TW202005256A - Drive device, electric vehicle, and drive device control method - Google Patents

Drive device, electric vehicle, and drive device control method Download PDF

Info

Publication number
TW202005256A
TW202005256A TW108110738A TW108110738A TW202005256A TW 202005256 A TW202005256 A TW 202005256A TW 108110738 A TW108110738 A TW 108110738A TW 108110738 A TW108110738 A TW 108110738A TW 202005256 A TW202005256 A TW 202005256A
Authority
TW
Taiwan
Prior art keywords
discharge
voltage
control circuit
smoothing capacitor
charging voltage
Prior art date
Application number
TW108110738A
Other languages
Chinese (zh)
Other versions
TWI732199B (en
Inventor
目黑一由希
井ノ口雄大
Original Assignee
日商新電元工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新電元工業股份有限公司 filed Critical 日商新電元工業股份有限公司
Publication of TW202005256A publication Critical patent/TW202005256A/en
Application granted granted Critical
Publication of TWI732199B publication Critical patent/TWI732199B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A main control circuit of this drive device detects the first charged voltage of a smoothing capacitor before the start of discharging through a discharging resistor. Before a preset set time elapses from the start of discharging through the discharging resistor, the main control circuit calculates, by multiplying the first charged voltage by a preset factor, a discharging continuable voltage that is the charged voltage of the smoothing capacitor estimated during the elapse of the set time and capable of being continuously discharged through the discharging resistor. The main control circuit detects the second charged voltage of the smoothing capacitor during the elapse of the set time and compares the second charged voltage with the discharging continuable voltage. When the second charged voltage is less than or equal to the discharging continuable voltage, the main control circuit controls a discharging control circuit so as to continue discharging through the discharging resistor. Meanwhile, when the second charged voltage is greater than the discharging continuable voltage, the main control circuit controls the discharging control circuit so as to stop discharging through the discharging resistor.

Description

驅動裝置、電動車輛以及驅動裝置的控制方法Drive device, electric vehicle, and control method of drive device

本發明涉及驅動裝置、電動車輛以及驅動裝置的控制方法。The invention relates to a drive device, an electric vehicle, and a control method of the drive device.

以往,以電池作爲電源,以三相電機(以下簡稱爲電機)作爲動力源的電動兩輪車已被普遍認知。In the past, electric two-wheeled vehicles that used batteries as power sources and three-phase motors (hereinafter referred to as motors) as power sources have been widely recognized.

在這種電動兩輪車中,爲了驅動電機,是藉由在每一相上具備高端開關以及低端開關的三相全橋電路(即,逆變電路)來實現由電池向電機的各相線圈的通電控制。In this electric two-wheeled vehicle, in order to drive the motor, a three-phase full-bridge circuit (that is, an inverter circuit) with a high-end switch and a low-end switch on each phase is used to realize each phase from the battery to the motor Energization control of the coil.

另外,在電池與三相全橋電路之間,還設置有平滑電容器。In addition, a smoothing capacitor is provided between the battery and the three-phase full-bridge circuit.

爲了對平滑電容器的充電電壓進行放電,以往通常是使用放電電阻來進行放電。In order to discharge the charging voltage of the smoothing capacitor, a discharge resistor is usually used to discharge.

然而,在平滑電容器與電池相連接的狀態下,當大電壓被施加於放電電阻時,就會産生放電電阻的發量熱過大的問題。However, in a state where the smoothing capacitor is connected to the battery, when a large voltage is applied to the discharge resistor, there is a problem that the amount of heat generated by the discharge resistor is excessively large.

在特開2013-38895號公報中,揭露了一種電容器的放電電路。但是這種放電電路的問題在於:爲了在即便是放電電路的電阻器出現異常的情况下依然能够確保放電路徑,採用了在逆變器的輸入端子之間連接高阻值電阻器的並聯連接體,從而導致了放電電阻的大型化。In Japanese Patent Laid-Open No. 2013-38895, a discharge circuit of a capacitor is disclosed. However, the problem with this type of discharge circuit is that in order to ensure the discharge path even when the resistor of the discharge circuit is abnormal, a parallel connection body is used that connects a high-resistance resistor between the input terminals of the inverter , Which led to the enlargement of the discharge resistance.

鑒於上述課題,本發明的目的,是提供一種驅動裝置、電動車輛以及驅動裝置的控制方法,能够在防止放電電阻的發熱量過大的同時,謀求放電電阻的小型化。In view of the above-mentioned problems, an object of the present invention is to provide a drive device, an electric vehicle, and a control method for a drive device, which can prevent the discharge resistor from generating excessive heat while miniaturizing the discharge resistor.

本發明的一種形態涉及的驅動裝置,其包括:A driving device according to one aspect of the present invention includes:

平滑電容器,連接於和電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電;A smoothing capacitor is connected between the power terminal connected to the positive electrode of the battery and the ground terminal connected to the negative electrode of the battery, using the voltage supplied from the battery to the power terminal and the ground terminal To charge;

放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電;A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor;

放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制;A discharge control circuit, connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controlling the discharge of the smoothing capacitor by the discharge resistor;

主控制電路,對所述放電控制電路的運作進行控制;以及A main control circuit to control the operation of the discharge control circuit; and

驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至電機,從而驅動所述電機,The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor,

其中,所述主控制電路Among them, the main control circuit

在藉由By

所述放電電阻進行的放電開始前,檢測出所述電源端子與所述接地端子之間的所述平滑電容器的第一充電電壓,Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor between the power terminal and the ground terminal is detected,

在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓,After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses,

在經過所述設定時間時,檢測出所述電源端子與所述接地端子之間的所述平滑電容器的第二充電電壓,When the set time elapses, the second charging voltage of the smoothing capacitor between the power terminal and the ground terminal is detected,

將所述第二充電電壓與所述可繼續放電電壓進行比較,Comparing the second charging voltage with the continuous discharge voltage,

當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor.

在所述驅動裝置中,In the driving device,

當所述第二充電電壓小於等於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路,使在所述平滑電容器的充電電壓變得小於等於比所述第二充電電壓更小的第三充電電壓之前繼續藉由所述放電電阻進行所述平滑電容器的放電。When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit controls the discharge control circuit so that the charging voltage at the smoothing capacitor becomes less than or equal to the second charging voltage The discharge of the smoothing capacitor is continued by the discharge resistor before the small third charging voltage.

在所述驅動裝置中,In the driving device,

當所述第二充電電壓小於等於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路維持所述放電電阻與所述平滑電容器的連接,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路從所述平滑電容器阻斷所述放電電阻。When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit controls the discharge control circuit to maintain the connection between the discharge resistor and the smoothing capacitor. On the other hand, when the second When the charging voltage is greater than the continuous discharge voltage, the main control circuit controls the discharge control circuit to block the discharge resistance from the smoothing capacitor.

