TW202022116A - 針對α-突觸核蛋白的變體RNAi - Google Patents

針對α-突觸核蛋白的變體RNAi Download PDF

Info

Publication number
TW202022116A
TW202022116A TW108127564A TW108127564A TW202022116A TW 202022116 A TW202022116 A TW 202022116A TW 108127564 A TW108127564 A TW 108127564A TW 108127564 A TW108127564 A TW 108127564A TW 202022116 A TW202022116 A TW 202022116A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
rnai
promoter
sequence
strand
Prior art date
Application number
TW108127564A
Other languages
English (en)
Inventor
布拉德弗德 艾莫
布蘭達 理查德斯
Original Assignee
美商健臻公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商健臻公司 filed Critical 美商健臻公司
Publication of TW202022116A publication Critical patent/TW202022116A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/38Vector systems having a special element relevant for transcription being a stuffer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/42Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11001Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Virology (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本文提供了治療神經退化性突觸核蛋白病變的RNAi分子。在一些實施例中,所述RNAi分子靶向α-突觸核蛋白(SNCA)的表現。本文還提供了含有所述RNAi的表現建構體、載體(例如,rAAV)、細胞、病毒粒子和醫藥組合物。本文還提供了與使用所述RNAi例如以治療神經退化性突觸核蛋白病變相關的方法和套組,所述神經退化性突觸核蛋白病變包括帕金森病、多系統萎縮症和路易體失智。

