TW202024823A - Automation control system and method - Google Patents

Automation control system and method Download PDF

Info

Publication number
TW202024823A
TW202024823A TW107145995A TW107145995A TW202024823A TW 202024823 A TW202024823 A TW 202024823A TW 107145995 A TW107145995 A TW 107145995A TW 107145995 A TW107145995 A TW 107145995A TW 202024823 A TW202024823 A TW 202024823A
Authority
TW
Taiwan
Prior art keywords
command
main controller
laser light
mobile platform
control
Prior art date
Application number
TW107145995A
Other languages
Chinese (zh)
Other versions
TWI692683B (en
Inventor
陳文泉
李峰吉
陳金聖
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW107145995A priority Critical patent/TWI692683B/en
Priority to JP2019109648A priority patent/JP6948076B2/en
Application granted granted Critical
Publication of TWI692683B publication Critical patent/TWI692683B/en
Publication of TW202024823A publication Critical patent/TW202024823A/en

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

A automation control system includes a laser device, a moving stage, a galvanometric scanner control device, and a master controller. The laser device is configured to generate a laser in response to a first command. The moving stage is configured to support an article, and adjust a position of the article in response to a second command. The galvanometric scanner control device is configured to determine a direction of the laser irradiating to the article in response to a third command to perform a process. The master controller is configured to transmit the first, the second, and the third commands based on an Ethernet for control automation technology (EtherCAT) protocol to synchronize the laser device, the moving stage, and the galvanometric scanner control device.

Description

自動化控制系統及方法 Automatic control system and method

本揭示內容是關於一種自動化控制系統,特別是關於一種藉由乙太網自動化控制技術的自動化控制系統。 The present disclosure relates to an automatic control system, especially to an automatic control system using Ethernet automation control technology.

自動化控制系統常見於各種應用中。目前的應用中,自動化控制系統基於多種通訊協定(或介面)來控制多個裝置。然而,由於通訊協定(或介面)的類型不同,各種通訊協定間(或介面)之控制會有長度不一的時間延遲,導致控制命令無法精確地同步執行。 Automated control systems are commonly found in various applications. In current applications, automated control systems control multiple devices based on multiple communication protocols (or interfaces). However, due to the different types of communication protocols (or interfaces), the control between various communication protocols (or interfaces) will have a time delay of varying lengths, resulting in the control commands cannot be accurately executed synchronously.

有鑒於此,本揭示內容提出一種自動化控制系統以及方法,藉以解決先前技術所述及的問題。 In view of this, the present disclosure proposes an automatic control system and method to solve the problems mentioned in the prior art.

本揭示內容之一實施方式係關於一種自動化控制系統包含:雷射裝置、移動平台、振鏡定位控制裝置以及主控制器。雷射裝置用以響應於第一指令產生雷射光。移動平台用以支撐乘載物,並響應於第二指令調整承載物 之位置。振鏡定位控制裝置用以響應於第三指令決定雷射光投射至乘載物之照射方向,以進行加工程序。主控制器用以基於乙太網控制自動化協定傳輸第一指令、第二指令與第三指令,以同步化雷射能量控制、移動平台及振鏡定位控制裝置。 One embodiment of the present disclosure relates to an automatic control system including: a laser device, a mobile platform, a galvanometer positioning control device, and a main controller. The laser device is used for generating laser light in response to the first command. The mobile platform is used to support the load and adjust the load in response to the second instruction The location. The galvanometer positioning control device is used for determining the irradiation direction of the laser light projected to the load in response to the third instruction to perform the processing procedure. The main controller is used to transmit the first command, the second command and the third command based on the Ethernet control automation protocol to synchronize the laser energy control, the mobile platform and the galvanometer positioning control device.

本揭示內容之一實施方式係關於一種自動化控制系統之方法。自動化控制系統之方法包含:藉由雷射裝置,響應於第一指令,控制雷射光能量大小;藉由移動平台,響應於第二指令,調整乘載物之位置,其中移動平台用以支撐乘載物;藉由振鏡定位控制裝置,響應於第三指令,決定雷射光投射至乘載物之照射位置以進行加工程序;以及藉由主控制器,基於乙太網路控制自動化協定,傳輸第一指令、第二指令與第三指令,以同步化控制雷射裝置、移動平台與振鏡定位控制裝置。 One embodiment of the present disclosure relates to a method of an automated control system. The method of the automatic control system includes: using a laser device, in response to a first command, to control the amount of laser light energy; using a mobile platform to adjust the position of the load in response to the second command, wherein the mobile platform is used to support the ride Carrying objects; by the galvanometer positioning control device, in response to the third command, determine the irradiation position of the laser light projected to the objects for processing; and by the main controller, based on the Ethernet control automation protocol, transmission The first instruction, the second instruction and the third instruction are used to synchronously control the laser device, the mobile platform and the galvanometer positioning control device.

100、200‧‧‧自動化控制系統 100, 200‧‧‧Automatic control system

110‧‧‧主控制器 110‧‧‧Main Controller

111‧‧‧即時作業系統 111‧‧‧Real-time operating system

112‧‧‧通訊協定控制器 112‧‧‧Communication Protocol Controller

113‧‧‧記憶體裝置 113‧‧‧Memory device

120‧‧‧雷射裝置 120‧‧‧Laser device

121‧‧‧雷射光源 121‧‧‧Laser light source

122‧‧‧雷射光調變器122 122‧‧‧Laser light modulator 122

123‧‧‧雷射光調變驅動器 123‧‧‧Laser Light Modulation Driver

124‧‧‧擴束器 124‧‧‧Beam Expander

125‧‧‧能量計 125‧‧‧Energy meter

126‧‧‧孔徑 126‧‧‧Aperture

M1~M3‧‧‧光學鏡 M1~M3‧‧‧Optical lens

131‧‧‧載台 131‧‧‧ Stage

132‧‧‧伺服馬達驅動器 132‧‧‧Servo Motor Driver

133‧‧‧乘載物 133‧‧‧Loading

140‧‧‧振鏡定位控制裝置 140‧‧‧Vibrator positioning control device

141‧‧‧振鏡馬達 141‧‧‧Vibration mirror motor

142‧‧‧振鏡馬達驅動器 142‧‧‧Vibration mirror motor driver

150‧‧‧工業相機 150‧‧‧Industrial Camera

F1‧‧‧影像 F1‧‧‧Image

160‧‧‧資料庫 160‧‧‧Database

P1‧‧‧參數 P1‧‧‧Parameter

V1~V4‧‧‧指令 V1~V4‧‧‧Command

X、Y、Z‧‧‧方向 X, Y, Z‧‧‧direction

300‧‧‧自動化控制方法 300‧‧‧Automatic control method

S302~S318‧‧‧步驟 S302~S318‧‧‧Step

T‧‧‧加工路徑 T‧‧‧Processing path

Sp‧‧‧移動速度 Sp‧‧‧movement speed

Freq‧‧‧雷射光輸出頻率 Freq‧‧‧laser output frequency

Int‧‧‧加工能量密度 Int‧‧‧Processing energy density

LA‧‧‧轉折區域 LA‧‧‧Turning area

藉由閱讀以下對實施例之詳細描述可以更全面地理解本揭示案,參考附圖如下:第1圖為根據本揭示文件之一些實施例所繪示之自動化控制系統的示意圖;第2圖為根據本揭示文件之一些實施例所繪示之自動化控制系統的示意圖;第3圖為根據本揭示文件之一些實施例所繪示之自動化控制方法的流程圖;以及 第4圖為根據本揭示文件之一些實施例所繪示之自動化控制系統之相關參數與示意圖。 The present disclosure can be understood more fully by reading the following detailed description of the embodiments, with reference to the accompanying drawings as follows: Figure 1 is a schematic diagram of an automated control system drawn according to some embodiments of the present disclosure; Figure 2 is A schematic diagram of an automated control system according to some embodiments of the present disclosure; Figure 3 is a flowchart of an automated control method according to some embodiments of the present disclosure; and Figure 4 is a schematic diagram of relevant parameters and schematic diagrams of the automated control system drawn according to some embodiments of the present disclosure.