在所述驅動裝置中,In the driving device,

所述主控制電路在藉由所述放電電阻進行的放電開始前計算出所述可繼續放電電壓。The main control circuit calculates the continuous discharge voltage before the discharge by the discharge resistor starts.

在所述驅動裝置中,In the driving device,

所述係數被設定爲與經過所述設定時間時所預測的所述平滑電容器的放電量的最小值相關聯。The coefficient is set to be associated with the minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses.

在所述驅動裝置中,In the driving device,

所述係數被設定爲根據所述放電開始後的經過時間而變化,The coefficient is set to change according to the elapsed time after the discharge starts,

所述主控制電路藉由將所述經過時間爲所述設定時間時的係數乘以所述第一充電電壓來計算出所述可繼續放電電壓。The main control circuit calculates the continuous discharge voltage by multiplying the coefficient when the elapsed time is the set time by the first charging voltage.

在所述驅動裝置中,In the driving device,

所述主控制電路在藉由所述放電電阻進行的放電開始後,按照比所述設定時間更短的週期對所述第一充電電壓與每個週期的所述係數的累加值進行監視,並根據監視結果來控制所述放電控制電路。After the discharge by the discharge resistor starts, the main control circuit monitors the accumulated value of the first charging voltage and the coefficient of each cycle in a cycle shorter than the set time, and The discharge control circuit is controlled according to the monitoring result.

在所述驅動裝置中,In the driving device,

所述主控制電路The main control circuit

藉由將被設定爲與經過所述設定時間時所預測的所述平滑電容器的放電量的最大值相關聯的第二係數乘以所述第一充電電壓,來計算出經過所述設定時間時所預測的所述平滑電容器的下限充電電壓,The time when the set time has elapsed is calculated by multiplying the second coefficient set to the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses by the first charging voltage The predicted lower limit charging voltage of the smoothing capacitor,

當所述第二充電電壓大於等於所述下限充電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續。When the second charging voltage is greater than or equal to the lower limit charging voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistor.

在所述驅動裝置中,In the driving device,

所述主控制電路進一步控制所述驅動電路的運作。The main control circuit further controls the operation of the driving circuit.

在所述驅動裝置中,In the driving device,

當所述主控制電路控制所述放電控制電路使藉由所述放電電阻進行的所述平滑電容器的放電停止時,藉由控制所述驅動電路來控制藉由所述電機進行的所述平滑電容器的放電。When the main control circuit controls the discharge control circuit to stop the discharge of the smoothing capacitor by the discharge resistor, the smoothing capacitor by the motor is controlled by controlling the drive circuit Discharge.

在所述驅動裝置中,In the driving device,

所述驅動電路具有:The driving circuit has:

第一電晶體,其一端與所述電源端子相連接,其另一端與第一相的第一輸出端子相連接;One end of the first transistor is connected to the power terminal, and the other end is connected to the first output terminal of the first phase;

第二電晶體,其一端與所述電源端子相連接,其另一端與第二相的第二輸出端子相連接;The second transistor has one end connected to the power terminal and the other end connected to the second output terminal of the second phase;

第三電晶體,其一端與所述電源端子相連接,其另一端與第三相的第三輸出端子相連接;A third transistor, one end of which is connected to the power supply terminal, and the other end of which is connected to the third output terminal of the third phase;

第四電晶體,其一端與所述第一輸出端子相連接,其另一端與所述接地端子相連接;A fourth transistor, one end of which is connected to the first output terminal, and the other end of which is connected to the ground terminal;

第五電晶體,其一端與所述第二輸出端子相連接,其另一端與所述接地端子相連接;以及A fifth transistor having one end connected to the second output terminal and the other end connected to the ground terminal; and

第六電晶體,其一端與所述第三輸出端子相連接,其另一端與所述接地端子相連接,A sixth transistor, one end of which is connected to the third output terminal, and the other end of which is connected to the ground terminal,

所述主控制電路藉由控制所述第一至第六電晶體來控制藉由所述電機進行的所述平滑電容器的放電。The main control circuit controls the discharge of the smoothing capacitor by the motor by controlling the first to sixth transistors.

在所述驅動裝置中,In the driving device,

所述主控制電路在所述平滑電容器與所述電池相連接時,根據所述第一充電電壓的檢測結果、所述可繼續放電電壓的計算結果、所述第二充電電壓的檢測結果、以及所述第二充電電壓與所述可繼續放電電壓的比較結果來控制所述放電控制電路。The main control circuit, when the smoothing capacitor is connected to the battery, based on the detection result of the first charging voltage, the calculation result of the continuous discharge voltage, the detection result of the second charging voltage, and A comparison result of the second charging voltage and the continuous discharge voltage controls the discharge control circuit.

在所述驅動裝置中,In the driving device,

所述放電控制電路檢測出所述第一充電電壓以及所述第二充電電壓,並將與所述第一以及第二充電電壓相關的訊息輸出至所述主控制電路,The discharge control circuit detects the first charging voltage and the second charging voltage, and outputs information related to the first and second charging voltages to the main control circuit,

所述主控制電路藉由所述訊息的輸入來檢測出所述第一以及第二充電電壓。The main control circuit detects the first and second charging voltages through the input of the message.

本發明的一種形態涉及的電動車輛,具備電池、電機、以及驅動裝置,其中:An electric vehicle according to one aspect of the present invention includes a battery, a motor, and a drive device, wherein:

所述驅動裝置包括:The driving device includes:

平滑電容器,連接於和所述電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電;A smoothing capacitor is connected between a power terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and is supplied from the battery between the power terminal and the ground terminal Voltage to charge;

放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電;A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor;

放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制;A discharge control circuit, connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controlling the discharge of the smoothing capacitor by the discharge resistor;

主控制電路,對所述放電控制電路的運作進行控制;以及A main control circuit to control the operation of the discharge control circuit; and

驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至所述電機,從而驅動所述電機,The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor,

其中,所述主控制電路Among them, the main control circuit

在藉由所述放電電阻進行的放電開始前,檢測出所述平滑電容器的第一充電電壓,Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor is detected,

在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓,After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses,

在經過所述設定時間時,檢測出所述平滑電容器的第二充電電壓,When the set time elapses, the second charging voltage of the smoothing capacitor is detected,

將所述第二充電電壓與所述可繼續放電電壓進行比較,Comparing the second charging voltage with the continuous discharge voltage,

當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor.

本發明的一種形態涉及的驅動裝置的控制方法,所述驅動裝置包括:A control method of a driving device according to one aspect of the present invention includes:

平滑電容器,連接於和電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電;A smoothing capacitor is connected between the power terminal connected to the positive electrode of the battery and the ground terminal connected to the negative electrode of the battery, using the voltage supplied from the battery to the power terminal and the ground terminal To charge;

放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電;A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor;

放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制;以及A discharge control circuit connected in series with the discharge resistor between the power terminal and the ground terminal to control the discharge of the smoothing capacitor by the discharge resistor; and

驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至電機,從而驅動所述電機,其中,The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor, wherein,

在藉由所述放電電阻進行的放電開始前,檢測出所述平滑電容器的第一充電電壓,Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor is detected,

在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓,After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses,

在經過所述設定時間時,檢測出所述平滑電容器的第二充電電壓,When the set time elapses, the second charging voltage of the smoothing capacitor is detected,

將所述第二充電電壓與所述可繼續放電電壓進行比較,Comparing the second charging voltage with the continuous discharge voltage,

當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor.

