TW202020400A - 表面形狀量測裝置以及表面形狀量測方法 - Google Patents

表面形狀量測裝置以及表面形狀量測方法 Download PDF

Info

Publication number
TW202020400A
TW202020400A TW108130975A TW108130975A TW202020400A TW 202020400 A TW202020400 A TW 202020400A TW 108130975 A TW108130975 A TW 108130975A TW 108130975 A TW108130975 A TW 108130975A TW 202020400 A TW202020400 A TW 202020400A
Authority
TW
Taiwan
Prior art keywords
light
hologram
spherical wave
coaxial
point
Prior art date
Application number
TW108130975A
Other languages
English (en)
Other versions
TWI797377B (zh
Inventor
佐藤邦弘
Original Assignee
公立大學法人兵庫縣立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大學法人兵庫縣立大學 filed Critical 公立大學法人兵庫縣立大學
Publication of TW202020400A publication Critical patent/TW202020400A/zh
Application granted granted Critical
Publication of TWI797377B publication Critical patent/TWI797377B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02032Interferometers characterised by the beam path configuration generating a spatial carrier frequency, e.g. by creating lateral or angular offset between reference and object beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02047Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0033Adaptation of holography to specific applications in hologrammetry for measuring or analysing
    • G03H2001/0038Adaptation of holography to specific applications in hologrammetry for measuring or analysing analogue or digital holobjects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0445Off-axis recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/045Fourier or lensless Fourier arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0469Object light being reflected by the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/50Nature of the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/52Divergent beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Holo Graphy (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本發明提供不需要實質基準面且可以在不使用機械式調節機構的情況下提高測量精度的表面形狀量測裝置與表面形狀量測方法。相對於虛擬平面而言,照明光聚光點PQ 以及參考光聚光點PL 互為鏡像配置,將球面波照明光Q的反射光所成的物體光O以及同軸球面波參考光L的各資料記錄成為全像圖。在虛擬平面VP上生成量測用的重製物體光全像圖hV ,分析生成代表從參考光聚光點PL 放射出的球面波光的球面波光全像圖sV 。把重製物體光全像圖hV 除以球面波光全像圖sV ,從得到的相位分布求得物體4的被測量表面上的高度分布。取得從被測量表面的反射光的相位資料,和分析得到球面波的平面斷面上的相位分佈做比較,在不需要玻璃基板等參考平面下實現高精度的表面形狀量測。