Description

針對α-突觸核蛋白的變體RNAi 【相關申請的交叉引用】
本申請案主張2018年8月3日提交的美國臨時申請號62/714,616的優先權權益,將其通過引用以其全文特此併入。
【ASCII文本文件序列表的提交】
將以下提交的ASCII文本文件的內容通過引用以其全文併入本文:計算機可讀形式(CRF)的序列表(文件名:159792016540SEQLIST.TXT,記錄日期:2019年7月31日,大小:19KB)。
本公開文本涉及變體RNAi分子。在一些方面,本公開文本涉及針對α-突觸核蛋白的變體RNAi。
長期神經保護療法對於治療神經退化性突觸核蛋白病變如帕金森病或多系統萎縮症(MSA)具有相當大的意義。RNA干擾(RNAi)是通過引入與靶標互補的RNA(siRNA)來減少靶mRNA的機制。還可以將所述siRNA序列***人工miRNA支架(“shmiRNA”)中,這允許基於聚合酶II的組成型表現,同時還消除與腦中siRNA或shRNA的引入相關的神經毒性(1)。
臨床開發RNAi的阻礙是脫靶沉默的可能性,其中RNAi的種子區(通常是核苷酸1-7或1-8)與3’非轉譯區(UTR)中非靶mRNA中的序 列配對,導致轉錄物不穩定。減少脫靶沉默的嘗試包括使用算法鑑別具有針對靶mRNA的高特異性且具有最小脫靶可能的候選種子序列(Boudreau RL等人,(2012)Nucl.Acids Res.41(1):e9),以及將內部凸起放置在RNAi的導引區域中(Terasawa等人,(2011)Journal of nucleic acids 2011:131579)。
多個證據證實,α-突觸核蛋白(SNCA)水平的升高具有神經毒性,而降低具有神經保護作用(2-9)。因此,降低SNCA水平的治療策略可能潛在地阻止神經退化性疾病的進展並減輕症狀。仍然需要利用RNAi機制的這種治療策略。
本申請通過提供針對SNCA的變體RNAi分子以及使用其治療和預防神經退化性疾病的方法滿足了這種需要。本申請還提供了篩選或鑑別針對SNCA的RNAi分子的方法和用於製備這些RNAi分子的建構體。
在一些方面,本發明提供了包含第一鏈和第二鏈的RNAi,其中a)第一鏈和第二鏈形成雙鏈體;b)第一鏈包含導引區,其中所述導引區包含與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性或與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸;以及c)第二鏈包括非導引區。在一些實施例中,所述導引區包含核酸序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24),而所述非導引區包含序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)。在一些實施例中,所述第一鏈包含與SEQ ID NO:24具有約90%同一性或與SEQ ID NO:53具有約90%同一性的核酸序列。在一些實施例中,所述導引區包含核酸序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8),而所述非導引區包含序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)。在一些實施例中,所述第二鏈包含與SEQ ID NO:37具有約90%同一性或與SEQ ID NO:37具有約90%同一性的核酸序列。在一些實施例中,第一鏈與第二鏈借助能夠形成環(loop)結構的RNA連接子連接。在一些實施例中,所述RNA連接子包含4至50個核苷酸。在一些實施例中,所述環結構包含4至 20個核苷酸。在一些實施例中,所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。在一些實施例中,所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。在一些實施例中,所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。在一些實施例中,所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。在一些實施例中,所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。
在上述方面和實施例的一些實施例中,所述RNAi靶向對與神經退化性突觸核蛋白病變相關的多肽進行編碼的RNA。在一些實施例中,所述多肽是α-突觸核蛋白(SNCA)。在一些實施例中,所述α突觸核蛋白是人類α-突觸核蛋白。在一些實施例中,所述神經退化性突觸核蛋白病變是帕金森病(PD)、多系統萎縮症(MSA)、或路易體失智(DLB)。
在以上方面和實施例的一些實施例中,本發明提供了包含編碼本文所述的RNAi的核酸的表現建構體。在一些實施例中,編碼所述RNAi的核酸包含miRNA支架。在一些實施例中,編碼所述RNAi的核酸可操作地連接至啟動子。在一些實施例中,所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白啟動子(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子、人β-葡糖醛酸酶啟動子、雞β-肌動蛋白(CBA)啟動子、逆轉錄勞斯肉瘤病毒(RSV)LTR啟動子、二氫葉酸還原酶啟動子和13-肌動蛋白啟動子。在一些實施例中,所述表現建構體又包含內含子。在一些實施例中,所述內含子是CBA內含子或hEF1α內含子。在一些實施例中,所述內含子是嵌合內含子。在一些實施例中,所述表現載體是自身互補的載體,且所述內含子是δ嵌合內含子。在一些實施例中,所述表現建構體又包含多腺苷酸化信號。在一些實施例中,所述多腺苷酸 化信號是牛生長激素多腺苷酸化信號、SV40多腺苷酸化信號或HSV TK多腺苷酸化信號。
在一些實施例中,本發明提供了包含本文所述的任何表現建構體的載體。在一些實施例中,所述載體是重組腺相關病毒(rAAV)載體。在一些實施例中,表現建構體側翼是一個或多個AAV反向末端重複(ITR)序列。在一些實施例中,所述表現建構體的側翼是兩個AAV ITR。在一些實施例中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。在一些實施例中,AAV ITR是AAV2 ITR。在一些實施例中,所述載體又包含填充(stuffer)核酸。在一些實施例中,所述填充核酸位於編碼RNAi的核酸的上游或下游。在一些實施例中,所述載體是自身互補的rAAV載體。在一些實施例中,所述載體包含編碼RNAi的第一核酸序列和編碼RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。在一些實施例中,所述第一核酸序列和所述第二核酸序列通過突變AAV ITR連接,其中所述突變AAV ITR包含D區的缺失,且包含末端解析(resolution)序列的突變。
在一些實施例中,本發明提供了包含如本文所述的任何rAAV載體的細胞。
在一些實施例中,本發明提供了包含如本文所述的任何rAAV載體的重組AAV粒子。在一些實施例中,所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV或小鼠AAV衣殼rAAV2/HBoV1血清型衣殼。在一些實施例中,ITR和rAAV病毒粒子的衣殼源自相同的AAV血清型。在一些實施例中,ITR和rAAV病毒粒子 的衣殼源自不同的AAV血清型。在一些實施例中,ITR源自AAV2,而rAAV粒子的衣殼源自AAV1。
在一些實施例中,本發明提供了包含本文所述的任何rAAV粒子的組合物。在一些實施例中,所述組合物又包含醫藥上可接受的載劑。
在一些實施例中,本發明提供了包含本文所述的任何RNAi的套組。在一些實施例中,本發明提供了包含本文所述的任何AAV粒子的套組。在一些實施例中,本發明提供了包含本文所述的任何組合物的套組。在一些實施例中,所述套組又包含使用說明書。
在一些方面,本發明提供了治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈,以及含有第二核酸的第二鏈。在一些實施例中,第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-E1過客-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
在一些方面,本發明提供了治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5'-UGGGCACAUUGGAACUGAGCA-3'(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
在一些方面,本發明提供了用於抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi, 所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸的第一鏈,以及含有第二核酸的第二鏈。在一些實施例中,第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
在一些方面,本發明提供了用於抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
在上述方法的一些實施例中,第一鏈包含具有SEQ ID NO:24序列的核酸序列或具有SEQ ID NO:8序列的核酸。在一些實施例中,第二鏈包含具有SEQ ID NO:53序列的核酸或具有SEQ ID NO:37序列的核酸。在一些實施例中,第一鏈與第二鏈借助能夠形成環結構的RNA連接子連接。在一些實施例中,所述RNA連接子包含4至50個核苷酸。在一些實施例中,所述環結構包含4至20個核苷酸。在一些實施例中,所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。在一些實施例中,所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。在一些實施例中,所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。在一些實施例中,所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。在一些實施例中,所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。
在上述方法的一些實施例中,所述RNAi靶向對與神經退化性突觸核蛋白病變相關的多肽進行編碼的RNA。在一些實施例中,所述多肽是α-突觸核蛋白(SNCA)。在一些實施例中,所述α突觸核蛋白是人類α-突觸核蛋白。在一些實施例中,所述神經退化性突觸核蛋白病變是帕金森病(PD)、多系統萎縮症(MSA)、或路易體失智(DLB)。
在以上方法的一些實施例中,本發明提供了包含編碼本文所述的RNAi的核酸的表現建構體。在一些實施例中,編碼所述RNAi的核酸包含miRNA支架。在一些實施例中,編碼所述RNAi的核酸可操作地連接至啟動子。在一些實施例中,所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白啟動子(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子、人β-葡糖醛酸酶啟動子、雞β-肌動蛋白(CBA)啟動子、逆轉錄勞斯肉瘤病毒(RSV)LTR啟動子、二氫葉酸還原酶啟動子和13-肌動蛋白啟動子。在一些實施例中,所述表現建構體又包含內含子。在一些實施例中,所述內含子是CBA內含子或hEF1α內含子。在一些實施例中,所述內含子是嵌合內含子。在一些實施例中,所述表現載體是自身互補的載體,且所述內含子是δ嵌合內含子。在一些實施例中,所述表現建構體又包含多腺苷酸化信號。在一些實施例中,所述多腺苷酸化信號是牛生長激素多腺苷酸化信號、SV40多腺苷酸化信號或HSV TK多腺苷酸化信號。
在上述方法的一些實施例中,本發明提供了包含本文所述的任何表現建構體的載體。在一些實施例中,所述載體是重組腺相關病毒(rAAV)載體。在一些實施例中,表現建構體側翼是一個或多個AAV反向末端重複(ITR)序列。在一些實施例中,所述表現建構體的側翼是兩個AAV ITR。在一些實施例中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、 AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。在一些實施例中,AAV ITR是AAV2 ITR。在一些實施例中,所述載體又包含填充(stuffer)核酸。在一些實施例中,所述填充核酸位於編碼RNAi的核酸的上游或下游。在一些實施例中,所述載體是自身互補的rAAV載體。在一些實施例中,所述載體包含編碼RNAi的第一核酸序列和編碼RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。在一些實施例中,所述第一核酸序列和所述第二核酸序列通過突變AAV ITR連接,其中所述突變AAV ITR包含D區的缺失,且包含末端解析(resolution)序列的突變。
在以上方法的一些實施例中,本發明提供了包含如本文所述的任何rAAV載體的重組AAV粒子。在一些實施例中,所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV或小鼠AAV衣殼rAAV2/HBoV1血清型衣殼。在一些實施例中,ITR和rAAV病毒粒子的衣殼源自相同的AAV血清型。在一些實施例中,ITR和rAAV病毒粒子的衣殼源自不同的AAV血清型。在一些實施例中,ITR源自AAV2,而rAAV粒子的衣殼源自AAV1。在一些實施例中,rAAV粒子是在組合物中。在一些實施例中,所述組合物又包含醫藥上可接受的載劑。
本文引用的所有參考文獻(包括專利申請和出版物)均通過引用以其全文而併入。
圖1A顯示D1 shmiRNA(SEQ ID NO:61)的結構,並且圖1B顯示E1 shmiRNA(SEQ ID NO:63)的結構。
圖2顯示在體外RNAi介導的人類SNCA的減少。用編碼shmiRNA形式的指定RNAi序列和人類SNCA cDNA的質體轉染後72小時 HEK293T細胞的全細胞提取物中SNCA的定量。將SNCA水平針對GAPDH加載(loading)對照正規化,並針對對照(非靶向對照RNAi)正規化以計算減量百分比。
圖3顯示在體外RNAi介導的小鼠SNCA的減少。用編碼miRNA形式的指定RNAi序列和小鼠SNCA cDNA的質體轉染後72小時HEK293T細胞的全細胞提取物中SNCA的定量。將SNCA水平針對GAPDH加載對照正規化,並針對對照(非靶向對照RNAi)正規化以計算減量(knockdown)百分比。
圖4A-D顯示在體外RNAi介導的小鼠或人類α-突觸核蛋白的減少。用編碼siRNA形式的指定RNAi序列和人類SNCA cDNA(圖4A)或小鼠SNCA cDNA(圖4B)的質體轉染後72小時HEK293T細胞的全細胞提取物中SNCA的定量分析圖。將SNCA蛋白質水平正規化為β微管蛋白,並針對對照(非靶向對照RNAi)正規化以計算減量百分比,如人類SNCA(圖4C)和小鼠SNCA(圖4D)的蛋白質印跡圖像所示。
圖5A-B顯示轉染的LUHMES細胞中指定的RNAi序列的毒性。將LUHMES細胞用miRNA形式的指定RNAi序列轉染,並且然後用魚藤酮處理以誘導細胞毒性。(圖5A)在魚藤酮處理後48小時通過Cell Titer Blue®測定量測的細胞活力,並且證明D1和E1 RNAi序列的顯著神經保護作用(分別為38%和40%),但對照RNAi序列並非如此。平均神經保護作用%被計算為與對照相比的%變化。(圖5B)作為魚藤酮誘導的毒性的額外讀數量測的反應性氧種類。
圖6顯示SNCA減量與神經保護的正相關。將來自圖5的神經保護百分比(作為細胞活力)與每個相應實驗中來自D1或E1的減量水平作圖。兩種RNAi序列均顯示減量百分比與魚藤酮處理的LUHMES細胞中的神經保護水平呈顯著正相關(Pearson相關)。
圖7顯示在體內miRNA形式的指示RNAi造成靶mRNA減量。條形指示平均值+/-SEM。圓圈代表個別動物。通過單方變異分析(ANOVA)和多重比較來評估顯著性。
圖8顯示注射AAV-D1載體後小鼠的中腦中SNCA mRNA的 減少。對小鼠單側注射1e10 GC對照或D1病毒。將組織收集,並加工以用於在1個月後進行原位雜交。SNCA反義探針清楚地顯示相對於對側半球在延髓側(rostal)至尾部的三個不同解剖水平的靶標減少。相對於未注射的半球,對照RNAi病毒未顯示SNCA mRNA降低。
圖9顯示通過SNc免疫組織化學和原位雜交減少小鼠中的SNCA蛋白和mRNA。
圖10顯示在遞送AAV.rh10-E1載體後通過SNc免疫組織化學和原位雜交減少小鼠中SNCA蛋白和mRNA。
圖11顯示每個樣本組的單獨生物學重複中的α-突觸核蛋白正規化表現;EV代表“空載體”。
在一些方面,本公開文本提供了用於治療神經退化性突觸核蛋白病變的RNAi。在一些實施例中,所述神經退化性突觸核蛋白病變是帕金森病或多系統萎縮症(MSA)。在一些實施例中,所述RNAi靶向α-突觸核蛋白。在一些實施例中,所述RNAi降低α-突觸核蛋白的表現。在一些實施例中,所述RNAi包含第一鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸。在一些實施例中,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸。在一些實施例中,所述RNAi包含第一鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸。在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸。在一些方面,本公開文本提供了包含本公開文本的RNAi的表現建構體、載體(例如,重組AAV載體)、細胞、病毒粒子(例如,AAV粒子)和醫藥組合物。在另外的方面,本公開文本提供 了用於治療神經退化性突觸核蛋白病變、抑制SNCA表現、和抑制哺乳動物中細胞中SNCA累積的方法,其包括向所述哺乳動物投予包含本公開文本的RNAi的醫藥組合物。在再另外的方面,本公開文本提供了包含本公開文本的RNAi的醫藥組合物治療神經退化性突觸核蛋白病變(例如改善神經退化性突觸核蛋白病變的症狀)、抑制SNCA表現或抑制患有神經退化性突觸核蛋白病變的哺乳動物中細胞中SNCA累積的用途。在一些實施例中,所述突觸核蛋白病變是帕金森病、多系統萎縮症、或路易體失智。
I.通用技術
業界熟習此項技術者通常很好地理解並且通常使用常規方法來採用本文描述或引用的技術和程序,例如像描述在以下文獻中的廣泛使用的方法:Molecular Cloning:A Laboratory Manual(Sambrook等人,第4版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,2012);Current Protocols in Molecular Biology(F.M.Ausubel等人編輯,2003);系列叢書Methods in Enzymology(Academic Press,Inc.);PCR 2:A Practical Approach(M.J.MacPherson,B.D.Hames和G.R.Taylor編輯,1995);Antibodies,A Laboratory Manual(Harlow和Lane編輯,1988);Culture of Animal Cells:A Manual of Basic Technique and Specialized Applications(R.I.Freshney,第6版,J.Wiley and Sons,2010);Oligonucleotide Synthesis(M.J.Gait編輯,1984);Methods in Molecular Biology,Humana Press;Cell Biology:A Laboratory Notebook(J.E.Cellis編輯,Academic Press,1998);Introduction to Cell and Tissue Culture(J.P.Mather和P.E.Roberts,Plenum Press,1998);Cell and Tissue Culture:Laboratory Procedures(A.Doyle,J.B.Griffiths和D.G.Newell編輯,J.Wiley and Sons,1993-8);Handbook of Experimental Immunology(D.M.Weir和C.C.Blackwell編輯,1996);Gene Transfer Vectors for Mammalian Cells(J.M.Miller和M.P.Calos編輯,1987);PCR:The Polymerase Chain Reaction(Mullis等人編輯,1994);Current Protocols in Immunology(J.E.Coligan等人編輯,1991);Short Protocols in Molecular Biology(Ausubel等人編輯,J.Wiley and Sons,2002);Immunobiology(C.A.Janeway等人,2004);Antibodies(P.Finch,1997);Antibodies:A Practical Approach(D.Catty.編輯,IRL Press,1988-1989); Monoclonal Antibodies:A Practical Approach(P.Shepherd和C.Dean編輯,Oxford University Press,2000);Using Antibodies:A Laboratory Manual(E.Harlow和D.Lane,Cold Spring Harbor Laboratory Press,1999);The Antibodies(M.Zanetti和J.D.Capra編輯,Harwood Academic Publishers,1995);和Cancer:Principles and Practice of Oncology(V.T.DeVita等人編輯,J.B.Lippincott Company,2011)。
II.定義
如本文所用的「載體」是指包含有待在體外或在體內遞送至宿主細胞中的核酸的重組質體或病毒。
如本文所用的術語「多核苷酸」或「核酸」是指任何長度的核苷酸(核糖核苷酸或脫氧核糖核苷酸)的聚合形式。因此,此術語包括但不限於單鏈、雙鏈或多鏈DNA或RNA,基因組DNA,cDNA,DNA-RNA雜合體,或包含嘌呤和嘧啶鹼基或其他天然的、化學或生物化學修飾的、非天然的或衍生的核苷酸鹼基的聚合物。多核苷酸的骨架可包含糖和磷酸基團(如通常可在RNA或DNA中發現的)、或經修飾或經取代的糖或磷酸基團。可替代地,多核苷酸的骨架可包含合成亞單元(如胺基磷酸酯)的聚合物,並因此可以是寡脫氧核苷胺基磷酸酯(P-NH2)或混合的胺基磷酸酯-磷酸二酯寡聚物。此外,雙鏈多核苷酸可以從化學合成的單鏈多核苷酸產物,通過合成互補鏈並在適當的條件下使這些鏈重合(annealing)或者是通過使用DNA聚合酶用適當的引子從頭合成互補鏈來獲得。
術語「多肽」和「蛋白質」可互換使用,是指胺基酸殘基的聚合物,並且不限於最小長度。胺基酸殘基的此類聚合物可含有天然或非天然胺基酸殘基,並且包括但不限於胺基酸殘基的肽、寡肽、二聚體、三聚體和多聚體。所述定義涵蓋了全長蛋白質及其片段兩者。所述術語還包括多肽的表現後修飾,例如糖基化、唾液酸化、乙醯化、磷酸化等。此外,用於本公開文本的目的,「多肽」是指相對於天然序列包括修飾(如缺失、添加和取代)的蛋白質(通常在本質上是保守的),只要所述蛋白質保持所需活性即可。這些修飾可能是故意的(如通過定點誘變),或者可能是偶然的(如通過產生蛋白質的宿主的突變或由於PCR擴增引起的錯誤)。
「重組病毒載體」是指包含一個或多個異源序列(即,不是病毒來源的核酸序列)的重組多核苷酸載體。在重組AAV載體的情況下,重組核酸的側翼是至少一個,且在一些實施例中是兩個反向末端重複序列(ITR)。
「重組AAV載體(rAAV載體)」是指包含一個或多個側翼是至少一個,且在實施例中是兩個反向末端重複序列(ITR)的異源序列(即,不是來源於AAV的核酸序列)的多核苷酸載體。當此類rAAV載體存在於已感染合適的輔助病毒(或表現合適的輔助功能)並且表現AAV rep和cap基因產物(即AAV rep和cap蛋白)的宿主細胞中時,它們可以被複製並包裝在感染性病毒粒子中。當將rAAV載體摻入較大多核苷酸(例如,在用於克隆或感染的染色體或另一種載體如質體中)中時,則rAAV載體可以被稱為「前載體」,其可以通過在AAV包裝功能和合適輔助(helper)功能的存在下複製和衣殼化(encapsidation)被「挽救」。rAAV載體可以呈多種形式中的任何一種,包括但不限於質體、線性人工染色體、與脂質複合、被包封在脂質體內、和被包衣殼於病毒粒子(特別是AAV粒子)中。rAAV載體可以被包裝在AAV病毒衣殼中,以產生「重組腺相關病毒粒子(rAAV粒子)」。
「異源的」意指衍生自基因型不同於其所比較或其所引入或u併入的實體的剩餘部分的實體。例如,通過基因工程技術引入不同細胞類型中的多核苷酸是異源多核苷酸(且在表現時可編碼異源多肽)。類似地,摻入病毒載體中的細胞序列(例如,基因或其部分)就該載體而言是異源核苷酸序列。
術語「轉殖基因」是導引入細胞中並且能夠轉錄成RNA並且任選地在適當條件下轉譯和/或表現的多核苷酸。在多個方面,它賦予其所引入的細胞所需的特性,或以其他方式產生所需的治療或診斷結果。在另一方面,它可以轉錄成介導RNA干擾的分子,例如miRNA、siRNA或shRNA。
「雞β-肌動蛋白(CBA)啟動子」是指衍生自雞β-肌動蛋白基因(例如,原雞(Gallus gallus)β肌動蛋白,以GenBank Entrez Gene ID 396526表示)的多核苷酸序列。如本文所用,「雞β-肌動蛋白啟動子」可以指含有巨 細胞病毒(CMV)早期增強子元件、雞β-肌動蛋白基因的啟動子和第一外顯子和內含子、和兔β-球蛋白基因的剪接受體的啟動子,諸如Miyazaki,J.等人(1989)Gene 79(2):269-77中所述序列。如本文所用,術語「CAG啟動子」可以互換使用。如本文所用,術語「CMV早期增強子/雞β肌動蛋白(CAG)啟動子」可以互換使用。
如關於病毒力價使用的術語「基因組粒子(gp)」、「基因組等同物」或「基因組拷貝」是指含重組AAV DNA基因組的病毒粒子的數量,與感染性或功能性無關。特定載體製劑中的基因組粒子的數量可以通過諸如本文實例中或例如Clark等人(1999)Hum.Gene Ther.,10:1031-1039;Veldwijk等人(2002)Mol.Ther.,6:272-278中所述的程序量測。
如本文所用的術語「載體基因組(vg)」可以指包含一組載體(例如,病毒載體)的多核苷酸序列的一種或多種多核苷酸。載體基因組可以被包衣殼於病毒粒子中。根據特定的病毒載體,載體基因組可以包含單鏈DNA、雙鏈DNA或單鏈RNA或雙鏈RNA。載體基因組可以包括與特定病毒載體相關的內源序列和/或通過重組技術***特定病毒載體的任何異源序列。例如,重組AAV載體基因組可以包括位於啟動子側翼的至少一個ITR序列、填充片段、感興趣序列(例如RNAi)和多腺苷酸化序列。完整的載體基因組可包括一組完整的載體多核苷酸序列。在一些實施例中,病毒載體的核酸力價可以按vg/mL衡量。適用於量測此力價的方法在本領域中是已知的(例如,定量PCR)。
如本文所用,術語「抑制」可以指阻斷、減少、消除或以其他方式拮抗特定靶標的存在或活性的行為。抑制可以指部分抑制或完全抑制。例如,抑制基因的表現可以導引致基因表現阻斷、減少、消除或任何其他拮抗作用的任何行為,包括mRNA豐度的減少(例如使mRNA轉錄沉默)、mRNA的降解、mRNA轉譯的抑制等。在一些實施例中,抑制SNCA表現可以指SNCA表現的阻斷、減少、消除或任何其他拮抗作用,包括SNCA mRNA豐度的減少(例如,使SNCA mRNA轉錄沉默)、SNCA mRNA的降解、SNCA mRNA轉譯的抑制等。作為另一例子,抑制蛋白在細胞中累積可以導引致所述蛋白表現阻斷、減少、消除或其他拮抗作用的任何行為,包括mRNA豐度 的減少(例如,使mRNA轉錄沉默)、mRNA的降解、mRNA轉譯的抑制、所述蛋白的降解等。在一些實施例中,抑制SNCA蛋白在細胞中累積是指細胞中的SNCA蛋白表現的阻斷、減少、消除或其他拮抗作用,包括SNCA mRNA豐度的減少(例如,使SNCA mRNA沉默)、SNCA mRNA的降解、SNCA mRNA轉譯的抑制、SNCA蛋白的降解等。
如關於病毒力價使用的術語「感染單位(iu)」、「感染性粒子」或「複製單位」是指感染性和複製型重組AAV載體粒子的數量,如通過感染中心測定(也稱為複製中心測定)量測的,如例如McLaughlin等人(1988)J.Virol.,62:1963-1973中所述。
如關於病毒力價使用的術語「轉導單位(tu)」是導引致產生功能轉殖基因產物的感染性重組AAV載體粒子的數量,如在功能測定中量測的,如本文實例中或例如Xiao等人(1997)Exp.Neurobiol.,144:113-124中;或Fisher等人(1996)J.Virol.,70:520-532(LFU測定)中所述。
「反向末端重複」或「ITR」序列是本領域中熟知的術語,並且是指在病毒基因組末端發現的相對較短的序列,它們的方向相反。
「AAV反向末端重複(ITR)」序列為本領域中熟知的術語,是存在於天然單鏈AAV基因組的兩端的大約145個核苷酸的序列。ITR的最外側的125個核苷酸能以兩個替代方向中的任何一個存在,導致不同AAV基因組之間以及單個AAV基因組兩端之間的異質性。最外側的125個核苷酸也含有幾個較短的自身互補的區域(指定為A、A'、B、B'、C、C’和D區),允許在ITR的這個部分內發生鏈內鹼基配對。
「末端解析序列」或「trs」是AAV ITR的D區中的序列,其在病毒DNA複製期間被AAV rep蛋白切割。突變型末端解析序列難以被AAV rep蛋白切割。
「AAV輔助功能」是指允許AAV被宿主細胞複製和包裝的功能。AAV輔助功能可以按多種形式中的任何一種提供,包括但不限於協助AAV複製和包裝的輔助病毒或輔助病毒基因。其他AAV輔助功能在本領域中是已知的,如基因毒性劑。
AAV的「輔助病毒」是指允許AAV(其是缺陷型細小病毒)被宿主細胞複製和包裝的病毒。輔助病毒提供允許AAV複製的「輔助功能」。已經鑑別了多種這類輔助病毒,包括腺病毒、皰疹病毒和痘病毒如牛痘和桿狀病毒。腺病毒涵蓋多種不同子群,但子群C的5型腺病毒(Ad5)是最常用的。人類、非人類哺乳動物和鳥類來源的許多腺病毒是已知的,並且可從諸如ATCC等保藏機構獲得。也可從諸如ATCC等保藏機構獲得的皰疹家族病毒包括例如單純皰疹病毒(HSV)、愛潑斯坦-巴爾(Epstein-Barr)病毒(EBV)、巨細胞病毒(CMV)和假狂犬病病毒(PRV)。用於複製AAV的腺病毒輔助功能的例子包括E1A功能、E1B功能、E2A功能、VA功能和E4orf6功能。可從保藏機構獲得的桿狀病毒包括苜蓿銀紋夜蛾(Autographa californica)核型多角體病毒。
如果感染性AAV粒子與感染性輔助病毒粒子的比例是至少約102:1;至少約104:1、至少約106:1;或至少約108:1或更多,rAAV的製劑被稱為是「基本上不含」輔助病毒。在一些實施例中,製劑也不含等效量的輔助病毒蛋白(即,如果上述輔助病毒粒子雜質以受破壞形式存在,將由於這一水平的輔助病毒而存在蛋白質)。病毒和/或細胞蛋白污染通常可以在SDS凝膠上存在考馬斯染色條帶而觀察到(例如,出現不同於對應於AAV衣殼蛋白VP1、VP2和VP3的那些條帶的條帶)。