發明效果Invention effect

本發明的一種形態涉及的驅動裝置,其包括:平滑電容器,連接於和電池的正極相連接的電源端子與和電池的負極相連接的接地端子之間,利用被從電池提供至電源端子與接地端子之間的電壓來進行充電;放電電阻,與平滑電容器並聯連接在電源端子與接地端子之間,用於使平滑電容器放電;放電控制電路,與放電電阻串聯連接在電源端子與接地端子之間,對藉由放電電阻進行的平滑電容器的放電進行控制;主控制電路,對放電控制電路的運作進行控制;以及驅動電路,將對電源端子與接地端子之間的直流電壓進行電力轉換後的交流電壓提供至電機,從而驅動電機,其中,主控制電路在藉由放電電阻進行的放電開始前,檢測出電源端子與接地端子之間的平滑電容器的第一充電電壓,在藉由放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,可繼續放電電壓是指在經過設定時間時所預測的可繼續藉由放電電阻進行放電的平滑電容器的充電電壓,在經過設定時間時,檢測出電源端子與接地端子之間的平滑電容器的第二充電電壓,將第二充電電壓與可繼續放電電壓進行比較,當第二充電電壓小於等於可繼續放電電壓時,控制放電控制電路使藉由放電電阻進行的放電繼續,另一方面,當第二充電電壓大於可繼續放電電壓時,控制放電控制電路使藉由放電電阻進行的放電停止。A driving device according to an aspect of the present invention includes a smoothing capacitor connected between a power terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and is provided from the battery to the power terminal and ground The voltage between the terminals is used for charging; the discharge resistor is connected in parallel with the smoothing capacitor between the power terminal and the ground terminal for discharging the smoothing capacitor; the discharge control circuit is connected in series with the discharge resistor between the power terminal and the ground terminal , To control the discharge of the smoothing capacitor through the discharge resistor; the main control circuit, to control the operation of the discharge control circuit; and the drive circuit, which will convert the DC voltage between the power terminal and the ground terminal after power conversion The voltage is supplied to the motor to drive the motor. The main control circuit detects the first charging voltage of the smoothing capacitor between the power terminal and the ground terminal before the discharge by the discharge resistor starts. After the discharge starts and before the preset set time, multiply the first charging voltage by the preset coefficient to calculate the continuous discharge voltage. The continuous discharge voltage refers to the predictable The charging voltage of the smoothing capacitor that continues to be discharged through the discharge resistor detects the second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when a set time elapses, and compares the second charging voltage with the continuous discharge voltage When the second charging voltage is less than or equal to the continuous discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the continuous discharge voltage, the discharge control circuit is controlled to use The discharge by the discharge resistor is stopped.

藉由這樣,根據本發明的驅動裝置,就能够在防止放電電阻的發熱量過大的同時,謀求放電電阻的小型化。In this way, according to the driving device of the present invention, it is possible to reduce the size of the discharge resistor while preventing the excessive heat generation of the discharge resistor.

下面,將參照圖式對本發明涉及的實施方式進行說明。其中,以下所示的實施方式不對本發明進行限定。此外,在實施方式參照的圖式中,在相同部分或具有相同功能的部分中添加相同符號或類似符號,並省略其重複說明。Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments shown below do not limit the present invention. In addition, in the drawings referred to in the embodiments, the same symbols or similar symbols are added to the same parts or parts having the same functions, and repeated description thereof is omitted.

(第一實施方式)(First embodiment)

首先,參照圖1至圖3,對作爲驅動裝置一例的第一實施方式所涉及的電動車輛用控制裝置100進行說明。First, referring to FIGS. 1 to 3, an electric vehicle control device 100 according to the first embodiment as an example of a drive device will be described.

圖1是第一實施方式涉及的電動車輛用控制裝置100的一例構成圖。FIG. 1 is a configuration diagram of an example of an electric vehicle control device 100 according to the first embodiment.

例如圖1所示,第一實施方式所涉及的電動車輛用控制裝置100從電池B的電壓處生成驅動電壓MU、MV、MW後,藉由該驅動電壓MU、MV、MW來驅動電機M。For example, as shown in FIG. 1, the electric vehicle control device 100 according to the first embodiment generates driving voltages MU, MV, and MW from the voltage of the battery B, and drives the motor M with the driving voltages MU, MV, and MW.

電動車輛用控制裝置100在藉由電機M進行再生時,將從電機M輸出的反電動勢轉換爲直流的再生電壓後提供至電源端子TB與接地端子TG之間,從而對電池BH進行充電。The electric vehicle control device 100 converts the back electromotive force output from the motor M into a DC regenerated voltage during regeneration by the motor M, and supplies it between the power terminal TB and the ground terminal TG to charge the battery BH.

電動車輛用控制裝置100例如圖1所示,包括:電源端子TB;接地端子TG;平滑電容器FC;放電電阻FR;放電控制電路FX;驅動電路Z;以及主控制電路CON。For example, as shown in FIG. 1, the electric vehicle control device 100 includes: a power supply terminal TB; a ground terminal TG; a smoothing capacitor FC; a discharge resistance FR; a discharge control circuit FX; a drive circuit Z; and a main control circuit CON.

其中,電機M用於驅動例如電動兩輪車的車輪。Among them, the motor M is used to drive, for example, the wheels of an electric two-wheeled vehicle.

此外,電動車輛用控制裝置100、電池B、開關SW裝載在例如已述的電動兩輪車上。In addition, the electric vehicle control device 100, the battery B, and the switch SW are mounted on, for example, the electric two-wheeled vehicle described above.

例如圖1所示,電池B的正極藉由開關SW與電源端子TB相連接。For example, as shown in FIG. 1, the positive electrode of the battery B is connected to the power terminal TB through a switch SW.

並且,接地端子TG例如圖1所示,與電池B的負極相連接。In addition, the ground terminal TG is connected to the negative electrode of the battery B as shown in FIG. 1, for example.

另外,開關SW的一端與電池B的正極相連接,另一端與電源端子TB相連接。該開關SW藉由導通來使電池B的正極與電源端子TB之間電導通。另一方面,開關SW藉由關閉來使電池B的正極與電源端子TB之間電阻斷。In addition, one end of the switch SW is connected to the positive electrode of the battery B, and the other end is connected to the power supply terminal TB. This switch SW electrically conducts between the positive electrode of the battery B and the power supply terminal TB. On the other hand, the switch SW turns off to break the resistance between the positive electrode of the battery B and the power supply terminal TB.