Description

表面形狀量測裝置以及表面形狀量測方法
本發明係關於數位全像技術(digital holography)中的表面形狀量測裝置以及表面形狀量測方法。
[發明背景]
以往,在反射光、穿透光等等光波的解析技術上,有將光強度和相位資料合併記錄在所謂全像圖(hologram)的照相底片(photographic plate)之類的記錄介質上加以分析的全像技術。近年來的全像技術使用光接收元件和半導體存儲器來獲取光波的光強度和相位的數位資料,在電腦上生成全像圖並對其進行分析。此種全像技術稱之為數位全像技術。
在數位全像技術中,已經提出了可達成全像圖資料獲取和處理高速化和高精度化的各種技術,並將其應用於成像。例如,已知已有適用於一次(one shot)記錄的全像圖資料中的空間頻率濾波和空間外差(heterodyne)調變,高速且正確生成重製物體影像用的複變振幅同軸全像圖(complex-amplitude in-line hologram)的數位全像技術(例如專利文獻1)。
為了解決傳統的光學顯微鏡的問題,已知有一種利用全像技術的方法,無需使用成像透鏡即可以一次(one shot)準確記錄具有大數值孔徑(numerical aperture)的物體光(object light),以及一種以平面波(plane wave)展開所記錄的物體光的方法,藉以正確地以電腦重製高解析度三維影像(例如,參見專利文獻2)。透過此方法完成可記錄和重製不失真的高解析度三維動畫影像的無透鏡三維顯微鏡。由於這種顯微鏡不使用成像透鏡,因此可以解決受介質和成像透鏡影響的習知光學顯微鏡的問題。
另外,為了以高解析度測量培養基或生物組織中的細胞的內部結構,已知有一種使用反射型無透鏡全像顯微鏡以及波長掃引雷射光(wavelength-swept laser light)的高解析度斷層攝影法。
此外,已知有一種方法,將照射方向不同的照明光照射在物體上而放射出的大數值孔徑的物體光記錄為照明光的各入射方向全像圖資料,並將這些多個大數值孔徑的全像圖合成一個全像圖,在超過1的合成數值孔徑下重製物體光(例如,參見專利文獻4)。根據該方法,可以達成解析度超越正常繞射極限的超高解析度三維顯微鏡。
此外,已知有一種全像橢圓偏振光量測裝置(Holographic Ellipsometry),利用一次數位全像技術精確記錄光波,並以平面波展開所記錄的光波(例如,參見專利文獻5)。藉由該橢圓偏振光量測裝置,能夠一次將非平行照明光所包含的多種入射角的入射光的反射光資料記錄在全像圖中,因此可分別得到對應入射角的多個波數向量(wave number vector)的橢圓偏振角Ψ和Δ,測量效率得以提升。
除此之外,已知一種干涉量測裝置,將攝影元件、兩個成像用透鏡、立方體型分光器(cube beam splitter)、具有斐索(Fizeau)基準面的元件以及被測定物呈直列式配置,記錄從基準面和被測定部反射光的干涉圖案,進行形狀的量測(例如,參見專利文獻6)。 [習知技術文獻] [專利文獻]
[專利文獻1] 國際公開第2011/089820號 [專利文獻2] 國際公開第2012/005315號 [專利文獻3] 國際公開第2014/054776號 [專利文獻4] 國際公開第2015/064088號 [專利文獻5] 國際公開第2018/038064號 [專利文獻6] 美國專利第8269981號說明書
[發明概要] [發明欲解決的課題]
然而,如上所述的專利文獻1至5中所示的全像技術雖可應用於相對小區域的顯微觀察和形狀測量等,但仍希望能對應使用於愈發傾向大面積化的半導體晶圓等的平面度測定、表面形狀量測等。另外,上述專利文獻6所示的干涉量測裝置雖利用作為平坦度的一般量測方法的斐索(Fizeau)干涉,但由於其使用基準面,使用此方法的斐索干涉儀基本上存在以下固有的問題。
斐索干涉儀被認為是最準確,最高速的平面度測量設備之一,並且在每個國家的標準實驗室中已被用作平面度量測裝置。 在斐索干涉儀中,記錄由從作為基準的透明玻璃板的基準面反射的光和從被測定面反射的光形成的干涉條紋。為了提高測量精度,朝垂直方向上稍微移動基準面以位移干涉條紋的相位、記錄具有不同相位的多個干涉條紋、並利用所記錄的干涉條紋分析被測量面的平面形狀。以這種方式測量的結果僅僅是基準面和要測量的表面之間的比較,而且基準面的絕對形狀校正對於測量平坦度的絕對值是必要的。在絕對形狀的校正中使用三片組合法(3枚合わせ法、three flat test)。
斐索干涉儀的光學系統具有相對較少的光學組件,並且可以簡化結構,但除了用作測量標準的基準面、準直鏡等之外,還是需要有傾斜調整機構、垂直移動機構、以及絕對形狀校正用的轉盤等等。測量的精度受到基準面形狀校正中的不確定性、相位位移的不確定性、因環境波動引起的不確定性等的影響,很難將它們的測量不確定度保持在10 nm或更小。在其他問題點上,由於使用了基準面、準直鏡等,因此可測量儀器的直徑被限制在約300mm或更小,難以進一步增大直徑。另外,也存在與玻璃基準面相比反射率明顯不同的被測量面,其干涉條紋的對比度降低,難以進行高精度的測量的問題。
本發明目的在於提供構造簡單,不需要實質基準面作為形狀測量的比較目標,並且可以在不使用機械式調節機構的情況下提高測量精度的表面形狀量測裝置與表面形狀量測方法,以解決上述問題。 [解決課題用的手段]
為了達成上述目的,根據本發明的表面形狀量測裝置是使用全像技術的表面形狀量測裝置,其中包括一資料獲取部,利用影像偵測器分別取得照射被測表面的球面波照明光(Q)的反射光所成的物體光(O)以及與物體光(O)同軸的球面波參考光(L)的兩個光的資料作為物體光離軸全像圖(IOR )和參考光離軸全息圖(ILR );以及一圖像重製部,透過從資料獲取部取得的資料重製被測量表面的圖像,取得其表面形狀資料。資料獲取部包括一光學系統,其構成使得相對於與該被測量表面相接的虛擬設定的虛擬平面(VP)而言,為球面波照明光(Q)聚光點的照明光聚光點(PQ )以及為同軸球面波參考光(L)聚光點的參考光聚光點(PL )互為鏡像配置,並可讓同軸球面波參考光(L)斜向通過虛擬平面(VP)後入射至該影像偵測器。圖像重製部包括一物體光全像圖生成部,透過對兩種類型的離軸全像圖(IOR ,ILR )資料、參考光聚光點(PL )的位置資訊、以及從參考光聚光點(PL )發射光的球面波特性進行運算處理而生成代表物體光(O)光波的物體光全像圖(g);一重製物體光全像圖生成部,對物體光全像圖(g)進行光傳播轉換和旋轉轉換,以於虛擬平面(VP)生成重製物體光全像圖(hV );參考點偵測部,透過計算處理對物體光全像圖(g)進行光傳播轉換以偵測物體光(O)集光位置,此位置具有高精確度化的參考光聚光點(PL )的位置資訊,將其設定為形狀測量用的參考點(S1);一分析光全像圖生成部,分析生成的球面波光全像圖(sV )為從參考點(S1)放射出的球面波光的虛擬平面(VP)中的全像圖;以及一形狀量測部,把重製物體光全像圖(hV )除以球面波光全像圖(sV ),生成量測用的全像圖(JV OS =hV /sV ),從量測用全像圖(JV OS =hV /sV )的相位分布求得物體的被測量面中的高度分布。
另外,本發明的表面形狀量測方法特徵在於包括:在使用全像術來測量物體的被測量表面的形狀的表面形狀量測方法中,將同軸球面波參考光(L)聚光點所為的參考光聚光點(PL )配置於影像偵測器的光軸上,將球面波照明光(Q)聚光點所為的照明光聚光點(PQ )配置於從該光軸偏離的位置處,將該參考光聚光點(PL )與照明光聚光點(PQ )連接線段垂直二等分的平面設定為虛擬平面(VP);配置該物體使其待測量表面與該虛擬平面(VP)相接,利用該影像偵測器取得從該被測量表面反射的該球面波照明光(Q)的反射光所為的物體光(O)資料,成為物體光離軸全像圖(IOR );在不配置該物體的狀態下,利用該影像偵測器取得通過該虛擬平面(VP)入射至該影像偵測器的該同軸球面波參考光(L)的資料,成為參考光離軸全像圖(ILR );從該兩種離軸全像圖(IOR , ILR )的資料,生成包含該物體光(O)與該同軸球面波參考光(L)兩方資訊的複變振幅同軸全像圖(JOL );利用該同軸球面波參考光(L)為球面波光的特性,透過運算處理,生成代表該影像偵測器的受光面所為全像圖面中的該同軸球面波參考光(L)的光波的同軸參考光全像圖(jL );利用該複變振幅同軸全像圖(JOL )與該同軸參考光全像圖(jL ),生成代表該物體光(O)的光波的物體光全像圖(g);對該物體光全像圖(g)做光傳播轉換與旋轉轉換,生成該虛擬平面(VP)上的重製物體光全像圖(hV );透過運算處理對物體光全像圖(g)進行光傳播轉換以偵測物體光(O)集光位置,此位置具有高精確度化的參考光聚光點(PL )的位置資訊,將其設定為形狀測量用的參考點(S1);分析生成從該參考點(S1)放射出的球面波光在該虛擬平面(VP)中的全像圖而為的球面波光全像圖(sV );以及把該重製物體光全像圖(hV )除以該球面波光全像圖(sV ),生成量測用的全像圖(JV OS =hV /sV ),從該量測用全像圖(JV OS =hV /sV )的相位分佈求得該物體的被測量表面中的高度分布。
根據本發明的表面形狀量測裝置和表面形狀量測方法,取得來自被測量表面的球面波照明光的反射光的相位資料,由於是和解析得到的球面波的平面切割面上的相位分佈比較下進行形狀量測,因此不需要玻璃基板等材料作為實質參考面就可以實現高精度的表面形狀測量。
以下將參照附圖說明根據本發明實施態樣的表面形狀量測裝置和表面形狀量測方法。 (第一種實施態樣:表面形狀量測方法)
參照圖1至圖4,對第一實施態樣的表面形狀量測方法進行說明。如圖1和圖2所示,表面形狀量測方法係使用全像技術來測量物體4的待測量表面形狀的方法,包括從光學系統設置步驟(#1)到表面形狀測量步驟(#8)的步驟。
在光學系統設置步驟(#1)中,設定作為球面波照明光Q的聚光點的照明光聚光點PQ 和作為同軸球面波參考光L的參考光聚光點PL ,使其相對於虛擬設置的虛擬平面VP彼此成鏡像配置。此外,將影像偵測器5設置在參考光聚光點PL 傾斜地穿過虛擬平面VP的直線上,並且將直線與虛擬平面VP的交點設定為表示對象4位置的基準點PO 。在這些配置下,每個球面波光Q、L的全像圖係透過影像偵測器5利用離軸(off-axis)參考光R來獲取,且透過在電腦上重製並確認每個光源的全像圖來固定物體4。之後,針對試樣台7的位置和姿態和整個光學系統的全體加以調整。各球面光Q、L和離軸參考光R是從一個光源放射出的相互同調(coherent)的雷射光。
各聚光點PQ 、PL 的位置,即各球面波光Q、L的光源的位置,例如由針孔板的針孔位置所設定。此外,將具有參考平面的參考平面基板70配置在虛擬平面VP的位置處,並且取得球面波照明光Q的反射光的全像圖。如此確認、調整以及設定所需的系統大約為可以通過利用螺釘等的機械操作來調整的數十微米之譜。在不使用壓電元件等的情況下,在圖像重製期間透過電腦中的後處理來將測量精度高精度化處理至奈米等級。
在物體光全像圖獲取步驟(#2)中,物體4被配置在基準點PO 的位置處,使得被測量表面與虛擬平面VP相接。透過將物體4固定到預先調整的試樣台7上來進行物體4的配置。物體4的被測量表面被球面照明光Q傾斜照射,從此物體4放射並入射至影像偵測器5的反射光,亦即物體光O的資料是利用離軸參考光R獲得的,作為物體光離軸全像圖IOR
在參考光全像圖獲取步驟(#3)中,在未對參考平面基板70和物體4進行配置的狀態下,利用離軸參考光R取得傾斜通過虛擬平面VP並入射到影像偵測器5上的同軸球面波參考光L的資料,作為參考光離軸全像圖ILR 。這兩種類型的離軸全息圖IOR 和ILR 的資料無法同時獲取。因此,獲取每個資料時的離軸參考光R的照射條件必須保持相同。
在物體光全像圖生成步驟(#4)中,使用物體光離軸全像圖IOR 與基準光離軸全像圖ILR ,以及同軸球面波參考光L為球面光的特性,在作為影像偵測器5的光接收表面(z = 0)的全像圖表面50中,於電腦內資料處理生成代表物體光O的光波的物體光全像圖g。