下文係舉實施例配合所附圖式作詳細說明,但所描述的具體實施例僅僅用以解釋本發明實施例,並不用來限定本發明實施例,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本發明實施例揭示內容所涵蓋的範圍。 The following is a detailed description of the embodiments in conjunction with the accompanying drawings, but the specific embodiments described are only used to explain the embodiments of the present invention, and are not used to limit the embodiments of the present invention, and the description of structural operations is not intended to limit its execution. The sequence, any structure that recombines the components, and produces a device with an equal effect, is within the scope of the disclosure of the embodiments of the present invention.

參考第1圖。第1圖為根據本揭示文件之一些實施例所繪示之自動化控制系統100的示意圖。在一些實施例中,自動化控制系統100包含主控制器110、雷射裝置120、移動平台130與振鏡定位控制裝置140。 Refer to Figure 1. FIG. 1 is a schematic diagram of an automated control system 100 according to some embodiments of the present disclosure. In some embodiments, the automation control system 100 includes a main controller 110, a laser device 120, a mobile platform 130 and a galvanometer positioning control device 140.

如第1圖所示,雷射裝置120耦接至主控制器110,移動平台130耦接至主控制器110,且振鏡定位控制裝置140耦接至主控制器110。在一些實施例中,主控制器110可操作為伺服主端元件,而雷射裝置120、移動平台130以及振鏡定位控制裝置140可操作為伺服從端元件。 As shown in FIG. 1, the laser device 120 is coupled to the main controller 110, the mobile platform 130 is coupled to the main controller 110, and the galvo positioning control device 140 is coupled to the main controller 110. In some embodiments, the master controller 110 can operate as a servo master component, and the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140 can operate as a servo slave component.

在一些實施例中,主控制器110用以藉由第一通訊協定控制雷射裝置120與振鏡定位控制裝置140,並且用以藉由第二通訊協定控制移動平台130。在一些實施例中,第一通訊協定與第二通訊協定相同。在更進一步的實施例中,第一通訊協定與/或第二通訊協定可為乙太網控制自動化(Ethernet for control automation technology, EtherCAT)協定或其後續繼任協定。在一些使用乙太網控制自動化協定的實施例中,主控制器110、雷射裝置120、移動平台130與振鏡定位控制裝置140皆配置有支援此EtherCAT協定的收發器電路,以基於乙太網控制自動化協定建立彼此之間的連線。上述乙太網控制自動化協定用於示例,且本案並不以此為限。 In some embodiments, the main controller 110 is used to control the laser device 120 and the galvanometer positioning control device 140 through the first communication protocol, and is used to control the mobile platform 130 through the second communication protocol. In some embodiments, the first communication protocol is the same as the second communication protocol. In a further embodiment, the first communication protocol and/or the second communication protocol may be Ethernet for control automation technology (Ethernet for control automation technology, EtherCAT) agreement or its successor agreement. In some embodiments using the Ethernet control automation protocol, the main controller 110, the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140 are all equipped with a transceiver circuit that supports the EtherCAT protocol to be based on the Ethernet The network control automation protocol establishes the connection between each other. The above-mentioned Ethernet control automation protocol is used as an example, and this case is not limited to this.

在一些實施例中,當第一通訊協定與第二通訊協定相同時,主控制器110更用以同步化雷射裝置120、移動平台130與振鏡定位控制裝置140。在另一些實施例中,主控制器110藉由乙太網控制自動化協定用以同步化雷射裝置120、移動平台130與振鏡定位控制裝置140。換句話說,自動化控制系統100可藉由單一類型的通訊協定來統整所有內部主端元件與從端元件之同步性。 In some embodiments, when the first communication protocol is the same as the second communication protocol, the main controller 110 is further used to synchronize the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140. In other embodiments, the main controller 110 is used to synchronize the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140 through an Ethernet control automation protocol. In other words, the automation control system 100 can integrate the synchronization of all internal master components and slave components through a single type of communication protocol.

在一些實施例中,主控制器110藉由第一通訊協定與雷射裝置120建立連結,以輸出第一指令V1至雷射裝置120。雷射裝置120響應接收到的第一指令V1而產生雷射光。例如,主控制器110可基於乙太網控制自動化協定連線至雷射裝置120,並透過乙太網控制自動化協定將第一指令V1傳輸至雷射裝置120。雷射裝置120亦透過乙太網控制自動化協定接收到第一指令V1,並據以產生雷射光並控制雷射光能量大小。 In some embodiments, the main controller 110 establishes a connection with the laser device 120 through the first communication protocol to output the first command V1 to the laser device 120. The laser device 120 generates laser light in response to the received first command V1. For example, the main controller 110 may connect to the laser device 120 based on the Ethernet control automation protocol, and transmit the first command V1 to the laser device 120 through the Ethernet control automation protocol. The laser device 120 also receives the first command V1 through the Ethernet control automation protocol, and generates laser light accordingly and controls the energy of the laser light.

在一些實施例中,主控制器110藉由第二通訊協定連線至移動平台130。主控制器110藉由第二通訊協定輸出第二指令V2至移動平台130。在一些實施例中,移動平台 130用以支撐一乘載物133(示於第2圖中)。移動平台130響應接收到的第二指令V2而調整乘載物133的位置。在一些實施例中,主控制器可基於乙太網控制自動化協定連線至移動平台130,並透過乙太網控制自動化協定將第二指令V2傳輸至移動平台130,而移動平台130透過乙太網控制自動化協定接收第二指令V2以調整乘載物133的位置。 In some embodiments, the main controller 110 is connected to the mobile platform 130 through the second communication protocol. The main controller 110 outputs the second command V2 to the mobile platform 130 through the second communication protocol. In some embodiments, the mobile platform 130 is used to support a load 133 (shown in Figure 2). The mobile platform 130 adjusts the position of the load 133 in response to the received second instruction V2. In some embodiments, the main controller can connect to the mobile platform 130 based on the Ethernet control automation protocol, and transmit the second command V2 to the mobile platform 130 through the Ethernet control automation protocol, and the mobile platform 130 can use the Ethernet The network control automation protocol receives the second command V2 to adjust the position of the load 133.

在一些實施例中,移動平台130包含伺服馬達驅動器132(示於第2圖中)。伺服馬達驅動器132用以根據由移動平台接收的第二指令V2以調整乘載物133的位置。在一些實施例中,主控制器110用以傳輸第二指令V2至控制伺服馬達驅動器132,使伺服馬達驅動器132調整乘載物133的位置。 In some embodiments, the mobile platform 130 includes a servo motor driver 132 (shown in Figure 2). The servo motor driver 132 is used to adjust the position of the load 133 according to the second command V2 received by the mobile platform. In some embodiments, the main controller 110 is used to transmit the second command V2 to the control servo motor driver 132 so that the servo motor driver 132 adjusts the position of the load 133.