該開關SW如後述般,藉由主控制電路CON來控制爲導通或關閉。As described later, the switch SW is controlled to be turned on or off by the main control circuit CON.

此外,平滑電容器FC連接在電源端子TB與接地端子TG之間。該平滑電容器FC利用提供至電源端子TB與接地端子TG之間的電壓來進行充電。In addition, the smoothing capacitor FC is connected between the power supply terminal TB and the ground terminal TG. The smoothing capacitor FC is charged by the voltage supplied between the power terminal TB and the ground terminal TG.

例如圖1所示,平滑電容器FC利用電池B所輸出的電壓來充電。平滑電容器FC也可以利用驅動電路Z所輸出的再生電力來充電。For example, as shown in FIG. 1, the smoothing capacitor FC is charged by the voltage output from the battery B. The smoothing capacitor FC may be charged using the regenerative power output from the drive circuit Z.

另外,放電電阻FR例如圖1所示,與平滑電容器FC並聯連接在電源端子TB與接地端子TG之間。該放電電阻FR用於使平滑電容器FC放電。放電電阻FR是例如單一的電阻,從而配置爲收納在被限制的電動車輛用控制裝置100的空間內。The discharge resistance FR is, for example, as shown in FIG. 1, and is connected in parallel with the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG. The discharge resistor FR is used to discharge the smoothing capacitor FC. The discharge resistance FR is, for example, a single resistance, and is arranged to be housed in the space of the restricted electric vehicle control device 100.

放電控制電路FX例如圖1所示,與放電電阻FR串聯連接在電源端子TB與接地端子TG之間。For example, as shown in FIG. 1, the discharge control circuit FX is connected in series with the discharge resistor FR between the power supply terminal TB and the ground terminal TG.

例如在圖1的圖例中,放電電阻FR的一端與電源端子TB相連接。並且,放電控制電路FX的一端與放電電阻FR的另一端相連接,另一端與接地端子TG相連接。For example, in the legend of FIG. 1, one end of the discharge resistor FR is connected to the power supply terminal TB. Furthermore, one end of the discharge control circuit FX is connected to the other end of the discharge resistor FR, and the other end is connected to the ground terminal TG.

放電控制電路FX對藉由放電電阻FR進行的平滑電容器FC的放電進行控制。The discharge control circuit FX controls the discharge of the smoothing capacitor FC by the discharge resistance FR.

放電控制電路FX例如藉由對放電電阻FR的另一端與接地端子TG(平滑電容器FC的另一端)之間進行導通,從而使平滑電容器FC放電。The discharge control circuit FX discharges the smoothing capacitor FC by conducting between the other end of the discharge resistance FR and the ground terminal TG (the other end of the smoothing capacitor FC).

另一方面,當平滑電容器FC是在充電的狀態下,放電控制電路FX對放電電阻FR的另一端與接地端子TG(平滑電容器FC的另一端)之間進行阻斷(即關閉)。On the other hand, when the smoothing capacitor FC is in a charged state, the discharge control circuit FX blocks (ie, turns off) the other end of the discharge resistance FR and the ground terminal TG (the other end of the smoothing capacitor FC).

放電控制電路FX藉由電源端子TB與接地端子TG之間的電壓(平滑電容器FC的充電電壓)來進行運作。例如,放電控制電路FX在藉由電源端子TB與接地端子TG之間的電壓(平滑電容器FC的充電電壓VFC)達到大於等於規定值時進行啓動。The discharge control circuit FX operates by the voltage between the power terminal TB and the ground terminal TG (charging voltage of the smoothing capacitor FC). For example, the discharge control circuit FX is activated when the voltage between the power supply terminal TB and the ground terminal TG (charging voltage VFC of the smoothing capacitor FC) reaches a predetermined value or more.

此外,在驅動電機M時,驅動電路Z例如圖1所示,將對電源端子TB與接地端子TG之間的直流電壓進行電力轉換後的三相交流電壓MU、MV、MW藉由第一輸出端子TU、第二輸出端子TV、以及第三輸出端子TW提供至電機M處,從而來驅動電機M。In addition, when the motor M is driven, the drive circuit Z, for example, as shown in FIG. 1, converts the three-phase AC voltages MU, MV, MW of the DC voltage between the power terminal TB and the ground terminal TG through the first output The terminal TU, the second output terminal TV, and the third output terminal TW are provided to the motor M to drive the motor M.

另一方面,該驅動電路Z在藉由電機M進行再生時,將從電機M輸出的(藉由第一輸出端子TU、第二輸出端子TV、以及第三輸出端子TW提供的)反電動勢轉換爲直流的再生電壓後,提供至電源端子TB與接地端子TG之間。即,驅動電路Z構成將由電機M提供的再生電力返回(充電)至電池B、平滑電容器FC。On the other hand, when the drive circuit Z is regenerated by the motor M, the back electromotive force output from the motor M (provided by the first output terminal TU, the second output terminal TV, and the third output terminal TW) is converted After the DC regeneration voltage, it is supplied between the power terminal TB and the ground terminal TG. That is, the drive circuit Z is configured to return (charge) the regenerative power provided by the motor M to the battery B and the smoothing capacitor FC.

此外,當開關SW處於導通狀態時(不是後述的阻斷狀態),該再生電力也被充電至電池B,平滑電容器FC的充電電壓VFC的上升將變得緩慢。In addition, when the switch SW is in an on state (not a blocking state to be described later), this regenerative power is also charged to the battery B, and the charging voltage VFC of the smoothing capacitor FC rises slowly.

該驅動電路Z例如圖1所示,包括:第一輸出端子TU;第二輸出端子TV;第三輸出端子TW;第一電晶體Q1;第二電晶體Q2;第三電晶體Q3;第四電晶體Q4;第五電晶體Q5;第六電晶體Q6;第一二極體D1;第二二極體D2;第三二極體D3;第四二極體D4;第五二極體D5;以及第六二極體D6。The drive circuit Z is, for example, as shown in FIG. 1 and includes: a first output terminal TU; a second output terminal TV; a third output terminal TW; a first transistor Q1; a second transistor Q2; a third transistor Q3; a fourth Transistor Q4; Fifth Transistor Q5; Sixth Transistor Q6; First Diode D1; Second Diode D2; Third Diode D3; Fourth Diode D4; Fifth Diode D5 ; And the sixth diode D6.

並且,第一輸出端子TU與電機M的U相線圈(無圖示)相連接。In addition, the first output terminal TU is connected to the U-phase coil (not shown) of the motor M.

第二輸出端子TV與電機M的V相線圈(無圖示)相連接。The second output terminal TV is connected to the V-phase coil (not shown) of the motor M.

第三輸出端子TW與電機M的W相線圈(無圖示)相連接。The third output terminal TW is connected to the W-phase coil (not shown) of the motor M.