在量測用物體光全像圖生成步驟(#5)中,透過光傳播計算將物體光全像圖g轉換為基準點PO 的位置處的全像圖。透過光傳播計算將全像圖轉換為另一位置處的全像圖稱為光傳播轉換。轉換後的全像圖根據作為虛擬平面VP相對於全像圖平面50的傾斜角的虛擬平面傾斜角αO 而被旋轉轉換,並且生成用於在虛擬平面VP中進行測量的重製物體光全像圖hV
在參考點檢測步驟(#6)中,透過運算處理進行形成物體光全像圖g的光傳播轉換,以偵測出物體光O的聚光位置,並將該位置設為用於形狀測量的參考點S1。參考點S1的位置資訊為提高參考光聚光點PL 的位置資訊的精度而得的資訊。透過使用參考點S1的位置資訊,可以高精度地測量被測量表面。
在球面波全像圖生成步驟(#7)中,在虛擬平面VP上經分析生成從形狀量測參考點S1放射出的球面波光的全像圖,作為球面波全像圖sV 。球面波全像圖sV 在電腦中完成以往物理方式的參考基板中的參考平面,成為斐索干涉儀等中的參考平面。
在表面形狀測量步驟(#8)中,將重製物體光全像圖hV 除以球面波光全像圖sV ,從而生成與物體光O和球面波光全像圖sV 相關且為測量用的複變振幅同軸全像圖的測量用全像圖JV OS 。從此測量用全像圖JV OS 的相位分佈求得物體4的被測量表面上的高度分佈,亦即物體4的表面形狀。 (虛擬平面的設定細節)
例如,如下進行圖2所示的試樣台7和光學系統的初始設置。試樣台7的位置和姿態的設定與虛擬平面VP的位置和姿態的設定相同。在影像偵測器5的光軸上配置有作為同軸球面波參考光L的聚光點的參考光聚光點PL ,並且在遠離光軸的位置處配置了作為球面波照明光Q的聚光點的照明光聚光點PQ 。此等各光源(PQ、PL)和影像偵測器5的配置設定之後便固定下來。
虛擬平面VP是將參考光聚光點PL 和照明光聚光點PQ 連接的線段垂直地二等分的平面。在虛擬平面VP和光軸的交點處設置表示物體4位置的基準點PO 。試樣台7以調整後的狀態安裝在基準點PO 的位置。試樣台7在物體4固定至試樣台7時,調整物體4的測量表面與虛擬平面VP相接。此試樣台7的調整如下進行。
具有參考平面的參考平面基板70被固定在試樣台7上,並用球面波照明光Q進行照明,利用離軸參考光R取得來自參考平面的反射光的資料作為物體光離軸全像圖IOR 。在未對參考平面基板70進行配置的狀態下,利用離軸參考光R取得通過虛擬平面VP並入射到影像偵測器5的同軸球面波參考光L的資料,作為參考光離軸全像圖ILR 。透過改變試樣台7的位置與傾斜度,亦即姿態,對試樣台7進行調整,使物體光離軸全像圖IOR 的實像分量除以參考光離軸全像圖ILR 的實像分量而獲得的複變振幅同軸全像圖JOL 的相位分佈的變化減少。
將對此進行更具體的說明。對同軸球面波參考光L和球面波照明光Q的各聚光點進行配置,在最初無物體4的狀態下記錄同軸球面波參考光L和離軸參考光R形成的干涉條紋ILR 。接下來,將具有如光學平面(optical flat)的高平坦度參考平面的參考平面基板70固定至試樣台7作為物體4,並用球面波照明光Q進行照明。為使照明光聚光點PQ 相對於參考平面基板70的參考平面的對稱點靠近參考光聚光點PL ,換言之,為使參考平面基板70的參考平面與參考光聚光點PL 和照明光聚光點PQ 連接的線段垂直二等分的平面一致,對試樣台7的距離zO 與傾斜角αO 進行機械式調整,並一次記錄由參考平面反射光的物體光O和離軸參考光R所形成的干涉條紋IOR
執行空間頻率濾波以從各干涉條紋IOR 和ILR 提取分別代表實像分量的複變振幅離軸全像圖JOR 和JLR ,並且將JOR 除以JLR 得到複變振幅同軸全像圖JOL 。複變振幅振幅同軸全像圖JOL 的相位(θO - θL )表示在全像圖面50中同軸球面波參考光L與物體光O (被視為球面波)之間的相位差。當照明光聚光點PQ 的對稱點接近參考光聚光點PL 時,JOL 的相位分量exp [i(θO - θL )]接近全像圖面50上的常數分佈。此外,當點PQ 的對稱點遠離點PL 時,相位分量exp [i(θO - θL )]變成值會變化的分佈方式。
點PQ 的對稱點與參考光聚光點PL 之間的距離在垂直於z軸的方向上的光學解析度(optical resolution)δ=λ/(2NA)以上,或者在z軸方向上的焦點深度DOF =λ/(2NA2 )以上,當分離時,相位分量exp [i(θO - θL )]的分佈在全像圖表面上以振動方式變化。在此,NA是記錄全像圖的數值孔徑。
調整距離zO 和傾斜角αO 以使複變振幅同軸全像圖JOL 的相位分量exp [i(θO - θL )]的變化足夠小,並且將與參考平面基板70的參考平面相接的平面定義為虛擬平面VP,完成試樣台7的調整。參考光L和照明光Q相對於位於其間經定義的虛擬平面VP呈對稱,且在虛擬平面VP中,照明光Q和參考光L之間的相位差(θO - θL )的表面分佈幾乎不變,維持恆定值。
另外,當以精度Δt測定表面形狀的不平整度t時,在決定虛擬平面VP的階段,有必要進行機械調整,使相變化Δ(θO - θL )小於4πΔt/λ,且Δ(θO - θL )<4πΔt/λ。如果不使用PZT等壓電驅動元件,則僅靠螺釘進行此種機械式調整會有困難,難以達成奈米級測量精度Δt,但透過影像重製時的電腦內的後處理,則有提高測量精度Δt的可能。 (全像圖資料及其處理)
將根據數學式說明全像圖資料及其處理。全像圖與離軸參考光R、同軸球面波參考光L、物體光O等有關。這裡,xyz右手正交座標系統的原點設置在全像圖表面50 (影像偵測器5的光接收表面)的中心(與虛擬平面VP有關的座標系統為x'y'z,見圖2)。從全像圖表面50朝向物體光O的光源的方向是z軸的正方向。利用位置座標(x,y)分別如下通式(1)、(2)和(3)表示出物體光O(x,y,t)、離軸參考光R(x,y,t)和同軸球面波參考光L(x,y,t)。這些光是角頻率ω互相一致的光。每個表達式中的係數、自變量、下標等均以通用表達式和含義加以定義。在以下各式中,適當地省略了位置坐標(x,y,z)、空間頻率(u,v,w)等。
【數1】
Figure 02_image001
(1)
Figure 02_image003
(2)
Figure 02_image005
(3)
由上式中的O(x,y,t)和R(x,y,t)產生的組合光的強度光IOR (x,y)以及L(x,y,t)和R(x,y,t)產生的合成光的光強度ILR (x,y)分別由以下等式(4)和(5)表示。這些光強度IOR 和ILR 透過影像偵測器5被取得作為全像圖資料。
【數2】
Figure 02_image007
(4)
Figure 02_image009
(5)
在上述等式(4)和(5)中,右側的第一項是物體光O或同軸球面波參考光L的光強度分量,第二項是離軸參考光R的光強度分量。每個等式的第三項和第四項分別是物體光O或同軸球面波參考光L透過使用離軸參考光R調變而得的直接圖像分量和共軛圖像分量。
第三項的直接圖像成分(實像成分)在本資料處理方法中包括必要的物體光O或參考光L的資訊,亦即上式(1)和(3)中的OO exp(iφO )和LO exp(iφL )等項目。此第三項的直接圖像分量中物體光O或參考光L的相位部分[iφO ]、[iφL ]和定義這些光的上式(1)(3)的相位部分[iφO ]、[iφL ]相同。另一方面,第四項的物體光O或參考光L的相位部分[-iφO ]、[-iφL ]變成定義這些光(1)和(3)的相位部分[iφO ]、[iφL ]的複變共軛,第四項稱為共軛圖像分量。
透過使用離軸參考光R,在空間頻率空間中表現全像圖時,隨著離軸效果,可取得將直接圖像成分(第三項)從光強度分量(第一、二項)和共軛圖像成分(第四項)分離的全像圖。透過適用空間頻率濾波並僅提取上述等式(4)和(5)的第三項,分別如下式(6)和(7)所得記錄了物體光O的物體光複變振幅全像圖JOR 並記錄了同軸球面波參考光L的複變振幅全像圖JLR 。 這些複變振幅全像圖為包括離軸參考光R的成分的全像圖。
【數3】
Figure 02_image011
(6)
Figure 02_image013
(7)
空間頻率率波係根據將上式(4)、(5)轉換為空間頻率空間中的表現的傅立葉轉換、透過帶寬濾光片進行的濾波、以及之後的傅立葉逆轉換進行。如果光接收元件中的像素以像素間距d二維排列,則可以使用光接收元件記錄可能的全像圖的最大空間頻率是空間頻率fs = 1 / d。
當進行將上式(6)除以式(7)的除法運算處理時,可以從式(6)去除離軸參考光R的振幅RO 和相位φR。該處理是用於執行相位的減法運算處理,亦即進行頻率轉換的處理,處理外差調變。如此一來,得到如下式(8)所示的相對於同軸球面波參考光L的物體光O複變振幅同軸全像圖JOL
【數4】
Figure 02_image015
(8)
同軸球面波參考光L是用於取得和保存作為離軸全像圖的參考光全像圖ILR 的參考光R的資料的參考光,並且具有在全像圖資料的數位處理中用作參考光的任務。同軸球面波參考光L係用於生成一種不含參考光R資料的全像圖的複變振幅同軸全像圖JOL 。於保持在和離軸參考光R相同條件下取得複數個物體光全像圖Ij OR 時,參考光全像圖ILR 可藉由取得一張離軸全像圖ILR 以及取得一張複變振幅全像圖JLR 而做成。 (同軸球面波參考光的成分和乘法運算因子)
接下來,在等式(8)中,透過將兩邊乘以乘法運算因子L0 (x,y)exp(i(φL (x,y))進行以振幅因子L0 (x,y)進行的振幅調變、以及以相位因子exp(i(φL (x,y))進行的外差調變,以得到如下式(9)所示的在影像偵測器5的表面(全像圖面、xy平面、或z = 0的面)上的代表物體O光波的物體光全像圖g(x, y)。生成物體光全像圖g(x,y)的步驟是重製物體光O的步驟。使物體光全像圖g(x,y)的絕對值平方| g(x,y)|2 顯示在顯示器上,可看到全像圖面50上的物體光O的光強度分佈的圖像。
【數5】
Figure 02_image017
(9)
該乘法運算處理是用於從上述等式(8)去除同軸球面波參考光L的分量的處理,生成僅含物體光O的光波OO (x,y)exp(i(φO (x,y)))的全像圖g。此處的全像圖一詞係用於表示其包含重製光波所需的所有資料,在下文中也用於相同的意思。 如果同軸球面波參考光L的振幅L0 (x,y)變化緩慢到可以忽視的情況下,也可以留下。
上述乘法運算分子LO (x,y)exp(i(φL (x,y))為代表從同軸球面波參考光L的聚光點PL 發射出的球面波在空氣中傳播到達影像偵測器5,即全像圖面50,的光波的全像圖,稱之為同軸參考光全像圖jL 。當同軸參考光全像圖jL 在空氣中傳播並傳播到全像圖面50時,係以球面波到達全像圖面50。因此,乘法運算因子係以聚光點PL 的位置資訊分析而得。
另,當同軸球面波參考光L為如後述的圖4的光學系統那樣通過光束合成器3等時,全像圖面50上的波前是從球面波變形的波前。在這種情況下,不能透過解析取得全像圖jL ,而是根據從同軸球面波參考光L的聚光點PL 到全像圖面50的距離ρ和光束合成器3的厚度A所賦予,透過使用平面波展開的光傳播運算來計算出(稍後描述)。 (距離ρ與zO 以及傾斜角αO 的測定)
為了測量表面形狀,必須在平行於被測量表面,即虛擬平面,的位置上,重製被測量表面上的反射光。因此,為了使用複變振幅同軸全像圖來重製反射光,從影像偵測器5,即全像圖面50,到被測量表面,即虛擬平面VP,的距離zO 、相對全像圖面50的虛擬平面VP的傾斜角αO 以及從全像圖面50到作為同軸球面波參考光L的聚光點的參考光聚光點PL 的距離ρ為必要。這些值雖然可以透過其他測量手段測量,但是可以透過使用全像技術記錄和重製目標圖像而以高精度取得。
在圖2所示的光學系統中,將尺寸已正確得知的圖案記載於透明的平面玻璃基板上所形成的平面目標固定在調整完成後的試樣台4上,使得圖案與虛擬平面VP相接。接下來,以全軸球面波參考光L照射,記錄穿透目標的同軸球面波參考光L的物體光O和離軸參考光R所形成的干涉條紋IOR 。 從記錄的干涉條紋IOR 和ILR 求得全像圖面50上的物體光g,並且如下執行物體光g的平面波展開與光傳播計算、以及旋轉轉換,重製目標面上的聚焦圖像。 (平面波展開與光傳播計算)