相對於參考多肽或核酸序列言的「序列同一性百分比(%)」定義為在用以實現最大百分比序列同一性並且不將任何保守取代視為序列同一性的一部分而比對序列和引入缺口(如果需要)後,候選序列中與參考多肽或核酸序列中的胺基酸殘基或核苷酸相同的胺基酸殘基或核苷酸的百分比。用於確定胺基酸或核酸序列同一性百分比的目的的比對可以按在本領域技術範圍內的多種方式實現,例如使用可公開獲得的計算機軟體程序,例如Current Protocols in Molecular Biology(Ausubel等人編輯,1987),增刊30,第7.7.18章,表7.7.1中描述的那些,並且包括BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟體。較佳的比對程序是ALIGN Plus(科學教育軟體(Scientific and Educational Software),賓夕法尼亞州(Pennsylvania))。業界熟習此項技術者可以確定用於量測比對的適當參數,包括為了在被比 較的序列的全長上實現最大比對所需要的任何算法。用於本文的目的,給定胺基酸序列A對、與或相對於給定胺基酸序列B的胺基酸序列同一性%(可替代地這可以用短語表示為對、與或相對於給定胺基酸序列B具有或包含某一胺基酸序列同一性%的給定胺基酸序列A)計算如下:100乘以分數X/Y,其中X是在A和B的程序比對中通過序列比對程序評定為完全匹配的胺基酸殘基的數量,且其中Y是B中胺基酸殘基的總數量。應理解,當胺基酸序列A的長度不等於胺基酸序列B的長度,A與B的胺基酸序列同一性%將不等於B與A的胺基酸序列同一性%。就本文的目的而言,給定核酸序列C對/與/相對於給定核酸序列D的核酸序列同一性%(其可替代地表述為對/與/相對於給定核酸序列D具有或包含某一核酸序列同一性%的給定核酸序列C)計算如下:100乘以分數W/Z,其中W是在C和D的程序比對中通過序列比對程序評定為完全匹配的核苷酸的數量,且其中Z是D中核苷酸的總數量。應理解,當核酸序列C的長度不等於核酸序列D的長度時,C與D的核酸序列同一性%將不等於D與C的核酸序列同一性%。
「分離的」分子(例如,核酸或蛋白質)或細胞意指已經從其天然環境的組分中鑑別並分離和/或回收。
「有效量」是足以產生有益或期望結果的量,包括臨床結果(例如,症狀的改善,臨床終點的實現等)。有效量能以一次或多次投予來給予。就疾病狀態而言,有效量是足以改善、穩定或延遲疾病發展的量。
「個體」或「受試者」(subject)是哺乳動物。哺乳動物包括但不限於家養動物(例如牛、綿羊、貓、狗和馬)、靈長類動物(例如人類和非人靈長類動物如猴)、兔和齧齒動物(例如小鼠和大鼠)。在某些實施例中,所述個體或受試者是人類。
如本文所用,「治療」是用於獲得有益的或期望臨床結果的途徑。出於本公開文本的目的,有益的或期望的臨床結果包括但不限於以下:緩解症狀、減小疾病的程度、穩定疾病狀態(例如不惡化)、防止疾病擴散(例如,轉移)、延遲或減緩疾病進展、改善或緩和疾病狀態、以及緩解(無論是部分或是全部),無論是可檢測的還是不可檢測的。「治療」還可能意味著,與如果不接受治療預期的存活相比,延長存活。
如本文所用,術語「預防性治療」是指這樣的治療,其中已知或疑似個體患有或有障礙風險,但未展顯示所述障礙的症狀或展顯示所述障礙的最小症狀。可在症狀發作之前治療經歷預防性治療的個體。
如本文所用,術語「神經退化性突觸核蛋白病變」是指神經退化性障礙,其特徵在於中樞和外周神經系統中選擇性神經元和神經膠質群體的細胞質中α-突觸核蛋白的纖維聚集體。例子包括但不限於帕金森病(PD)、多系統萎縮症(MSA-P和MSA-C)、路易體失智(DLB)、純自主神經衰竭(PAF)、阿爾茨海默病的路易體變體(LBVAD)、路易體吞嚥困難和偶然的路易體病。
如本文所用,「RNAi」可以指在細胞中誘導RNA干擾的任何RNA分子。RNAi的例子包括但不限於小抑制性RNA(siRNA)、微小RNA(miRNA)和小髮夾RNA(shRNA)。
「miRNA支架」可以指含有以下的多核苷酸:(i)靶向通過RNAi敲除的感興趣基因的雙鏈序列,和(ii)形成類似於內源性miRNA的莖-環結構的其他序列。靶向RNAi的感興趣基因的序列(例如,約20-nt(核苷酸)的短序列)可以連接至產生miRNA-樣莖環的序列和與感興趣序列鹼基配對的序列,從而在多核苷酸組裝成miRNA-樣二級結構時,形成雙鏈體。如本文所述,這個雙鏈體可以不完美地雜交,例如,它可以包含一個或多個未排隊或錯配鹼基。在通過Dicer切割這個多核苷酸後,這個含有靶向感興趣基因的序列的雙鏈體可以展開並摻入RISC複合物中。miRNA支架可以指miRNA本身或編碼所述miRNA的DNA多核苷酸。miRNA支架的例子是miR-155序列(Lagos-Quintana,M.等人(2002)Curr.Biol.12:735-9)。可商購獲得用於將序列克隆到miRNA支架中的套組在本領域內是已知的(例如,InvitrogenTM BLOCK-iTTM Pol II miR RNAi表現載體套組,來自生命技術公司(Life Technologies),賽默飛世爾科技(Thermo Fisher Scientific);沃爾瑟姆(Waltham),馬薩諸塞州(MA))。
如本文所用,「凸起」是指核酸中與在雙鏈體核酸中相對的核酸不互補的區域。例如,凸起可以指與雙鏈體核酸中相對的核酸不互補的核酸序列,其中所述凸起的側翼是核酸中與雙鏈體核酸中核酸互補的區域。 在一些例子中,所述凸起的長度可以是1、2、3、4、5、6、7、8、9、10或超過10個鹼基中的任一個。在一些例子中,所述凸起可以是錯配(例如,相對鏈含有不互補的鹼基)的結果,或所述凸起可以是不配對(例如,相對鏈包含與在所述凸起側翼的核酸互補的核酸,但所述相對鏈在所述凸起的對側不含核酸)的結果。
如本文所用,術語「有義」核酸是包含編碼轉殖基因的全部或一部分的序列的核酸。在一些例子中,轉殖基因的mRNA是有義核酸。
如本文所用,「反義」核酸是與「有義」核酸互補的核酸的序列。例如,反義核酸可以與編碼轉殖基因的mRNA互補。
如本文所用,RNAi的「導引區」是RNAi中通常基於互補性結合靶mRNA的鏈。互補區可涵蓋導引區的全部或一部分。通常,互補區至少包括種子區。在許多情況下,RNAi的反義區是導引區。
如本文所用,本文互換使用的RNAi的「過客區」或「非導引區」是RNAi中與導引區互補的區域。在許多情況下,RNAi的有義區是過客區。
如本文所用,RNAi的「種子區」(例如,miRNA)是微小RNA的約1-8個核苷酸個長度的區域。在一些例子中,種子區和其靶mRNA的3′-UTR可以是RNAi識別中的關鍵決定因素。
如本文所用,「脫靶基因沉默」是指RNAi的種子區與非期望mRNA的3′-UTR配對,並引導那些轉錄物轉譯抑制和去穩定化(例如,減少非期望mRNA的表現)。
本文對「約」某一值或參數的提及包括(並描述)針對所述值或參數本身的實施例。例如,涉及「約X」的描述包括「X」的描述。
除非另外說明,否則如本文所用,冠詞的單數形式「一個」、「一種」和「所述」包括複數指示物。
應理解的是,本文描述的本公開文本的各方面和實施例包括「包含(comprising)」、「組成為(consisting)」和/或「基本上組成為(consisting essentially of)」方面和實施例。
III.RNAi
在一些方面,本公開文本提供了改進的RNAi。在一些實施 例中,所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。小抑制性或干擾性RNA(siRNA)在本領域中被稱為長度約19-25(例如,19-23)個鹼基對的雙鏈RNA分子,其在細胞中誘導RNAi。在一些實施例中,所述siRNA序列也可以***人工miRNA支架(“shmiRNA”)中。小髮夾RNA(shRNA)在本領域中稱為包含通過短環(例如,約4-11個核苷酸)連接的雙鏈RNA的約19-25(例如,19-23)個鹼基對的RNA分子,其在細胞中誘導RNAi。
微小RNA(miRNA)在本領域中稱為在細胞中誘導RNAi的RNA分子,其包含通過環連接的雙鏈RNA的短(例如,19-25個鹼基對)序列,且包含含一個或多個凸起(例如,錯配或未配對鹼基對)的雙鏈RNA的一個或多個另外的序列。如本文所用,術語「miRNA」涵蓋內源miRNA以及外源或異源miRNA。在一些實施例中,「miRNA」可以指初級miRNA(pri-miRNA)或前miRNA(pre-miRNA)。在miRNA處理期間,產生初級miRNA轉錄物。通過Drosha-DGCR8加工初級RNA,以通過切除一個或多個序列產生前miRNA,留下具有以下項的初級miRNA:5’側翼區、導引鏈、環區、非導引鏈和3’側翼區;或5’側翼區、非導引鏈、環區、導引鏈和3’側翼區。然後將前miRNA導出到細胞質中,並通過Dicer加工,以產生具有導引鏈和非導引(或過客)鏈的siRNA。然後,RISC複合物使用導引鏈催化基因沉默,例如,通過識別與導引鏈互補的靶RNA序列。miRNA的進一步描述可在例如WO 2008/150897中找到。miRNA識別靶序列主要通過靶與miRNA種子序列,例如導引鏈的核苷酸1-8(5’到3’)之間的配對來確定(參見,例如Boudreau,R.L.等人(2013)Nucleic Acids Res.41:e9)。
在初級/前miRNA結構中,雙鏈體中導引鏈:非導引鏈界面部分是通過互補鹼基配對(例如,Watson-Crick鹼基配對)形成。然而,在一些實施例中,這種互補鹼基配對不會延及整個雙鏈體。在一些實施例中,界面中的凸起可存在於一個或多個核苷酸位置上。如本文所用,術語“凸起”可以指核酸中與在雙鏈體中相對的核酸不互補的區域。在一些實施例中,當互補核酸的區域彼此結合時形成凸起,而中心非互補區域的區域不結合。在一些實施例中,當位於兩個互補區域之間的兩條核酸鏈具有不同 長度時形成凸起。如下所述,凸起可以是1個或多個核苷酸。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。
在另一個方面,本公開文本中描述的RNAi抑制α-突觸核蛋白質(SNCA)。在一些實施例中,SNCA是小鼠SNCA。在一些實施例中,SNCA是人類SNCA。在一些實施例中,所述RNAi靶向編碼SNCA的RNA。在一些實施例中,所述RNAi抑制受試者中SNCA的表現。在一些實施例中,所述RNAi抑制受試者中SNCA的累積。在一些實施例中,受試者是哺乳動物。在一些實施例中,哺乳動物是人類。
基於RNAi的療法的安全性可能受到小抑制性RNA(siRNA)結合至非期望mRNA並減少其表現的能力(稱為脫靶基因沉默的效應)阻礙。脫靶主要在種子區(小RNA的核苷酸2-8)與非期望mRNA的3′-UTR中的序列配對並引導那些轉錄物轉譯抑制和去穩定化時發生。可以通過取代導引序列和非導引序列內的鹼基來設計減少的脫靶RNAi;例如通過產生CpG基序(motifs)。可利用SiSPOTR算法評估可導致脫靶得分顯著下降的潛在取代,所述算法是一種專注特異性的siRNA設計算法,識別具有最小脫靶可能性和強力沉默能力的候選序列(Boudreau等人,Nucleic Acids Res.2013年1月;41(1)e9。SiSPOTR得分降低預示著與母體RNAi分子相比具有較少數量的潛在人脫靶的序列。在本公開文本的一些實施例中,RNAi經改進以減少脫靶基因沉默。在一些實施例中,RNAi包含一個或多個CpG基序。在一些實施例中,RNAi在種子區包含一個或多個CpG基序。
在一些實施例中,第一鏈和第二鏈通過能夠形成環結構的RNA(例如,RNA連接子)連接。如本領域內眾所周知的,當RNA分子包含鹼基配對在一起但被未鹼基配對在一起的一個RNA序列分開的兩個RNA序列時,會形成RNA環結構(例如,莖-環或髮夾)。例如,如果序列A和序列C互補或部分互補,使得它們鹼基配對在一起,但序列B中的鹼基未鹼基配對在一起,那麼RNA分子A-B-C中可形成環結構。在一些實施例中,所述環序列是DNA形式的5’-GTTTTGGCCACTGACTGAC-3’(SEQ ID NO:59)或RNA形式的5’-GUUUUGGCCACUGACUGAC-3’(SEQ ID NO:60)。
在一些實施例中,能夠形成環結構的RNA包含4至50個核苷酸。在某些實施例中,能夠形成環結構的RNA包含13個核苷酸。在一些實施例中,能夠形成環的RNA中核苷酸的數量是4至50個核苷酸,或其間的任何整數。在一些實施例中,環的0-50%可與所述環的另一部分互補。如本文所用,術語「環結構」是連接兩個互補的核酸鏈的序列。在一些實施例中,環結構1-3個核苷酸與互補的核酸鏈鄰接,且可與環結構遠側部分的1-3個核苷酸互補。例如,環結構5’末端的三個核苷酸可與環結構3’末端的三個核苷酸互補。
在一些實施例中,編碼本公開文本的RNAi的核酸包含異源miRNA支架。在一些實施例中,使用異源miRNA支架是用於調節miRNA表現;例如,增加miRNA表現或減少miRNA表現。可使用本領域內已知的任何miRNA支架。在一些實施例中,miRNA支架來源於miR-155支架(參見,例如Lagos-Quintana,M.等人(2002)Curr.Biol.12:735-9以及InvitrogenTM BLOCK-iTTM Pol II miR RNAi表現載體套組,來自生命技術公司(Life Technologies),賽默飛世爾科技(Thermo Fisher Scientific);沃爾瑟姆(Waltham),馬薩諸塞州(MA))。
在一些實施例中,RNAi選自表1。
在一些實施例中,第一鏈包含與任何導引序列具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性的核酸序列。在一些實施例中,第一鏈包含與任何導引序列具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性但保留CpG基序的核酸序列。在一些實施例中,第二鏈包含與相應的過客序列具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性的核酸序列。在一些實施例中,第二鏈包含與相應的過客序列具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性但保留CpG基序的核酸序列。
表1
Figure 108127564-A0202-12-0023-3
Figure 108127564-A0202-12-0024-2
圖注:序列為從5’到3’。小寫字母指示與靶標有義鏈的錯配,以降低在導引鏈的5’末端經加工的雙鏈體的穩定性。Hs=人;mq=恒河猴,ms=小鼠。從siSPOTR算法(萬維網https://sispotr.icts.uiowa.edu/sispotr/tools.html)計算人脫靶預測,並且所述人脫靶預測代表被預測的脫靶轉錄物與miRNA的種子序列的鹼基互補性。
IV.神經退化性突觸核蛋白病變
神經退化性突觸核蛋白病變是神經退化性疾病,其特徵在於神經元、神經纖維或神經膠質細胞中α-突觸核蛋白(SNCA)蛋白水平增加。神經退化性突觸核蛋白病變的主要類型包括路易體失智(DLB)、帕金森病和多系統萎縮症(MSA)。
神經退化性突觸核蛋白病變的例子包括但不限於帕金森病(PD)、多系統萎縮症(MSA-P和MSA-C)、路易體失智(DLB)、純自主神經衰竭(PAF)、阿爾茨海默病的路易體變體(LBVAD)、路易體吞嚥困難和偶然的路易體病。
多個證據證實,α-突觸核蛋白水平的升高具有神經毒性,而降低具有神經保護作用(Dauer,2002;Drolet,2004;Alvarez-Fischer,2008;Klivenyi,2005;Mittal,2017;Javed,2015;Cole,2017;Ubhi,2010;Lim,2011)。本公開文本提供了針對SNCA的RNAi。
V.治療神經退化性突觸核蛋白病變的方法
在一些方面,本公開文本提供了治療哺乳動物中神經退化性突觸核蛋白病變的方法和組合物,其包括向所述哺乳動物投予本公開文本的醫藥組合物(例如,包含本公開文本的病毒粒子的醫藥組合物)。在一些方面,本公開文本提供了抑制患有神經退化性突觸核蛋白病變的哺乳動物中SNCA表現的方法和組合物,其包括向所述哺乳動物投予本公開文本的醫藥組合物(例如,包含本公開文本的病毒粒子的醫藥組合物)。在一些方面,本公開文本提供了抑制患有神經退化性突觸核蛋白病變的哺乳動物的細胞中SNCA累積的方法和組合物,其包括向所述哺乳動物投予本公開文本的醫藥組合物(例如,包含本公開文本的病毒粒子的醫藥組合物)。
在一些方面,本公開文本提供了改善神經退化性突觸核蛋白病變症狀的方法和組合物,其包括向哺乳動物神經系統投予有效量的重組病毒粒子,這些重組病毒粒子包含編碼本公開文本的RNAi的載體。在一些實施例中,神經退化性突觸核蛋白病變的症狀包括但不限於帕金森症、認知障礙、睡眠障礙、幻視、言語障礙、便秘、錐體或小腦體征、嗅覺缺失、自主神經功能障礙如直立性低血壓、出汗減少、***功能障礙、尿滯留或尿失禁、和瞳孔功能障礙。
在一些方面,本公開文本提供了預防或延遲神經退化性突觸核蛋白病變進展的方法。像PD這樣的突觸核蛋白病變通常是通過震顫、運動遲緩、僵硬和姿勢不穩定的存在來臨床診斷。通過檢查諸如直立性低血壓、錐體體征、認知改變或幻覺的其他體征來典型地進行與PD的區分。另外,一些突觸核蛋白病變可以通過腦成像來診斷,例如通過尋找腦區域中的異常,所述腦區域例如為MSA中的腦橋、小腦、殼核。一些突觸核蛋白病變可以通過針對常見突變(不一定侷限於SNCA基因)的基因分型直接鑑別。延遲或預防疾病進展可通過以下任何症狀的改善來定義:運動功能(運動遲緩、運動障礙、肌張力障礙、姿勢不穩定、彎腰姿勢、震顫、肌陣攣等)、認知、睡眠障礙、幻視、言語、便秘、錐體體征、嗅覺缺失、自主神經功能障礙如直立性低血壓、出汗減少、***功能障礙、尿滯留或尿失禁、和瞳孔功能障礙。
在本公開文本的一些方面,使用所述方法和組合物治療患有神經退化性突觸核蛋白病變的人類。在一些方面,本公開文本提供了改進的RNAi,其靶向患有神經退化性突觸核蛋白病變的哺乳動物中的SNCA mRNA。在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸,其中第一鏈和第二鏈形成雙鏈體,並且其中第二鏈的SEQ ID NO:53的殘基19處的A殘基不與第一鏈中的殘基形成鹼基對。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸,其中第一鏈和第二鏈形成雙鏈體,並且其中第二鏈的SEQ ID NO:37的A殘基19不與第一鏈中的殘基形成鹼基對。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCGCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:14)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGCGUA-3’(SEQ ID NO:43)的第二核酸,其中第一鏈和第二鏈形成雙鏈體,並且其中第二鏈的SEQ ID NO:43的殘基19處的A殘基不與第一鏈中的殘基形成鹼基對。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中, 第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCGCAUUGGAACUGAGCA-3’(SEQ ID NO:7)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGCGCCUA-3’(SEQ ID NO:36)的第二核酸,其中第一鏈和第二鏈形成雙鏈體,並且其中第二鏈的SEQ ID NO:36的殘基19處的A殘基不與第一鏈中的殘基形成鹼基對。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-uUCCAACAUUUGUCACUUGCU-3’(SEQ ID NO:5)的第一核酸,所述第二鏈包含含有序列5’-AGCAAGUGAAAUGUUCGAA-3’(SEQ ID NO:34)的第二核酸,其中第一鏈和第二鏈形成雙鏈體,並且其中第二鏈的SEQ ID NO:34的殘基18處或殘基19處的A殘基不與第一鏈中的殘基形成鹼基對。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在本公開文本的一些實施例中,RNAi經改進以減少脫靶基因沉默。在一些實施例中,RNAi包含一個或多個CpG基序。在一些實施例中,RNAi在種子區包含一個或多個CpG基序。
在一些實施例中,本公開文本提供了治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中, 所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,本公開文本提供了用於抑制患有神經退化性突觸核蛋白病變的哺乳動物中SNCA表現的方法,所述方法包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中,本公開文本提供了用於抑制患有神經退化性突觸核蛋白病變的哺乳動物的細胞中SNCA累積的方法,其包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈包含與SEQ ID NO:24具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性的核酸序列。在一些實施例中,第二鏈包含與SEQ ID NO:24具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性但保留CpG基序的核酸序列。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,本公開文本提供了治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中,本公開文本提供了用於抑制患有神經退化性突觸核蛋白病變的哺乳動物中SNCA表現的方法,所述方法包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和 第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3'(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5'-UGCUCAGUCAAUGUGCCUA-3'’(SEQ ID NO:37)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中,本公開文本提供了用於抑制患有神經退化性突觸核蛋白病變的哺乳動物的細胞中SNCA累積的方法,其包括向哺乳動物投予RNAi,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-5’-UGGGCACAUUGGAACUGAGCA-3’-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸,其中第一鏈和第二鏈形成雙鏈體。在一些實施例中,所述miRNA包含通過從miRNA-鹼基9-10的過客鏈中缺失2個鹼基(從過客鏈的起點開始計數)而產生的內部凸起。在一些實施例中,第一鏈包含與SEQ ID NO:8具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性的核酸序列。在一些實施例中,第二鏈包含與SEQ ID NO:37具有超過約75%、80%、85%、90%、95%、96%、97%、98%或99%中任一個的同一性的核酸序列。在一些實施例中,第一鏈和第二鏈通過環序列連接。在一些實施例中,環序列是5'-GUUUUGGCCACUGACUGAC-3'(SEQ ID NO:60)。
在一些實施例中,所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。小抑制性或干擾性RNA(siRNA)在本領域中被稱為長度約19-25(例如,19-23)個鹼基對的雙鏈RNA分子,其在細胞中誘導RNAi。小髮夾RNA(shRNA)在本領域中稱為包含通過短環(例如約4-11個核苷酸)連接的雙鏈RNA的約19-25(例如19-23)個鹼基對的RNA分子,其在細胞中誘導RNAi。
在一些實施例中,miRNA包含與SEQ ID NO:24約90%相同的導引序列。在一些實施例中,miRNA包含與SEQ ID NO:24具有約90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%中任一個的同一性的導引序列。
在一些實施例中,miRNA包含與SEQ ID NO:24約90%相同的非導引序列。在一些實施例中,miRNA包含與SEQ ID NO:53具有約90%、91%、 92%、93%、94%、95%、96%、97%、98%、99%或100%中任一個的同一性的非導引序列。本文所述任何RNAi(例如,作為rAAV載體的一部分)尤其可用於治療神經退化性突觸核蛋白病變。另一方面,表1中描述的任何RNAi可用於治療神經退化性突觸核蛋白病變。
在一些實施例中,miRNA包含與SEQ ID NO:8約90%相同的導引序列。在一些實施例中,miRNA包含與SEQ ID NO:8具有約90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%中任一個的同一性的導引序列。
在一些實施例中,miRNA包含與SEQ ID NO:37約90%相同的非導引序列。在一些實施例中,miRNA包含與SEQ ID NO:37具有約90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%中任一個的同一性的非導引序列。本文所述任何RNAi(例如,作為rAAV載體的一部分)尤其可用於治療神經退化性突觸核蛋白病變。另一方面,表1中描述的任何RNAi可用於治療神經退化性突觸核蛋白病變。
在一些實施例中,第一鏈與第二鏈借助能夠形成環結構的RNA連接。如本領域內眾所周知的,當RNA分子包含鹼基配對在一起但被未鹼基配對在一起的一個RNA序列分開的兩個RNA序列時,會形成RNA環結構(例如,莖-環或髮夾)。例如,如果序列A和序列C互補或部分互補,使得它們鹼基配對在一起,但序列B中的鹼基未鹼基配對在一起,那麼RNA分子A-B-C中可形成環結構。
在一些實施例中,能夠形成環結構的RNA包含4至50個核苷酸。在某些實施例中,能夠形成環結構的RNA包含13個核苷酸。在某些實施例中,能夠形成環結構的RNA包含SEQ ID NO:60的核苷酸序列。在一些實施例中,載體基因組包含與SEQ ID NO:60的序列具有至少約80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%中任一個的同一性的核苷酸序列。
在一些實施例中,通過注射病毒粒子將重組病毒粒子遞送至腦。在一些實施例中,通過注射病毒粒子將重組病毒粒子遞送至紋狀體。紋狀體內投予將重組病毒粒子遞送至腦中受神經退化性突觸核蛋白病變嚴重影 響的區域,即紋狀體(包括殼核和尾狀核)。此外,且不希望受理論束縛,認為注射至紋狀體中的重組病毒粒子(例如rAAV粒子)也可以分散(例如通過逆向運輸)至腦的其他區域,包括但不限於投射區(例如皮質或黑質)。在一些實施例中,通過對流增強遞送(convection enhanced delivery)來遞送重組病毒粒子(例如,對流增強遞送至紋狀體)。
在一些方面,本公開文本提供了治療哺乳動物中神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予本公開文本的醫藥組合物。在一些方面,本公開文本提供了抑制患有神經退化性突觸核蛋白病變的哺乳動物的細胞中SNCA累積的方法,其包括向所述哺乳動物投予本公開文本的醫藥組合物。在一些方面,本公開文本提供了抑制患有神經退化性突觸核蛋白病變的哺乳動物中SNCA表現的方法,其包括向所述哺乳動物投予本公開文本的醫藥組合物。在一些實施例中,所述SNCA是突變SNCA(例如,人類SNCA突變,包括A53T、E46K、A30P、G51D、H50Q、A53E、A29S、A18T中的一種或多種,以及基因座的重複和三次重複)。在一些實施例中,野生型SNCA的表現和/或累積也受到抑制。如本文所述,且不希望受理論束縛,認為抑制患有神經退化性突觸核蛋白病變的哺乳動物中突變體SNCA表現和/或累積是非常有益的,但抑制相同哺乳動物中野生型SNCA表現和/或累積作為副作用(例如,本公開文本的RNAi的)可以具有良好耐受性(例如,產生極少或不產生非期望副作用)。
在一些實施例中,細胞包含載體(例如,包含編碼本公開文本的RNAi的表現建構體的載體)。在一些實施例中,所述載體是rAAV載體。在一些實施例中,所述載體是重組腺病毒載體、重組慢病毒載體或重組單純皰疹病毒(HSV)載體。在一些實施例中,所述細胞是中樞神經系統(CNS)細胞。在一些實施例中,所述細胞是HEK293細胞。
在一些實施例中,投予有效量的包含編碼本公開文本的RNAi的載體的重組病毒粒子在投予部位或附近轉導神經元(例如,紋狀體神經元,諸如棘神經元)。在一些實施例中,轉導超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或100%中任一個百分比的神經元。在一些實施例中,轉導約5%至約100%、約10% 至約50%、約10%至約30%、約25%至約75%、約25%至約50%或約30%至約50%的神經元。鑑別用表現miRNA的重組病毒粒子轉導的神經元的方法是本領域已知的;例如,可使用免疫組織化學、RNA檢測(例如qPCR、Northern印跡、RNA-seq、原位雜交等)或使用共表現標記(例如增強型綠色螢光蛋白)來檢測表現。
在本公開文本的一些實施例中,所述方法包括向哺乳動物的腦投予有效量的含編碼本公開文本的RNAi的載體的重組病毒粒子,以治療患有神經退化性突觸核蛋白病變的哺乳動物,例如人類。在一些實施例中,將組合物注射至腦中的一個或多個位置,以允許至少在神經元中表現本公開文本的RNAi。在一些實施例中,將組合物注射至以下任一者:腦中的一個、兩個、三個、四個、五個、六個、七個、八個、九個、十個或超過十個位置。在一些實施例中,將組合物注射至紋狀體中。在一些實施例中,將組合物注射至背側紋狀體中。在一些實施例中,將組合物注射至殼核中。在一些實施例中,將組合物注射至尾狀核中。在一些實施例中,將組合物注射至殼核和尾狀核中。在一些實施例中,投予途徑可包括通過腦室內、小腦延髓池或鞘內注射的CSF遞送。在一些實施例中,投予還可包括靜脈內遞送病毒載體。
在一些實施例中,將重組病毒粒子投予至一個腦半球。在一些實施例中,將重組病毒粒子投予至兩個腦半球。
在一些實施例中,將重組病毒粒子同時或依次投予至超過一個位置。在一些實施例中,多次注射重組病毒粒子間隔不超過一個小時、兩個小時、三個小時、四個小時、五個小時、六個小時、九個小時、十二個小時或24個小時。
在一些實施例中,本公開文本提供了一種通過投予有效量的包含本公開文本的RNAi的重組病毒載體的醫藥組合物抑制突變體SNCA的活性來治療患有神經退化性突觸核蛋白病變的人類的方法。在一些實施例中,醫藥組合物包含一種或多種醫藥上可接受的賦形劑。
