且,對於第二初期層12而言,於將X軸設為z×100且將Y軸設為前述第二初期層中的碳濃度之X-Y圖表中,X為12以上至65以下,Y成為Y=1E+17×exp(-0.05×X)與Y=1E+21×exp(-0.05×X)之間之範圍內。
圖2係於本發明之氮化物半導體基板W中表示第二初期層12中的Al組成及雜質碳濃度之關係之圖表。於第二初期層12中的Alz Ga1-z N(0.12≦z≦0.65)中的z與碳濃度之關係處於由X=12、X=65、Y=1E+17×exp(-0.05×X)及Y=1E+21×exp(-0.05×X)所包圍之區域內時,可獲得本發明之特別功效。
本發明中,基於最佳為將第二初期層12設為適度之Al組成而增大帶隙且不摻雜高濃度之碳這一根據,來表明Al比與碳濃度之關係。若該關係為前述範圍內,則第二初期層12兼具結晶性與高電阻。
此種碳濃度例如能夠於有機金屬氣相成長法(MOCVD)中,藉由作為公知之技術的成長溫度或成長壓力之調整而設為所需之值。另外,Al比z亦能夠藉由原料氣體之流量、供給時間而調整。
以下,對本發明中的更佳之態樣進行說明。進而,第二初期層12中的Al比z與碳濃度之關係更佳為於X-Y圖表中,X為26以上至45以下,且Y處於Y=7E+17×exp(-0.05×X)與Y=1E+19×exp(-0.05×X)之間之範圍內。前述範圍係將碳濃度抑制得更低之區域,故而可謂為重視結晶品質之設計。
再者,於形成第二初期層12時,若形成初期提高Al比z,且隨著使層成長而減小Al比z,則成為層的前半區域重視結晶性且後半區域重視耐壓之設計,即便不過分增大第二初期層12的層厚,亦能夠更有效率地獲得本發明之功效,從而更佳。
除了第一初期層11以及第二初期層12以外,緩衝層B亦可具有多層緩衝層m。多層緩衝層m的一例為將厚度15nm至50nm之Alc Ga1-c N(0≦c≦0.8)單晶層、與厚度3nm至10nm之AlN層交替之反復積層,整體之層厚為500nm至2000nm左右之多層結構。藉由進一步具備此種多層緩衝層m,而能夠有效地發揮緩衝層B中之應力弛豫功效。
動作層G係由電子過渡層101以及電子供給層102所構成之積層結構。於動作層G之上,亦可根據裝置製作時之目的或用途而具有帽層或鈍化層等其他層。電子過渡層101以及電子供給層102的層厚度為公知之值。
本發明之氮化物半導體基板W的各層通常係藉由利用磊晶成長之堆積而形成。堆積方法可為通常所使用之方法,例如為以MOCVD或電漿CVD(chemical vapor phase deposition;化學氣相沈積法)(PECVD (plasma enhanced chemical vapor deposition;電漿增強式化學氣相沈積法))為代表之CVD法、使用雷射束(laser beam)之蒸鍍法、使用氛圍氣體之濺鍍法、高真空中之使用分子束之分子束磊晶法(MBE;Molecular Beam Epitaxy)、或作為MOCVD以及MBE之複合的有機金屬分子束磊晶(MOMBE)法等。另外,磊晶成長用原料亦不限定於實施例中使用之原料,例如用以添加碳之原料氣體除了三甲基鋁(TMAl)、三甲基鎵(TMGa)以外,亦可為三乙基鋁(TEAl)、三乙基鎵(TEGa)。
如以上所述,由於本發明之氮化物半導體基板於用作橫型裝置時能夠抑制縱向之洩漏,故而耐壓特性變得更優異。而且,第二初期層的結晶品質高,故而形成於前述第二初期層上之氮化物半導體層亦成為高品質。 [實施例]
以下,基於實施例具體說明本發明,但本發明不受下述實施例之限制。 [實施例1]
將6吋之Si單晶作為基底基板S投入至MOCVD裝置,於壓力135hPa之氫氣氛圍以基板溫度950℃進行退火,藉此將矽表面之自然氧化膜去除,使矽之原子台階(step)顯現。繼而,將基板溫度設為1020℃,供給TMAl及氨(NH3 ),以100nm之厚度形成成為第一初期層11之AlN。然後,添加TMGa,將Alz Ga1-z N(z=0.3)成膜200nm作為第二初期層12。繼而,形成將Al0.1 Ga0.9 N與AlN交替積層八十層之多層緩衝層m作為應力控制層。進而,依序積層1400nm之成為電子過渡層101之非摻雜GaN層、與厚度為20nm之成為電子供給層102之Al0.25 Ga0.75 N層作為動作層G,從而製作了樣本。 [實施例2至實施例5]
碳濃度係主要藉由控制成膜壓力而調整,另外,Al比z係藉由控制TMAl與TMGa之流量而予以調整,除此以外,以與實施例1相同之方式製作實施例2至實施例5之樣本。
於實施例1中,除了將基板溫度設為920℃之外,以與實施例1相同之方式製作出樣本。
所得到之樣本中之雜質碳濃度為5E+20cm-3 。可認為因雜質碳之量過多而使結晶品質下降。 [比較例2]
於實施例1中,除了將基板溫度設為1020℃之外,以與實施例1相同之方式製作樣本。
所得到之樣本中所含之雜質碳濃度為1E+16cm-3 。比較例2之樣本中,可認為由於雜質碳之量過少而無法獲得充分之高電阻值。 [比較例3]
於實施例1中,除了使Alz Ga1-z N之z成為z=0.11而非z=0.3之外,以與實施例1相同之方式製作樣本。所得到之樣本中所含之雜質碳濃度為5E+17cm-3 。可認為由於Al組成低致使雜質碳濃度亦不充分而無法充分確保帶隙,而使得電阻值未提高。 [比較例4]
於實施例1中,除了使Alz Ga1-z N之z成為z=0.7而非z=0.3之外,以與實施例1相同之方式製作樣本。
所得到之樣本中之雜質碳濃度為1E+20cm-3 。雖比較例4之樣本的Al組成高且具有較大之帶隙,但認為由於雜質碳濃度過高而導致結晶品質下降。
再者,於Al組成大於70%時,亦即z>0.7時,無法確保第二初期層12的表面平滑性。 [實施例6]
於實施例6中,於形成第二初期層12時,最初使Al比z成為0.35,使該比伴隨層之形成而降低,最終使Al比z成為0.25。層厚度係設為50nm。除此之外,以與實施例1相同之方式設定。 [評價1:碳濃度]