存在與電磁波的赫爾姆霍茲方程式( Helmholtz equation)相關的精確解(exact solution)的平面波。利用作為此精確解的平面波可以展開物體光O的光波。此平面波展開透過傅立葉轉換達成上式(9)的物體光全像圖g(x,y)。亦即傅立葉轉換係平面波展開。平面波展開的結果如下式(10)般得到關於物體光O的空間頻譜G(u,v)。空間頻譜G(u,v)是具有波向量(u,v)的平面波的複變振幅,也稱為複變振幅G(u,v)。從全像圖面50平移距離zO 的位置處的物體光O的空間頻譜H(u,v)由下式(11)表示,物體光h(x,y,zO )由下式(12)得到。
【數6】
Figure 02_image019
(10)
Figure 02_image021
(11)
Figure 02_image023
(12)
Figure 02_image025
(旋轉轉換)
由傾斜角αO 進行旋轉轉換後的空間頻譜HV (u',v')以下式(13)表示,旋轉轉換的賈克比矩陣(Jacobian matrix) J(u',v')由下式(14)表示。 因此,旋轉轉換後的重製物體光hV (x',y',zO )由下式(15)表示。
【數7】
Figure 02_image027
(13)
Figure 02_image029
(14)
Figure 02_image031
(15)
在基準點PO 處,旋轉轉換之前平行於全像圖面50的重製圖像透過|h|2 得到,而旋轉轉換之後平行於虛擬平面VP的重製圖像透過|hV2 得到。重製物體光hV 包括距離zO 和距離ρ作為參數。求得距離zO 作為至少在基準點PO 處有聚焦重製圖像的重製面上的z座標值,求得距離ρ作為聚焦點重製圖像的尺寸和目標的實際尺寸匹配時的參數。此外,除了距離zO 和距離ρ作為參數之外,重製物體光hV 還包括傾斜角αO 。當在整個表面上獲得聚焦重製圖像時,求得傾斜角αO 作為旋轉轉換角的值。 (使用相關函數精準地決定形狀測量用的參考點和虛擬平面)
接下來為高精度決定虛擬平面VP的說明。此處針對距離和測量精度加以說明。同軸球面波參考光L是僅用於重製全像圖的光,到參考光聚光點PL 的距離ρ是以mm為單位所測定的距離。在形狀測量中,不使用參考光聚光點PL ,而是使用在參考光聚光點PL 附近搜索並新設置的用於形狀測量的參考點和在那裡設置的參考點光源。該參考點是照明光聚光點PQ 的原始鏡像點。透過使用相關函數運算,利用在電腦上進行後處理來設置參考點,以使得參考點基本上位於照明光聚光點PQ 的原始鏡像點的位置。
為了確保所需的測量精度,基準點PO 與照明光聚光點PQ 之間的距離DQ 與基準點PO 與用於形狀測量的參考點光源之間的距離DS 之間的差ΔDQS =|DQ -DS |必須使其小於所需的測量精度。此係透過在電腦上進行後處理達成。該後處理係用於增加有效位數的處理。
在使用上述參考平面基板決定虛擬平面VP時,機械式調整距離zO 和參考平面的傾斜角αO 這裡將說明透過使用點光源和重製物體光之間的相關函數進行運算而以高精度決定形狀測量用的參考點光源的方法。為了能高精度地決定基準點光源,應使形狀測定用的參考點光源與照明光聚光點PQ 的對稱點P1一致。為達此目的,利用光相關函數的數值運算來求得被認為是參考光聚光點PL 附近的點P1的位置。
如圖3的流程圖所示,透過光傳播計算將作為照明光Q的反射光的物體光O的物體光全像圖g傳播到參考光聚光點PL 的位置z =ρ,將所生成的全像圖設為評估全像圖h0=h(x,y,ρ)(#61)。接下來,透過代表點光源的探測函數fp與評估全像圖h0之間相關函數的計算偵測出物體光O (照明光Q的反射光)聚光所在的聚光點位置座標(x1,y1,ρ),而在評估全像圖h0的平面中設出虛擬聚光點P1(x1,y1,ρ)(#62)。
透過光傳播計算使評估全像圖h0=h(x,y,ρ)在光軸方向上試驗傳播,固定虛擬聚光點P1的光軸正交平面中的位置(x1,y1)進行相關函數計算,偵測物體光O在光軸方向上的聚光點,並偵測聚光點P1的位置座標(x1,y1,z1),z1 =ρ+Δρ(#63)。 將偵測到的聚光點設為形狀測量用的參考點S1,並將參考光點光源設定於該處(#64)。
利用數學式具體說明上述處理。評估全像圖h0=h(x,y,ρ)由以下式(16)表示(#61)。探測函數fp是位於座標(x1,y1,ρ)的虛擬點光源fp =δ(x-x1)δ(y-y1)。相關函數C由下式(17)表示。
【數8】
Figure 02_image033
Figure 02_image035
(16)
Figure 02_image037
Figure 02_image039
(17)
相關函數C(x1,y1,ρ)包含虛擬點光源在平面上的座標(x1,y1)作為參數。以相關函數的絕對值| C(x1,y1,ρ)|作為最大的參數值,透過數值運算求得座標(x1,y1)(#62)。
接下來,固定上式(16)中的(x1,y1)的值,將ρ改變為參數z1,求得當絕對值| C(x1,y1,z1)|為最大時的z1值。由此,偵測出鏡像點P1的位置座標(x1,y1,z1)(#63)。透過使用相關函數的此種計算,可以求得比光學解析度δ=λ/(2NA)更高精度的座標(x1,y1),並且可以得到比聚焦深度DOF=(2NA2 )更高精度的值z1。經由上述計算,可以透過數值運算準確地決定在參考光聚光點PL處或其附近成為參考點S1的點P1的座標(x1,y1,z1)(#64)。
如上所述,透過使用相關函數C,將相位分量變成ξ= C / | C |,形狀測定用參考點S1重新配置在點P1,並以點光源設定在此參考點S1( 以下稱為參考點光源S1)所作成的光(為球面波光)作為同軸球面波參考光L1。以參考點光源S1作出的參考光L1的相位可以利用球面波的公式解(analytical solution)準確地算出。在虛擬平面VP中,照明光Q的相位和參考光L1的相位在整個虛擬平面VP上彼此一致。
當將重置物體光全像圖hV (x',y')除以球面波光全像圖sV (x',y')時,求得用於測量待測表面的測量用全像圖JV OS (x',y')。根據在被測量表面上反射的照明光Q與在虛擬平面VP上反射的照明光Q之間的光程差,求得被測量表面的高度分佈t(x',y')。使用參考點S1作為光源的同軸球面波參考光L1的相位與虛擬平面VP上的照明光Q的相位一致。因此,高度分佈t(x',y')係使用測量用全像圖JV OS 的相位(θOL1 )通過以下等式(18)獲得。這裡,相位θO 是從重製物體光全像圖hV 獲得的重製物體光的相位,相位θL1 是由參考點光源S1生成的參考光L1的相位,而角度α(x',y')是座標(x',y')中照明光Q的入射角。
【數9】
Figure 02_image041
(18) (第二種實施態樣:表面形狀測量裝置)
參照圖4和圖5,對第二實施態樣的表面形狀測量裝置1進行說明。表面形狀測量裝置1是使用全像術來測量物體4的被測量表面的形狀的裝置,包括取得物體4的被測量表面的全像圖的資料資料獲取部10和從透過資料獲取部10取得的全像圖重製圖像的圖像重製部12。
資料獲取部10包括將光強度轉換為電信號並輸出全像圖資料的影像偵測器5、使物體4的待量測面與虛擬設定的虛擬平面VP相接以固定物體4的試樣台7、以及使各光傳播的光學系統2。影像偵測器5連接至作為控制部以及記憶體的電腦11。
光學系統2包括對稱地設置在虛擬設置的虛擬平面VP的兩側的兩個光學系統,一個光學系統用於球面波照明光Q,另一光學系統用於同軸球面波參考光L;緊接在影像偵測器5前方的立方體型分束器所組成的光束合成器3;以及離軸參考光R用的光學系統。
球面波照明光Q從傾斜方向照亮物體4的被量測面,使影像偵測器5記錄包含有物體4的表面形狀相關資訊的反射光,亦即物體光O。在照明光Q的光路上,設置有用於使平行光會聚的透鏡21和在聚光位置具有針孔的針孔板22。此針孔的位置是照明光Q的焦點,也就是照明光焦點PQ ,是球面波光的點光源的位置。
與照明光Q一樣,同軸球面波光L在其光路上設置有用於會聚平行光的透鏡25,並於會聚位置處設有具有針孔的針孔板26。針孔板26的針孔的位置是同軸參考光L的會聚點,亦即參考光會聚點PL ,其為球面波光的點光源的位置。相對於由照明光Q的反射光構成的物體光O,同軸球面波光L成為同軸光。參考光L和R的記錄用於將目標光的記錄全像圖中的離軸參考光R的成分替換為同軸球面光L的成分,並去除該成分,從而使記錄全像圖呈同軸狀。
物體光O和同軸球面參考光L穿過光束合成器3,並且從正面進入影像偵測器5。亦即,照明光會聚點PQ 和參考光會聚點PL 在垂直於影像偵測器5的光接收面的中心的方向上呈光學同軸,並且存在於相同的光學位置。
離軸參考光R從側面進入光束合成器3,經內部反射鏡30反射後進入影像偵測器5。此光路中包括用於擴徑的小徑透鏡23和用於准直的大徑透鏡24,並且產生形成球形波狀的離軸參考光R。
光學系統2的設定係使作為球面波照明光Q的聚光點的照明光聚光點PQ 和作為同軸球面波參考光L的聚光點的參考光聚光點PL 相對於虛擬平面VP呈鏡像的配置。另外,在光學系統2中,照明光Q傾斜地照射待測量的表面,此反射光的物體光O進入影像偵測器5,且同軸球面波參考光L傾斜地通過虛擬平面VP,進入影像偵測器5,對各光進行傳播。
光束合成器3將物體光O或同軸球面波參考光L和離軸參考光R組合,入射至影像偵測器。可以使用立方體型分光器作為光束合成器3。
圖像重製部12與資料儲存部6一起設置在電腦11中。圖像重製部12的構成包括用於執行在第一實施態樣中所描述的表面形狀量測方法的軟體組和記憶體。
如圖4所示,在物體4的待測表面的表面形狀測量中,物體4處於配置狀態下,透過使用球面波照明光Q和離軸參考光R,取得作為反射光的物體光O的記錄全像圖IOR 。此外,如圖5所示,在移除物體的狀態下,使用同軸參考光L取得離軸參考光R的記錄全像圖ILR
透過在第一種實施態樣中說明的表面形狀量測方法來處理所獲取的離軸全像圖IOR 和ILR ,並得到表面形狀的測量值。順帶,由於本實施態樣的表面形狀量測裝置1包括立方體型的光束合成器3,因此考慮到光束合成器3的折射率下,以平面波展開法進行通過光束合成器3的光的傳播計算是必要的。在下文中將說明關於光束合成器3的處理。 (光束通過光束合成器後的計算)
在全像圖表面50上,從複變振幅全像圖JOL 生成物體光全像圖g時,穿過光束合成器3並到達全像圖表面50的同軸球面波參考光L的光波(同軸參考光全像圖jL)是必要的。同軸參考光全像圖jL由於通過光束合成器3,因此並非球面波。因此,執行從同軸球面波參考光L的焦點PL 的位置到作為影像偵測器5的入射面的全像圖表面50的光的光傳播計算,並在全像圖表面50上生成同軸球面波參考光L,也就是同軸參考光全像圖jL。
使用平面波展開執行光傳播計算。使參考光L在聚光點PL 處呈平面波展開,在空氣中和在光束合成器3內傳播,計算全像圖表面50上的每個平面波分量,透過將光計算而得的平面波分量相加而求得同軸參考光全像圖jL。聚光點PL 的位置z=ρ的xy平面中,存在同軸球面波參考光L的點光源b0 δ(x)δ(y)。此點光源的空間頻譜B(u,v)具有常數b0 ,即B(u、v)=b0 。然後,由於平面波的傳播,在z = 0的全像圖表面50上的同軸球面波參考光L,也就是同軸參考光全像圖jL,係由以下等式(19)表示。
【數10】JL
Figure 02_image045
Figure 02_image047
Figure 02_image035
(19)
Figure 02_image025
Figure 02_image049
上式中的n是光束合成器3的折射率。上式(19)是從原點z = 0到焦點PL 的距離ρ和光束合成器3的尺寸A的函數,但是與從原點到光束合成器3的距離無關。亦即,無論將光束合成器3放置在何處都可以獲得相同的公式。上述方程式(19)是理論計算方程式,對於實際計算而言,必須以滿足採樣定理的計算點數進行光傳播計算。 (全像圖表面上的物體光g(x,y))