在一些實施例中,所述方法包括投予有效量的含編碼本公開文本的RNAi的重組病毒載體的醫藥組合物,以抑制突變體SNCA的活性。在一 些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:至少約5×1012、6×1012、7×1012、8×1012、9×1012、10×1012、11×1012、15×1012、20×1012、25×1012、30×1012或50×1012個基因組拷貝/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:至少約5×1012至6×1012、6×1012至7×1012、7×1012至8×1012、8×1012至9×1012、9×1012至10×1012、10×1012至11×1012、11×1012至15×1012、15×1012至20×1012、20×1012至25×1012、25×1012至30×1012、30×1012至50×1012或50×1012至100×1012個基因組拷貝/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:約5×1012至10×1012、10×1012至25×1012或25×1012至50×1012個基因組拷貝/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:至少約5×109、6×109、7×109、8×109、9×109、10×109、11×109、15×109、20×109、25×109、30×109或50×109個轉導單位/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:約5×109至6×109、6×109至7×109、7×109至8×109、8×109至9×109、9×109至10×109、10×109至11×109、11×109至15×109、15×109至20×109、20×109至25×109、25×109至30×109、30×109至50×109或50×109至100×109個轉導單位/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:約5×109至10×109、10×109至15×109、15×109至25×109或25×109至50×109個轉導單位/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:至少約5×1010、6×1010、7×1010、8×1010、9×1010、10×1010、11×1010、15×1010、20×1010、25×1010、30×1010、40×1010或50×1010個感染單位/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒力價是以下任一者:至少約5×1010至6×1010、6×1010至7×1010、7×1010至8×1010、8×1010至9×1010、9×1010至10×1010、10×1010至11×1010、11×1010至15×1010、15×1010至20×1010、20×1010至25×1010、25×1010至30×1010、30×1010至40×1010、40×1010至50×1010或50×1010至100×1010個感染單位/mL。在一些實施例中,病毒粒子(例如,rAAV粒子)的病毒 力價是以下至少一者:約5×1010至10×1010、10×1010至15×1010、15×1010至25×1010或25×1010至50×1010個感染單位/mL。
在一些實施例中,投予至個體的病毒粒子的劑量是以下任一者:至少約1×108至約1×1013個基因組拷貝/kg體重。在一些實施例中,投予至個體的病毒粒子的劑量是以下任一者:約1×108至約1×1013個基因組拷貝/kg體重。
在一些實施例中,投予至個體的病毒粒子的總量是以下任一者:至少約1×109至約1×1014個基因組拷貝。在一些實施例中,投予至個體的病毒粒子的總量是以下任一者:約1×109至約1×1014個基因組拷貝。
在本公開文本的一些實施例中,注射至紋狀體的組合物的體積是以下任一者:超過約1μl、2μl、3μl、4μl、5μl、6μl、7μl、8μl、9μl、10μl、15μl、20μl、25μl、50μl、75μl、100μl、200μl、300μl、400μl、500μl、600μl、700μl、800μl、900μl或1mL、或其間任一量。
在一些實施例中,將第一體積的組合物注射至腦的第一區域,並將第二體積的組合物注射至腦的第二區域。例如,在一些實施例中,將第一體積的組合物注射至尾狀核,並將第二體積的組合物注射至殼核。在一些實施例中,將1X體積的組合物注射至尾狀核,並將1.5X、2X、2.5X、3X、3.5X、或4X體積的組合物注射至殼核,其中X是超過以下任一者的體積:超過約1μl、2μl、3μl、4μl、5μl、6μl、7μl、8μl、9μl、10μl、15μl、20μl、25μl、50μl、75μl、100μl、200μl、300μl、400μl、500μl、600μl、700μl、800μl、900μl或1mL、或其間的任何量。
本公開文本的組合物(例如,包含編碼本公開文本的RNAi的載體的重組病毒粒子)可單獨使用或與用於治療神經退化性突觸核蛋白病變的一種或多種另外的治療劑組合使用。依次投予之間的間隔可以是按至少(或,可替代地,少於)分鐘、小時或天計算。
本公開文本中描述的任何RNAi、表現建構體、載體或細胞可以用於上述任何方法。在一些實施例中,表1中公開的任何RNAi,包含表1中的RNAi的表現建構體、載體或細胞可用於上述任何方法中。
V.RNAi表現建構體和載體
本公開文本提供了表現本文所述RNAi的表現建構體、載體和病毒粒子。
在一些實施例中,編碼本公開文本的RNAi的核酸包含異源miRNA支架。在一些實施例中,使用異源miRNA支架是用於調節miRNA表現;例如,增加miRNA表現或減少miRNA表現。可使用本領域內已知的任何miRNA支架。在一些實施例中,miRNA支架來源於miR-155支架(參見,例如Lagos-Quintana,M.等人(2002)Curr.Biol.12:735-9以及InvitrogenTM BLOCK-iTTM Pol II miR RNAi表現載體套組,來自生命技術公司(Life Technologies),賽默飛世爾科技(Thermo Fisher Scientific);沃爾瑟姆(Waltham),馬薩諸塞州(MA))。在一些實施例中,編碼本公開文本的RNAi的核酸包含miRNA支架。在一些實施例中,miRNA支架包含序列ctggaggcttgctgaaggctgtatgctgcaggacacaaggcctgttactagcactcacatggaacaaatggc(SEQ ID NO:67),其中miRNA***在粗體gc殘基之間。
在一些實施例中,支架中的miRNA包含序列ctggaggcttgctgaaggctgtatgctg tacgatctaatatcgctc gttttggccactgac tgacgagcgatatgatcgtacga caggacacaaggcctgttactagcactcacatggaacaaatggc(SEQ ID NO:68),其中帶下劃線的常規文本代表5'側翼,斜體文本代表導引序列,粗體文本代表環,帶下劃線的斜體代表非導引序列以及常規文本代表3'側翼。
在一些實施例中,所述RNAi靶向對與神經退化性突觸核蛋白病變相關的多肽進行編碼的RNA。在一些實施例中,所述多肽是α-突觸核蛋白。不希望受理論束縛,認為可使用RNAi減少或消除多肽的表現和/或活性,所述多肽的功能獲得與神經退化性突觸核蛋白病變相關聯。可以通過本公開文本的治療性多肽或治療性核酸治療的本公開文本的神經退化性突觸核蛋白病變的非限制性例子(可以針對每種障礙在括號中提供可以靶向或提供的例示性基因)包括帕金森病(SNCA)、多系統萎縮症或MSA(SNCA)和路易體失智(SNCA)。
在一些實施例中,轉殖基因(例如,本公開文本的RNAi)可操作地連接至啟動子。例示性啟動子包括但不限於巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子和CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子、巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白啟動子(CAG啟動子;Niwa等人,Gene,1991,108(2):193-9)和延長因子1-α啟動子(EF1-α)啟動子(Kim等人,Gene,1990,91(2):217-23和Guo等人,Gene Ther.,1996,3(9):802-10)。在一些實施例中,啟動子包含人β-葡糖醛酸酶啟動子或連接至雞β-肌動蛋白(CBA)啟動子的巨細胞病毒增強子。啟動子可以是組成型、誘導型或阻抑型啟動子。在一些實施例中,本公開文本提供了包含編碼與CBA啟動子可操作地連接的本公開文本的異源轉殖基因的核酸的重組載體。例示性啟動子和描述可見於例如美國專利授予前公開案20140335054。在一些實施例中,啟動子是CBA啟動子、最低CBA啟動子、CMV啟動子或GUSB啟動子。在一些實施例中,啟動子是hEF1a啟動子。
組成型啟動子的例子包括但不限於逆轉錄勞斯肉瘤病毒(RSV)LTR啟動子(任選地具有RSV增強子)、巨細胞病毒(CMV)啟動子(任選地具有CMV增強子)[參見例如,Boshart等人,Cell,41:521-530(1985)]、SV40啟動子、二氫葉酸還原酶啟動子、13-肌動蛋白啟動子、磷酸甘油激酶(PGK)啟動子和EF1a啟動子[Invitrogen]。
誘導型啟動子允許調節基因表現,並且可以通過外源提供的化合物、環境因子(如溫度)或存在特定生理狀態(例如,急性期)、細胞的特定分化狀態或在僅複製細胞時進行調節。誘導型啟動子和誘導型系統可從多種商業來源獲得,包括但不限於Invitrogen、Clontech和Ariad。已經描述了許多其他系統,並且可以由業界熟習此項技術者容易地選擇。通過外源提供的啟動子調節的誘導型啟動子的例子包括鋅誘導型綿羊金屬硫蛋白(MT)啟動子、***(Dex)-誘導型小鼠***腫瘤病毒(MMTV)啟動子、T7聚合酶啟動子系統(WO 98/10088);蛻皮激素昆蟲啟動子(No 等人,Proc.Natl.Acad.Sci.USA,93:3346-3351(1996))、四環素阻抑型系統(Gossen等人,Proc.Natl.Acad.Sci.USA,89:5547-5551(1992))、四環素阻抑型系統(Gossen等人,Science,268:1766-1769(1995),還參見Harvey等人,Curr.Opin.Chem.Biol.,2:512-518(1998))、RU486-誘導型系統(Wang等人,Nat.Biotech.,15:239-243(1997)和Wang等人,Gene Ther.,4:432-441(1997))和雷帕黴素誘導型系統(Magari等人,J.Clin.Invest.,100:2865-2872(1997))。在這種背景下可使用的仍其他類型的誘導型啟動子是通過特定生理狀態(例如,溫度、急性期)、細胞的特定分化狀態或在僅複製細胞時調節的那些。
在另一個實施例中,將使用用於轉殖基因的天然啟動子或其片段。當期望轉殖基因的表現應模擬天然表現時,天然啟動子是較佳的。當必須暫時或發展地或以組織特異性方式、或響應特定轉錄刺激物調節轉殖基因的表現時,可使用天然啟動子。在另一實施例中,也可以使用其他天然表現控制元件,如增強子元件、多腺苷酸化位點或Kozak共有序列模擬天然表現。
在一些實施例中,調節序列賦予組織特異性基因表現能力。在一些情況下,組織特異性調節序列結合以組織特異性方式誘導轉錄的組織特異性轉錄因子。本領域中熟知此類組織特異性調節序列(例如,啟動子、增強子等)。例示性組織特異性調節序列包括但不限於以下組織特異性啟動子:神經元型,諸如神經元特異性烯醇化酶(NSE)啟動子(Andersen等人,Cell.Mol.Neurobiol.,13:503-15(1993))、神經絲輕鏈基因啟動子(Piccioli等人,Proc.Natl.Acad.Sci.USA,88:5611-5(1991))和神經元特異性vgf基因啟動子(Piccioli等人,Neuron,15:373-84(1995))。在一些實施例中,組織特異性啟動子是選自以下的基因的啟動子:神經元核(NeuN)、膠質原纖維酸性蛋白(GFAP)、腺瘤性結腸息肉病(APC)和離子鈣結合銜接子分子1(Iba-1)。其他合適的組織特異性啟動子對熟習此項技術者將是清楚的。在一些實施例中,啟動子是雞β-肌動蛋白啟動子。
在一些實施例中,啟動子在CNS的細胞中表現異源核酸。因此,在一些實施例中,本公開文本的治療多肽或治療核酸可用於治療CNS的障 礙。在一些實施例中,啟動子在腦細胞中表現異源核酸。腦細胞可以指本領域中已知的任何腦細胞,包括但不限於神經元(諸如感覺神經元、運動神經元、中間神經元、多巴胺能神經元、中型多棘神經元、膽鹼能神經元、GABA能神經元、錐體神經元等)、膠質細胞(諸如小膠質細胞、大膠質細胞、星形膠質細胞、少突膠質細胞、室管膜細胞、放射狀膠質細胞等)、腦實質細胞、小膠質細胞、室管膜細胞和/或浦肯野細胞。在一些實施例中,所述啟動子在神經元和/或膠質細胞中表現異源核酸。在一些實施例中,所述神經元是尾狀核的中型多棘神經元、殼核的中型多棘神經元、皮質層IV的神經元和/或皮質層V的神經元。
在CNS細胞、腦細胞、神經元和膠質細胞中表現轉錄物(例如,異源轉殖基因)的各種啟動子是本領域內已知的且描述在本文中。此類啟動子可包含通常與所選基因或異源控制序列相關的控制序列。通常,有用的異源控制序列包括源自編碼哺乳動物或病毒基因的序列的那些。例子包括但不限於SV40早期啟動子、小鼠***腫瘤病毒LTR啟動子、腺病毒主要晚期啟動子(Ad MLP)、單純皰疹病毒(HSV)啟動子、巨細胞病毒(CMV)啟動子(諸如CMV即時早期啟動子區(CMVIE))、勞斯肉瘤病毒(RSV)啟動子、合成啟動子、雜合啟動子等。另外,也可以使用源自非病毒基因(如鼠金屬硫蛋白基因)的序列。此類啟動子序列可從例如Stratagene(加利福尼亞州聖地亞哥(San Diego,CA))商購獲得。可使用CNS-特異性啟動子和誘導型啟動子。CNS特異性啟動子的例子包括但不限於從諸如髓鞘鹼性蛋白(MBP)、膠質纖維酸性蛋白(GFAP)和神經元特異性烯醇酶(NSE)的CNS特異性基因分離的那些。誘導型啟動子的例子尤其包括蛻皮激素、四環素、金屬硫蛋白和缺氧的DNA響應元件。
本公開文本考慮使用重組病毒基因組將一個或多個編碼本文所述RNAi的核酸序列引入或包裝到AAV病毒粒子中。重組病毒基因組可包括任何元件來建立RNAi的表現,所述元件例如為啟動子、異源核酸、ITR、核糖體結合元件、終止子、增強子、選擇標記、內含子、多聚A信號和/或複製起點。在一些實施例中,rAAV載體包含以下中的一者或多者:增強子、剪接供體/剪接受體對、基質附著位點或多腺苷酸化信號。
在一些實施例中,投予有效量的包含編碼RNAi的載體的rAAV粒子在投予部位或附近(例如紋狀體和/或皮質)或更遠離投予部位轉導細胞(例如CNS細胞、腦細胞、神經元和/或膠質細胞)。在一些實施例中,轉導超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或100%中任一個百分比的神經元。在一些實施例中,轉導約5%至約100%、約10%至約50%、約10%至約30%、約25%至約75%、約25%至約50%或約30%至約50%的神經元。鑑別用表現miRNA的重組病毒粒子轉導的神經元的方法是本領域已知的;例如,可使用免疫組織化學、RNA檢測(例如qPCR、Northern印跡、RNA-seq、原位雜交等)或使用共表現標記(例如增強型綠色螢光蛋白)來檢測表現。
在一些方面,本公開文本提供了包含重組自身互補的基因組(例如,自身互補的rAAV載體)的病毒粒子。具有自身互補的載體基因組的AAV病毒粒子和使用自身互補的AAV基因組的方法描述在美國專利號6,596,535;7,125,717;7,465,583;7,785,888;7,790,154;7,846,729;8,093,054;和8,361,457;以及Wang Z.等人,(2003)Gene Ther 10:2105-2111中,將其各自通過引用以其全文併入本文。包含自身互補的基因組的rAAV將借助其部分互補的序列(例如,異源核酸的互補編碼鏈和非編碼鏈)迅速形成雙鏈DNA。在一些實施例中,載體包含編碼異源核酸的第一核酸序列和編碼所述核酸的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。
在一些實施例中,編碼RNAi的第一異源核酸序列和編碼所述RNAi的互補體的第二異源核酸序列通過突變ITR(例如正確的ITR)連接。在一些實施例中,ITR包含多核苷酸序列5’-CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG-3’(SEQ ID NO:69)。突變的ITR包含含末端解析序列的D區的缺失。因此,在複製AAV病毒基因組時,rep蛋白將不會在突變的ITR處切割病毒基因組,並且因此,以5'至3'順序包含以下的重組病毒基因組將被包裝在病毒衣殼中:AAV ITR、包括 調節序列的第一異源多核苷酸序列、突變的AAV ITR、與第一異源多核苷酸反向的第二異源多核苷酸和第三AAV ITR。
VI.病毒粒子和產生病毒粒子的方法
本公開文本尤其提供了包含編碼本公開文本的RNAi的核酸的重組病毒粒子及其用於治療哺乳動物中疾病或障礙例如神經退化性突觸核蛋白病變的方法。
病毒粒子
本公開文本提供了包含如本文公開的RNAi的病毒粒子。在一些實施例中,本公開文本提供了用於遞送如本文公開的本公開文本的RNAi的病毒粒子。例如,本公開文本提供了利用重組病毒粒子遞送RNAi來治療哺乳動物中疾病或障礙的方法;例如用包含RNAi的rAAV粒子治療神經退化性突觸核蛋白病變。在一些實施例中,重組病毒粒子是重組AAV粒子。在一些實施例中,病毒粒子是包含核酸的重組AAV粒子,所述核酸包含側翼為一個或兩個ITR的序列,即本公開文本的RNAi。所述核酸被包衣殼於AAV粒子中。AAV粒子又包含衣殼蛋白。在一些實施例中,所述核酸包含在轉錄方向上可操作連接組分的一個或多個感興趣的編碼序列(例如,核酸,即本公開文本的RNAi)、控制序列(包括轉錄起始序列和終止序列),從而形成表現建構體。表現建構體的5’和3’末端側接至少一個功能AAV ITR序列。“功能性AAV ITR序列”意指旨在用於挽救、複製和包裝AAV病毒粒子的ITR序列功能。參見Davidson等人,PNAS,2000,97(7)3428-32;Passini等人,J.Virol.,2003,77(12):7034-40;和Pechan等人,Gene Ther.,2009,16:10-16,將所有這些文獻通過引用以其全文併入本文。為了實施本公開文本的一些方面,重組載體包含至少所有為衣殼化所必需的AAV序列和用於由rAAV感染的物理結構。用於本公開文本的載體的AAV ITR無需具有野生型核苷酸序列(例如,如Kotin,Hum.Gene Ther.,1994,5:793-801中所述),並且可以通過***、缺失或取代核苷酸而改變,或者AAV ITR可以衍生自幾種AAV血清型中的任何一種。目前已知超過40種AAV血清型,並且不斷鑑別出新的血清型和現有血清型的變體。參見Gao等人,PNAS,2002,99(18):11854-6;Gao等人,PNAS,2003,100(10):6081-6;和Bossis等人,J.Virol.,2003, 77(12):6799-810。使用任何AAV血清型都被認為在本公開文本的範圍之內。在一些實施例中,rAAV載體是源自AAV血清型的載體,包括但不限於,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV衣殼血清型等。在一些實施例中,AAV中的核酸包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV衣殼血清型等的ITR。在一些實施例中,AAV中的核酸還編碼如本文所述的RNAi。在一些實施例中,rAAV粒子包含AAV1、AAV2HBKO衣殼(例如,如WO 2015168666中所述),AAV9衣殼,PHP.B衣殼,PHP.eB衣殼或Olig001衣殼。
例如,AAV中的核酸可以包含本文考慮的任何AAV血清型的至少一種ITR,並且可以進一步編碼包含第一鏈和第二鏈的RNAi,其中a)第一鏈和第二鏈形成雙鏈體;b)第一鏈包含導引區,和c)第二鏈包含非導引區,其中非導引區在鹼基9和10處包含兩個核苷酸缺失以在導引鏈中產生凸起。在一些實施例中,rAAV可包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸。在一些實施例中,rAAV可包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下項的核酸:ITR(例如AAV2 ITR)、啟動子、編碼如本文公開的RNAi的核酸、多腺苷酸化信號和AAV ITR(例如AAV2 ITR)。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下項的核酸:ITR(例如AAV2 ITR);啟動子;編碼RNAi的核酸,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所 述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸;多腺苷酸化信號以及AAV ITR(例如AAV2 ITR)。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下的核酸:ITR(例如AAV2 ITR);啟動子;編碼RNAi的核酸,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸;多腺苷酸化信號以及AAV ITR(例如AAV2 ITR)。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下項的核酸:ITR(例如AAV2 ITR)、CBA啟動子、編碼如本文公開的RNAi的核酸、多腺苷酸化信號(例如牛生長激素多聚A)和AAV ITR(例如AAV2 ITR)。在一些實施例中,RNAi選自表1。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下項的核酸:ITR(例如AAV2 ITR);CBA啟動子;編碼RNAi的核酸,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)的第一核酸,所述第二鏈包含含有序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)的第二核酸;多腺苷酸化信號(例如牛生長激素多聚A)和AAV ITR(例如AAV2 ITR)。在一些實施例中,AAV中的核酸從5’到3’包含編碼以下項的核酸:ITR(例如AAV2 ITR);CBA啟動子;編碼RNAi的核酸,所述RNAi包含第一鏈和第二鏈,所述第一鏈包含含有序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)的第一核酸,所述第二鏈包含含有序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)的第二核酸;多腺苷酸化信號(例如牛生長激素多聚A)和AAV ITR(例如AAV2 ITR)。在一些實施例中,第一鏈和第二鏈選自表1。
在一些實施例中,載體可包括填充核酸。在一些實施例中,填充核酸可以編碼綠色螢光蛋白。在一些實施例中,所述填充核酸可位於所述啟動子與編碼RNAi的核酸之間。在一些實施例中,填充核酸是A1AT填充核酸。
在一些實施例中,AAV中的核酸包含SEQ ID NO:65的核酸。在一些實施例中,AAV中的核酸包含與SEQ ID NO:65至少約80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的核酸。在另外的實施例中,rAAV粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AA6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh8R、AAVrh.10、AAV11、AAV12的衣殼蛋白或這些衣殼蛋白的突變體。在一些實施例中,突變型衣殼蛋白保留形成AAV衣殼的能力。在一些實施例中,rAAV粒子包含AAV5酪胺酸突變體衣殼(Zhong L.等人,(2008)Proc Natl Acad Sci U S A 105(22):7827-7832。在另外的實施例中,rAAV粒子包含來自進化枝A-F的AAV血清型的衣殼蛋白(Gao等人,J.Virol.2004,78(12):6381)。
使用不同的AAV血清型優化特定靶細胞的轉導或靶向特定靶組織(例如,病變組織)內的特定細胞類型。rAAV粒子可以包含相同血清型或混合血清型的病毒蛋白和病毒核酸。例如,在一些實施例中,rAAV粒子可包含AAV1衣殼蛋白和至少一種AAV2 ITR,或其可包含AAV2衣殼蛋白和至少一種AAV1 ITR。本文提供了生產rAAV粒子的AAV血清型的任何組合,如同每個組合都已在本文中明確說明一樣。在一些實施例中,本發明提供了rAAV粒子,其包含AAV1衣殼和側翼為至少一個AAV2 ITR的本公開文本的rAAV載體(例如包含編碼本公開文本的RNAi的核酸的表現建構體)。在一些實施例中,本發明提供了包含AAV2衣殼的rAAV粒子。在一些實施例中,rAAV粒子包含AAV1、AAV2HBKO衣殼(例如,如WO2015168666中所述),AAV9衣殼,PHP.B衣殼,PHP.eB衣殼或Olig001。
在一些方面,本發明提供了包含重組自身互補的基因組的病毒粒子。具有自身互補的基因組的AAV病毒粒子和使用自身互補的AAV基因組的方法描述在美國專利號6,596,535;7,125,717;7,465,583;7,785,888;7,790,154;7,846,729;8,093,054;和8,361,457;和Wang Z.,等人,(2003)Gene Ther 10:2105-2111中,將其各自通過引用以其全文併入本文。包含自身互補基因組的rAAV將借助其部分互補的序列(例如,轉殖基因的互補編碼鏈和非編碼鏈)迅速形成雙鏈DNA。在一些實施例中,本發明提供了包含AAV基因組的AAV病毒粒子,其中所述rAAV基因組包含第一異源多核苷酸序列 (例如,本公開文本的RNAi)和第二異源多核苷酸序列(例如,本公開文本的RNAi的反義鏈),其中所述第一異源多核苷酸序列可與所述第二多核苷酸序列沿著其大部分或全部長度形成鏈內鹼基對。在一些實施例中,第一異源多核苷酸序列和第二異源多核苷酸序列通過促進鏈內鹼基配對的序列連接;例如髮夾DNA結構。髮夾結構在本領域中是已知的,例如在miRNA或siRNA分子中。在一些實施例中,第一異源多核苷酸序列和第二異源多核苷酸序列通過突變ITR(例如,正確的ITR)連接。在一些實施例中,ITR包含多核苷酸序列5’-ttggccactccctctctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatcactaggggttcct-3’(SEQ ID NO:70)。突變的ITR包含含末端解析序列的D區的缺失。因此,在複製AAV病毒基因組時,rep蛋白將不會在突變的ITR處切割病毒基因組,並且因此,以5'至3'順序包含以下的重組病毒基因組將被包裝在病毒衣殼中:AAV ITR、包括調節序列的第一異源多核苷酸序列、突變的AAV ITR、與第一異源多核苷酸反向的第二異源多核苷酸和第三AAV ITR。在一些實施例中,本發明提供了包含重組病毒基因組的AAV病毒粒子,所述重組病毒基因組包含:功能AAV2 ITR、編碼本公開文本的RNAi的第一多核苷酸序列、包含D區缺失且缺少功能末端解析序列的突變AAV2 ITR、包含與第一多核苷酸序列的編碼本公開文本的RNAi的序列互補的序列的第二多核苷酸序列、和功能AAV2 ITR。
生產病毒粒子
可使用本領域中已知的方法生產rAAV粒子。參見,例如,美國專利號6,566,118;6,989,264;和6,995,006。在實施本發明時,用於生產rAAV粒子的宿主細胞包括哺乳動物細胞、昆蟲細胞、植物細胞、微生物和酵母。宿主細胞也可以是AAV rep和cap基因穩定地保留在宿主細胞中的包裝細胞或者穩定保留AAV載體基因組的生產細胞。例示性包裝細胞和生產細胞源自293、A549或HeLa細胞。純化AAV載體,並利用本領域中已知的標準技術配製。
本領域中已知用於生產rAAV載體的方法,包括但不限於轉染、穩定細胞系生產和包括腺病毒-AAV雜合體、皰疹病毒-AAV雜合體(Conway,JE等人,(1997)J.Virology 71(11):8780-8789)和桿狀病毒-AAV雜合體的感染性雜合病毒生產系統。用於生產rAAV病毒粒子的rAAV生產培養物全部要求:1)合適的宿主細胞,包括例如人源細胞系(諸如HeLa、A549或293細胞)或在桿狀病毒生產系統的情況中為昆蟲源細胞系(諸如SF-9);2)由野生型或突變腺病毒(諸如溫度敏感型腺病毒)、皰疹病毒、桿狀病毒或者提供輔助功能的質體建構體提供的合適輔助病毒功能;3)AAV rep和cap基因和基因產物;4)側翼是至少一個AAV ITR序列的核酸(諸如治療核酸);和5)支持rAAV生產的合適培養基和培養基組分。在一些實施例中,AAV rep和cap基因產物可以來自任何AAV血清型。通常但不是必須的,AAV rep基因產物與rAAV載體基因組的ITR具有相同血清型,只要rep基因產物可以發揮複製和包裝rAAV基因組的作用即可。本領域中已知的合適的培養基可以用於產生rAAV載體。這些培養基包括但不限於Hyclone Laboratories和JRH生產的培養基,包括改良伊格爾培養基(MEM);達爾伯克改良伊格爾培養基(DMEM);定制配製品,如美國專利號6,566,118描述的那些;以及如美國專利號6,723,551中描述的Sf-900 II SFM培養基,將每個專利(特別是關於用於產生重組AAV載體的定制培養基製劑)均通過引用以其全文併入本文。在一些實施例中,AAV輔助功能由腺病毒或HSV提供。在一些實施例中,AAV輔助功能由桿狀病毒提供,並且宿主細胞是昆蟲細胞(例如,草地貪夜蛾(Spodoptera frugiperda)(Sf9)細胞)。
在一些實施例中,rAAV粒子可通過三重轉染方法生產,諸如下文提供的例示性三重轉染方法。簡而言之,可以將含rep基因和衣殼基因的質體連同輔助腺病毒質體轉染(例如,利用磷酸鈣法)到細胞系(例如,HEK-293細胞)中,並且可以收集並任選地純化病毒。因此,在一些實施例中,通過將編碼rAAV載體的核酸、編碼AAV rep和cap的核酸以及編碼AAV輔助病毒功能的核酸三重轉染到宿主細胞中來產生rAAV粒子,其中核酸向宿主細胞的轉染產生能夠產生rAAV粒子的宿主細胞。
在一些實施例中,rAAV粒子可藉由生產細胞系方法生產,諸如下文提供的例示性生產細胞系方法(還可參見(Martin等人,(2013)Human Gene Therapy Methods 24:253-269中引用的)。簡而言之,細胞系(例如,HeLa細胞系)可穩定地用含rep基因、衣殼基因和啟動子-異源核酸序列的質體轉染。可篩選細胞系,以選擇用於rAAV生產的前導克隆(lead clone),然後可將其擴增至生產反應器,並用腺病毒(例如野生型腺病毒)作為輔助者轉染,以啟動rAAV生產。隨後可收獲病毒,可使腺病毒失活(例如通過加熱)和/或移除,並可純化rAAV粒子。因此,在一些實施例中,通過包含編碼rAAV載體的核酸、編碼AAV rep和cap的核酸和編碼AAV輔助病毒功能的核酸中的一者或多者的生產細胞系生產rAAV粒子。