使用二次離子質譜分析(SIMS)來測定各樣本之第二初期層12中之碳濃度。 [評價2:縱向之漏電流]
從各樣本自基板主面的中央部向基板端部分別劈開而切出寬度20mm之短條狀之試片。繼而,藉由乾式蝕刻將該試片之電子供給層102及電子過渡層101之一部分去除。於前述狀態下,於藉由乾式蝕刻而露出之面真空蒸鍍10mm2 之Au電極而形成為蕭特基(Schottky)電極,使用市售之曲線描繪儀(curve tracer),與Si單晶基板側通電而測定I-V特性,從而比較出600V時之電流值。而且,將1E-8(A)以下視為合格。 [評價3:結晶性]
針對各樣本,測定第二初期層12之(002)面之X射線繞射中的搖擺曲線(rocking curve)的半值寬度。而且,將2000arcsec以下視為合格。
以上,將各樣本之製造條件以及評價結果匯總顯示於表1。 [表1]
z 碳濃度 (atoms/cc) 漏電流判定 半值寬 (arcsec) 特別記載事項
實施例1 0.3 1.00E+18 1500 半值寬大體上為2000arcsec以下之值,良好
實施例2 0.12 1.00E+18 1850
實施例3 0.65 5.00E+19 1700
實施例4 0.26 1.00E+19 1600
實施例5 0.45 5.00E+18 1550
實施例6 0.35至0.25 5.00E+18 1400 以層厚度50nm達成與實施例1之100nm同等以上之特性
比較例1 0.3 5.00E+20 2300 半值寬超過2000arcsec,結晶性差
比較例2 0.3 1.00E+16 × 1600 耐壓不良
比較例3 0.11 5.00E+17 - - 因產生龜裂故而無法評價
比較例4 0.7 1.00E+20 - - 因平坦性大幅劣化故而 無法評價
根據表1之結果,處於本發明之範圍內之情況下,耐壓特性(縱向之漏電流)以及結晶質(第二初期層12之半值寬度)均良好。另外,實施例6之樣本與實施例1至實施例5相比,更能以高次元兼顧結晶性與耐壓。
此處,關於與第二初期層相接而形成之層m0 (Alc1 Ga1-c1 N,未圖示),亦為更佳的範圍。亦即,於X-Y圖表中,X(c×100)為0以上至20以下,Y(與第二初期層相接而形成之層m0 中的碳濃度)為Y=8E+18×exp(-0.03×X)與Y=4E+20×exp(-0.03×X)之間之範圍內。
發現以此方式設定,能夠以更高之次元兼顧本發明之氮化物半導體基板的結晶性與耐壓之平衡。以下,作為實施例7至實施例9,製作與第二初期層相接而形成之層m0 的c1、以及前述層m0 所含之碳濃度經調整之樣本。而且,與實施例1同樣地進行漏電流及半值寬度(結晶性)之評價。 [實施例7]
於實施例7中,設為c1=0,且將碳濃度設為7E+19cm-3
漏電流較實施例2而略低,於這個方面而言優異。另一方面,半值寬度為1860arcsec,由於碳濃度相對較高的緣故,相應地與實施例2之1850arcsec相比較而結晶性稍差。然而,若考慮到結晶性與耐壓兩者,則可稱之為比實施例2更良好之特性。 [實施例8]
於實施例8中,設為c1=0.1,且將碳濃度設為5E+19cm-3
漏電流變成略低於實施例1,於這個方面而言優異。另一方面,半值寬度為1480arcsec,較實施例1之1500arcsec而稍良好。可稱之為結晶性與耐壓兩者均比實施例1為更良好之特性。 [實施例9]
於實施例9中,設為c1=0.2,且將碳濃度設為1E+20cm-3
漏電流較實施例4而略低,於這個方面而言優異。另一方面,半值寬度為1450arcsec,當然較實施例4之1600arcsec良好,而且亦較實施例8之1480arsec而稍良好。可稱之為結晶性與耐壓兩者均比實施例4為更良好之特性。
如以上所述,本發明之更佳之一態樣於目標在於以更高之次元兼顧結晶性與耐壓兩者之情形時,可謂相對優異之氮化物半導體基板。
此處,若與第二初期層相接而形成之層m0 的碳濃度低於第二初期層12的碳濃度,則特佳。由於氮化物半導體中的碳係作為雜質而存在,故而若前述碳的濃度變高,則氮化物半導體的結晶性有降低之傾向。由於第二初期層12的碳濃度係設定得相對較高,因此若隨後與第二初期層相接而形成之層m0 的碳濃度為相同程度,則多層緩衝層m整體也會變成以結晶性不會有太大提升之方式成長。
因此,本發明中,如上文所述,藉由使與第二初期層相接而形成之層m0 的碳濃度較第二初期層12的碳濃度更低,而可與作為本發明之特徵之第二初期層12的構成合適地適配,且以容易製造之形態進一步提高多層緩衝層m的結晶性。 [實施例10]
於實施例4之樣本中,與第二初期層相接而形成之層m0 與第二初期層12的碳濃度大致相等,為1E+19cm-3 。相對於此,於實施例10之樣本中,藉由製造條件之最適化,而將與第二初期層相接而形成之層m0 的碳濃度設為9E+18cm-3 ,從而使層m0 的碳濃度低於第二初期層12的碳濃度1E+19cm-3 。除此以外,以與實施例4相同之方式製作樣本。
結果,關於漏電流,實施例10與實施例4同等。進一步作為追加評價,於實施例4與實施例10之樣本的多層緩衝層m的結晶性予以比較的狀態下,實施例10中的半值寬度較實施例4低達10%,實施例10的結晶性優異。可認為這一情況之原因在於:藉由降低作為雜質之碳濃度,而使與第二初期層相接而形成之層m0的結晶性相對變高,積層於前述層m0上之多層緩衝層m的結晶性亦同樣地優化。
11:第一初期層 12:第二初期層 101:電子過渡層 102:電子供給層 B:緩衝層 G:動作層 m:多層緩衝層 S:基底基板 W:氮化物半導體基板
[圖1]係顯示本發明之氮化物半導體基板的一態樣之剖面概略圖。 [圖2]係於本發明之氮化物半導體基板中顯示第二初期層中的Al組成以及雜質碳濃度之關係之圖表。
11:第一初期層
12:第二初期層
101:電子過渡層
102:電子供給層
B:緩衝層
G:動作層
m:多層緩衝層
S:基底基板
W:氮化物半導體基板