在一些實施例中,主控制器110用以控制雷射裝置120與移動平台130。由雷射裝置120產生的雷射光照射至藉由移動平台所調整的位置上的乘載物133,以進行雷射加工。在一些實施例中,主控制器110藉由乙太網控制自動化協定輸出第一指令V1與第二指令V2,以分別控制雷射裝置120與移動平台130。如此,由移動平台130所支撐的乘載物133可於一適當的位置被雷射裝置120可根據第一指令V1產生雷射光照射。在一些實施例中,藉由上述照射,乘載物133可被進行雷射加工。 In some embodiments, the main controller 110 is used to control the laser device 120 and the mobile platform 130. The laser light generated by the laser device 120 irradiates the load 133 at the position adjusted by the moving platform to perform laser processing. In some embodiments, the main controller 110 outputs the first command V1 and the second command V2 through the Ethernet control automation protocol to control the laser device 120 and the mobile platform 130 respectively. In this way, the load 133 supported by the mobile platform 130 can be irradiated by the laser device 120 in an appropriate position according to the first command V1. In some embodiments, by the above-mentioned irradiation, the carrier 133 can be laser processed.

在一些實施例中,主控制器110用以控制振鏡定位控制裝置140。主控制器110藉由第三通訊協定與振鏡定位控制裝置140建立連結,以輸出第三指令V3至振鏡定位控制 裝置140。在一些實施例中,振鏡定位控制裝置140用以決定由雷射裝置120產生的雷射光的照射方向。振鏡定位控制裝置140響應接收到的第三指令V3而決定雷射光投射至乘載物133的照射位置。在一些實施例中,主控制器用以產生第三指令V3,並透過乙太網控制自動化協定將第三指令V3傳輸至振鏡定位控制裝置140,而振鏡定位控制裝置140透過乙太網控制自動化協定接收第三指令V3以決定雷射光的照射方向。 In some embodiments, the main controller 110 is used to control the galvanometer positioning control device 140. The main controller 110 establishes a connection with the galvanometer positioning control device 140 through the third communication protocol to output a third command V3 to the galvanometer positioning control 装置140. In some embodiments, the galvanometer positioning control device 140 is used to determine the irradiation direction of the laser light generated by the laser device 120. The galvanometer positioning control device 140 determines the irradiation position where the laser light is projected to the vehicle 133 in response to the received third command V3. In some embodiments, the main controller is used to generate the third command V3, and transmit the third command V3 to the galvo positioning control device 140 through the Ethernet control automation protocol, and the galvo positioning control device 140 is controlled via the Ethernet The automation protocol receives the third command V3 to determine the irradiation direction of the laser light.

在一些實施例中,振鏡定位控制裝置140包含振鏡馬達141(示於第2圖中)。振鏡馬達141用以根據由振鏡定位控制裝置140接收的第三指令V3以決定雷射裝置120產生的雷射光的照射方向。在一些實施例中,主控制器110用以傳輸第三指令V3至振鏡馬達141,以控制振鏡馬達141決定雷射光的照射方向。 In some embodiments, the galvanometer positioning control device 140 includes a galvanometer motor 141 (shown in Figure 2). The galvanometer motor 141 is used for determining the irradiation direction of the laser light generated by the laser device 120 according to the third command V3 received by the galvanometer positioning control device 140. In some embodiments, the main controller 110 is used to transmit the third command V3 to the galvanometer motor 141 to control the galvanometer motor 141 to determine the irradiation direction of the laser light.

在一些實施例中,主控制器110更用以同時控制雷射裝置120、移動平台130與振鏡定位控制裝置140。基於主控制器110的同步控制,振鏡定位控制裝置140可控制雷射裝置120的雷射光的照射方向,且移動平台130可調整支撐載物133的位置。如此一來,乘載物133可於適當的位置被雷射光加工。在一些實施例中,主控制器110藉由乙太網控制自動化協定輸出第一指令V1、第二指令V2與第三指令V3,以分別控制雷射裝置120、移動平台130與振鏡定位控制裝置140。 In some embodiments, the main controller 110 is further used to simultaneously control the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140. Based on the synchronization control of the main controller 110, the galvanometer positioning control device 140 can control the irradiation direction of the laser light of the laser device 120, and the mobile platform 130 can adjust the position of the supporting load 133. In this way, the load 133 can be processed by laser light at an appropriate position. In some embodiments, the main controller 110 outputs the first command V1, the second command V2, and the third command V3 through the Ethernet control automation protocol to control the laser device 120, the mobile platform 130, and the galvanometer positioning control, respectively.装置140.

在一些實施例中,主控制器110用以控制雷射 裝置120、移動平台130與振鏡定位控制裝置140,以將乘載物133調整至適當的位置被雷射光照射,以進行一加工程序。例如,如第1圖所示,主控制器110透過乙太網控制自動化協定分別傳輸第一指令V1、第二指令V2與第三指令V3至雷射裝置120、移動平台130與振鏡定位控制裝置140。如此,雷射裝置120、移動平台130與振鏡定位控制裝置140可分別根據第一指令V1、第二指令V2與第三指令V3執行對應操作,以對乘載物133進行加工程序。在一些實施例中,加工程序為雷射切割程序。在另一些實施例中,加工程序為雷射雕刻程序。 In some embodiments, the main controller 110 is used to control the laser The device 120, the mobile platform 130 and the galvanometer positioning control device 140 adjust the load 133 to an appropriate position to be illuminated by the laser light to perform a processing procedure. For example, as shown in Figure 1, the main controller 110 respectively transmits the first command V1, the second command V2, and the third command V3 to the laser device 120, the mobile platform 130, and the galvanometer positioning control through the Ethernet control automation protocol.装置140. In this way, the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140 can perform corresponding operations according to the first instruction V1, the second instruction V2, and the third instruction V3, respectively, to process the load 133. In some embodiments, the processing procedure is a laser cutting procedure. In other embodiments, the processing procedure is a laser engraving procedure.

在一些實施例中,主控制器110用以偵測雷射光在移動平台130上的照射路徑。在一些實施例中,當雷射光在移動平台130上的照射路徑符合一預定條件時,主控制器110可輸出對應的第一指令V1至雷射裝置120,以調整雷射光的輸出功率。例如,在一些實施例中,主控制器110用以判斷雷射光在移動平台130上的照射路徑是否有出現轉折。在一些實施例中,主控制器110可根據第二指令V2分析雷射光經過振鏡定位控制裝置140反射後的照射位置,以判斷雷射光的照射路徑是否有出現轉折。在又一些實施例中,上述判斷可根據第二指令V2及/或第三指令V3中任意一者執行。相關描述將於後述段落參照第4圖說明。 In some embodiments, the main controller 110 is used to detect the irradiation path of the laser light on the mobile platform 130. In some embodiments, when the irradiation path of the laser light on the mobile platform 130 meets a predetermined condition, the main controller 110 may output the corresponding first command V1 to the laser device 120 to adjust the output power of the laser light. For example, in some embodiments, the main controller 110 is used to determine whether the irradiation path of the laser light on the mobile platform 130 has a turn. In some embodiments, the main controller 110 may analyze the irradiation position of the laser light after being reflected by the galvanometer positioning control device 140 according to the second command V2 to determine whether the irradiation path of the laser light has a turn. In still other embodiments, the above determination can be performed according to any one of the second instruction V2 and/or the third instruction V3. The related description will be explained with reference to Fig. 4 in the following paragraphs.

在一些實施例中,主控制器110包含一記憶體裝置113(示於第2圖中),此記憶體裝置用以儲存一或多個程式碼。主控制器100可根據程式碼所預先定義之一或多個 預設功能或指令集輸出第一指令V1、第二指令V2與第三指令V3。 In some embodiments, the main controller 110 includes a memory device 113 (shown in FIG. 2), and the memory device is used to store one or more program codes. The main controller 100 can predefine one or more The preset function or instruction set outputs the first instruction V1, the second instruction V2, and the third instruction V3.