例如圖1所示,第一電晶體Q1的一端(汲極)與電源端子TB相連接,另一端(源極)與第一相(U相)的第一輸出端子TU相連接。該第一電晶體Q1在圖1的圖例中是nMOS電晶體。For example, as shown in FIG. 1, one end (drain) of the first transistor Q1 is connected to the power supply terminal TB, and the other end (source) is connected to the first output terminal TU of the first phase (U phase). This first transistor Q1 is an nMOS transistor in the legend of FIG. 1.

此外,第一二極體D1的陰極與電源端子TB相連接,陽極與第一輸出端子TU相連接。In addition, the cathode of the first diode D1 is connected to the power supply terminal TB, and the anode is connected to the first output terminal TU.

並且,第二電晶體Q2的一端(汲極)與電源端子TB相連接,另一端(源極)與第二相(V相)的第二輸出端子TV相連接。該第二電晶體Q2在圖1的圖例中是nMOS電晶體。In addition, one end (drain) of the second transistor Q2 is connected to the power supply terminal TB, and the other end (source) is connected to the second output terminal TV of the second phase (V phase). This second transistor Q2 is an nMOS transistor in the legend of FIG. 1.

另外,第二二極體D2的陰極與電源端子TB相連接,陽極與所述第二輸出端子TV相連接。In addition, the cathode of the second diode D2 is connected to the power supply terminal TB, and the anode is connected to the second output terminal TV.

並且,第三電晶體Q3的一端(汲極)與電源端子TB相連接,另一端(源極)與第三相(W相)的第三輸出端子TW相連接。該第三電晶體Q3在圖1的圖例中是nMOS電晶體。In addition, one end (drain) of the third transistor Q3 is connected to the power supply terminal TB, and the other end (source) is connected to the third output terminal TW of the third phase (W phase). This third transistor Q3 is an nMOS transistor in the legend of FIG. 1.

此外,第三二極體D3的陰極與電源端子TB相連接,陽極與第三輸出端子TW相連接。In addition, the cathode of the third diode D3 is connected to the power supply terminal TB, and the anode is connected to the third output terminal TW.

並且,第四電晶體Q4的一端(汲極)與第一輸出端子TU相連接,另一端(源極)與接地端子TG相連接。該第四電晶體Q4在圖1的圖例中是nMOS電晶體。In addition, one end (drain) of the fourth transistor Q4 is connected to the first output terminal TU, and the other end (source) is connected to the ground terminal TG. This fourth transistor Q4 is an nMOS transistor in the legend of FIG. 1.

另外,第四二極體D4的陰極與第一輸出端子TU相連接,陽極與接地端子TG相連接。In addition, the cathode of the fourth diode D4 is connected to the first output terminal TU, and the anode is connected to the ground terminal TG.

並且,第五電晶體Q5的一端(源極)與第二輸出端子TV相連接,另一端(汲極)與接地端子TG相連接。該第五電晶體Q5在圖1的圖例中是nMOS電晶體。In addition, one end (source) of the fifth transistor Q5 is connected to the second output terminal TV, and the other end (drain) is connected to the ground terminal TG. This fifth transistor Q5 is an nMOS transistor in the legend of FIG. 1.

此外,第五二極體D5的陰極與第二輸出端子TV相連接,陽極與接地端子TG相連接。In addition, the cathode of the fifth diode D5 is connected to the second output terminal TV, and the anode is connected to the ground terminal TG.

並且,第六電晶體Q6的一端(源極)與第三輸出端子TW相連接,另一端(汲極)與接地端子TG相連接。該第六電晶體Q6在圖1的圖例中是nMOS電晶體。In addition, one end (source) of the sixth transistor Q6 is connected to the third output terminal TW, and the other end (drain) is connected to the ground terminal TG. This sixth transistor Q6 is an nMOS transistor in the legend of FIG. 1.

另外,第六二極體D6的陰極與第三輸出端子TW相連接,陽極與接地端子TG相連接。In addition, the cathode of the sixth diode D6 is connected to the third output terminal TW, and the anode is connected to the ground terminal TG.

藉由向第一至第六電晶體Q1~Q6的閘極提供主控制電路CON所輸出的閘極控制信號(閘極電壓),從而使該第一至第六電晶體Q1~Q6按照規定的模式來進行運作。By supplying the gate control signals (gate voltage) output by the main control circuit CON to the gates of the first to sixth transistors Q1 to Q6, the first to sixth transistors Q1 to Q6 are provided in accordance with the prescribed Mode.

一旦電池B充滿電,主控制電路CON就會關閉開關SW,而一旦電池B的電壓低於規定值,主控制電路CON則會導通開關SW。Once the battery B is fully charged, the main control circuit CON turns off the switch SW, and once the voltage of the battery B is lower than the prescribed value, the main control circuit CON turns on the switch SW.

主控制電路CON對放電控制電路FX的運作進行控制。The main control circuit CON controls the operation of the discharge control circuit FX.

在藉由放電電阻FR進行的放電開始前,主控制電路CON檢測出電源端子TB與接地端子TG之間的平滑電容器FC的第一充電電壓。Before the discharge by the discharge resistor FR starts, the main control circuit CON detects the first charging voltage of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.

在檢測出第一充電電壓後,主控制電路CON在藉由放電電阻FR進行的放電開始後直至經過預先設定的設定時間前,藉由將檢測出的第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過設定時間時所預測的可繼續藉由放電電阻FR進行放電的平滑電容器FC的充電電壓。After detecting the first charging voltage, the main control circuit CON multiplies the detected first charging voltage by a predetermined coefficient after the discharge by the discharge resistor FR starts until a predetermined set time elapses In order to calculate the continuous discharge voltage, the continuous discharge voltage refers to the predicted charging voltage of the smoothing capacitor FC that can continue to be discharged by the discharge resistor FR when the set time elapses.

在經過設定時間時,主控制電路CON檢測出電源端子TB與接地端子TG之間的平滑電容器FC的第二充電電壓。When the set time elapses, the main control circuit CON detects the second charging voltage of the smoothing capacitor FC between the power terminal TB and the ground terminal TG.

在檢測出第二充電電壓後,主控制電路CON將檢測出的第二充電電壓與計算出的可繼續放電電壓進行比較。After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated continuous discharge voltage.

並且,當第二充電電壓小於等於可繼續放電電壓時,主控制電路CON控制放電控制電路FX使藉由放電電阻FR進行的放電繼續。In addition, when the second charging voltage is less than or equal to the dischargeable voltage, the main control circuit CON controls the discharge control circuit FX to continue the discharge by the discharge resistor FR.

另一方面,當第二充電電壓大於可繼續放電電壓時,主控制電路CON控制放電控制電路FX使藉由放電電阻FR進行的放電停止。On the other hand, when the second charging voltage is greater than the continuous discharge voltage, the main control circuit CON controls the discharge control circuit FX to stop the discharge by the discharge resistor FR.