透過以上過程獲得的以上等式(19)的同軸參考光全像圖jL是在通過光束合成器3之後已經到達全像圖表面50的同軸球面波參考光L的光波。透過將由全像圖jL組成的乘法因子JL =L0 (x,y)exp(i(φL (x,y))乘以上述等式(8),影像偵測器5的表面(全像圖平面、xy平面、或者表面z = 0)上表示出物體光O的光波的物體光全像圖g(x,y)以與上式(9)相同的方式獲得。 (光傳播計算)
在全像圖表面上的物體光全像圖g(x,y)進行傅立葉轉換的平面波展開結果,得到如下式(20)的針對物體光O的空間頻譜G(u,v)。在表達式上,它變得與上述等式(10)相同。透過平面波的光傳播計算,在物體4的被測量表面的位置z = z0 處透過以下等式(21)獲得平行於全像圖表面50的表面上的物體光h(x,y)。
【數11】
Figure 02_image019
(20)
Figure 02_image052
Figure 02_image035
(21)
上式(20)中的u和v分別是x方向和y方向的傅立葉空間頻率。z方向的傅立葉空間頻率w,wn係如上式(21)般,從平面波的色散方程(波數與波長的關係式)求得。色散方程包含形式為(n /λ)2 的折射率n。上述方程式(20)和(21)是考慮到光路上存在的光束合成器3的尺寸A和折射率n的計算方程式。
由於透過上述等式(21)取得在物體4的被量測表面的位置z = z0 處與全像圖表面50平行的物體光h(x,y),因此透過上述式(13)至(18)的旋轉變換、使用相關函數以高精度決定虛擬平面、以及算出高度分佈的處理,可以執行表面形狀測量並獲得測量結果。上述等式(13)至(18)的處理係空氣中的事件的處理,不必考慮光束合成器3的折射率n等的影響。 (第三種實施態樣)
參考圖6說明根據第三實施態樣的表面形狀量測裝置1。本實施態樣的表面形狀量測裝置1與第二實施態樣的表面形狀量測裝置1的不同之處在於光學系統2包括會聚物體光O和同軸球面參考光L的聚光透鏡27、配置在聚光透鏡27的聚光位置並限制通過光量的瞳孔板27a、以及與光瞳板27a組合設置的成像透鏡27b。在光瞳板27a的前後具備的兩個透鏡係使物體光O和同軸球面波參考光L成像在影像偵測器5上的透鏡。
如果可以記錄具有大直徑的全像圖,則可以測量大物體的表面形狀。作為記錄大直徑全像圖的方法可以考慮在平面上配置多個並排影像偵測器的方法或在平面上移動影像偵測器的方法等。但是,如本實施態樣般使用透鏡來收集反射光,則用一個影像偵測器5可記錄大直徑全像圖。藉由使用聚光透鏡將同軸球面波參考光L或物體光O投射到影像偵測器5的受光面上,並且記錄由離軸參考光R形成的干涉條紋。透過打開和關閉光瞳板27a的光瞳,可以調節記錄全像圖的空間頻帶的寬度。當被測量表面光滑且平坦度高時,空間頻帶寬度較窄,而當被測量表面具有細小的凹凸時,則帶寬變寬。
聚光透鏡27和成像透鏡27b這兩個透鏡因被測量表面上的光在影像偵測器5的受光面上成像之故,即使不進行物體光的重製,也可以進行被測量表面的形狀觀察與形狀測量等。 (第四實施態樣)
參考圖7說明根據第四實施態樣的表面形狀量測裝置1。本實施態樣的表面形狀量測裝置1包括凹面鏡28、光瞳板28a、以及成像鏡頭28b,以取代第三實施態樣的表面形狀量測裝置1中的聚透鏡27、光瞳板27a和成像透鏡27b。凹面鏡28,例如,使用聚光橢圓鏡。在本表面形狀量測裝置1中同樣係以凹面鏡28和成像透鏡28b使物體光O和同軸球面波參考光L成像於影像偵測器5。
在本表面形狀量測裝置1中同樣可以透過小影像偵測器記錄具有大直徑的全像圖,並且即使不進行物體光的重製,也可以進行被測量表面的形狀觀察與形狀測量等。 (第五實施態樣)
參考圖8說明根據第五實施態樣的表面形狀量測裝置1和表面形狀量測方法。本實施態樣的裝置和方法擴展了可測量高度的範圍,且為了實現此擴展目的,使用不同波長(λj ,j=1,2)的光。本實施態樣的表面形狀量測裝置1的光學系統2與上述第二實施態樣的光學系統2(圖4)的不同之處在於在光束合成器3和影像偵測器5之間***了波長濾光片。它具有兩對這樣的波長濾光片和影像偵測器的組合。
換言之,在光束合成器3的物體光O的入射面31對向的面上,配置有通過一個波長λ1 的一組波長濾光片F1和影像偵測器51。通過另一波長λ2 的一對波長濾光片F2和影像偵測器52則配置在光束合成器3的離軸參考光R入射面對向的面上。 (利用不同波長的光波之間的相位差進行表面形狀測量)
在本實施態樣的表面形狀量測方法中執行以下處理。根據不同波長λj ,j=1,2的光,分別取得物體光O和同軸球面波參考光L在各波長λ1 、λ2 下的兩種離軸全像圖Ij OR 、Ij LR ,j=1、2。接下來,針對各波長λ1 、λ2 分別生成測量全像圖Jj V OS =hj V /Sj V ,j=1,2,進行求得所生成的兩個測量全像圖Jj V OS =hj V /Sj V ,j=1、2的比率的外差轉換。外差轉換的結果生成了調變波HW=J1 V OS /J2 V OS 。利用包含於此調變波(HW)中的調變波長λB =λ1 λ2 /(λ2 -λ1 )和調變相位分佈θB (x',y')=θ1 -θ2 求得物體待測量表面上的高度分佈。
將說明以上處理的背景和效果。例如,在使用第二實施態樣所示的單色雷射的相位所進行的表面形狀測量中,難以測量遠大於光波長λ的高度。此外,對於超過λ/ 2的高度差,會在高度的測定值中出現λ/ 2的整數倍的不確定性。另外,如果對具有相同傳播方向的具有不同光波長的兩個光波執行運算處理,則可以做出具有更長波長的波。藉由使用此波的相位可以大大提高可測量的高度範圍。
從同一點光源發出的光波長分別為λ1 和λ2 的球面波照明光Q的傳播方向在空間上的所有點都一致,相位分量分別以exp(2πr/λ1 -θ1 )和exp(2πr/λ2 -θ2 )表達。當將具有光波長為λ1 的球形波照明光Q除以具有光波長為λ2 的球面波照明光Q時,可以產生具有相位分量為exp(2πr/λB -θB )的波。在此,λB 和θB 的定義如下式(22)。波長λB 與由兩個照明光做成的拍波的波長一致。
【數12】 λB =(λ1 λ2 )/(λ2 -λ1 ), θB =θ1 -θ2 (22)
當用具有相同光源位置和不同波長的兩個球面波照射被測量表面時,從被測量表面上的每個點發射的兩個反射光的傳播方向一致。此外,在忽略靠近表面的光的干涉、繞射等前提下,從被測量表面上的微小面發射的兩個反射光的傳播方向也相同。因此,當將光波長為λ1 的反射光除以光波長為λ2 的反射光時,能夠產生與照明光Q的情況有同樣的作用且波長更大的波長為λB 的光波。這表示可以透過使用所產生的波長為λB 的波並根據第二實施態樣中描述的測量方法等來測量表面形狀。如果被測量表面和虛擬平面VP之間的兩個波長為λB 的波之間的相位差由ΔθB(x',y')表示,則被測量表面的高度t(x',y')由下式( 23)定義。式(23)等同於單一波長下的式(18)。
【數13】
Figure 02_image054
(23)
Figure 02_image056
上式(23)基本上等同於單一波長下的式(18)。本實施態樣的表面形狀量測裝置1和表面形狀量測方法能夠在後處理時任意地決定使用針對兩波長記錄的兩個全像圖資料,還是使用這兩個資料中的任一個。當使用兩個波長的數據時,可以使用式(23),而當使用單一波長的資料時,可以使用式(18)。
可以使用圖8所示的光學系統一次拍攝具有不同波長的全像圖。在這種情況下,除了用於光波長λ1 的離軸參考光R1 之外,還使用光波長λ2 的離軸參考光R2 。在該光學系統中,使用使光波長為λ1 的光穿透並阻擋光波長為λ2 的光以分離每個光波長分量的波長濾光片F1,以及使光波長為λ2 的光穿透並阻擋光波長為λ1 的光以分離每個光波長分量的波長濾光片F2。
作為用於本實施態樣的測量方法的另一光學系統2,例如,使用不具備波長濾光片而只具備一個影像偵測器5的圖4的光學系統,也可分別在不同的時間取得各波長的兩種離軸全像圖Ij OR 、Ij LR
作為其它光學系統2,可以在圖4的光學系統中針對每個波長設置離軸參考光R的光學系統。 在這種情況下,可以互相離軸的方式配置兩個離軸參考光R1 和R2 ,並可一次記錄波長相異的全像圖。由於離軸配置的影響,可以透過後處理將每個波長的全像圖分離。從一次記錄的全像圖在空間頻率區域中執行濾波處理,可以分離並提取光波長λ1 的複變振幅分量和光波長λ2 的複變振幅分量。
另,當使用針對離軸參考光R時,使用互為離軸配置的兩個光學系統記錄可能的測定面的情況下,與使用圖8中的光學系統相比時,可記錄的測量表面更窄。相反的,在使用圖8所示的光學系統記錄可能的測定面的情況下,可以擴大可記錄的測量面,但由於透過不同的影像偵測器51、52分別記錄兩個全像圖,因此在重製物體光O時,需要調整兩個重製光的位置。
根據本實施態樣的表面形狀量測裝置1和表面形狀量測方法,合成波長λB =(λ1 λ2 )/(λ2 -λ1 )長於原始波長λ1 和λ2 中的任何一個,因此可測量的高度範圍可以擴展。使用不同波長的光的表面形狀量測裝置1和表面形狀量測方法可以擴展到不僅使用兩個波長,也可以使用三個或更多個波長的裝置和方法。本方法可以透過對記錄的全像圖資料進行後處理來執行測量,這一點與使用拍波的傳統方法明顯不同。因此,例如,在三個波長λ1 、λ2、λ3的情況下,透過後處理選擇兩個波長,例如,進行諸如差(1/λ1 -1/λ2 )之類的多種組合,或者使用所有三個波長,例如總和和差(1/λ1 +1/λ2 -1/λ3 )之類的多種組合,根據各種組合對測量區域進行內插來執行測量。 (第六實施態樣)
參考圖9說明根據第六實施態樣的表面形狀量測裝置1。本實施方式的表面形狀量測裝置1例如可以由圖5、圖6所示的表面形狀量測裝置1來實施,因此也一併參照這些圖。表面形狀量測裝置1包括:取得被測量表面的全像圖資料的資料獲取部10、和從透過資料獲取部10取得的被測量表面的全像圖重製圖像的圖像重製部12。表面形狀量測裝置1更包括控制資料獲取部10與圖像重製部12的電腦所形成的控制部11、FFT等計算用的程式、以及儲存控制用資料的記憶體11a。
資料獲取部10具有光學系統2,產生並傳播光;光束合成器3,係作為光束合成器用的立方體型分光器;影像偵測器5,將光強度轉換為電信號並且將其輸出為全像圖資料;以及資料儲存部6,儲存由影像偵測器5取得的資料。資料儲存部6和圖像重製部12一起設置在控制部11中。此外,資料獲取部10包括位置和方向可以相對於光學系統2和影像偵測器5的配置進行調整的試樣台7。
圖像重製部12包括全像圖產生部13至16和18、參考點檢測部17、形狀測量部19、以及顯示部20,用於執行圖1、圖3所示的各個步驟的處理。
複變振幅全像圖生成部13從物體光離軸全像圖IOR 和參考光離軸全像圖ILR 中去除離軸參考光R的成分,輸出針對物體光O和同軸球面波參考光L的複變振幅同軸全像圖JOL
計算參考光全像圖生成部14基於從參考光聚焦點PL 射出的光是球面波的事實,在作為影像偵測器5的受光面的全像圖面50上生成表示同軸球面波參考光L的光波的同軸參考光全像圖jL
物體光全像圖生成部15利用同軸參考光全像圖jL ,從複變振幅同軸全像圖JOL 在全像圖表面50上生成代表的物體光O的光波的物體光全像圖g。
重製物體光全像圖生成部16利用光傳播計算將物體光全像圖g轉換為虛擬平面VP的位置處的全像圖,並且將轉換後的全像圖轉換為作為虛擬平面VP相對於全像圖平面50的傾斜角的虛擬平面傾斜角αO ,進行旋轉轉換,以在虛擬平面VP上生成測量用的重製物體光全像圖hV
參考點檢測部17計算物體光全像圖g的光傳播,利用相關函數計算檢測物體光的聚光點,並將該點設為形狀量測用的參考點S1。
分析光全像圖生成部18因應從參考光聚光點PL 發射的同軸球面波參考光L,在球面波的虛擬平面VP上解析式地生成球面波光全像圖sV