在一些實施例中,第一指令V1、第二指令V2與第三指令V3為單一訊號。在一些實施例中,第一指令V1、第二指令V2與第三指令V3為多數個單一訊號之組合。上述之第一指令V1、第二指令V2與第三指令V3均為示例之用途,各種類型的指令與訊號,均在本揭示內容的範疇之內。例如,第一指令V1可指示為一用於控制雷射裝置120的雷射光脈波寬度調變訊號,且第三指令V3可為一數位訊號。 In some embodiments, the first command V1, the second command V2, and the third command V3 are a single signal. In some embodiments, the first command V1, the second command V2, and the third command V3 are a combination of a plurality of single signals. The above-mentioned first command V1, second command V2, and third command V3 are all examples of purposes, and various types of commands and signals are within the scope of this disclosure. For example, the first command V1 can be indicated as a pulse width modulation signal of laser light for controlling the laser device 120, and the third command V3 can be a digital signal.

在一些實施例中,自動化控制系統100更包含工業相機150。如第1圖所示,工業相機150耦接至主控制器110。在一些實施例中,主控制器110藉由第四通訊協定輸出第四指令V4至工業相機150。工業相機150響應接收到的第四指令V4以擷取影像F1。在一些實施例中,工業相機160用以擷取關聯於加工程序的影像F1。 In some embodiments, the automated control system 100 further includes an industrial camera 150. As shown in FIG. 1, the industrial camera 150 is coupled to the main controller 110. In some embodiments, the main controller 110 outputs the fourth command V4 to the industrial camera 150 through the fourth communication protocol. The industrial camera 150 responds to the received fourth command V4 to capture the image F1. In some embodiments, the industrial camera 160 is used to capture the image F1 associated with the processing procedure.

在一些實施例中,主控制器110用以藉由乙太網控制自動化協定傳輸第四指令V4至工業相機。工業相機150可響應於第四指令V4對移動平台130拍攝,以擷取關聯於加工程序的影像F1。在一些實施例中,主控制器110可用以接收由工業相機150擷取的加工程序的影像F1,以監控加工程序。 In some embodiments, the main controller 110 is used to transmit the fourth command V4 to the industrial camera through the Ethernet control automation protocol. The industrial camera 150 can shoot the mobile platform 130 in response to the fourth command V4 to capture the image F1 related to the processing procedure. In some embodiments, the main controller 110 can receive the image F1 of the processing procedure captured by the industrial camera 150 to monitor the processing procedure.

在一些實施例中,第一通訊協定、第二通訊協定、第三通訊協定與第四通訊協定均相同。在一些實施例中, 第三通訊協定為乙太網控制自動化協定。 In some embodiments, the first communication protocol, the second communication protocol, the third communication protocol and the fourth communication protocol are all the same. In some embodiments, The third communication protocol is the Ethernet control automation protocol.

在一些實施例中,自動化控制系統100更包含資料庫160。如第1圖所示,資料庫160耦接至主控制器110。在一些實施例中,主控制器110藉由至少一通訊協定(例如為前述的第一通訊協定、第二通訊協定、第三通訊協定與第四通訊協定)與雷射裝置120、移動平台130、振鏡定位控制裝置140與工業相機150建立連線,以蒐集關聯於加工程序的至少一參數P1,並將之儲存至資料庫160。在一些實施例中,主控制器藉由第四通訊協定連線至資料庫160,以將至少一參數P1儲存至資料庫160。在一些實施例中,至少一參數P1關聯於第一指令V1、第二指令V2、第三指令V3、第四指令V4、影像F1或其組合。換句話說,至少一參數P1可為單一參數或多數個參數之組合,例如可為(但不限於)雷射光之功率、頻率、振鏡定位控制裝置140的振鏡角度、移動平台130的移動位置等等參數或其組合。 In some embodiments, the automated control system 100 further includes a database 160. As shown in FIG. 1, the database 160 is coupled to the main controller 110. In some embodiments, the main controller 110 uses at least one communication protocol (for example, the aforementioned first communication protocol, second communication protocol, third communication protocol, and fourth communication protocol) to communicate with the laser device 120 and the mobile platform 130 , The galvanometer positioning control device 140 establishes a connection with the industrial camera 150 to collect at least one parameter P1 related to the processing procedure and store it in the database 160. In some embodiments, the main controller connects to the database 160 through the fourth communication protocol to store at least one parameter P1 in the database 160. In some embodiments, at least one parameter P1 is associated with the first command V1, the second command V2, the third command V3, the fourth command V4, the image F1, or a combination thereof. In other words, at least one parameter P1 can be a single parameter or a combination of multiple parameters, such as (but not limited to) the power and frequency of the laser light, the angle of the galvanometer positioning control device 140, and the movement of the mobile platform 130 Position and other parameters or their combination.

在一些實施例中,第一通訊協定、第二通訊協定、第三通訊協定與第四通訊協定均相同。在一些實施例中,第四通訊協定為乙太網控制自動化協定。 In some embodiments, the first communication protocol, the second communication protocol, the third communication protocol and the fourth communication protocol are all the same. In some embodiments, the fourth communication protocol is an Ethernet control automation protocol.

參考第2圖。第2圖為根據本揭示文件之一些實施例所繪示之自動化控制系統200的示意圖。在一些實施例中,自動化控制系統200包含主控制器110、雷射裝置120、移動平台130與振鏡定位控制裝置140。為易於理解,自動化控制系統200與第1圖中自動化控制系統100中相似之元件將以相同編碼方式編碼,且相似之元件在此不再重複敘述。 Refer to Figure 2. FIG. 2 is a schematic diagram of an automated control system 200 according to some embodiments of the present disclosure. In some embodiments, the automation control system 200 includes a main controller 110, a laser device 120, a mobile platform 130 and a galvanometer positioning control device 140. For ease of understanding, similar components in the automation control system 200 and the automation control system 100 in Figure 1 will be coded in the same coding manner, and similar components will not be repeated here.

為易於理解本案實施例的主僕控制方式,第2圖示出自動化控制系統200的中主要元件的相對設置關係,而並未詳細地列出所有元件的具體結構與/或所有細節。在不脫離本案的精神與範圍下,第2圖所示之設置方式可根據加工程序的需求與/或實際應用被調整、置換與改變。 To make it easier to understand the master-slave control method of the embodiment of the present case, Figure 2 shows the relative arrangement relationship of the main components of the automation control system 200, but does not list the specific structures and/or all details of all components in detail. Without departing from the spirit and scope of this case, the setting method shown in Figure 2 can be adjusted, replaced and changed according to the needs of the processing program and/or the actual application.

在一些實施例中,主控制器110包含即時作業系統111、通訊協定控制器112與記憶體裝置113。在一些實施例中,主控制器110包含一記憶體(例如可為記憶體裝置113或獨立的記憶體)與一處理器電路(未繪示)。即時作業系統111可安裝於此記憶體,並由該處理器電路執行來提供控制功能。即時作業系統111用以控制自動化控制系統100之操作的時序。在一些實施例中,通訊協定控制器112為乙太網控制自動化協定控制器。在一些實施例中,記憶體裝置113用以儲存前述的函式庫。 In some embodiments, the main controller 110 includes a real-time operating system 111, a communication protocol controller 112, and a memory device 113. In some embodiments, the main controller 110 includes a memory (for example, the memory device 113 or an independent memory) and a processor circuit (not shown). The real-time operating system 111 can be installed in this memory and executed by the processor circuit to provide control functions. The real-time operating system 111 is used to control the operation timing of the automation control system 100. In some embodiments, the communication protocol controller 112 is an Ethernet control automation protocol controller. In some embodiments, the memory device 113 is used to store the aforementioned library.