當第二充電電壓小於等於可繼續放電電壓時,主控制電路CON控制放電控制電路FX,使在平滑電容器FC的充電電壓變得小於等於比第二充電電壓更小的第三充電電壓之前繼續藉由放電電阻FR進行平滑電容器FC的放電。第三充電電壓是指例如可看作平滑電容器FC完成放電的低電壓。When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit CON controls the discharge control circuit FX so that the charging voltage of the smoothing capacitor FC becomes less than or equal to the third charging voltage that is smaller than the second charging voltage. The discharge resistor FR discharges the smoothing capacitor FC. The third charging voltage refers to, for example, a low voltage that can be regarded as the discharge of the smoothing capacitor FC.

此外,當第二充電電壓小於等於可繼續放電電壓時,主控制電路CON藉由控制放電控制電路FX維持放電電阻FR與平滑電容器FC的連接,從而控制放電控制電路FX來繼續藉由放電電阻FR進行放電。In addition, when the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit CON maintains the connection between the discharge resistor FR and the smoothing capacitor FC by controlling the discharge control circuit FX, thereby controlling the discharge control circuit FX to continue to use the discharge resistor FR Perform discharge.

另一方面,當第二充電電壓大於可繼續放電電壓時,主控制電路CON藉由控制放電控制電路FX從平滑電容器FC阻斷放電電阻FR,從而控制放電控制電路FX來停止藉由放電電阻FR進行的放電。On the other hand, when the second charging voltage is greater than the continuous discharge voltage, the main control circuit CON controls the discharge control circuit FX to block the discharge resistance FR from the smoothing capacitor FC, thereby controlling the discharge control circuit FX to stop the discharge resistance FR Conducted discharge.

用於計算出可繼續放電電壓的係數被設定爲與經過設定時間時所預測的平滑電容器FC的放電量的最小值相關聯。此外,係數被設定爲根據放電開始後的經過時間而變化。這時,主控制電路CON藉由將經過時間爲設定時間時的係數乘以第一充電電壓來計算出可繼續放電電壓。The coefficient for calculating the continuous discharge voltage is set to be related to the minimum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses. In addition, the coefficient is set to change according to the elapsed time after the start of discharge. At this time, the main control circuit CON calculates the continuous discharge voltage by multiplying the coefficient when the elapsed time is the set time by the first charging voltage.

主控制電路CON在藉由放電電阻FR進行的放電開始後,按照比設定時間更短的監視週期對第一充電電壓與每個週期的係數的累加值進行監視,並根據監視結果來控制放電控制電路FX。例如,主控制電路CON在每個監視週期內,將第一充電電壓與每個監視週期的係數相乘後的累加值與在各監視週期中實際檢測出的平滑電容器FC的充電電壓進行比較,當實際的充電電壓是小於累加值的狀態一直被維持至經過設定時間時,主控制電路CON控制藉由放電電阻FR繼續放電。After the discharge by the discharge resistor FR starts, the main control circuit CON monitors the accumulated value of the first charging voltage and the coefficient of each cycle in a monitoring period shorter than the set time, and controls the discharge control according to the monitoring result Circuit FX. For example, in each monitoring period, the main control circuit CON compares the accumulated value of the first charging voltage and the coefficient of each monitoring period with the charging voltage of the smoothing capacitor FC actually detected in each monitoring period, When the actual charging voltage is less than the accumulated value and is maintained until the set time elapses, the main control circuit CON controls the discharge through the discharge resistor FR.

另外,主控制電路CON藉由將被設定爲與經過設定時間時所預測的平滑電容器FC的放電量的最大值相關聯的第二係數乘以第一充電電壓,來計算出經過設定時間時所預測的平滑電容器FC的下限充電電壓。並且,當第二充電電壓大於等於下限充電電壓時,主控制電路CON控制放電控制電路FX使藉由放電電阻進行的放電繼續。In addition, the main control circuit CON calculates the time when the set time elapses by multiplying the second coefficient set to the maximum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses by the first charging voltage. The predicted lower limit charging voltage of the smoothing capacitor FC. In addition, when the second charging voltage is greater than or equal to the lower limit charging voltage, the main control circuit CON controls the discharge control circuit FX to continue the discharge by the discharge resistor.

當主控制電路CON控制放電控制電路FX使藉由放電電阻FR進行的平滑電容器FC的放電停止時,藉由控制驅動電路Z來控制藉由電機M進行的平滑電容器FC的放電。即,主控制電路CON藉由控制第一至第六電晶體Q1~Q6來控制藉由電機M進行的平滑電容器FC的放電。When the main control circuit CON controls the discharge control circuit FX to stop the discharge of the smoothing capacitor FC by the discharge resistor FR, the discharge of the smoothing capacitor FC by the motor M is controlled by the control drive circuit Z. That is, the main control circuit CON controls the discharge of the smoothing capacitor FC by the motor M by controlling the first to sixth transistors Q1 to Q6.

此外,主控制電路CON在平滑電容器FC與電池B相連接時,根據第一充電電壓的檢測結果、可繼續放電電壓的計算結果、第二充電電壓的檢測結果、以及第二充電電壓與可繼續放電電壓的比較結果來控制放電控制電路FX。In addition, when the smoothing capacitor FC is connected to the battery B, the main control circuit CON based on the detection result of the first charging voltage, the calculation result of the continuous discharge voltage, the detection result of the second charging voltage, and the second charging voltage and the continuous The comparison result of the discharge voltage controls the discharge control circuit FX.

以下,將參照圖2的流程圖,對第一實施方式的運作例進行說明。其中,在必要時將重複圖2的流程圖。Hereinafter, an operation example of the first embodiment will be described with reference to the flowchart of FIG. 2. Among them, the flowchart of FIG. 2 will be repeated as necessary.

首先,在藉由放電電阻FR進行的平滑電容器FC的放電開始前,主控制電路CON檢測出第一充電電壓(步驟S1)。例如,也可以在電機M的轉子的旋轉速度低於預先設定的閾值速度時實施第一充電電壓的檢測。First, before the discharge of the smoothing capacitor FC by the discharge resistor FR starts, the main control circuit CON detects the first charging voltage (step S1). For example, the first charging voltage may be detected when the rotation speed of the rotor of the motor M is lower than a predetermined threshold speed.

在檢測出第一充電電壓後,主控制電路CON根據檢測出的第一充電電壓與預先記憶在主控制電路CON的記憶部中的係數,來計算出可繼續放電電壓(步驟S2)。After detecting the first charging voltage, the main control circuit CON calculates the continuous discharge voltage based on the detected first charging voltage and the coefficient previously stored in the memory section of the main control circuit CON (step S2).

圖3是展示第一實施方式涉及的電動車輛用控制裝置100的運作例的充電電壓圖表。在圖3的圖例中,主控制電路CON將第一充電電壓與被設定爲和平滑電容器FC的放電量的最小值相關聯的,且在放電開始(即時間t1)後的經過時間爲設定時間(即時間t2)時的最小係數的積作爲可繼續放電電壓來算出。FIG. 3 is a charging voltage graph showing an operation example of the electric vehicle control device 100 according to the first embodiment. In the legend of FIG. 3, the main control circuit CON associates the first charging voltage with the minimum value of the discharge amount of the smoothing capacitor FC, and the elapsed time after the start of discharge (that is, time t1) is the set time The product of the minimum coefficient at time t2 is calculated as the continuous discharge voltage.