形狀測量部19藉由將重製物體光全像圖hV 除以球面波光全像圖sV 來生成用於物體光O和球面波全像圖sV 的測量用全像圖JV OS ,並從測量用的複變振幅同軸全像圖JV OS 的相位分佈求得物體4在被測量表面上的高度分佈。
顯示部20顯示由影像偵測器5獲得的圖像,表示出每個全像圖的強度圖像、相位分佈圖像等。儲存在資料儲存部6中的物體光離軸全像圖IOR 和參考光離軸全像圖ILR 的資料由圖像重製部12處理並顯示在顯示部20上。 顯示部20是諸如液晶顯示裝置等的FPD,顯示除圖像之外的資料,並且用作用戶界面。除了顯示部20之外,圖像重製部12的每個部分都是在電腦上動作的程式和包括其副程式組的軟體構成。 (實施例1)
將參照圖10、圖11、圖12說明根據實施例1的平坦度測量。使用具有4λ至5λ的平坦度規格的浮製玻璃(float glass)基板的平面鏡作為用於平坦度測量的樣品,使用圖4、圖5所示的光學系統得到形狀測量用的複變振幅同軸全像圖。所使用的光源是綠色半導體激發的固態雷射(波長:532 nm,輸出:50 mW),影像偵測器是單色相機鏈接CCD相機(像素數:6600×4400,像素間距:5.5μm)。用於同軸球面波參考光和球面波照明光的各球面波光係使用數值孔徑NA = 0.1的物鏡和具有3μm孔徑直徑的針孔來產生。將針孔放置在距影像偵測器表面567 mm的位置,將待測量表面放置在距影像偵測器表面13.9 mm的位置處。記錄全像圖的數值孔徑(像素數4096×4096)為NA = 0.02。
圖10表示出在具有4至5λ的平坦度規格的平面鏡的鏡表面上的複變振幅同軸全像圖的相位分佈。圖11表示出使用圖10的相位分佈求得的表面高度的二維分佈。測定範圍為15mm×15mm,表面高度的最大值與最小值之差PV為431.7nm,高度的標準偏差RMS為69.0nm。在測量範圍內,PV值小於λ,並滿足4λ至5λ的平坦度規格。圖12(a)和圖12(b)分別表示出在圖11所示的x軸方向和y軸方向上的直線上的高度分佈。所獲得的圖12(a)所示的x軸方向的曲率半徑大約為160m。 (實施例2)
將參照圖13、圖14說明根據實施例2的平坦度測量。使用具有λ/4的平坦度規格的平面鏡作為用於平坦度測量的樣品,用實施例1所用的裝置得到形狀測量用的複變振幅同軸全像圖。圖13所示為λ/4的平面鏡的表面高度的二維分佈。表面高度的最大值與最小值之差PV為81.3nm,高度的標準偏差RMS為15.3nm。在測量範圍內,PV值小於λ/4,並滿足λ/4的平坦度規格。圖14、圖13表示出x軸方向和y軸方向上的直線上的高度分佈。圖14(b)表示出y軸方向的曲率半徑大約為750m。表面形狀測量的解析度由對重製物體光執行的空間頻率濾波的帶寬決定。實施例2和3中的圖像解析度約為78μm。 (實施例3)
將參照圖15、圖16說明根據實施例3的平坦度測量。使用具有λ/20的平坦度規格的精密光學平面鏡作為用於平坦度測量的樣品,用實施例1所用的裝置得到形狀測量用的複變振幅同軸全像圖。圖15所示為λ/4的平面鏡的表面高度的二維分佈。表面高度的最大值與最小值之差PV為19.6nm,高度的標準偏差RMS為2.5nm。在測量範圍內,PV值小於λ/20,並滿足λ/20的平坦度規格。圖16(a)(b)分別表示出圖15所示x軸方向和y軸方向上的直線上的高度分佈。
記錄的物體光中另有在立方體型分光器(光束合成器)的表面和固定在影像偵測器前表面的玻璃蓋的表面上產生的弱多次反射光。由於分光器和玻璃蓋的表面與影像偵測器表面間稍微傾斜,會使多個反射光的傳播方向和來自被測量表面的反射光的傳播方向發生偏移。在本實施例中,利用此特性在真實空間中執行空間濾波,從而從記錄全像圖去除多重反射光的影響。
表面形狀測量的解析度由對重製物體光執行的空間頻率濾波的帶寬決定。圖16(a)的測量結果是在高解析度δ=33μm和低解析度δ=530μm兩種解析度下獲得的高度分佈。圖16(b)的測定結果也相同。
高度分佈的高頻成分除了要測量的表面的表面粗糙度引起的散射光之外,還包括在影像偵測器的立方體型分光器表面和玻璃蓋表面上產生的散射光,以及在影像偵測器上產生的雜訊也要加以考慮。為了獲得高精度的表面形狀測量和表面粗糙度測量,必須去除在分光器表面或玻璃蓋表面上產生的散射光。 (實施例4)
將參照圖17、圖18說明根據實施例4的平坦度測量。使用負片圖案USA測試標靶作為用於平坦度測量的樣品,用實施例1所用的裝置得到形狀測量用的複變振幅同軸全像圖。圖17所示為標靶表面高度的二維分佈。測量範圍為15mm×15mm,高度高的部分代表鉻表面,低的部分代表玻璃基板表面。表面形狀測量的解析度由對重製物體光執行的空間頻率濾波的帶寬決定。圖17所示的圖像解析度約為24μm。
圖18(a)和圖18(b)分別表示出圖17中所示的x軸方向和y軸方向上的直線上的高度分佈。 玻璃表面和鉻表面可以清楚地區分。鉻厚度在整個測量範圍內是恆定的,約為60 nm。此外,圖17和18中的結果顯示玻璃基板以平緩的馬鞍形彎曲。在x軸方向和y軸方向各得到大約500m的曲率半徑。 (實施例5)
將參照圖19至圖23說明根據實施例5的平坦度測量。本實施例5係使用與第五實施態樣相關的表面形狀量測裝置1,進行液晶顯示器用的色彩濾光片的表面形狀測量。此表面形狀量測裝置1為可利用單一波長以及2波長進行一次記錄和量測的裝置。待測量的彩色濾光片為RGB濾光片附接到黑矩陣的構造,在彩色濾光片上以格紋間隔配置有高約4μm、直徑約6μm的柱狀光間隔物。
在本實施例中,係進行以測量柱狀光間隔物高度用的波長λ= 756nm和786nm這兩種波長的雷射光進行的測量,以及以用以測量低的部分的高度的波長λ=632.8nm的He-Ne雷射光進行單一波長的測量,這兩種類型的測量。
圖19表示出在4mm的直徑範圍內的彩色濾光片的高度分佈的測量結果,圖20表示出圖19中的正方形部分的放大圖。在這些圖像中,彩色濾光片的高度低的部分是黑色的,而彩色濾光片的高度高的部分是白色的,但是為了易於觀看,柱狀光隔離物a的部分由黑點表示。如這些圖像所示,可得到沒有失真的圖像,並且可以清楚地辨識出彩色濾光片的精細結構和每個部分的高度分佈。而且,從測量結果可知,濾光片的平坦度可以非常高精度地保持。
圖21表示出沿圖20中的x軸方向的直線(i)的測量結果,圖22表示出沿圖20中的y軸方向的直線(ii)的測量結果。在每條直線(i)和(ii)上包括兩個柱狀光間隔物a。
如圖21和22所示,濾光器部分b和c(週期短的低峰)是使用波長λ= 632.8nm的雷射光的測量結果,光間隔物a(週期長的高峰)是使用波長為756 nm和786 nm的雷射光測得的結果。 由後兩個雷射光束產生的拍頻波長λB 為λB =19.8μm,透過此可以測量具有約4μm的高度的柱狀光間隔物a。從光間隔物a的峰向下延伸的虛線表示重製光的光強度太小而無法精確測量的部分。這表示來自光間隔物側面的反射光沒有到達影像偵測器(CCD)。
圖23表示出在記錄範圍內對各光間隔物加以編號,一併顯示測量結果。從該測量結果可以看出,以高精度形成了高度為4μm的等高的光間隔物,可進行有用的量測。從本實施例的結果可以看出,可從nm到數十μm的寬廣範圍內,根據第五實施態樣的表面形狀量測裝置1和方法進行高精度的高度分佈測量。此外,在本實施例中,能夠一次記錄物體光,並在電腦中進行後處理,以得到測量結果,可實現高速且高精度的形狀量測。
又,本發明不限於上述結構,可以對上述構造進行各種修改變形。例如,可以採用上述實施形態的構造彼此組合的構造。 [產業上的可利用性]
本發明相對於現有技術的新穎性和優越性如下:(1)透過一次記錄光波可進行高速測量;(2)可進行被測量表面的高精度絕對平坦度的測量;以及(3)因為不使用參考面和準直鏡等,所以可以增大平坦度測量的直徑;(4)可以對具有廣範圍反射係數的被測量面進行平坦度的測量;(5)可利用被測量表面上的重製反射光測量高解析度的表面形狀和表面粗糙度等;(6)不需要諸如移動或旋轉的調節機構,這使得記錄用光學系統的構造變得非常簡單。
由於上述優點,本發明可以利用在光學、數位全像術、光學測量、干涉測量和精細形狀測量等領域中,廣泛應用這些優點。另外,從技術應用的觀點來看,可以考慮在諸如精密測量、奈米技術、基板形狀測量、半導體基板檢查和光學部件檢查等領域中使用。具體的使用實例包括薄玻璃基板、光罩、大型晶圓等的表面形狀測量、光學部件的表面形狀測量、工業基準面的測量等等。
1:表面形狀量測裝置 10:資料資料獲取部 12:圖像重製部 13:複變振幅全像圖產生部 14:計算參考光全像圖生成部 15:物體光全像圖生成部 16:重製物體光全像圖生成部 17:參考點檢測部 18:分析光全像圖生成部 19:形狀測量部 2:光學系統 27:聚光透鏡 27a:光瞳板 27b:成像透鏡 28:凹面鏡 28a:光瞳板 28b:成像透鏡 3:光束合成器(立方體型分光器) 4:物體 5:影像偵測器 50:全像圖面 6:資料保存部 7:試樣台 C:相關函數 HW:調變波 ILR,Ij LR:參考光離軸全像圖 IOR,Ij OR:物體光離軸全像圖 JOL:物體光複變振幅同軸全像圖 JV OS,Jj V OS:量測用全像圖(量測用複變振幅同軸全像圖) L:同軸球面波參考光 O:物體光 PL:同軸球面波參考光的聚光點 PO:參考點 PR:離軸參考光的聚光點 Q:照明光 R:離軸參考光 S1:形狀量測用的參考點(參考點光源) VP:虛擬平面 fp:虛擬點光源(探測函數) g:物體光全像圖 h0:評估全像圖 hV:重製物體光全像圖 jL:同軸參考光全像圖 sV:球面波光全像圖 αO:傾斜角 ρ:從影像偵測器到同軸球面波參考光聚光點的距離 λB:調變波長 λj,λ1,λ2:波長 θB:調變相位
【圖1】 表示出關於本發明第一實施態樣的表面形狀量測方法的流程圖。 【圖2】用以說明同一量測方法的概念圖。 【圖3】 表示出在同一量測方法中以高精度決定虛擬平面的方法的流程圖。 【圖4】 表示出關於本發明第二實施態樣的表面形狀量測裝置所取得的物體光離軸全像圖的狀態的側面圖。 【圖5】 表示出關於同一裝置所取得的參考光離軸全像圖的狀態的側面圖。 【圖6】光離軸全像圖的狀態的側面圖。 【圖7】 表示出關於本發明第四實施態樣的表面形狀量測裝置所取得的物體光離軸全像圖的狀態的側面圖。 【圖8】 表示出關於本發明第五實施態樣的表面形狀量測裝置的影像偵測器週邊構成圖。 【圖9】表示出第六實施態樣的表面形狀量測裝置的方塊構成圖。 【圖10】表示出(實施例1)利用本發明表面形狀量測裝置求得平面鏡試料表面上的複變振幅全像圖的相位分布圖像。 【圖11】表示出利用圖10的相位分布求得表面高度的圖像。 【圖12】(a)為圖11的x方向的直線上的高度分布圖、(b)為同圖的y方向的直線上的高度分布圖。 【圖13】表示出(實施例2)針對其它平面鏡試料所求得的表面高度分布圖像。 【圖14】(a)為圖13的x方向的直線上的高度分布圖、(b)為同圖的y方向的直線上的高度分布圖。 【圖15】表示出(實施例3)針對再其它平面鏡試料所求得的表面高度分布圖像。 【圖16】(a)為圖15的x方向的直線上的高度分布圖、(b)為同圖的y方向的直線上的高度分布圖。 【圖17】表示出(實施例4)針對負片圖案USA測試標靶所求得的表面高度分布圖像。 【圖18】(a)為圖17的x方向的直線上的高度分布圖、(b)為同圖的y方向的直線上的高度分布圖。 【圖19】表示出(實施例5)利用本發明表面形狀量測裝置求所測得用於液晶顯示器的濾光片的高度分布圖像。 【圖20】為圖19的正方形所包圍部分的放大圖。 【圖21】為表示出圖20的圖像中在測定線(i)上所測定的結果的高度分布圖。 【圖22】為表示出圖20的圖像中在測定線(ii)上所測定的結果的高度分布圖。 【圖23】為針對圖19的測定對像得到的間隔物高度測定值分布圖。
#1:光學系統設置
#2:物體光全像圖獲取步驟
#3:參考光全像圖獲取步驟
#4:物體光全像圖生成步驟
#5:量測用物體光全像圖生成步驟
#6:參考點檢測步驟
#7:球面波全像圖生成步驟
#8:表面形狀測量步驟