在一些實施例中,雷射裝置120包含雷射光源121、雷射光調變器122、雷射光調變驅動器123、擴束器124、能量計125、孔徑126、光學鏡M1、光學鏡M2與光學鏡M3。 In some embodiments, the laser device 120 includes a laser light source 121, a laser light modulator 122, a laser light modulator driver 123, a beam expander 124, an energy meter 125, an aperture 126, an optical mirror M1, an optical mirror M2, and Optical mirror M3.

在一些實施例中,雷射光源121為二氧化碳(CO2)雷射源。如第2圖所示,雷射光源121產生雷射光至雷射光調變器122。在一些實施例中,雷射光調變器122由雷射光調變驅動器123所控制,而雷射光調變驅動器123藉由第一通訊協定由主控制器110控制。例如,雷射光調變驅動器123可根據第一指令V1控制雷射光調變器122,以執行 下述操作。如第2圖所示,雷射光經過雷射光調變器122後以一比例分成兩道,一道射向擴束器124,一道射向光學鏡M1反射至能量計125。在一些實施例中,擴束器124用以改變通過的雷射光的光束直徑與發散角。在一些實施例中,主控制器110藉由第一通訊協定連線至能量計125,以量測反射至能量計125的雷射光能量,再依比例計算射向擴束器124的雷射光的能量。如第2圖所示,通過擴束器124的雷射光先射向光學鏡M2,再反射至光學鏡M3。雷射光經光學鏡M3反射後射向孔徑126,並通過孔徑126射向鏡定位控制裝置140。 In some embodiments, the laser light source 121 is a carbon dioxide (CO 2 ) laser source. As shown in FIG. 2, the laser light source 121 generates laser light to the laser light modulator 122. In some embodiments, the laser light modulator 122 is controlled by the laser light modulator driver 123, and the laser light modulator driver 123 is controlled by the main controller 110 through the first communication protocol. For example, the laser light modulator driver 123 can control the laser light modulator 122 according to the first instruction V1 to perform the following operations. As shown in FIG. 2, the laser light passes through the laser light modulator 122 and is divided into two in a proportion, one is directed toward the beam expander 124, and the other is directed toward the optical mirror M1 and reflected to the energy meter 125. In some embodiments, the beam expander 124 is used to change the beam diameter and divergence angle of the passing laser light. In some embodiments, the main controller 110 connects to the energy meter 125 through the first communication protocol to measure the energy of the laser light reflected to the energy meter 125, and then calculates the laser light emitted to the beam expander 124 proportionally energy. As shown in FIG. 2, the laser light passing through the beam expander 124 is first directed to the optical mirror M2 and then reflected to the optical mirror M3. The laser light is reflected by the optical mirror M3 and then directed toward the aperture 126, and then directed toward the mirror positioning control device 140 through the aperture 126.

在一些實施例中,雷射光經過光學鏡M2與光學鏡M3後,雷射光的光束直徑與發散角依不同實施例設計。在一些實施例中,孔徑126用以控制通過的雷射光的光束直徑。 In some embodiments, after the laser light passes through the optical mirror M2 and the optical mirror M3, the beam diameter and divergence angle of the laser light are designed according to different embodiments. In some embodiments, the aperture 126 is used to control the beam diameter of the passing laser light.

在一些實施例中,振鏡定位控制裝置140包含振鏡馬達141與振鏡馬達驅動器142。如第2圖所示,通過孔徑126的雷射光射向振鏡馬達141。在一些實施例中,振鏡馬達141耦接至振鏡馬達驅動器142,並設置於載台131。 In some embodiments, the galvanometer positioning control device 140 includes a galvanometer motor 141 and a galvanometer motor driver 142. As shown in FIG. 2, the laser light passing through the aperture 126 is directed to the galvo motor 141. In some embodiments, the galvanometer motor 141 is coupled to the galvanometer motor driver 142 and is disposed on the stage 131.

在一些實施例中,主控制器110藉由第三通訊協定傳輸第三指令V3至振鏡馬達驅動器142,並經由振鏡馬達驅動器142控制振鏡馬達141之角度。 In some embodiments, the main controller 110 transmits the third command V3 to the galvo motor driver 142 through the third communication protocol, and controls the angle of the galvo motor 141 via the galvo motor driver 142.

在一些實施例中,振鏡馬達141用以控制接收的雷射光的照射方向。如第2圖所示,振鏡馬達141將雷射光導向乘載物133。在一些實施例中,藉由載台131與振鏡馬達141 的控制,雷射光可被控制照射於乘載物133上之不同位置。 In some embodiments, the galvanometer motor 141 is used to control the irradiation direction of the received laser light. As shown in FIG. 2, the galvo motor 141 guides the laser light to the load 133. In some embodiments, the stage 131 and the galvanometer motor 141 The laser light can be controlled to irradiate different positions on the load 133.

在一些實施例中,移動平台130包含載台131與伺服馬達驅動器132。載台131耦接至伺服馬達驅動器132。在一些實施例中,載台131用以支撐前述的一乘載物133,並用以控制乘載物133於第一方向X及/或第二方向Y上移動。在一些實施例中,載台131更用以控制振鏡馬達141於第三方向Z移動。響應於載台131之控制,振鏡馬達141可於第三方向Z上移動。換句話說,乘載物133與振鏡馬達141之相對位置關係可由載台131於第一方向X、第二方向Y與第三方向Z上移動來控制。在一些實施例中,第一方向X、第二方向Y與第三方向Z相互垂直。 In some embodiments, the mobile platform 130 includes a stage 131 and a servo motor driver 132. The carrier 131 is coupled to the servo motor driver 132. In some embodiments, the carrier 131 is used to support the aforementioned load 133 and to control the load 133 to move in the first direction X and/or the second direction Y. In some embodiments, the stage 131 is further used to control the galvo motor 141 to move in the third direction Z. In response to the control of the stage 131, the galvo motor 141 can move in the third direction Z. In other words, the relative positional relationship between the load 133 and the galvo motor 141 can be controlled by the movement of the stage 131 in the first direction X, the second direction Y, and the third direction Z. In some embodiments, the first direction X, the second direction Y and the third direction Z are perpendicular to each other.

在一些實施例中,主控制器110藉由第二通訊協定連線至伺服馬達驅動器132,並傳輸第二指令V2至伺服馬達驅動器132以控制載台131,使載台上的乘載物133可於一平面(例如由第一方向X與第二方向Y展開的平面)上的移動。 In some embodiments, the main controller 110 is connected to the servo motor driver 132 through the second communication protocol, and transmits the second command V2 to the servo motor driver 132 to control the carrier 131 so that the load 133 on the carrier is It can move on a plane (for example, a plane expanded by the first direction X and the second direction Y).

在一些實施例中,乘載物133被照射雷射光,以進行加工程序(例如,雷射切割程序及/或雷射雕刻程序)。換句話說,主控制器110用以控制雷射裝置120、移動平台130與振鏡定位控制裝置140對乘載物133進行加工程序。在一些實施例中,主控制器110藉由乙太網控制自動化協定對乘載物133進行加工程序。上述之加工程序僅為示意之用途,各種合適的加工程序均屬於本揭示文件之範疇。 In some embodiments, the load 133 is irradiated with laser light to perform a processing procedure (for example, a laser cutting procedure and/or a laser engraving procedure). In other words, the main controller 110 is used to control the laser device 120, the mobile platform 130, and the galvanometer positioning control device 140 to process the load 133. In some embodiments, the main controller 110 performs processing procedures on the passenger 133 through an Ethernet control automation protocol. The above-mentioned processing procedures are for illustrative purposes only, and various suitable processing procedures belong to the scope of this disclosure.