在計算出可繼續放電電壓後,如圖2所示,主控制電路CON控制放電控制電路FX開始藉由放電電阻FR進行的平滑電容器FC的放電(步驟S3)。After calculating the dischargeable voltage, as shown in FIG. 2, the main control circuit CON controls the discharge control circuit FX to start the discharge of the smoothing capacitor FC by the discharge resistor FR (step S3 ).

在控制放電控制電路FX開始藉由放電電阻FR進行的平滑電容器FC的放電後,主控制電路CON對放電開始後是否經過設定週期進行判定(步驟S4)。After controlling the discharge control circuit FX to start the discharge of the smoothing capacitor FC by the discharge resistor FR, the main control circuit CON determines whether a set period has elapsed after the discharge is started (step S4).

在經過設定週期時(步驟S4:Yes),主控制電路CON檢測出第二充電電壓(步驟S5)。When the set period has elapsed (step S4: Yes), the main control circuit CON detects the second charging voltage (step S5).

在檢測出第二充電電壓後,主控制電路CON將檢測出的第二充電電壓與計算出的可繼續放電電壓進行比較,並對第二充電電壓是否小於等於可繼續放電電壓進行判定(步驟S6)。After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated resumeable discharge voltage, and determines whether the second charging voltage is less than or equal to the resumeable discharge voltage (step S6) ).

當第二充電電壓小於等於可繼續放電電壓時(步驟S6:Yes),主控制電路CON控制放電控制電路FX繼續藉由放電電阻FR進行的放電(步驟S7)。在圖3的圖例中,正常時的充電電壓按照比最小係數與第一充電電壓的積更小的值進行遷移。該正常時的充電電壓在經過設定時間t2時,即在第二充電電壓下是小於等於可繼續放電電壓。這時,平滑電容器FC例如藉由放電電阻FR來繼續放電直至平滑電容器FC的放電完成。When the second charging voltage is less than or equal to the dischargeable voltage (step S6: Yes), the main control circuit CON controls the discharge control circuit FX to continue the discharge by the discharge resistor FR (step S7). In the legend of FIG. 3, the charging voltage at the normal time shifts to a value smaller than the product of the minimum coefficient and the first charging voltage. The normal charging voltage is less than or equal to the continuous discharge voltage when the set time t2 elapses, that is, at the second charging voltage. At this time, the smoothing capacitor FC continues to discharge by the discharge resistance FR until the discharge of the smoothing capacitor FC is completed.

另一方面,如圖2所示,當第二充電電壓大於可繼續放電電壓時(步驟S6:No),主控制電路CON控制放電控制電路FX停止藉由放電電阻FR進行的放電(步驟S8)。在圖3的圖例中,異常時的充電電壓按照比最小係數與第一充電電壓的積更大的值進行遷移。該異常時的充電電壓在經過設定時間t2時,即在第二充電電壓下是比可繼續放電電壓大。這時,藉由放電控制電路FX從平滑電容器FC阻斷放電電阻FR,從而停止藉由放電電阻FR進行的平滑電容器FC的放電。On the other hand, as shown in FIG. 2, when the second charging voltage is greater than the continuous discharge voltage (step S6: No), the main control circuit CON controls the discharge control circuit FX to stop the discharge by the discharge resistor FR (step S8) . In the legend of FIG. 3, the charging voltage at the time of abnormality shifts to a value larger than the product of the minimum coefficient and the first charging voltage. The charging voltage at this abnormality is greater than the continuous discharge voltage at the second charging voltage when the set time t2 elapses. At this time, the discharge control circuit FX blocks the discharge resistance FR from the smoothing capacitor FC, thereby stopping the discharge of the smoothing capacitor FC by the discharge resistance FR.

在控制停止藉由放電電阻FR進行的放電後(步驟S8),主控制電路CON藉由驅動控制第一至第六電晶體Q1~Q6來進入到藉由電機M進行的平滑電容器FC的放電。After controlling to stop the discharge by the discharge resistor FR (step S8), the main control circuit CON drives the first to sixth transistors Q1 to Q6 to enter the discharge of the smoothing capacitor FC by the motor M.

如上所述,在第一實施方式涉及的電動車輛用控制裝置100中,主控制電路在藉由放電電阻進行的放電開始前,檢測出電源端子與接地端子之間的平滑電容器的第一充電電壓。此外,主控制電路在藉由放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,該可繼續放電電壓是指在經過設定時間時所預測的可繼續藉由放電電阻進行放電的平滑電容器的充電電壓。主控制電路在經過設定時間時,檢測出電源端子與接地端子之間的平滑電容器的第二充電電壓。並且,主控制電路將第二充電電壓與可繼續放電電壓進行比較,當第二充電電壓小於等於可繼續放電電壓時,控制放電控制電路繼續藉由放電電阻進行的放電。另一方面,當第二充電電壓大於可繼續放電電壓時,主控制電路控制放電控制電路停止藉由放電電阻進行的放電。As described above, in the electric vehicle control device 100 according to the first embodiment, the main control circuit detects the first charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal before the discharge by the discharge resistor starts . In addition, the main control circuit calculates the continuous discharge voltage by multiplying the first charging voltage by a predetermined coefficient after the discharge by the discharge resistor is started and before a predetermined set time elapses. The discharge voltage refers to the predicted charging voltage of the smoothing capacitor that can continue to discharge through the discharge resistor when the set time elapses. The main control circuit detects the second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time elapses. In addition, the main control circuit compares the second charging voltage with the continuous discharge voltage. When the second charging voltage is less than or equal to the continuous discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the continuous discharge voltage, the main control circuit controls the discharge control circuit to stop the discharge by the discharge resistor.

根據第一實施方式涉及的電動車輛用控制裝置,當第二充電電壓大於可繼續放電電壓時,能够停止藉由放電電阻進行的放電。藉由這樣,由於能够防止大電壓施加在放電電阻,從而就能够防止放電電阻的發熱量過大,此外,由於不需要形成較大的放電電阻來確保放電電阻的耐壓性,從而就能够謀求放電電阻的小型化。According to the control device for an electric vehicle according to the first embodiment, when the second charging voltage is greater than the continuous discharge voltage, the discharge by the discharge resistor can be stopped. In this way, since it is possible to prevent a large voltage from being applied to the discharge resistor, it is possible to prevent the heat generation of the discharge resistor from being excessively large, and since it is not necessary to form a large discharge resistor to ensure the voltage resistance of the discharge resistor, it is possible to achieve discharge Miniaturization of resistance.