Claims (9)

  1. 一種使用全像技術的表面形狀量測裝置,其特徵在於包括: 一資料獲取部,利用影像偵測器分別取得照射被測量表面的球面波照明光(Q)的反射光所成的物體光(O)以及相對於物體光(O)同軸的同軸球面波參考光(L)的兩個光的資料分別作為物體光離軸全像圖(IOR )和參考光離軸全息圖(ILR );以及 一圖像重製部,透過從資料獲取部取得的資料重製被測量表面的圖像,取得其表面形狀資料, 該資料獲取部包括: 一光學系統,其構成使得相對於與該被測量表面相接的虛擬設定的虛擬平面(VP)而言,為球面波照明光(Q)聚光點的照明光聚光點(PQ )以及為同軸球面波參考光(L)聚光點的參考光聚光點(PL )互為鏡像配置,並可讓同軸球面波參考光(L)斜向通過虛擬平面(VP)後入射至該影像偵測器, 該圖像重製部包括: 一物體光全像圖生成部,透過對前述兩種類型的離軸全像圖(IOR ,ILR )資料、參考光聚光點(PL )的位置資訊、以及從參考光聚光點(PL )發射光的球面波特性進行運算處理而生成代表物體光(O)光波的物體光全像圖(g); 一重製物體光全像圖生成部,對物體光全像圖(g)進行光傳播轉換和旋轉轉換,以於虛擬平面(VP)生成重製物體光全像圖(hV ); 一參考點偵測部,透過計算處理對物體光全像圖(g)進行光傳播轉換以偵測物體光(O)集光位置,此位置具有高精確度化的參考光聚光點(PL )的位置資訊,將其設定為形狀測量用的參考點(S1); 一分析光全像圖生成部,分析生成的球面波光全像圖(sV )為從參考點(S1)放射出的球面波光在虛擬平面(VP)中的全像圖;以及 一形狀量測部,把重製物體光全像圖(hV )除以該球面波光全像圖(sV ),生成量測用的全像圖(JV OS =hV /SV ),從該量測用全像圖(JV OS =hV /SV )的相位分佈求得物體的被測量表面中的高度分布。
  2. 如申請專利範圍第1項所述的表面形狀量測裝置,其特徵在於: 該資料獲取部緊接在該影像偵測器之前,並包括一由立方體型分光器構成的光束合成器,用以使該物體光(O)或該同軸球面波參考光(L)、以及為了取得這兩種離軸全像圖(IOR ,ILR )而使用的該離軸參考光(R)多工入射至該影像偵測器; 該圖像重製部在考慮到光束合成器的折射率下,以平面波展開法進行通過該光束合成器的光的傳播計算,藉由運算處理生成從該參考光聚光點(PL )放射出通過該光束合成器到達為該影像偵測器受光面的全像圖面的光波,代表相當於該同軸球面波參考光(L)的光波的同軸參考光全像圖(jL )。
  3. 如申請專利範圍第1項或第2項所述的表面形狀量測裝置,其特徵在於: 該光學系統包括使該物體光(O)與該同軸球面波參考光(L)聚光的聚光透鏡、根據該聚光透鏡配置於聚光位置並限制通過光量的光瞳板、以及以組合至該光瞳板方式配置的成像透鏡,使該物體光(O)與該同軸球面波參考光(L)成像於該影像偵測器。
  4. 如申請專利範圍第1項或第2項所述的表面形狀量測裝置,其特徵在於: 該光學系統包括使該物體光(O)與該同軸球面波參考光(L)聚光的凹面鏡、根據該凹面鏡配置於聚光位置並限制通過光量的光瞳板、以及以組合至該光瞳板方式配置的成像透鏡,使該物體光(O)與該同軸球面波參考光(L)成像於該影像偵測器。
  5. 一種表面形狀量測方法,其特徵在於包括: 在使用全像術來測量物體的被測量表面的形狀的表面形狀量測方法中, 將作為同軸球面波參考光(L)聚光點所為的參考光聚光點(PL )配置於影像偵測器的光軸上,將球面波照明光(Q)聚光點所為的照明光聚光點(PQ )配置於從該光軸偏離的位置處,將該參考光聚光點(PL )與照明光聚光點(PQ )連接線段垂直二等分的平面設定為虛擬平面(VP); 配置該物體使其待測量表面與該虛擬平面(VP)相接,利用該影像偵測器取得從該被測量表面反射的該球面波照明光(Q)的反射光所為的物體光(O)資料,成為物體光離軸全像圖(IOR ); 在不配置該物體的狀態下,利用該影像偵測器取得通過該虛擬平面(VP)入射至該影像偵測器的該同軸球面波參考光(L)的資料,成為參考光離軸全像圖(ILR ); 從該兩種離軸全像圖(IOR , ILR )的資料,生成包含該物體光(O)與該同軸球面波參考光(L)兩方資訊的複變振幅同軸全像圖(JOL ); 利用該同軸球面波參考光(L)為球面波光的特性,透過運算處理,生成代表該影像偵測器的受光面所為全像圖面中的該同軸球面波參考光(L)的光波的同軸參考光全像圖(jL ); 利用該複變振幅同軸全像圖(JOL )與該同軸參考光全像圖(jL ),生成代表該物體光(O)的光波的物體光全像圖(g); 對該物體光全像圖(g)做光傳播轉換與旋轉轉換,生成該虛擬平面(VP)上的重製物體光全像圖(hV ); 透過運算處理對物體光全像圖(g)進行光傳播轉換以偵測物體光(O)集光位置,此位置具有高精確度化的參考光聚光點(PL )的位置資訊,將其設定為形狀測量用的參考點(S1); 分析生成從該參考點(S1)放射出的球面波光在該虛擬平面(VP)中的全像圖而為的球面波光全像圖(sV );以及 把該重製物體光全像圖(hV )除以該球面波光全像圖(sV ),生成量測用的全像圖(JV OS =hV /SV ),從該量測用全像圖(JV OS =hV /SV )的相位分佈求得該物體的被測量表面中的高度分布。
  6. 如申請專利範圍第5項所述的表面形狀量測方法,其特徵在於: 利用不同波長(λj ,j=1,2)的光,取得各波長(λ1 ,λ2 )下該物體光(O)與該同軸球面波參考光(L)的資料,作為該兩種離軸全像圖(IOR , ILR , j=1, 2); 生成該各波長(λ1 ,λ2 )下的該量測用全像圖(JV OS =hV /sV , j=1, 2);以及 進行求得該兩個量測用全像圖(JV OS =hV /sV , j=1, 2)的比率的外差轉換,其結果生成了調變波(HW=J1 V OS /J2 V OS ),利用包含於此調變波(HW)中的調變波長(λB =λ1 λ2 /(λ2 -λ1 ))和調變相位分佈(θB (x',y')=θ1 -θ2 )求得該物體的被測量表面上的高度分佈。
  7. 如申請專利範圍第5項或第6項所述的表面形狀量測方法,其特徵在於: 為了使該被測量表面連接該虛擬平面(VP),使用試樣台以配置該物體, 該試樣台的調整進行: 該試樣台上固定有具有參考平面的參考平面基板,取得從該參考平面基板反射的資料作為該物體光離軸全像圖(IOR ); 利用該物體光離軸全像圖(IOR )和該參考光離軸全像圖(ILR )生成該複變振幅同軸全像圖(JOL );以及 改變該試樣台的位置和傾斜度以減少該複變振幅同軸全像圖(JOL )的相位分佈的變化。
  8. 如申請專利範圍第5項或第6項所述的表面形狀量測方法,其特徵在於: 透過光傳播計算將該物體光全像圖(g)傳播到該參考光聚光點(PL )的位置(z =ρ),生成評估全像圖(h0); 透過代表點光源的探測函數(fp)與該評估全像圖(h0)之間相關函數的計算,偵測出該評估全像圖(h0)面內該物體光(O)聚光所在的位置(x1, y1, ρ),作為虛擬聚光點(P1);以及 透過光傳播計算使該評估全像圖(h0)在光軸方向上試驗傳播,固定該全像圖(h0)面內的該虛擬聚光點(P1)的位置,進行該相關函數運算,檢測出該物體光(O)在該光軸方向上的聚光位置(x1, y1, z1),將此位置設為形狀測量用的參考點(S1)。
  9. 如申請專利範圍第7項所述的表面形狀量測方法,其特徵在於: 透過光傳播計算將該物體光全像圖(g)傳播到該參考光聚光點(PL )的位置(z =ρ),生成評估全像圖(h0); 透過代表點光源的探測函數(fp)與該評估全像圖(h0)之間相關函數的計算,偵測出該評估全像圖(h0)面內該物體光(O)聚光所在的位置(x1, y1, ρ),作為虛擬聚光點(P1);以及 透過光傳播計算使該評估全像圖(h0)在光軸方向上試驗傳播,固定該全像圖(h0)面內的該虛擬聚光點(P1)的位置,進行該相關函數運算,檢測出該物體光(O)在該光軸方向上的聚光位置(x1, y1, z1),將此位置設為形狀測量用的參考點(S1)。
TW108130975A 2018-08-29 2019-08-29 表面形狀量測裝置以及表面形狀量測方法 TWI797377B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160900 2018-08-29
JP2018-160900 2018-08-29