在一些方面,提供一種用於生產本文公開文本的任何rAAV粒子的方法,其包括(a)在產生rAAV粒子的條件下培養宿主細胞,其中所述宿主細胞包含(i)一種或多種AAV包裝基因,其中每種所述AAV包裝基因編碼AAV複製蛋白和/或衣殼化蛋白;(ii)rAAV前載體,其包含編碼如本文所述的本公開文本RNAi的、側翼為至少一個AAV ITR的核酸,和(iii)AAV輔助功能;和(b)回收由宿主細胞生產的rAAV粒子。在一些實施例中,所述RNAi包含SEQ ID NO:61(圖1A)或SEQ ID NO:63(圖1B)的核苷酸序列。在一些實施例中,所述至少一個AAV ITR選自:AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV衣殼血清型ITR等。在一些實施例中,所述衣殼蛋白選自:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6(例如,如美國授予前公開案2012/0164106中所述的野生型AAV6衣殼或變體AAV6衣殼,諸如ShH10)、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9(例如,如美國授予前公開案2013/0323226中所述的野生型AAV9衣殼或經修飾的AAV9衣殼)、AAV10、AAVrh10、AAV11、AAV12、酪胺酸衣殼突變體、肝素結合衣殼突變體、AAV2R471A衣殼、AAVAAV2/2-7m8衣殼、AAV DJ衣殼(例如,AAV-DJ/8衣殼、AAV-DJ/9衣殼、或美國授予前公開案2012/0066783中所述任何其他衣殼)、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、小鼠AAV衣殼、rAAV2/HBoV1衣殼或者美國專利號8,283,151或國際公開號WO/2003/042397中所述AAV衣殼。在一些實施例中,AAV衣殼是如WO 2015168666中所述的AAV2HBKO衣殼。在一些實施例中,AAV衣殼是AAV9衣殼.在一些實施例中,AAV衣殼是PHP.B、PHP.eB或Olig001衣殼。在一些實施例中,突變型衣殼蛋白保留形成AAV衣殼的能力。在一些實施例中,衣殼蛋白是AAV5酪胺酸突變衣殼蛋白。在另外的實施例中,rAAV粒子包含來自進化枝A-F的AAV血清型的衣殼蛋白。在一些實施例中,rAAV粒子包含AAV1衣殼以及重組基因組,所述重組基因組包含AAV2 ITR和編碼本公開文本的RNAi的核酸。在另一實施例中,rAAV粒子被純化。如本文所用的術語“純化的”包括rAAV粒子的製劑,其缺少至少一些也可存在於rAAV粒子天然存在或最初所製備的地方的其他組分。因此,例如,分離的rAAV粒子可以利用純化技術使其從源混合物(諸如培養裂解物或生產培養上清液)富集而製備。可以各種方式量測富集情況,例如像,根據溶液中存在的DNase-抗性粒子(DRP)或基因組拷貝(gc)的比例,或根據感染性;或者可根據源混合物中存在的第二潛在干擾物質(諸如污染物,包括生產培養污染物或進程內污染物,包括輔助病毒、培養基組分等)來量測。
本領域內已知許多生產腺病毒載體粒子的方法。例如,對於內部破壞的腺病毒載體,可將腺病毒載體基因組和輔助腺病毒基因組轉染至包裝細胞系(例如,293細胞系)。在一些實施例中,輔助腺病毒基因組可包含在其包裝信號側翼的重組位點,且可將兩個基因組轉染到表現重組酶的包裝細胞系(例如,可使用Cre/loxP系統),使得感興趣的腺病毒載體的包裝效率高於輔助腺病毒(參見,例如Alba,R.等人(2005)Gene Ther.12增刊1:S18-27)。可以使用標準方法收獲和純化腺病毒載體,諸如本文所述的那些。
本領域內已知許多生產慢病毒載體粒子的方法。例如,對於第三代慢病毒載體,含有帶gag和pol基因的感興趣慢病毒基因組的載體可與含rev基因的載體共同轉染到包裝細胞系(例如,293細胞系)。感興趣的慢病毒基因組又包含促進在不存在Tat的情況下轉錄的嵌合LTR(參見Dull,T.等 人(1998)J.Virol.72:8463-71)。可以使用本文所述的方法(例如,Segura MM,等人,(2013)Expert Opin Biol Ther.13(7):987-1011)收獲並純化慢病毒載體。
本領域內已知許多生產HSV粒子的方法。可以使用標準方法收獲和純化HSV載體,諸如本文所述的那些。例如,對於複製缺陷型HSV載體,可將缺少所有即時早期(IE)基因的感興趣HSV基因組轉染到提供生產病毒所需基因(諸如ICP4、ICP27和ICP0)的補充細胞系(參見,例如Samaniego,L.A.等人(1998)J.Virol.72:3307-20)。可以使用所描述的方法收獲並純化HSV載體(例如,Goins,WF等人,(2014)Herpes Simplex Virus Methods in Molecular Biology 1144:63-79)。
本文還提供了醫藥組合物,其包含含編碼本公開文本的RNAi的轉殖基因的重組病毒粒子以及醫藥上可接受的載劑。醫藥組合物可適用於本文所述任何投予方式。可將包含編碼本公開文本的RNAi的核酸的重組病毒粒子的醫藥組合物引入腦中。例如,可以在紋狀體內投予包含編碼本公開文本的RNAi的核酸的重組病毒粒子。可以使用本公開文本的任何重組病毒粒子,包括rAAV、腺病毒、慢病毒和HSV粒子。
在一些實施例中,包含含編碼本文所述的本公開文本的RNAi的核酸的重組病毒粒子以及醫藥上可接受的載劑的醫藥組合物適合投予至人類。此類載劑在本領域中是眾所周知的(參見例如,Remington's Pharmaceutical Sciences,第15版,第1035-1038頁和第1570-1580頁)。在一些實施例中,包含本文所述rAAV和醫藥上可接受的載劑的醫藥組合物適合注入哺乳動物腦中(例如,紋狀體內投予)。在一些實施例中,包含本文所述重組慢病毒粒子和醫藥上可接受的載劑的醫藥組合物適合注入哺乳動物腦中(例如,紋狀體內投予)。在一些實施例中,包含本文所述重組腺病毒粒子和醫藥上可接受的載劑的醫藥組合物適合注入哺乳動物腦中(例如,紋狀體內投予)。在一些實施例中,包含本文所述重組HSV粒子和醫藥上可接受的載劑的醫藥組合物適合注入哺乳動物腦中(例如,紋狀體內投予)。
此類醫藥上可接受的載劑可以是無菌液體,如水和油,所述油包括石油、動物、植物或合成源的那些油,如花生油、大豆油、礦物油等。 鹽水溶液和右旋糖水溶液、聚乙二醇(PEG)和甘油溶液也可以用作液體載劑,特別是用於可注射溶液。醫藥組合物還可以包含另外的成分,例如防腐劑、緩衝劑、張力劑、抗氧化劑和穩定劑、非離子潤濕劑或澄清劑、增粘劑等。本文所述的醫藥組合物可以按單一單位劑量或按多劑量形式包裝。通常將組合物配製成無菌且基本上等滲的溶液。
VII.製品和套組
還提供了用於在本文所述的方法中使用的套組或製品。在一些方面,套組包括處於合適包裝中的本文所述組合物(例如,本公開文本的重組病毒粒子,諸如包含編碼本公開文本的RNAi的核酸的rAAV粒子)。本文所述的用於組合物(例如紋狀體內組合物)的合適包裝在本領域中是已知的,並且包括例如小瓶(例如密封小瓶)、容器、安瓿、瓶子、廣口瓶、柔性包裝(例如,密封的聚酯薄膜或塑料袋)等。可進一步將這些製品滅菌和/或密封。
本發明還提供了包含本文所述組合物的套組,並且還可以包括關於使用所述組合物的方法(如本文所述的用途)的一個或多個說明書。本文所述的套組可以進一步包括從商業和用戶角度所需的其他材料,包括其他緩衝劑、稀釋劑、過濾器、針、注射器和具有用於實施本文所述任何方法的說明的包裝說明書。例如,在一些實施例中,套組包括組合物,所述組合物包含用於將至少1×109個基因組拷貝遞送至如本文所述哺乳動物(例如通過紋狀體內投予)至靈長類動物的含編碼本公開文本RNAi的轉殖基因的重組病毒粒子、適合注射至靈長類動物腦中的醫藥上可接受的載劑、以及以下中的一者或多者:緩衝液、稀釋劑、過濾器、針、注射器和帶有關於注射至靈長類動物腦中(例如紋狀體內投予)的指示的包裝說明書。在一些實施例中,套組包括用於以本文所述的重組病毒粒子治療神經退化性突觸核蛋白病變的說明書。在一些實施例中,套組包括根據本文所述任一方法使用本文所述的重組病毒粒子的說明書。
VIII.例示性實施例
1.一種包含第一鏈和第二鏈的RNAi,其中a)第一鏈和第二鏈形成雙鏈體;b)第一鏈包含導引區,其中所述導引區包含與序列 5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性或與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸;以及c)第二鏈包括非導引區。
2.實施例1的RNAi,其中所述導引區包含核酸序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24),且所述非導引區包含序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)。
3.實施例1的RNAi,其中所述第一鏈包含與SEQ ID NO:24具有約90%同一性或與SEQ ID NO:53具有約90%同一性的核酸序列。
4.實施例1的RNAi,其中所述導引區包含核酸序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8),而所述非導引區包含序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)。
5.實施例1的RNAi,其中所述第二鏈包含與SEQ ID NO:37具有約90%同一性或與SEQ ID NO:37具有約90%同一性的核酸序列。
6.實施例1至5中任一項的RNAi,其中所述第一鏈與所述第二鏈借助能夠形成環結構的RNA連接子連接。
7.實施例6的RNAi,其中所述RNA連接子包含4至50個核苷酸。
8.實施例6或7的RNAi,其中所述環結構包含4至20個核苷酸。
9.實施例6至8中任一項的RNAi,其中所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。
10.實施例6至8中任一項的RNAi,其中所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。
11.實施例10的RNAi,其中所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。
12.實施例11的RNAi,其中所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。
13.實施例1至12中任一項的RNAi,其中所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。
14.實施例1至13中任一項的RNAi,其中所述RNAi靶向編碼與神經退化性突觸核蛋白病變相關的多肽的RNA。
15.實施例14的RNAi,其中所述多肽是α-突觸核蛋白(SNCA)。
16.實施例15的RNAi,其中α突觸核蛋白是人類α-突觸核蛋白。
17.實施例14至16中任一項的RNAi,其中所述神經退化性突觸核蛋白病變是帕金森病(PD)、多系統萎縮症(MSA)、或路易體失智(DLB)。
18.一種表現建構體,其包含編碼實施例1至17中任一項的RNAi的核酸。
19.實施例18的表現建構體,其中編碼所述RNAi的所述核酸包含miRNA支架。
20.實施例18或19的表現建構體,其中編碼所述RNAi的所述核酸可操作地連接至啟動子。
21.實施例20的表現建構體,其中所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白啟動子(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子、人β-葡糖醛酸酶啟動子、雞β-肌動蛋白(CBA)啟動子、逆轉錄勞斯肉瘤病毒(RSV)LTR啟動子、二氫葉酸還原酶啟動子和13-肌動蛋白啟動子。
22.實施例18至21中任一項的表現建構體,其中所述表現建構體又包含內含子。
23.實施例22的表現建構體,其中所述內含子是CBA內含子或hEF1α內含子。
24.實施例22的表現建構體,其中所述內含子是嵌合內含子。
25.實施例22的表現建構體,其中所述表現載體是自身互補的載體,並且所述內含子是δ嵌合內含子。
26.實施例18至25中任一項的表現建構體,其中所述表現建構體又包含多腺苷酸化信號。
27.實施例26的表現建構體,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號、SV40多腺苷酸化信號或HSV TK多腺苷酸化信號。
28.一種載體,其包含實施例18至27中任一項的表現建構體。
29.實施例28的載體,其中所述載體是重組腺相關病毒(rAAV)載體。
30.實施例29的rAAV載體,其中所述表現建構體的側翼是一個或多個AAV反向末端重複(ITR)序列。
31.實施例30的rAAV載體,其中所述表現建構體的側翼是兩個AAV ITR。
32.實施例30或31的rAAV載體,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。
33.實施例30至32中任一項的rAAV載體,其中所述AAV ITR是AAV2 ITR。
34.實施例30至33中任一項的rAAV載體,其中所述載體又包含填充核酸。
35.實施例34的rAAV載體,其中所述填充核酸位於編碼所述RNAi的所述核酸的上游或下游。
36.實施例30至35中任一項的rAAV載體,其中所述載體是自身互補的rAAV載體。
37.實施例36的rAAV載體,其中所述載體包含編碼所述RNAi的第一核酸序列和編碼所述RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。
38.實施例37的rAAV載體,其中所述第一核酸序列和所述第二核酸序列通過突變AAV ITR連接,其中所述突變AAV ITR包含D區的缺失,且包含末端解析序列的突變。
39.一種細胞,其包含實施例29至38中任一項的rAAV載體。
40.一種重組AAV粒子,其包含實施例29至38中任一項的rAAV載體。
41.實施例40的rAAV粒子,其中所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV或小鼠AAV衣殼rAAV2/HBoV1血清型衣殼。
42.根據實施例40或41的rAAV粒子,其中所述ITR和所述rAAV病毒粒子的衣殼源自相同的AAV血清型。
43.根據實施例40或41的rAAV粒子,其中所述ITR和所述rAAV病毒粒子的衣殼源自不同的AAV血清型。
44.根據實施例43的rAAV粒子,其中所述ITR源自AAV2,且所述rAAV粒子的衣殼源自AAV1。
45.一種組合物,其包含實施例40至44中任一項的rAAV粒子。
46.實施例45的組合物,其中所述組合物又包含醫藥上可接受的載劑。
47.一種套組,其包含實施例1至17中任一項的RNAi。
48.一種套組,其包含實施例40至44中任一項的AAV粒子。
49.一種套組,其包含實施例45或46的組合物。
50.實施例47至49中任一項的套組,其又包含使用說明書。
51.一種治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90% 同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈,以及含有第二核酸的第二鏈。
52.實施例51的方法,其中第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-E1過客-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
53.一種治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
54.一種抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸的第一鏈,以及含有第二核酸的第二鏈。
55.實施例54的方法,其中第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
56.一種抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與 序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
57.實施例51至56中任一項的方法,其中第一鏈包含具有SEQ ID NO:24序列的核酸序列或具有SEQ ID NO:8序列的核酸。
58.實施例52、53、55或56中任一項的方法,其中第二鏈包含具有SEQ ID NO:53序列的核酸或具有SEQ ID NO:37序列的核酸。
59.實施例51至58中任一項的方法,其中所述第一鏈與所述第二鏈借助能夠形成環結構的RNA連接子連接。
60.實施例59的方法,其中所述RNA連接子包含4至50個核苷酸。
61.實施例59或60的方法,其中所述環結構包含4至20個核苷酸。
62.實施例59至61中任一項的方法,其中所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。
63.實施例59至61中任一項的方法,其中所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。
64.實施例63的方法,其中所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。
65.實施例64的方法,其中所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。
66.實施例51至65中任一項的方法,其中所述RNAi在表現建構體上編碼。
67.實施例51至66中任一項的方法,其中編碼所述RNAi的所述核酸包含miRNA支架。
68.實施例51至67中任一項的方法,其中編碼所述RNAi的所述核酸可操作地連接至啟動子。
69.實施例68的方法,其中所述啟動子能夠在哺乳動物腦中表現所述RNAi。
70.實施例69的方法,其中所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子和人β-葡糖醛酸酶啟動子。
71.實施例68至70中任一項的方法,其中所述啟動子是包含CMV增強子和雞β-肌動蛋白啟動子的雜合雞β-肌動蛋白啟動子(CBA)。
72.實施例66至71中任一項的方法,其中所述表現建構體又包含內含子。
73.實施例72的方法,其中所述內含子是CBA內含子。
74.實施例72的方法,其中所述內含子是嵌合內含子。
75.實施例74的方法,其中所述表現建構體是自身互補的載體,且所述內含子是δ嵌合內含子。
76.實施例66至75中任一項的方法,其中所述核酸又包含多腺苷酸化信號。
77.實施例76的方法,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號。
78.實施例66至77中任一項的方法,其中所述表現建構體是由載體編碼。
79.實施例78的方法,其中所述載體是重組腺相關病毒(rAAV)載體。
80.實施例79的方法,其中所述表現建構體的側翼是一個或多個AAV反向末端重複(ITR)序列。
81.實施例80的方法,其中所述表現建構體的側翼是兩個AAV ITR。
82.實施例80或81的方法,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。
83.實施例80至82中任一項的方法,其中所述AAV ITR是AAV2 ITR。
84.實施例83的方法,其中所述rAAV載體從5’到3’包含AAV2 ITR、啟動子、內含子、編碼所述RNAi的核酸、多腺苷酸化信號和AAV2 ITR。
85.實施例84的方法,其中所述啟動子是CBA啟動子。
86.實施例84的方法,其中所述內含子是嵌合內含子、δ嵌合內含子或簡短嵌合內含子嵌合體。
87.實施例86的方法,其中所述嵌合內含子是CBA+兔β球蛋白內含子。
88.實施例84至87中任一項的方法,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號。
89.實施例83的方法,其中所述rAAV載體從5’到3’包含AAV2 ITR、CBA啟動子、嵌合內含子、編碼RNAi的核酸、牛生長激素多腺苷酸化信號和AAV2 ITR。
90.實施例89的方法,其中所述載體又包含填充核酸。
91.實施例90的方法,其中所述填充核酸包含人A1AT基因的內含子1。
92.實施例79至91中任一項的方法,其中所述載體是自身互補的載體。
93.實施例92的方法,其中所述載體包含編碼所述RNAi的第一核酸序列和編碼所述RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。
94.實施例93的方法,其中所述第一核酸序列和所述第二核酸序列通過突變AAV ITR連接,其中所述突變AAV ITR包含D區的缺失,且包含末端解析序列的突變。
95.實施例79-94中任一項的方法,其中載體被包衣殼於rAAV粒子中。
96.實施例95的方法,其中所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV2 V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV、小鼠AAV或rAAV2/HBoV1血清型衣殼。
97.根據實施例95或96的方法,其中所述ITR和所述rAAV病毒粒子的衣殼源自相同的AAV血清型。
98.根據實施例95或96的方法,其中所述ITR和所述rAAV病毒粒子的衣殼源自不同的AAV血清型。
99.實施例95至98中任一項的方法,其中所述rAAV病毒粒子包含AAV2衣殼。
100.實施例99的方法,其中所述rAAV病毒粒子包含AAV1衣殼,且其中所述載體包含AAV2 ITR。
101.實施例51至100中任一項的方法,其中實施例95至100中任一項的rAAV粒子是在組合物中。
102.實施例101的方法,其中所述組合物又包含醫藥上可接受的載劑。
實例
通過參考以下實例將更全面地理解本公開文本。然而,它們不應被解讀為限制本公開文本的範圍。應當理解,本文所述的實例和實施例僅用於說明目的,並且根據它們進行的各種修改或改變將為業界熟習此項技術者知曉,並且應包括在本申請的精神和範圍內以及所附申請專利範圍的範圍內。
實例1:shmiRNA在體外減少人類SNCA靶標。
為了證明體外SNCA表現的減少,用編碼候選RNAi序列的質體和編碼人類SNCA cDNA A(NM_000345.3)的質體(在巨細胞病毒增強子和hEF1a啟動子/內含子的控制下,並且上述編碼序列之後為Tbgh多聚A序列)轉染HEK293T細胞。共轉染SNCA cDNA和miRNA質體。
方法
siRNA和質體
內部設計RNAi序列為與人/恒河猴/小鼠SNCA具有最大同源性,同時其與低脫靶潛力平衡。常規siRNA由Sigma合成。使用siSPOTR算法預測人轉錄組中的脫靶基因(萬維網https://sispotr.icts.uiowa.edu/sispotr/tools.html)。
將表現靶向SNCA的RNAi序列的質體嵌入由巨細胞病毒增強子和hEF1a啟動子/內含子驅動的鼠mir155支架內。RNAi序列可以在表1中找到。
體外細胞培養和轉染
使HEK293T細胞在DMEM+10%FBS+pen/strep中生長至約70%-90%匯合率。用Lipfectamine 2000(對於miRNA形式質體)或RNAiMAX(對於siRNA形式)轉染細胞。轉染後三天,用磷酸鹽緩衝鹽水沖洗細胞,通過在還原型Laemmli緩衝液中使細胞裂解來製備全細胞提取物,並煮沸5分鐘,然後在-20℃下儲存。
西方印漬術和光密度測定法
將細胞裂解物在4%-12% SDS-PAGE(Bio-Rad TGXTM)上運行。將蛋白質轉移至硝酸纖維素(Bio-Rad Transblot®),在5%脫脂乳中封閉,並在4℃下與初級抗體培育過夜。將初級抗體洗掉,用HRP標記的二級抗體培育,並使用Femto ECL受質(Bio-Rad)檢測HRP活性,並在Bio-Rad GelDocTM成像儀上成像。使用ImageJ軟體(NIH)對條帶進行定量。將α-突觸核蛋白水平針對GAPDH或β-微管蛋白正規化以控制蛋白質上樣。使用的抗體:α-突觸核蛋白(BD 610787)、GAPDH(Sigma G8795)、微管蛋白(BioLegend MMS-435P-100)。HRP-山羊抗小鼠或兔(CST 7076)。
結果
如圖2所示,shmiRNA在體外降低人類SNCA蛋白水平。19/27序列顯示蛋白質水平降低超過50%。
實例2:shmiRNA在體外減少小鼠SNCA靶標。
在此實驗中使用與實例1類似的方法,除了用編碼指定的RNAi序列和小鼠SNCA cDNA的質體轉染HEK293T細胞。
結果
如圖3所示,所指示的miRNA在體外降低了小鼠SNCA蛋白水平,其中14/27序列顯示蛋白質水平降低超過50%。
實例3:siRNA在體外減少人和小鼠SNCA靶標。
針對A1、A2、B1、B2、C1、C2、D1、D2、E1和E2進行了使用siRNA形式的另外的實驗,以提供關於靶標減少的另外的數據,因為這些siRNA形式被設計為具有附加特徵,所述附加特徵為具有與大鼠SNCA完全或顯著的同源性,這使得實現靈活地選擇可需要大鼠SNCA減少的神經退化性的未來動物模型。
方法
體外細胞培養和轉染
使HEK293T細胞在DMEM+10%FBS+pen/step中生長至約70%-90%匯合率。用Lipfectamine 2000(對於miRNA形式質體)或RNAiMAX (對於siRNA形式)轉染細胞。轉染後三天,用磷酸鹽緩衝鹽水沖洗細胞,通過在還原型Laemmli緩衝液中使細胞裂解來製備全細胞提取物,並煮沸5分鐘,然後在-20℃下儲存。
西方印漬術和光密度測定法
將細胞裂解物在4%-12% SDS-PAGE(Bio-Rad TGXTM)上運行。將蛋白質轉移到硝酸纖維素(Bio-Rad Transblot®)中,在5%脫脂乳中封閉,並在4℃下與初級抗體培育過夜。將初級抗體洗掉,與HRP標記的二級培育,並使用Femto ECL受質(Bio-Rad)檢測HRP活性,並在Bio-Rad GelDocTM成像儀上成像。使用ImageJ軟體(NIH)對條帶進行定量。將α-突觸核蛋白水平針對GAPDH或β-微管蛋白正規化以控制蛋白質上樣。使用的抗體:α-突觸核蛋白(BD 610787)、GAPDH(Sigma G8795)、微管蛋白(BioLegend MMS-435P-100)。HRP-山羊抗小鼠或兔(CST 7076)。
結果
如圖4A-4D所示,所指示的siRNA在體外降低了人和小鼠SNCA 水平,這是基於它們在miRNA形式中的表現所預期的。
實例4:所指示的RNAi的毒性和神經保護特性。
使用分化為成熟多巴胺樣神經元的Lund人中腦(LUHMES)細胞評價候選shmiRNA的毒性和神經保護特性(10)。
方法
體外細胞培養和轉染
如(10)所述使LUHMES細胞(ATCC CRL-2927)生長並進行分化,並進行一些修飾以允許質體DNA的電穿孔。簡而言之,將LUHMES細胞在塗有聚-L-鳥胺酸和纖連蛋白的燒瓶上的增殖培養基(10)中傳代培養。通過添加分化培養基(10)啟動向多巴胺能細胞的分化。2天后將細胞解離,用所需DNA電穿孔(LONZA 4D NucleofectorTM X系統,根據製造商的說明書),並在回收培養基中的96孔板中重新鋪板,以使電穿孔毒性最小化。轉染後4小時,將培養基更換回分化培養基。在轉染後的指定天數處理和收集細胞以用於特定實驗。
體外神經保護測定
在分化的第6天(轉染的第4天)用指定濃度的魚藤酮處理如上製備的LUHMES細胞。在用魚藤酮處理後48小時,根據製造商的說明書(Promega)使用Cell Titer Blue®測定來量測細胞活力。在處理後24小時通過DCFDA套組(Abcam)量測活性氧類(ROS)產生。將值針對未處理的對照轉染細胞正規化。
統計分析
彙編來自細胞活力實驗的數據,以對使用D1和E1序列的SNCA mRNA減量%與針對魚藤酮誘導毒性的神經保護%進行排序。如使用GraphpadPrism®(v6)計算的,SNCA減量百分比與神經保護程度顯著相關。
結果
如圖5A和5B所示,SNCA減量本身無毒,並且顯著地防止細胞死亡(圖5A)並降低魚藤酮依賴性ROS產生(圖5B)。對照、D1和E1序列本身不改變細胞活力。對照轉染細胞的魚藤酮處理導致約75%的細胞死亡,但用SNCA減量載體轉染顯著地防止受到此毒性影響。
如圖6中所示,彙編來自細胞活力實驗的數據,以對使用D1和E1序列的SNCA mRNA減量%與針對魚藤酮誘導毒性的神經保護百分比進行排序。SNCA減量的程度與神經保護程度呈顯著正相關,證明使用D1和E1序列減少SNCA mRNA是有效的神經保護策略。
實例5:D1和E1載體造成的體內靶標減量
為了確定SNCA的體內減量,將編碼D1、E1或對照RNAi序列的AAV載體注射到野生型小鼠的SNc中。注射後1個月收集SNc組織。將RNA分離並通過Taqman qPCR定量SNCA mRNA水平。將轉錄物的相對水平針對GAPDH正規化。
方法
病毒載體
為了產生用於體內測試的rAAV病毒,將mir155盒克隆到含有1.6kb CAG啟動子的AAV2 ITR質體中,以便使用修飾的AAV2HBKO衣殼產生 AAV病毒(WO 2015168666 A2)。通過三重轉染方法在293細胞中產生所有病毒載體,並如(11)所述純化。力價通過qPCR來確定,並且表示為基因組拷貝(GC)/mL或總載體基因組(vg)
動物
雄性C57BL/6J小鼠(10-12周齡)購自法國Charles River Laboratories。在每個籠子中將動物圈養,四個一組,可自由獲取食物和水,室溫、濕度受到控制,處於12:12小時光/暗循環下。
立體定位注射
通過腹膜內注射混合物(體積10mL/Kg):***(100mg/kg;Imalgene®;Merial,法國)和甲苯噻嗪(10mg/Kg;Rompun;Bayer,法國)來深度麻醉小鼠。在將動物置於立體定位框架(Kopf Instruments,美國)之前,將小鼠頭皮剝離並用Vetidine(Vetoquinol®,法國)消毒,將局部麻醉劑布比卡因(2mg/kg,體積為5ml/kg;Aguettant,法國)皮下注射到頭骨皮膚上,並將Emla(Lidocaïne,Astrazeneca)應用於耳朵。在手術過程中,通過維生素A Dulcis保護眼睛免受光照,並且通過加熱毯將體溫保持恒定在37℃。
在注射坐標上方的顱骨中形成一個小孔。將33規格套管(OD 0.254mm;Phymep)經柔性塑料管件連接至25μL的注射器,所述注射器又連接至微灌注泵,將所述套管根據Paxinos和Watson的小鼠位置集(2008)按以下坐標單側***左側黑質緻密部(SNpc)中:AP=距前囟-2.92mm;ML=1.25mm;DV:距硬膜-4.5mm。隨機化後,向小鼠(n=10/組)注射AAV。以0.2μL/min的速率進行輸注,並且注射1μL的最終體積。
在最後一次注射後,將套管在SNpc中維持另外5min以避免回流。然後將其從小鼠腦中緩慢移出,並通過縫合閉合頭皮。每天監測小鼠,並且在手術後向它們皮下注射卡洛芬(5mg/kg sc;體積5ml/kg;Rimadyl®,Zoetis)並腹膜內注射約200μL無菌鹽水以防止脫水。然後將動物放入MediHeat®保溫櫃中,直到它們完全清醒。注射後一個月,用4%異氟烷麻醉動物,並處理腦以用於免疫組織化學和生化分析。所有的實驗都是盲法進行的。
統計分析
使用Prism軟體(版本6,Graphpad®)使用單因素方差分析進行統計,並在適用時進行多重比較(Dunnett檢驗)。
結果
如圖7中所示,相對於對照RNAi,D1和E1載體分別顯示55%和66%的SNCA mRNA減量,證實使用AAV介導的對SNCA靶向miRNA的遞送在體內靶結構中的顯著靶mRNA減量。
如圖8中所示,SNCA反義探針清楚地顯示相對於對側半球在吻側至尾部的三個不同解剖水平的靶標減少。相對於未注射的半球,對照RNAi病毒未顯示SNCA mRNA的任何降低,證實了效應的特異性。如圖9中所示,VTA中的α-突觸核蛋白信號需要被飽和以觀察到體細胞的突觸核蛋白表現,從而排除了該腦區域中SNCA減少的任何確定。