Claims (3)

  1. 一種氮化物半導體基板,係於矽單晶基板上依序積層有均由氮化物半導體構成之緩衝層以及動作層; 前述緩衝層包含與前述矽單晶基板相接而形成之單層之第一初期層以及形成於前述第一初期層上之單層之第二初期層; 前述第一初期層係由氮化鋁形成; 前述第二初期層係由Alz Ga1-z N(0.12≦z≦0.65)形成,且於將X軸設為z×100且將Y軸設為前述第二初期層中的碳濃度之X-Y圖表中,X為12以上至65以下,Y為Y=1E+17×exp(-0.05×X)與Y=1E+21×exp(-0.05×X)之間之範圍內。
  2. 如請求項1所記載之氮化物半導體基板,其中前述緩衝層更包含與第二初期層相接而形成之層; 與前述第二初期層相接而形成之層係由Alc1 Ga1-c1 N形成,且於將X軸設為c1×100、將Y軸設為與前述第二初期層相接而形成之層中的碳濃度之X-Y圖表中,X為0以上至20以下,Y為Y=8E+18×exp(-0.03×X)與Y=4E+20×exp(-0.03×X)之間之範圍內。
  3. 如請求項2所記載之氮化物半導體基板,其中與前述第二初期層相接而形成之層的碳濃度低於前述第二初期層的碳濃度。
TW108136477A 2018-12-12 2019-10-09 氮化物半導體基板 TWI728498B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-232148 2018-12-12
JP2018232148 2018-12-12
JP2019126583 2019-07-08
JP2019-126583 2019-07-08
JP2019-170218 2019-09-19
JP2019170218A JP7179706B2 (ja) 2018-12-12 2019-09-19 窒化物半導体基板