在一些相關技術中,加工設備彼此之間採用不 同類型的通訊協定(或介面)連線。例如,移動平台由一額外的運動控制軸卡產生脈波或電壓控制訊號進行控制,振鏡馬達經由一XY2-100介面控制,雷射光源透過脈波寬度調變指令控制,且工業相機透過Giga-E介面控制。當上述設備整合於一起控制時,由於協定不同,各設備的操作時序無法精確地同步而影響加工程序的品質。 In some related technologies, processing equipment uses different The same type of communication protocol (or interface) connection. For example, the mobile platform is controlled by an additional motion control axis card to generate pulse waves or voltage control signals, the galvo motor is controlled by an XY2-100 interface, the laser light source is controlled by pulse width modulation commands, and the industrial camera is controlled by Giga -E interface control. When the above-mentioned devices are integrated and controlled together, due to different protocols, the operation timing of each device cannot be accurately synchronized, which affects the quality of the processing procedure.

相較於上述技術,本案實施例可透過同一通訊協定(例如為乙太網控制自動化協定)以主僕式控制方式來同步控制各加工設備。藉此,透過乙太網控制自動化協定的分散式時鐘機制,可讓各個從端加工設備之操作時序同步誤差明顯降低。如此,可提升加工程序的品質(如後第4圖所示)。 Compared with the above-mentioned technology, the embodiment of the present application can synchronously control each processing equipment in a master-slave control mode through the same communication protocol (for example, an Ethernet control automation protocol). In this way, through the distributed clock mechanism of the Ethernet control automation protocol, the synchronization error of the operation timing of each slave processing equipment can be significantly reduced. In this way, the quality of the processing procedure can be improved (as shown in Figure 4 below).

參考第3圖。第3圖為根據本揭示文件之一些實施例所繪示之的自動化控制方法300的流程圖。在一些實施例中,自動化控制方法300包含步驟S302~S320。在一些實施例中,自動化控制方法300應用於第1圖與第2圖的自動化控制系統中。為了以較佳的方式理解本揭示內容,自動化控制方法300將搭配第1圖與第2圖的自動化控制系統100、200進行討論,但本揭示內容不以此為限制。 Refer to Figure 3. FIG. 3 is a flowchart of an automated control method 300 according to some embodiments of the present disclosure. In some embodiments, the automated control method 300 includes steps S302 to S320. In some embodiments, the automated control method 300 is applied to the automated control system shown in FIG. 1 and FIG. 2. In order to understand the present disclosure in a better way, the automated control method 300 will be discussed in conjunction with the automated control systems 100 and 200 in FIG. 1 and FIG. 2, but the present disclosure is not limited thereto.

在步驟S302中,主控制器110藉由乙太網控制自動化協定傳輸第一指令V1至雷射裝置120以控制雷射裝置120以輸出雷射光。雷射裝置120產生雷射光至振鏡定位控制裝置140。其中主控制器110透過雷射光調變驅動器123與雷射光調變器122控制雷射光的產生頻率與能量振幅,並 透過能量計125計算照射至振鏡定位控制裝置140的雷射光的能量,再透過擴束器124、光學鏡M2、光學鏡M3與孔徑126將雷射光射向振鏡定位控制裝置140。 In step S302, the main controller 110 transmits the first command V1 to the laser device 120 through the Ethernet control automation protocol to control the laser device 120 to output laser light. The laser device 120 generates laser light to the galvanometer positioning control device 140. The main controller 110 controls the frequency and energy amplitude of the laser light through the laser light modulator driver 123 and the laser light modulator 122, and The energy meter 125 calculates the energy of the laser light irradiated to the galvanometer positioning control device 140, and then transmits the laser light to the galvanometer positioning control device 140 through the beam expander 124, the optical mirror M2, the optical mirror M3, and the aperture 126.

在步驟S304中,主控制器110藉由乙太網控制自動化協定傳輸第二指令V2至移動平台130以控制移動平台130。主控制器110透過伺服馬達驅動器132控制載台131支撐乘載物133於第一方向X與第二方向Y展開的平面上移動,並控制耦接於載台131上的振鏡馬達141於第三方向Z上移動。換句話說,主控制器藉由乙太網控制自動化協定控制乘載物133與振鏡馬達141之間的相對位置。 In step S304, the main controller 110 transmits the second command V2 to the mobile platform 130 through the Ethernet control automation protocol to control the mobile platform 130. The main controller 110 controls the carriage 131 to support the load 133 to move in the first direction X and the second direction Y through the servo motor driver 132, and controls the galvo motor 141 coupled to the carriage 131 to move in the first direction. Move in three directions Z. In other words, the main controller controls the relative position between the load 133 and the galvanometer motor 141 through the Ethernet control automation protocol.

在步驟S306中,主控制器110藉由乙太網控制自動化協定傳輸第三指令V3至振鏡定位控制裝置140以控制振鏡定位控制裝置140。主控制器110透過振鏡馬達驅動器142控制振鏡馬達141以控制雷射光的照射方向,並將雷射光射向乘載物133以對乘載物133進行加工程序。 In step S306, the main controller 110 transmits the third command V3 to the galvo positioning control device 140 through the Ethernet control automation protocol to control the galvo positioning control device 140. The main controller 110 controls the galvanometer motor 141 through the galvanometer motor driver 142 to control the irradiation direction of the laser light, and emits the laser light to the loading object 133 to perform processing procedures on the loading object 133.

在步驟S308中,主控制器110藉由乙太網控制自動化協定傳輸第三指令V3,並用以控制振鏡馬達141所控制的雷射光照射方向。 In step S308, the main controller 110 transmits the third command V3 through the Ethernet control automation protocol, and is used to control the laser light irradiation direction controlled by the galvanometer motor 141.

在步驟S310中,主控制器110在控制雷射光照射方向之後,藉由乙太網控制自動化協定傳輸第二指令V2以調整乘載物133與振鏡馬達141之間的相對位置。 In step S310, the main controller 110 transmits the second command V2 through the Ethernet control automation protocol after controlling the irradiation direction of the laser light to adjust the relative position between the load 133 and the galvanometer motor 141.

在步驟S312中,主控制器110在調整乘載物133與振鏡馬達141之間的相對位置之後,藉由乙太網控制自動化協定傳輸第一指令V1以調整雷射光的功率。例如, 適應調變雷射光的功率。 In step S312, after adjusting the relative position between the load 133 and the galvanometer motor 141, the main controller 110 transmits the first command V1 through the Ethernet control automation protocol to adjust the power of the laser light. E.g, Adapt to modulate the power of laser light.

在步驟S314中,主控制器110藉由乙太網控制自動化協定傳輸第四指令V4至工業相機150以即時同步擷取加工程序的影像F1。 In step S314, the main controller 110 transmits the fourth command V4 to the industrial camera 150 through the Ethernet control automation protocol to synchronously capture the image F1 of the processing program in real time.

在步驟S316中,主控制器110藉由乙太網控制自動化協定蒐集關聯於加工程序的參數,並儲存於資料庫160。 In step S316, the main controller 110 collects parameters related to the processing program through the Ethernet control automation protocol, and stores them in the database 160.

在步驟S318中,主控制器110藉由乙太網控制自動化協定同步化雷射裝置120、移動平台130、振鏡定位控制裝置140、工業相機150與資料庫160。 In step S318, the main controller 110 synchronizes the laser device 120, the mobile platform 130, the galvanometer positioning control device 140, the industrial camera 150, and the database 160 through the Ethernet control automation protocol.