實例6:通過SNc免疫組織化學顯示AAV-D1載體降低小鼠中的SNCA mRNA
如實例5中所述,用對照或D1 AAV載體的1e9個GC單側注射小鼠。將組織收集並在一個月後處理冠狀切片以用於免疫組織化學(IHC),以評估黑質緻密部中的α-突觸核蛋白水平。
另外的方法
免疫組織化學和ISH
在4℃下將腦在4%甲醛中浸沒固定至少2天,並在30%蔗糖溶液中冷凍保存,然後冷凍。將冷凍的腦沿著黑質(sn)的整個前後軸切成連續的冠狀切片。將切片置於pbs-0.4%疊氮化鈉中並在4℃下儲存。
隨機選擇的一系列20μm厚的自由浮動切片用於用針對α-syn的小鼠單克隆抗體(小鼠單克隆,1:2000,克隆42,BD transductions laboratories)進行免疫標記。此抗體可以檢測小鼠α-syn蛋白的內源性水平,所述α-syn蛋白主要是在突觸膜上定位,但也在腹側被蓋區(VTA)和SN的da神經元細胞體中定位。
將切片在0.1m pbs-0.15% triton、來自牛皮膚的0.2%明膠(Sigma,G9391)溶液中沖洗3次並在封閉緩衝液(即,0.1m PBS-10%來自牛血清的 白蛋白,Sigma,A8022)中預處理30分鐘。然後在室溫下將它們與0.1m PBS中的初級抗體溶液培育過夜。在0.1m PBS-0.15% triton、0.2%明膠中沖洗後,綴合螢光色素的抗體(山羊抗小鼠647,Abcam 150119)用作二級抗體(在0.1m PBS中1:400,在黑暗中培育90min,室溫)。將切片在0.1m PBS-0.2%明膠溶液中沖洗2次,在PBS 0.1m中沖洗1次並固定(柔性載玻片,Dako)。將切片用延長的金抗褪色試劑(Invitrogen p36931)蓋上蓋玻片。
螢光免疫標記的定性圖像分析是在載玻片掃描儀系統(配備有具有螢光能力的BX61顯微鏡的Olympus DotSlide系統)上進行。
結果
如圖9所示,與相同動物或對照注射動物的對側SNc相比,細胞體中的SNCA蛋白明顯由D1減少。來自相鄰腦切片的ISH圖像(下圖,按照實例5處理)顯示D1 RNAi載體而非對照載體平行地減少了SNCA mRNA。這些數據證實靶向SNCA的miRNA的AAV遞送顯示在期望的腦區域中持久的mRNA減量。
實例7:在載體AAVrh.10中的E1造成的體內靶標減量
為了確定SNCA的體內減量並證實SNCA的減量不依賴於AAV血清型,將編碼E1或對照RNAi序列的AAV.rh10載體注射到野生型小鼠的SNc中。如前所述,用對照或AAV.rh10 E1載體的10e9個GC單側注射小鼠。注射後1個月收集SNc組織。通過原位雜交定量SNCA mRNA表現,並通過免疫組織化學檢測SNCA蛋白
方法
病毒載體
為了產生用於體內測試的rAAV病毒,將mir155盒克隆到含有1.6kb CAG啟動子的AAV2 ITR質體中,以便使用AAV的rh.10血清型的衣殼產生AAV病毒(Gao,G.P.等人.,2002,Proc.Natl.Acad.Sci.USA 99:11854-11859.)。通過三重轉染方法在293細胞中產生所有病毒載體,並如(11)所述純化。力價通過qPCR來確定,並且表示為基因組拷貝(GC)/mL或總載體基因組(vg)。
動物
雄性C57BL/6J小鼠(10-12周齡)購自法國Charles River Laboratories。在每個籠子中將動物圈養,四個一組,可自由獲取食物和水,室溫、濕度受到控制,處於12:12小時光/暗循環下。立體定位注射
通過腹膜內注射混合物(體積10mL/Kg):***(100mg/kg;Imalgene®;Merial,法國)和甲苯噻嗪(10mg/Kg;Rompun;Bayer,法國)來深度麻醉小鼠。在將動物置於立體定位框架(Kopf Instruments,美國)之前,將小鼠頭皮剝離並用Vetidine(Vetoquinol®,法國)消毒,將局部麻醉劑布比卡因(2mg/kg,體積為5ml/kg;Aguettant,法國)皮下注射到頭骨皮膚上,並將Emla(Lidocaïne,Astrazeneca)應用於耳朵。在手術過程中,通過維生素A Dulcis保護眼睛免受光照,並且通過加熱毯將體溫保持恒定在37℃。
在注射坐標上方的顱骨中形成一個小孔。將33規格套管(OD 0.254mm;Phymep)經柔性塑料管件(Tygon 0.254*0.762,ref.AAD04091)連接至25μL的注射器(Exmire,ref.MS*GF25),所述注射器又連接至微灌注泵(CMA 4004),將所述套管根據Paxinos和Watson的小鼠位置集(2008)按以下坐標單側***左側黑質緻密部(SNpc)中:AP=距前囟-2.92mm;ML=1.25mm;DV:距硬膜-4.5mm。隨機化後,向小鼠(n=10/組)注射AAV。以0.2μL/min的速率進行輸注,並且注射1μL的最終體積。在最後一次注射後,將套管在SNpc中維持另外5min以避免回流。然後將其從小鼠腦中緩慢移出,並通過縫合閉合頭皮。每天監測小鼠,並且在手術後向它們皮下注射卡洛芬(5mg/kg sc;體積5ml/kg;Rimadyl,Zoetis)並腹膜內注射約200μL無菌鹽水以防止脫水。然後將動物放入MediHeat®保溫櫃(Peco services)中,直到它們完全清醒。注射後一個月,用4%異氟烷麻醉動物,並處理腦以用於免疫組織化學和生化分析。所有的實驗都是盲法進行的。
免疫組織化學和ISH
在4℃下將腦在4%甲醛中浸沒固定至少2天,並在30%蔗糖溶液中冷凍保存,然後冷凍。將冷凍的腦沿著黑質(SN)的整個前後軸切成連續的冠狀切片。將切片置於PBS-0.4%疊氮化鈉中並在4℃下儲存。
隨機選擇的一系列20μm厚的自由浮動切片用於用針對α-Syn的小鼠單克隆抗體(小鼠單克隆,1:2000,克隆42,BD Transductions laboratories)進行免疫標記。此抗體可以檢測小鼠α-Syn蛋白的內源性水平,所述α-Syn蛋白主要是在突觸膜上定位,但也在腹側被蓋區(VTA)和SN的DA神經元細胞體中定位。
對於α-syn IHC的酶促揭露,在初級抗體溶液中培育後,將切片在室溫下與生物素化的小鼠IgG(BA 9200 Vector Lot S0913,稀釋度1/400)一起培育90min,並且然後與過氧化物酶偶聯的抗生物素蛋白複合物(Vectastain®ABC套組Elite,Vector PK 6100,稀釋度1/200)一起培育30分鐘。將切片在過氧化物酶受質溶液(0.1M PBS中含有0.003%過氧化氫、0.05%二胺基聯苯胺四鹽酸鹽)中短暫培育,最後在NaCl 0.9%溶液中沖洗。最後將切片固定在載玻片上,並在室溫下乾燥、脫水並用Eukitt蓋上蓋玻片。
對於α-syn ISH研究,在固定於載玻片上的20μm厚的低溫恒溫器切片上的全自動RNAscope測定(通過擴增靶標特異性信號而不是來自非特異性雜交的背景噪聲來改善RNA ISH的信噪比)是在Roche Ventana Medical Systems DISCOVERY XT(VS)自動機上進行。將RNAscope 2.5 VS反義探針-Hs-SNCA(目錄號313289)和對照有義探針(目錄號511079)在43℃雜交2h,然後使用VS檢測試劑進行RNAscope擴增和紅色色原體檢測。如特此描述的設計RNAscope探針。使用40X物鏡,用VS120 Olympus系統掃描染色的載玻片。
統計分析
使用Prism軟體(版本6,Graphpad®)使用單因素方差分析進行統計,並在適用時進行多重比較(Dunnett檢驗)。
結果
如圖10所示,與相同動物或對照注射動物的對側SNc相比,細胞體中的SNCA蛋白明顯由AAVrh.10衣殼中的建構體E1減少(上圖)。來自相鄰腦切片的ISH圖像(下圖)顯示AAVrh.10造成SNCA mRNA的平行靶標減少,但在對側半球中沒有減少。相對於未注射的半球,對照RNAi病毒未 顯示SNCA mRNA的任何降低,證實了效應的特異性。本文證實,至少在載體的黑質內注射後,E1對SNCA的減量效率不依賴於衣殼的血清型。
實例8:D1和E1的潛在脫靶基因
使Lund人中腦(LUHMES)細胞在培養物中分化,然後在優化的鼠內源miR-155支架(ThermoFisher)上表現D1、E1或CTL3(對照)微小RNA的質體轉染。使用miRNeasy®套組(Qiagen)從細胞中分離總RNA,並使用TruSeq成鏈總RNA文庫製備套組(TruSeq stranded Total RNA Library Prep kit,Illumina)製備下一代定序文庫,然後在Illumina HiSeq儀器(Genewiz,Plainfield NJ)上定序。
使用Array Studio(Omicsoft,A Qiagen Company)在Sanofi的基因組學小組中進行定序分析。除去低質量讀段,並且將剩餘的讀段定位於人類基因組,然後進行單因素方差分析以確定處理組中顯著差異表現的基因(DEG)。由D1和E1二者對比CTL3下調(p值小於0.05)的基因被認為是減量α-突觸核蛋白的結果,並且下調至少1.2倍(p值<0.05)的其餘基因被歸類為潛在的脫靶基因。D1將α-突觸核蛋白減量22%,E1降低30%,其中各個數據點如下圖11所示。D1和E1的潛在脫靶基因列於表2和表3中。D1列表中的TNFRSF6B僅是NCKU數據庫中的預測腫瘤抑制因子,並且E1列表中的基因在NCKU或TSGene數據庫中均未被預測為腫瘤抑制因子。潛在脫靶基因的D1和E1列表都與使用miRanda、siSPOTR和TargetRank(數據未包括)算法鑑別的針對D1和E1微小RNA的預測靶標重疊。
表2.潛在的D1脫靶基因
Figure 108127564-A0202-12-0068-4
Figure 108127564-A0202-12-0069-5
表3.潛在的E1脫靶基因
Figure 108127564-A0202-12-0069-6
參考文獻
1. S. T. Baek et al., Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 82, 1255-1262 (2014).
2. W. Dauer et al., Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America 99, 14524-14529 (2002).
3. R. E. Drolet, B. Behrouz, K. J. Lookingland, J. L. Goudreau, Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 25, 761-769 (2004).
4. D. Alvarez-Fischer et al., Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and alpha-synuclein-deleted mice. Experimental neurology 210, 182-193 (2008).
5. P. Klivenyi et al., Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiology of disease 21, 541-548 (2006).
6. S. Mittal et al., beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease. Science 357, 891-898 (2017).
7. H. Javed et al., Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders. Molecular therapy:the journal of the American Society of Gene Therapy 24, 746-758 (2016).
8. K. Ubhi et al., Alpha-synuclein deficient mice are resistant to toxin-induced multiple system atrophy. Neuroreport 21, 457-462 (2010).
9. Y. Lim et al., alpha-Syn suppression reverses synaptic and memory defects in a mouse model of dementia with Lewy bodies. The Journal of neuroscience:the official journal of the Society for Neuroscience 31, 10076-10087 (2011).
10. S. Schildknecht et al., Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex 30, 427-444 (2013).
11. X. Xiao, J. Li, R. J. Samulski, Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. Journal of virology 72, 2224-2232 (1998).
序列
除非另有說明,否則所有多肽序列均以N-末端到C-末端呈現。除非另有說明,否則所有核酸序列均以5’到3’呈現。
D1-環-過客-RNA
Figure 108127564-A0202-12-0070-7
Figure 108127564-A0202-12-0070-8
(SEQ ID NO:61)
D1-環-過客-DNA
Figure 108127564-A0202-12-0070-9
Figure 108127564-A0202-12-0070-10
(SEQ ID NO:62)
E1-環-過客-RNA
Figure 108127564-A0202-12-0071-11
Figure 108127564-A0202-12-0071-12
(SEQ ID NO:63)
E1-環-過客-DNA
Figure 108127564-A0202-12-0071-13
Figure 108127564-A0202-12-0071-14
(SEQ ID NO:64)
D1載體基因組序列
Figure 108127564-A0202-12-0071-15
Figure 108127564-A0202-12-0072-16
Figure 108127564-A0202-12-0073-17
Figure 108127564-A0202-12-0073-18
(SEQ ID NO:65)。
A1AT填充核酸
Figure 108127564-A0202-12-0073-19
Figure 108127564-A0202-12-0074-20
Figure 108127564-A0202-12-0074-21
(SEQ ID NO:66)
<110> 美商健臻公司(Genzyme Corporation)
<120> 針對α-突觸核蛋白的變體RNAi
<130> 15979-20165.40
<140> 尚未分配
<141> 同時隨同提交
<150> US 62/714,616
<151> 2018-08-03
<160> 70
<170> Windows 4.0版的FastSEQ
<210> 1
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 1
Figure 108127564-A0202-12-0075-22
<210> 2
<211> 22
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 2
Figure 108127564-A0202-12-0076-23
<210> 3
<211> 22
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 3
Figure 108127564-A0202-12-0076-24
<210> 4
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 4
Figure 108127564-A0202-12-0076-25
<210> 5
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 5
Figure 108127564-A0202-12-0076-26
<210> 6
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 6
Figure 108127564-A0202-12-0077-27
<210> 7
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 7
Figure 108127564-A0202-12-0077-28
<210> 8
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 8
Figure 108127564-A0202-12-0077-29
<210> 9
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 9
Figure 108127564-A0202-12-0078-30
<210> 10
<211> 22
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 10
Figure 108127564-A0202-12-0078-31
<210> 11
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 11
Figure 108127564-A0202-12-0078-32
<210> 12
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 12
Figure 108127564-A0202-12-0078-33
<210> 13
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 13
Figure 108127564-A0202-12-0079-34
<210> 14
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 14
Figure 108127564-A0202-12-0079-35
<210> 15
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 15
Figure 108127564-A0202-12-0079-36
<210> 16
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 16
Figure 108127564-A0202-12-0080-37
<210> 17
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 17
Figure 108127564-A0202-12-0080-38
<210> 18
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 18
Figure 108127564-A0202-12-0080-39
<210> 19
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 19
Figure 108127564-A0202-12-0080-40
<210> 20
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 20
Figure 108127564-A0202-12-0081-41
<210> 21
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 21
Figure 108127564-A0202-12-0081-42
<210> 22
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 22
Figure 108127564-A0202-12-0081-43
<210> 23
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 23
Figure 108127564-A0202-12-0082-44
<210> 24
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 24
Figure 108127564-A0202-12-0082-45
<210> 25
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 25
Figure 108127564-A0202-12-0082-46
<210> 26
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 26
Figure 108127564-A0202-12-0082-47
<210> 27
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 27
Figure 108127564-A0202-12-0083-48
<210> 28
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 28
Figure 108127564-A0202-12-0083-49
<210> 29
<211> 21
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 29
Figure 108127564-A0202-12-0083-50
<210> 30
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 30
Figure 108127564-A0202-12-0084-51
<210> 31
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 31
Figure 108127564-A0202-12-0084-52
<210> 32
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 32
Figure 108127564-A0202-12-0084-53
<210> 33
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 33
Figure 108127564-A0202-12-0085-54
<210> 34
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 34
Figure 108127564-A0202-12-0085-55
<210> 35
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 35
Figure 108127564-A0202-12-0085-56
<210> 36
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 36
Figure 108127564-A0202-12-0085-57
<210> 37
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 37
Figure 108127564-A0202-12-0086-58
<210> 38
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 38
Figure 108127564-A0202-12-0086-59
<210> 39
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 39
Figure 108127564-A0202-12-0086-60
<210> 40
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 40
Figure 108127564-A0202-12-0087-61
<210> 41
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 41
Figure 108127564-A0202-12-0087-62
<210> 42
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 42
Figure 108127564-A0202-12-0087-63
<210> 43
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 43
Figure 108127564-A0202-12-0087-64
<210> 44
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 44
Figure 108127564-A0202-12-0088-65
<210> 45
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 45
Figure 108127564-A0202-12-0088-66
<210> 46
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 46
Figure 108127564-A0202-12-0088-67
<210> 47
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 47
Figure 108127564-A0202-12-0089-68
<210> 48
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 48
Figure 108127564-A0202-12-0089-69
<210> 49
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 49
Figure 108127564-A0202-12-0089-70
<210> 50
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 50
Figure 108127564-A0202-12-0089-71
<210> 51
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 51
Figure 108127564-A0202-12-0090-72
<210> 52
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 52
Figure 108127564-A0202-12-0090-73
<210> 53
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 53
Figure 108127564-A0202-12-0090-74
<210> 54
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 54
Figure 108127564-A0202-12-0091-75
<210> 55
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 55
Figure 108127564-A0202-12-0091-76
<210> 56
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 56
Figure 108127564-A0202-12-0091-77
<210> 57
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 57
Figure 108127564-A0202-12-0091-78
<210> 58
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 58
Figure 108127564-A0202-12-0092-79
<210> 59
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 59
Figure 108127564-A0202-12-0092-80
<210> 60
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 60
Figure 108127564-A0202-12-0092-81
<210> 61
<211> 59
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 61
Figure 108127564-A0202-12-0093-82
<210> 62
<211> 59
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 62
Figure 108127564-A0202-12-0093-83
<210> 63
<211> 59
<212> RNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 63
Figure 108127564-A0202-12-0093-84
<210> 64
<211> 59
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 64
Figure 108127564-A0202-12-0093-85
<210> 65
<211> 3455
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 65
Figure 108127564-A0202-12-0094-86
Figure 108127564-A0202-12-0095-87
<210> 66
<211> 1091
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 66
Figure 108127564-A0202-12-0096-88
<210> 67
<211> 72
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 67
Figure 108127564-A0202-12-0096-89
<210> 68
<211> 128
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 68
Figure 108127564-A0202-12-0097-90
<210> 69
<211> 145
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<210> 69
<211> 78
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 69
Figure 108127564-A0202-12-0097-91
<210> 70
<211> 145
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成建構體
<400> 70
Figure 108127564-A0202-12-0098-92