Publications (2)

Publication Number Publication Date
TW202029522A true TW202029522A (zh) 2020-08-01
TWI728498B TWI728498B (zh) 2021-05-21

Family

ID=71071004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136477A TWI728498B (zh) 2018-12-12 2019-10-09 氮化物半導體基板

Country Status (2)

Country Link
US (1) US10825895B2 (zh)
TW (1) TWI728498B (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519196B2 (ja) * 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP5188545B2 (ja) 2009-09-14 2013-04-24 コバレントマテリアル株式会社 化合物半導体基板
WO2011083552A1 (ja) * 2010-01-08 2011-07-14 三菱電機株式会社 エピタキシャルウエハ及び半導体素子
JP5912383B2 (ja) * 2011-10-03 2016-04-27 クアーズテック株式会社 窒化物半導体基板
JP6151487B2 (ja) 2012-07-10 2017-06-21 富士通株式会社 化合物半導体装置及びその製造方法
JP5787417B2 (ja) * 2013-05-14 2015-09-30 コバレントマテリアル株式会社 窒化物半導体基板
JP2016219690A (ja) 2015-05-25 2016-12-22 クアーズテック株式会社 13族窒化物半導体基板
JP2019505459A (ja) * 2015-12-10 2019-02-28 アイキューイー ピーエルシーIQE plc 増加した圧縮応力によってシリコン基板上で成長させたiii族窒化物構造物
CN107636808B (zh) * 2015-12-18 2021-03-23 富士电机株式会社 碳化硅半导体基板、碳化硅半导体基板的制造方法、半导体装置及半导体装置的制造方法
JP6692334B2 (ja) * 2017-09-20 2020-05-13 株式会社東芝 半導体基板及び半導体装置

Also Published As

Publication number Publication date
TWI728498B (zh) 2021-05-21
US20200194545A1 (en) 2020-06-18
US10825895B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5543711B2 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
US20130020581A1 (en) Epitaxial wafer including nitride-based semiconductor layers
US8835983B2 (en) Nitride semiconductor device including a doped nitride semiconductor between upper and lower nitride semiconductor layers
US10008571B2 (en) Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer
WO2009084241A1 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
JP6731584B2 (ja) 窒化物半導体装置および窒化物半導体基板
JP5788296B2 (ja) 窒化物半導体基板及びその製造方法
TW201436282A (zh) 具有AlzGa1-zN層的半導體晶圓及其製造方法
US7462505B2 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP2013145782A (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP2011228442A (ja) 窒化物系半導体ウエハ及び窒化物系半導体デバイス
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
TWI728498B (zh) 氮化物半導體基板
JP6527667B2 (ja) 窒化物半導体基板の製造方法
JP7179706B2 (ja) 窒化物半導体基板
JP5073623B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
US9923050B2 (en) Semiconductor wafer and a method for producing the semiconductor wafer
KR101517808B1 (ko) 크랙 감소를 위한 실리콘 기판 위 GaN 성장방법
JP7220647B2 (ja) 窒化物半導体基板及びその製造方法
WO2011105066A1 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP7201571B2 (ja) 窒化物半導体基板および窒化物半導体装置