上述自動化控制方法300的敘述包含示例性的操作,但自動化控制方法300的該些操作不必依所顯示的順序被執行。自動化控制方法300的該些操作的順序得以被變更,或者該些操作得以在適當的情況下被同時執行、部分同時執行、重複執行或省略,其皆在本揭示之實施例的精神與範疇內。 The description of the above-mentioned automated control method 300 includes exemplary operations, but these operations of the automated control method 300 need not be executed in the order shown. The sequence of the operations of the automated control method 300 can be changed, or the operations can be executed simultaneously, partially simultaneously executed, repeated execution or omitted under appropriate circumstances, which are all within the spirit and scope of the embodiments of the present disclosure .

參考第4圖。第4圖為根據本揭示文件之一些實施例所繪示之自動化控制系統之相關參數與示意圖。在一些實施例中,第4圖中的自動化控制系統可於第1圖與第2圖的自動化控制系統中應用。為了以較佳的方式理解本揭示內容,第4圖中的自動化控制系統將搭配第1圖與第2圖的自動化控制系統100、200進行討論,但本揭示內容不以此為限制。 Refer to Figure 4. Figure 4 is a schematic diagram of relevant parameters and schematic diagrams of the automated control system drawn according to some embodiments of the present disclosure. In some embodiments, the automated control system in Figure 4 can be applied to the automated control systems in Figures 1 and 2. In order to understand the present disclosure in a better way, the automated control system in Figure 4 will be discussed in conjunction with the automated control systems 100 and 200 in Figures 1 and 2, but the present disclosure is not limited thereto.

如第4圖所示,T為雷射光的加工路徑,Sp為雷 射光在承載物133上的移動速度,Freq為雷射光的輸出頻率,以及Int為承載物133接收到雷射光的能量密度。在一些實施例中,速度Sp可為載台131的移動速度,或可為雷射光的移動速度。 As shown in Figure 4, T is the processing path of the laser light, and Sp is the lightning The moving speed of the incident light on the carrier 133, Freq is the output frequency of the laser light, and Int is the energy density of the laser light received by the carrier 133. In some embodiments, the speed Sp may be the moving speed of the stage 131, or may be the moving speed of the laser light.

在一些實施例中,雷射光的加工路徑T如第4圖所示包含一轉折。在加工路徑T的轉折處,雷射光在承載物133上速度Sp降低(如第4圖所示的區域LA)。主控制器110規劃加工路徑T包含一轉折之後,藉由乙太網控制自動化協定傳輸第一指令V1以調整雷射光的功率。如第4圖所示,主控制器110控制雷射裝置120以降低雷射光輸出頻率Freq(如第4圖所示的區域LA),因此降低雷射光的功率。搭配雷射光在承載物133上速度Sp的下降,在加工路徑T的轉折處(區域LA),雷射光在承載物133上的能量密度Int可維持與先前一樣的大小,不因為加工路徑T的轉折而造成雷射光於加工件的能量密度Int的升高。因此,加工品質更佳。 In some embodiments, the processing path T of the laser light includes a turn as shown in FIG. 4. At the turning point of the processing path T, the speed Sp of the laser light on the carrier 133 decreases (as shown in the area LA in FIG. 4). After the main controller 110 plans the processing path T including a turning point, it transmits the first command V1 through the Ethernet control automation protocol to adjust the power of the laser light. As shown in FIG. 4, the main controller 110 controls the laser device 120 to reduce the laser light output frequency Freq (as shown in the area LA in FIG. 4), thereby reducing the power of the laser light. With the decrease of the speed Sp of the laser light on the carrier 133, at the turning point of the processing path T (area LA), the energy density Int of the laser light on the carrier 133 can be maintained at the same size as before. The turning causes an increase in the energy density Int of the laser light on the workpiece. Therefore, the processing quality is better.

相較於前述的一些相關技術,以第4圖為例,在相關技術中,當加工路徑T發生轉折時,由於各加工設備採用不同的通訊協定(或介面),故無法有效率地同步降低雷射光的功率,將在轉折處上投射相同功率的雷射光,造成轉折處上的雷射光能量密度較高,而降低了加工程序的品質。 Compared with some of the aforementioned related technologies, taking Figure 4 as an example, in the related technology, when the processing path T turns, because each processing equipment adopts different communication protocols (or interfaces), it is impossible to efficiently synchronize the reduction The power of the laser light will project the laser light of the same power on the turning point, resulting in a higher energy density of the laser light at the turning point, which reduces the quality of the processing procedure.

雖然本發明之實施例已揭露如上,然其並非用以限定本發明實施例,任何熟習此技藝者,在不脫離本發明實施例之精神和範圍內,當可做些許之更動與潤飾,因此本發明實 施例之保護範圍當以後附之申請專利範圍所界定為準。 Although the embodiments of the present invention have been disclosed as above, they are not intended to limit the embodiments of the present invention. Anyone who is familiar with the art can make slight changes and modifications without departing from the spirit and scope of the embodiments of the present invention. Therefore, The present invention The scope of protection of the regulations shall prevail when the scope of patent application attached hereafter is defined.

200‧‧‧自動化控制系統 200‧‧‧Automatic control system

110‧‧‧主控制器 110‧‧‧Main Controller

111‧‧‧即時作業系統 111‧‧‧Real-time operating system

112‧‧‧通訊協定控制器 112‧‧‧Communication Protocol Controller

113‧‧‧記憶體裝置 113‧‧‧Memory device

121‧‧‧雷射光源 121‧‧‧Laser light source

122‧‧‧雷射光調變器 122‧‧‧Laser light modulator

123‧‧‧雷射光調變驅動器 123‧‧‧Laser Light Modulation Driver

124‧‧‧擴束器 124‧‧‧Beam Expander

125‧‧‧能量計 125‧‧‧Energy meter

126‧‧‧孔徑 126‧‧‧Aperture

M1~M3‧‧‧光學鏡 M1~M3‧‧‧Optical lens

131‧‧‧載台 131‧‧‧ Stage

132‧‧‧伺服馬達驅動器 132‧‧‧Servo Motor Driver

133‧‧‧乘載物 133‧‧‧Loading

141‧‧‧振鏡馬達 141‧‧‧Vibration mirror motor

142‧‧‧振鏡馬達驅動器 142‧‧‧Vibration mirror motor driver

V1~V3‧‧‧指令 V1~V3‧‧‧Command

X、Y、Z‧‧‧方向 X, Y, Z‧‧‧direction

Claims (10)