Claims (102)

  1. 一種RNAi,其包含第一鏈和第二鏈,其中
    a)所述第一鏈與所述第二鏈形成雙鏈體;
    b)所述第一鏈包含導引區,其中所述導引區包含與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性或與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸;並且
    c)所述第二鏈包含非導引區。
  2. 如請求項1的RNAi,其中所述導引區包含核酸序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24),且所述非導引區包含序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)。
  3. 如請求項1的RNAi,其中所述第一鏈包含與SEQ ID NO:24具有約90%同一性或與SEQ ID NO:53具有約90%同一性的核酸序列。
  4. 如請求項1的RNAi,其中所述導引區包含核酸序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8),且所述非導引區包含序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)。
  5. 如請求項1的RNAi,其中所述第二鏈包含與SEQ ID NO:37具有約90%同一性或與SEQ ID NO:37具有約90%同一性的核酸序列。
  6. 如請求項1-5中任一項的RNAi,其中所述第一鏈與所述第二鏈借助能夠形成環(loop)結構的RNA連接子連接。
  7. 如請求項6的RNAi,其中所述RNA連接子包含4至50個核苷酸。
  8. 如請求項6或7的RNAi,其中所述環結構包含4至20個核苷酸。
  9. 如請求項6-8中任一項的RNAi,其中所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。
  10. 如請求項6-8中任一項的RNAi,其中所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。
  11. 如請求項10的RNAi,其中所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。
  12. 如請求項11的RNAi,其中所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。
  13. 如請求項1-12中任一項的RNAi,其中所述RNAi是小抑制性RNA(siRNA)、微小RNA(miRNA)或小髮夾RNA(shRNA)。
  14. 如請求項1-13中任一項的RNAi,其中所述RNAi靶向編碼與神經退化性突觸核蛋白病變相關之多肽的RNA。
  15. 如請求項14的RNAi,其中所述多肽是α-突觸核蛋白(SNCA)。
  16. 如請求項15的RNAi,其中所述α突觸核蛋白是人類α-突觸核蛋白。
  17. 如請求項14-16中任一項的RNAi,其中所述神經退化性突觸核蛋白病變是帕金森病(PD)、多系統萎縮症(MSA)、或路易體失智(DLB)。
  18. 一種表現建構體,其包含編碼請求項1至17中任一項之RNAi的核酸。
  19. 如請求項18的表現建構體,其中編碼所述RNAi的核酸包含miRNA支架。
  20. 如請求項18或19的表現建構體,其中編碼所述RNAi的核酸可操作地連接至啟動子。
  21. 如請求項20的表現建構體,其中所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白啟動子(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子、人β- 葡糖醛酸酶啟動子、雞β-肌動蛋白(CBA)啟動子、逆轉錄勞斯肉瘤病毒(RSV)LTR啟動子、二氫葉酸還原酶啟動子和13-肌動蛋白啟動子。
  22. 如請求項18-21中任一項的表現建構體,其中所述表現建構體又包含內含子。
  23. 如請求項22的表現建構體,其中所述內含子是CBA內含子或hEF1α內含子。
  24. 如請求項22的表現建構體,其中所述內含子是嵌合內含子。
  25. 如請求項22的表現建構體,其中所述表現載體是自身互補的載體,且所述內含子是δ嵌合內含子。
  26. 如請求項18-25中任一項的表現建構體,其中所述表現建構體又包含多腺苷酸化信號。
  27. 如請求項26的表現建構體,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號、SV40多腺苷酸化信號或HSV TK多腺苷酸化信號。
  28. 一種載體,其包含如請求項18-27中任一項的表現建構體。
  29. 如請求項28的載體,其中所述載體是重組腺相關病毒(rAAV)載體。
  30. 如請求項29的rAAV載體,其中所述表現建構體側翼是一個或多個AAV反向末端重複(ITR)序列。
  31. 如請求項30的rAAV載體,其中所述表現建構體的側翼是兩個AAV ITR。
  32. 如請求項30或31的rAAV載體,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。
  33. 如請求項30-32中任一項的rAAV載體,其中所述AAV ITR是AAV2 ITR。
  34. 如請求項30-33中任一項的rAAV載體,其中所述載體又包含填充核酸。
  35. 如請求項34的rAAV載體,其中所述填充核酸位於編碼所述RNAi的核酸的上游或下游。
  36. 如請求項30-35中任一項的rAAV載體,其中所述載體是自身互補的rAAV載體。
  37. 如請求項36的rAAV載體,其中所述載體包含編碼所述RNAi的第一核酸序列和編碼所述RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。
  38. 如請求項37的rAAV載體,其中所述第一核酸序列和所述第二核酸序列藉由突變的AAV ITR連接,其中所述突變的AAV ITR包含D區的缺失並且包含末端解析序列的突變。
  39. 一種細胞,其包含如請求項29-38中任一項的rAAV載體。
  40. 一種重組AAV粒子,其包含如請求項29-38中任一項的rAAV載體。
  41. 如請求項40的rAAV粒子,其中所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV或小鼠AAV衣殼rAAV2/HBoV1血清型衣殼。
  42. 如請求項40或41的rAAV粒子,其中所述ITR和rAAV病毒粒子的衣殼源自相同的AAV血清型。
  43. 如請求項40或41的rAAV粒子,其中所述ITR和rAAV病毒粒子的衣殼源自不同的AAV血清型。
  44. 如請求項43的rAAV粒子,其中所述ITR源自AAV2,而所述rAAV粒子的衣殼源自AAV1。
  45. 一種組合物,其包含如請求項40-44中任一項的rAAV粒子。
  46. 如請求項45的組合物,其中所述組合物又包含醫藥上可接受的載劑。
  47. 一種套組,其包含如請求項1-17中任一項的RNAi。
  48. 一種套組,其包含如請求項40-44中任一項的AAV粒子。
  49. 一種套組,其包含如請求項45或46的組合物。
  50. 如請求項47-49中任一項的套組,其又包含使用說明書。
  51. 一種治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈,以及含有第二核酸的第二鏈。
  52. 如請求項51的方法,其中所述第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-E1過客-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
  53. 一種治療哺乳動物的神經退化性突觸核蛋白病變的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
  54. 一種抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約 90%同一性的第一核酸的第一鏈或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的核酸的第一鏈,以及含有第二核酸的第二鏈。
  55. 如請求項54的方法,其中所述第二核酸包含與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的核酸或與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的核酸。
  56. 一種抑制患有神經退化性疾病的哺乳動物中的α-突觸核蛋白表現的方法,其包括向所述哺乳動物投予RNAi,所述RNAi包含:含有與序列5’-UGCUCUUUGGUCUUCUCAGCC-3’(SEQ ID NO:24)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-GGCUGAGAACCAAAGAGUA-3’(SEQ ID NO:53)具有至少約90%同一性的第二核酸的第二鏈,或含有與序列5’-UGGGCACAUUGGAACUGAGCA-3’(SEQ ID NO:8)具有至少約90%同一性的第一核酸的第一鏈以及含有與序列5’-UGCUCAGUCAAUGUGCCUA-3’(SEQ ID NO:37)具有至少約90%同一性的第二核酸的第二鏈。
  57. 如請求項51-56中任一項的方法,其中所述第一鏈包含具有SEQ ID NO:24序列的核酸序列或具有SEQ ID NO:8序列的核酸。
  58. 如請求項52、53、55、或56中任一項的方法,其中所述第二鏈包含具有SEQ ID NO:53序列的核酸或具有SEQ ID NO:37序列的核酸。
  59. 如請求項51-58中任一項的方法,其中所述第一鏈與所述第二鏈借助能夠形成環結構的RNA連接子連接。
  60. 如請求項59的方法,其中所述RNA連接子包含4至50個核苷酸。
  61. 如請求項59或60的方法,其中所述環結構包含4至20個核苷酸。
  62. 如請求項59-61中任一項的方法,其中所述RNAi從5’到3’包含所述第二鏈、所述RNA連接子和所述第一鏈。
  63. 如請求項59-61中任一項的方法,其中所述RNAi從5’到3’包含所述第一鏈、所述RNA連接子和所述第二鏈。
  64. 如請求項63的方法,其中所述RNAi包含SEQ ID NO:61或SEQ ID NO:63的核酸序列。
  65. 如請求項64的方法,其中所述RNAi包含與SEQ ID NO:61或SEQ ID NO:63的核苷酸序列約90%相同的核苷酸序列。
  66. 如請求項51-65中任一項的方法,其中所述RNAi被編碼於表現建構體上。
  67. 如請求項51-66中任一項的方法,其中編碼所述RNAi的核酸包含miRNA支架。
  68. 如請求項51-67中任一項的方法,其中編碼所述RNAi的核酸可操作地連接至啟動子。
  69. 如請求項68的方法,其中所述啟動子能夠在哺乳動物的腦中表現所述RNAi。
  70. 如請求項69的方法,其中所述啟動子選自巨細胞病毒(CMV)即時早期啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿猴病毒40(SV40)啟動子、CK6啟動子、轉甲狀腺素蛋白啟動子(TTR)、TK啟動子、四環素應答性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝臟特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-球蛋白(CAG)啟動子、延長因子1-α啟動子(EF1-α)啟動子和人β-葡糖醛酸酶啟動子。
  71. 如請求項68-70中任一項的方法,其中所述啟動子是包含CMV增強子和雞β-肌動蛋白啟動子的雜合雞β-肌動蛋白啟動子(CBA)。
  72. 如請求項66-71中任一項的方法,其中所述表現建構體又包含內含子。
  73. 如請求項72的方法,其中所述內含子是CBA內含子。
  74. 如請求項72的方法,其中所述內含子是嵌合內含子。
  75. 如請求項74的方法,其中所述表現建構體是自身互補的載體,且所述內含子是δ嵌合內含子。
  76. 如請求項66-75中任一項的方法,其中所述核酸又包含多腺苷酸化信號。
  77. 如請求項76的方法,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號。
  78. 如請求項66-77中任一項的方法,其中所述表現建構體由載體編碼。
  79. 如請求項78的方法,其中所述載體是重組腺相關病毒(rAAV)載體。
  80. 如請求項79的方法,其中所述表現建構體側翼是一個或多個AAV反向末端重複(ITR)序列。
  81. 如請求項80的方法,其中所述表現建構體的側翼是兩個AAV ITR。
  82. 如請求項80或81的方法,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。
  83. 如請求項80-82中任一項的方法,其中所述AAV ITR是AAV2 ITR。
  84. 如請求項83的方法,其中所述rAAV載體從5’到3’包含AAV2 ITR、啟動子、內含子、編碼所述RNAi的核酸、多腺苷酸化信號和AAV2 ITR。
  85. 如請求項84的方法,其中所述啟動子是CBA啟動子。
  86. 如請求項84的方法,其中所述內含子是嵌合內含子、δ嵌合內含子或簡短嵌合內含子嵌合體。
  87. 如請求項86的方法,其中所述嵌合內含子是CBA+兔β球蛋白內含子。
  88. 如請求項84-87中任一項的方法,其中所述多腺苷酸化信號是牛生長激素多腺苷酸化信號。
  89. 如請求項83的方法,其中所述rAAV載體從5’到3’包含AAV2 ITR、CBA啟動子、嵌合內含子、編碼所述RNAi的核酸、牛生長激素多腺苷酸化信號和AAV2 ITR。
  90. 如請求項89的方法,其中所述載體又包含填充核酸。
  91. 如請求項90的方法,其中所述填充核酸包含人A1AT基因的內含子1。
  92. 如請求項79-91中任一項的方法,其中所述載體是自身互補的載體。
  93. 如請求項92的方法,其中所述載體包含編碼所述RNAi的第一核酸序列和編碼所述RNAi的互補體的第二核酸序列,其中所述第一核酸序列可與所述第二核酸序列沿著其大部分或所有長度形成鏈內鹼基對。
  94. 如請求項93的方法,其中所述第一核酸序列和所述第二核酸序列通過突變的AAV ITR連接,其中所述突變的AAV ITR包含D區的缺失並且包含末端解析序列的突變。
  95. 如請求項79-94中任一項的方法,其中所述載體被包衣殼於rAAV粒子中。
  96. 如請求項95的方法,其中所述AAV病毒粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV2 V708K、AAV2-HBKO、AAVDJ8、AAVPHP.B、AAVPHP.eB、AAVBR1、AAVHSC15、AAVHSC17、山羊AAV、嵌合AAV1/AAV2、牛AAV、小鼠AAV、或rAAV2/HBoV1血清型衣殼。
  97. 如請求項95或96的方法,其中所述ITR和rAAV病毒粒子的衣殼源自相同的AAV血清型。
  98. 如請求項95或96的方法,其中所述ITR和rAAV病毒粒子的衣殼源自不同的AAV血清型。
  99. 如請求項95-98中任一項的方法,其中所述rAAV病毒粒子包含AAV2衣殼。
  100. 如請求項99的方法,其中所述rAAV病毒粒子包含AAV1衣殼,且其中所述載體包含AAV2 ITR。
  101. 如請求項51-100中任一項的方法,其中如請求項95-100中任一項的rAAV粒子是在組合物中。
  102. 如請求項101的方法,其中所述組合物又包含醫藥上可接受的載劑。
TW108127564A 2018-08-03 2019-08-02 針對α-突觸核蛋白的變體RNAi TW202022116A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862714616P 2018-08-03 2018-08-03
US62/714,616 2018-08-03