Publications (2)

Publication Number Publication Date
TW202020400A true TW202020400A (zh) 2020-06-01
TWI797377B TWI797377B (zh) 2023-04-01

Family

ID=69643611

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108130975A TWI797377B (zh) 2018-08-29 2019-08-29 表面形狀量測裝置以及表面形狀量測方法

Country Status (7)

Country Link
US (1) US11635289B2 (zh)
EP (1) EP3845857A4 (zh)
JP (1) JP7231946B2 (zh)
KR (1) KR20210048528A (zh)
CN (1) CN112739979B (zh)
TW (1) TWI797377B (zh)
WO (1) WO2020045589A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137560A1 (ja) 2020-12-25 2022-06-30 大塚電子株式会社 光学測定システムおよび光学測定方法
CN113008133B (zh) * 2021-03-04 2023-02-17 苏州慧利仪器有限责任公司 一种检测用柱面镜头
KR20220142148A (ko) 2021-04-14 2022-10-21 주식회사 엘지에너지솔루션 이차전지 노칭용 이물제거장치
CN113405459B (zh) * 2021-07-16 2023-03-21 中国科学院长春光学精密机械与物理研究所 一种用于cmm***的控制方法
KR102521324B1 (ko) * 2022-03-03 2023-04-20 (주)오로스 테크놀로지 입사각을 갖는 오프-액시스 광학계의 정렬 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688715A (ja) * 1992-09-07 1994-03-29 Kowa Co ホログラム原器作成方法及びそれを用いた非接触式形状検査装置
EP1071974B1 (fr) * 1998-04-15 2004-01-28 Vincent Lauer Microscope generant une representation tridimensionnelle d'un objet et images generees par ce microscope
US6747771B2 (en) * 2002-09-03 2004-06-08 Ut-Battelle, L.L.C. Off-axis illumination direct-to-digital holography
US8269981B1 (en) 2009-03-30 2012-09-18 Carl Zeiss Smt Gmbh Method and an apparatus for measuring a deviation of an optical test surface from a target shape
JP5347787B2 (ja) * 2009-07-13 2013-11-20 株式会社ニコン 軸外しホログラフィック顕微鏡
JP2011089820A (ja) 2009-10-21 2011-05-06 Clarion Co Ltd ナビゲーション装置及びその表示方法
WO2011089820A1 (ja) 2010-01-22 2011-07-28 兵庫県 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
JP5652639B2 (ja) 2010-06-21 2015-01-14 日本パルスモーター株式会社 リニアモータの可動子
JP5444530B2 (ja) * 2010-07-07 2014-03-19 公立大学法人兵庫県立大学 ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法
US9036900B2 (en) 2011-01-21 2015-05-19 University Of Hyogo Three-dimensional shape measurement method and three-dimensional shape measurement device
JP6024324B2 (ja) 2012-09-13 2016-11-16 コクヨ株式会社 筆記具
EP2905645B1 (en) 2012-10-05 2018-03-07 University of Hyogo Holographic microscope and holographic image generation method
CN103034109A (zh) * 2012-12-13 2013-04-10 浙江科技学院 双ccd镜像重叠调节及单曝光同轴数字全息记录装置
CN103207532B (zh) * 2013-04-21 2014-10-22 中国科学院光电技术研究所 一种同轴检焦测量***及其测量方法
JP6135424B2 (ja) 2013-09-26 2017-05-31 日本精工株式会社 シール付転がり軸受ユニットの製造方法
JP6424313B2 (ja) 2013-10-28 2018-11-21 公立大学法人兵庫県立大学 ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法
JP6472641B2 (ja) 2014-11-18 2019-02-20 株式会社ミツトヨ 非接触位置決め方法および非接触位置決め装置
CN106292238B (zh) * 2015-05-20 2019-03-05 华中科技大学 一种反射式离轴数字全息显微测量装置
JP6248298B2 (ja) 2015-05-20 2017-12-20 株式会社アクセル 静止画情報処理方法
CN108271407B (zh) * 2015-06-09 2020-07-31 三菱电机株式会社 图像生成装置、图像生成方法以及图案光生成装置
JP6724473B2 (ja) * 2016-03-28 2020-07-15 富士ゼロックス株式会社 デジタルホログラフィ装置
JP6759658B2 (ja) 2016-03-28 2020-09-23 富士ゼロックス株式会社 デジタルホログラフィ装置
US10303120B2 (en) 2016-03-28 2019-05-28 Fuji Xerox Co., Ltd. Digital holographic apparatus
US10378963B2 (en) * 2016-06-24 2019-08-13 Ushio Denki Kabushiki Kaisha Optical system phase acquisition method and optical system evaluation method
WO2018038064A1 (ja) 2016-08-24 2018-03-01 公立大学法人兵庫県立大学 エリプソメトリ装置およびエリプソメトリ方法

Also Published As

Publication number Publication date
US11635289B2 (en) 2023-04-25
EP3845857A1 (en) 2021-07-07
CN112739979A (zh) 2021-04-30
JP7231946B2 (ja) 2023-03-02
TWI797377B (zh) 2023-04-01
WO2020045589A1 (ja) 2020-03-05
US20220349699A1 (en) 2022-11-03
CN112739979B (zh) 2022-09-09
JPWO2020045589A1 (ja) 2021-08-26
KR20210048528A (ko) 2021-05-03
EP3845857A4 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
TWI797377B (zh) 表面形狀量測裝置以及表面形狀量測方法
US11644791B2 (en) Holographic imaging device and data processing method therefor
JP4772961B2 (ja) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法
US10635049B2 (en) Ellipsometry device and ellipsometry method
US7880891B1 (en) Total internal reflection holographic microscope
US20170023472A1 (en) Apparatus and method for quantitive phase tomography through linear scanning with coherent and non-coherent detection
EP3065001B1 (en) Holographic microscope and data processing method for high-resolution hologram image
CN110987817B (zh) 基于大数值孔径物镜整合暗场观察的椭偏仪及测量方法
JP2014508922A (ja) シングルショットの全視野反射位相顕微鏡法
JP7352292B2 (ja) ホログラフィック撮像装置およびホログラフィック撮像方法
JP2012145361A (ja) デジタルホログラフィ装置
JP3816402B2 (ja) 表面形状測定装置及び表面形状測定方法
JP2022162306A (ja) 表面形状計測装置および表面形状計測方法
WO2023042339A1 (ja) 光学測定システムおよび光学測定方法
JP2001004337A (ja) 搬送縞発生手段を具備した被検体検査装置
Pedrini et al. Resolution enhanced technologies in digital holography
Zhao et al. Acquisition and Processing of Three-Dimensional Information by Digital Holography
TAO Development of a fringe projection method for static and dynamic measurement