一種自動化控制系統,包含:一雷射裝置,用以響應於一第一指令產生一雷射光;一移動平台,用以支撐一乘載物,並響應於一第二指令調整該承載物之一位置;一振鏡定位控制裝置,用以響應於一第三指令決定該雷射光投射至該乘載物之一照射方向,以進行一加工程序;以及一主控制器,用以基於一乙太網控制自動化協定傳輸該第一指令、該第二指令與該第三指令,以同步化該雷射裝置、該移動平台及該振鏡定位控制裝置。 An automatic control system includes: a laser device for generating a laser light in response to a first command; a mobile platform for supporting a load and adjusting one of the load in response to a second command Position; a galvanometer positioning control device for determining the laser light projected to an irradiation direction of the load in response to a third command to perform a processing procedure; and a main controller for based on an ether The network control automation protocol transmits the first instruction, the second instruction and the third instruction to synchronize the laser device, the mobile platform, and the galvanometer positioning control device. 如請求項1所述之自動化控制系統,其中當該主控制器偵測到該雷射光於該移動平台上之一照射路徑符合一預定條件時,該主控制器更輸出該第一指令以調變該雷射光之一輸出功率。 The automated control system according to claim 1, wherein when the main controller detects that an irradiation path of the laser light on the mobile platform meets a predetermined condition, the main controller further outputs the first command to adjust Change the output power of one of the laser lights. 如請求項2所述之自動化控制系統,其中該主控制器更用以根據該第二指令判斷該照射路徑是否出現一轉折。 The automated control system according to claim 2, wherein the main controller is further configured to determine whether the irradiation path has a turn according to the second instruction. 如請求項1所述之自動化控制系統,其中該移動平台更包含:一伺服馬達驅動器,用以根據該第二指令移動該移動平台,以調整該乘載物之該位置。 The automated control system according to claim 1, wherein the mobile platform further comprises: a servo motor driver for moving the mobile platform according to the second instruction to adjust the position of the load. 如請求項1所述之自動化控制系統,其中該振鏡定位控制裝置包含一振鏡馬達,該振鏡馬達用以根據該第三指令以決定該照射方向,且該主控制器用以傳輸該第三指令至該振鏡馬達以控制該振鏡馬達。 The automated control system according to claim 1, wherein the galvanometer positioning control device includes a galvanometer motor, the galvanometer motor is used to determine the irradiation direction according to the third command, and the main controller is used to transmit the first Three commands are sent to the galvo motor to control the galvo motor. 如請求項1所述之自動化控制系統,其中該主控制器更基於該乙太網控制自動化協定連接至一資料庫,以蒐集關聯於該加工程序之至少一參數並儲存至該資料庫。 The automation control system according to claim 1, wherein the main controller is further connected to a database based on the Ethernet control automation protocol to collect at least one parameter related to the processing program and store it in the database. 如請求項1所述之自動化控制系統,其中該主控制器用以儲存一程式碼,並根據該程式碼輸出該第一指令、該第二指令、該第三指令或其組合。 The automated control system according to claim 1, wherein the main controller is used to store a program code, and output the first command, the second command, the third command or a combination thereof according to the program code. 如請求項1所述之自動化控制系統,更包含:一工業相機,用以響應於一第四指令擷取關聯於該加工程序之一影像,其中該主控制器更用以基於該乙太網控制自動化協定傳輸該第四指令至該工業相機,並用以接收該影像以監控該加工程序。 The automated control system according to claim 1, further comprising: an industrial camera for capturing an image associated with the processing procedure in response to a fourth command, wherein the main controller is further used for the Ethernet The control automation protocol transmits the fourth command to the industrial camera, and is used to receive the image to monitor the processing procedure. 一種自動化控制方法,包含:藉由一雷射裝置,響應於一第一指令,產生一雷射光; 藉由一移動平台,響應於一第二指令,調整一乘載物之一位置,其中該移動平台用以支撐該乘載物;藉由一振鏡定位控制裝置,響應於一第三指令,決定該雷射光投射至該乘載物之一照射方向以進行一加工程序;以及藉由一主控制器,基於一乙太網路控制自動化協定,傳輸該第一指令、該第二指令與該第三指令,以同步化控制該雷射裝置、該移動平台與該振鏡定位控制裝置。 An automatic control method includes: generating a laser light in response to a first command by a laser device; A mobile platform responds to a second command to adjust a position of a load, wherein the mobile platform supports the load; a galvanometer positioning control device responds to a third command, Determine the irradiation direction of the laser light projected to the load to perform a processing procedure; and by a main controller, based on an Ethernet control automation protocol, transmit the first command, the second command and the The third instruction is to synchronously control the laser device, the mobile platform and the galvanometer positioning control device. 如請求項9所述之自動化控制方法,其中進行該加工程序中包含:當該主控制器偵測到該雷射光於該移動平台上之一照射路徑符合一預定條件時,藉由該主控制器,輸出該第一指令以調變該雷射光之一輸出功率。 The automatic control method according to claim 9, wherein performing the processing procedure includes: when the main controller detects that an irradiation path of the laser light on the mobile platform meets a predetermined condition, the main control A device for outputting the first command to modulate an output power of the laser light.
TW107145995A 2018-12-19 2018-12-19 Automation control system and method TWI692683B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107145995A TWI692683B (en) 2018-12-19 2018-12-19 Automation control system and method
JP2019109648A JP6948076B2 (en) 2018-12-19 2019-06-12 Automated control systems and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107145995A TWI692683B (en) 2018-12-19 2018-12-19 Automation control system and method

Publications (2)

Publication Number Publication Date
TWI692683B TWI692683B (en) 2020-05-01
TW202024823A true TW202024823A (en) 2020-07-01

Family

ID=71140639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145995A TWI692683B (en) 2018-12-19 2018-12-19 Automation control system and method

Country Status (2)

Country Link
JP (1) JP6948076B2 (en)
TW (1) TWI692683B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277747B2 (en) * 2004-06-28 2009-06-10 パナソニック株式会社 Laser processing equipment
JP5189684B1 (en) * 2012-03-07 2013-04-24 三菱重工業株式会社 Processing apparatus, processing unit, and processing method
CN103506757B (en) * 2012-06-19 2016-12-21 先进科技新加坡有限公司 For by laser alignment in the laser aid of surface of the work and method
JP5935771B2 (en) * 2013-07-30 2016-06-15 ブラザー工業株式会社 Laser processing system
JP6248756B2 (en) * 2014-03-28 2017-12-20 京セラドキュメントソリューションズ株式会社 Information processing apparatus and laser irradiation apparatus
DE102014117157B4 (en) * 2014-11-24 2017-02-16 Scansonic Mi Gmbh Method and device for joining workpieces to a lap joint
WO2016145603A1 (en) * 2015-03-17 2016-09-22 大族激光科技产业集团股份有限公司 Laser scanning device and laser scanning system
TWI610749B (en) * 2016-12-26 2018-01-11 新代科技股份有限公司 Laser Cutting Power Modified System and Adjustment Method thereof
US10695865B2 (en) * 2017-03-03 2020-06-30 General Electric Company Systems and methods for fabricating a component with at least one laser device
TWM563550U (en) * 2018-04-13 2018-07-11 揚朋科技股份有限公司 Device for repairing printed circuit boards

Also Published As

Publication number Publication date
JP6948076B2 (en) 2021-10-13
JP2020099946A (en) 2020-07-02
TWI692683B (en) 2020-05-01

Similar Documents

Publication Publication Date Title
CN108628258B (en) Scanner control device, robot control device, and remote laser welding robot system
CN109890553B (en) Method and system for laser machining a plurality of relatively large workpieces
JP6325646B1 (en) Laser processing robot system for performing laser processing using robot and control method of laser processing robot
US20180299260A1 (en) Laser processing system having measurement function
KR102002200B1 (en) Laser processing apparatus and laser processing method
KR20180121576A (en) Direct light screen plate making machine and its using method
JP2007283402A (en) Laser welding apparatus, and its method
WO2012090394A1 (en) Laser processing system, and method for controlling same
KR20140114465A (en) Machining control device, laser machining device, and laser control method
JPWO2003082510A1 (en) Laser processing equipment
TWI692683B (en) Automation control system and method
CN113552724B (en) High-dynamic infrared scene generation device and method
KR101909897B1 (en) Method and apparatus for synchronizing between camera and projector
KR20120092989A (en) Laser marking system
JP2007237200A (en) Laser beam machining system and laser beam machining method
CN109814095B (en) Dynamic spatial position simulation method of multi-target infrared simulation system
KR101451972B1 (en) Laser direct patterning system using in field on the fly function and method for controlling the same
WO2022229164A3 (en) Method and system for producing microstructured components
CN203076787U (en) Processing device by using laser direct imaging technology
KR101678985B1 (en) Laser processing apparatus and laser processing method using the laser processing apparatus
JPS63123588A (en) Laser beam machining device
JPH08215875A (en) Laser beam machine
US11759885B2 (en) Methods and systems for operating a machine in a manufacturing process
KR101534158B1 (en) Laser machining system and operation method
JP2007108605A (en) Controller and control method for galvano mirror