Publications (1)

Publication Number Publication Date
TW202022116A true TW202022116A (zh) 2020-06-16

Family

ID=67587976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127564A TW202022116A (zh) 2018-08-03 2019-08-02 針對α-突觸核蛋白的變體RNAi

Country Status (15)

Country Link
US (1) US20210309999A1 (zh)
EP (1) EP3830265A1 (zh)
JP (1) JP2021534814A (zh)
KR (1) KR20210062627A (zh)
CN (1) CN112805382A (zh)
AR (1) AR114540A1 (zh)
AU (1) AU2019314529A1 (zh)
BR (1) BR112021001980A2 (zh)
CA (1) CA3108526A1 (zh)
CO (1) CO2021002637A2 (zh)
IL (1) IL280581A (zh)
MX (1) MX2021001395A (zh)
SG (1) SG11202101072UA (zh)
TW (1) TW202022116A (zh)
WO (1) WO2020028816A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200056428A (ko) * 2017-09-22 2020-05-22 젠자임 코포레이션 변이체 RNAi
WO2021188661A1 (en) * 2020-03-18 2021-09-23 University Of Massachusetts Oligonucleotides for snca modulation
EP4359525A1 (en) * 2021-06-21 2024-05-01 uniQure biopharma B.V. Gene constructs for silencing alpha-synuclein and uses thereof
US20230365968A1 (en) * 2022-04-06 2023-11-16 Genzyme Corporation Targeted gene therapy for dm-1 myotonic dystrophy

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128780A0 (en) 1996-09-06 2000-01-31 Univ Pennsylvania An inducible method for production of recombinant adeno-associated viruses utilizing T7 polymerase
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6995006B2 (en) 1997-09-05 2006-02-07 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
EP2369002A1 (en) 1999-08-09 2011-09-28 Targeted Genetics Corporation Enhancement of expression of a single-stranded, heterologous nucleotide sequence from recombinant viral vectors by designing the sequence such that it forms intrastrand base pairs
CA2410828C (en) 2000-06-01 2012-01-24 University Of North Carolina At Chapel Hill Duplexed parvovirus vectors
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
EP2338900B1 (en) 2001-11-13 2014-01-01 The Trustees of The University of Pennsylvania Adeno-associated virus (AAV) Cy.5 sequences, vectors containing the same and uses thereof
WO2006119432A2 (en) 2005-04-29 2006-11-09 The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes
EP2007795B1 (en) 2006-03-30 2016-11-16 The Board Of Trustees Of The Leland Stanford Junior University Aav capsid proteins
AU2008260103B2 (en) 2007-05-31 2014-04-03 University Of Iowa Research Foundation Reduction of off-target RNA interference toxicity
GB0816778D0 (en) * 2008-09-12 2008-10-22 Isis Innovation Gene silencing
JP5963743B2 (ja) 2010-04-23 2016-08-03 ユニバーシティ オブ マサチューセッツ Cnsターゲティングaavベクターおよびその使用方法
WO2012027713A2 (en) * 2010-08-26 2012-03-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of snca
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
WO2012068405A2 (en) * 2010-11-17 2012-05-24 Isis Pharmaceuticals, Inc. Modulation of alpha synuclein expression
JP6224459B2 (ja) 2011-02-17 2017-11-01 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア 組織特異性を改変し、aav9媒介遺伝子導入を改善するための組成物および方法
PT3137497T (pt) 2014-05-02 2021-07-12 Genzyme Corp Vetores de aav para terapia genética na retina e snc
EP3256588A2 (en) * 2015-02-10 2017-12-20 Genzyme Corporation VARIANT RNAi

Also Published As

Publication number Publication date
CN112805382A (zh) 2021-05-14
AU2019314529A1 (en) 2021-03-25
US20210309999A1 (en) 2021-10-07
AR114540A1 (es) 2020-09-16
MX2021001395A (es) 2021-08-11
CO2021002637A2 (es) 2021-07-30
EP3830265A1 (en) 2021-06-09
BR112021001980A2 (pt) 2021-05-04
CA3108526A1 (en) 2020-02-06
SG11202101072UA (en) 2021-03-30
JP2021534814A (ja) 2021-12-16
WO2020028816A1 (en) 2020-02-06
IL280581A (en) 2021-03-25
KR20210062627A (ko) 2021-05-31

Similar Documents

Publication Publication Date Title
US11781137B2 (en) Variant RNAi
JP2018516978A (ja) 深部イントロン突然変異の遺伝子編集
TW202022116A (zh) 針對α-突觸核蛋白的變體RNAi
KR20200116550A (ko) 벡터 제조 및 유전자 전달을 위한 캡시드-결핍 aav 벡터, 조성물 및 방법
US20230392149A1 (en) VARIANT RNAi
TW201837173A (zh) shRNA表達框、攜帶其的多核苷酸序列及其應用
US20220098614A1 (en) Compositions and Methods for Treating Oculopharyngeal Muscular Dystrophy (OPMD)
US20230365968A1 (en) Targeted gene therapy for dm-1 myotonic dystrophy
RU2789647C2 (ru) ВАРИАНТ СРЕДСТВА ДЛЯ RNAi