另外,當第二充電電壓小於等於可繼續放電電壓時,主控制電路能够控制所述放電控制電路,使在平滑電容器的充電電壓變得小於等於比第二充電電壓更小的第三充電電壓之前繼續藉由放電電阻進行平滑電容器的放電。藉由這樣,就能够將平滑電容器完全放電。In addition, when the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit can control the discharge control circuit so that the charging voltage of the smoothing capacitor becomes less than or equal to the third charging voltage smaller than the second charging voltage Continue to discharge the smoothing capacitor with the discharge resistor. With this, the smoothing capacitor can be completely discharged.

當第二充電電壓小於等於可繼續放電電壓時,主控制電路控制放電控制電路維持放電電阻與平滑電容器的連接,另一方面,當第二充電電壓大於可繼續放電電壓時,主控制電路能够控制放電控制電路從平滑電容器阻斷放電電阻。藉由這樣,就能够以簡易的結構來準確實施繼續放電以及停止放電。When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit controls the discharge control circuit to maintain the connection between the discharge resistor and the smoothing capacitor. On the other hand, when the second charging voltage is greater than the continuous discharge voltage, the main control circuit can control The discharge control circuit blocks the discharge resistance from the smoothing capacitor. With this, it is possible to accurately carry out continuous discharge and stop discharge with a simple structure.

主控制電路能够在藉由放電電阻進行的放電開始前計算出可繼續放電電壓。藉由這樣,即使是在設定時間較短的情况下,也能够準確地將可繼續放電電壓與第二充電電壓進行比較。The main control circuit can calculate the voltage that can be continuously discharged before the discharge by the discharge resistor starts. In this way, even when the set time is short, it is possible to accurately compare the continuous discharge voltage and the second charge voltage.

此外,能够將係數設定爲與經過設定時間時所預測的平滑電容器的放電量的最小值相關聯。藉由這樣,就能够正確計算出可繼續放電電壓。In addition, the coefficient can be set to be related to the minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses. In this way, the continuous discharge voltage can be correctly calculated.

將係數設定爲根據放電開始後的經過時間而變化,主控制電路就能够藉由將經過時間爲設定時間時的係數乘以第一充電電壓來計算出可繼續放電電壓。藉由這樣,就能够更爲正確地計算出可繼續放電電壓。By setting the coefficient to vary according to the elapsed time after the discharge starts, the main control circuit can calculate the continuous discharge voltage by multiplying the coefficient when the elapsed time is the set time by the first charging voltage. In this way, it is possible to calculate the dischargeable voltage more accurately.

主控制電路能够在藉由放電電阻進行的放電開始後,按照比設定時間更短的週期對第一充電電壓與每個週期的係數的累加值進行監視,並根據監視結果來控制放電控制電路。藉由這樣,就能够更爲合適地控制藉由放電電阻進行的放電。The main control circuit can monitor the accumulated value of the first charging voltage and the coefficient of each cycle in a cycle shorter than the set time after the discharge by the discharge resistor starts, and control the discharge control circuit according to the monitoring result. In this way, the discharge by the discharge resistance can be controlled more appropriately.

主控制電路能够藉由將被設定爲與經過設定時間時所預測的平滑電容器的放電量的最大值相關聯的第二係數乘以第一充電電壓,來計算出經過設定時間時所預測的平滑電容器的下限充電電壓,當第二充電電壓大於等於下限充電電壓時,控制放電控制電路使藉由放電電阻進行的放電繼續。藉由這樣,就能够更爲合適地控制藉由放電電阻進行的放電。The main control circuit can calculate the predicted smoothness when the set time elapses by multiplying the second coefficient set to the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses by the first charging voltage The lower limit charging voltage of the capacitor, when the second charging voltage is greater than or equal to the lower limit charging voltage, controls the discharge control circuit to continue the discharge by the discharge resistor. In this way, the discharge by the discharge resistance can be controlled more appropriately.

主控制電路能够更一步控制驅動電路的運作。藉由這樣,由於能够利用共通的控制電路來控制藉由放電電阻進行的放電與驅動電路的運作,因此就能够抑制部件數量。The main control circuit can further control the operation of the drive circuit. In this way, since the common control circuit can be used to control the discharge by the discharge resistor and the operation of the drive circuit, the number of components can be suppressed.

另外,當主控制電路在控制放電控制電路使藉由放電電阻進行的平滑電容器的放電停止時,能够藉由控制驅動電路來對藉由電機進行的平滑電容器的放電進行控制。藉由這樣,在停止藉由放電電阻進行的放電時,能够藉由切換至藉由電機進行的放電使平滑電容器FC準確地進行放電。In addition, when the main control circuit controls the discharge control circuit to stop the discharge of the smoothing capacitor by the discharge resistance, the discharge of the smoothing capacitor by the motor can be controlled by controlling the drive circuit. In this way, when the discharge by the discharge resistor is stopped, the smoothing capacitor FC can be accurately discharged by switching to the discharge by the motor.

驅動電路具有第一至第六電晶體,而主控制電路能够藉由控制第一至第六電晶體來控制藉由電機進行的平滑電容器的放電。藉由這樣,能够藉由第一至第六電晶體來簡便地且準確地實施藉由電機進行的放電。The driving circuit has first to sixth transistors, and the main control circuit can control the discharge of the smoothing capacitor by the motor by controlling the first to sixth transistors. With this, the discharge by the motor can be easily and accurately performed by the first to sixth transistors.

當平滑電容器與電池相連接時,主控制電路能够根據第一充電電壓的檢測結果、可繼續放電電壓的計算結果、第二充電電壓的檢測結果、以及第二充電電壓與可繼續放電電壓的比較結果來控制放電控制電路。藉由這樣,即使是在因平滑電容器與電池相連接而導致大電壓被施加在放電電阻的狀態下,也能够控制藉由放電電阻進行的放電使放電電阻的發熱量不會變得過大。When the smoothing capacitor is connected to the battery, the main control circuit can compare the result of the detection of the first charging voltage, the calculation result of the continuous discharge voltage, the detection result of the second charging voltage, and the second charge voltage with the continuous discharge voltage As a result, the discharge control circuit is controlled. In this way, even in a state where a large voltage is applied to the discharge resistor due to the connection of the smoothing capacitor and the battery, the discharge by the discharge resistor can be controlled so that the calorific value of the discharge resistor does not become excessive.

(第二實施方式)(Second embodiment)

下面,將參照圖4對第二實施方式所涉及的電動車輛用控制裝置100進行說明。Next, the electric vehicle control device 100 according to the second embodiment will be described with reference to FIG. 4.

在第一實施方式中,主控制電路CON直接檢測出平滑電容器FC的充電電壓。In the first embodiment, the main control circuit CON directly detects the charging voltage of the smoothing capacitor FC.

與此相對,在第二實施方式中,放電控制電路FX檢測出電源端子TB與接地端子TG之間的平滑電容器FC的充電電壓VFC。In contrast, in the second embodiment, the discharge control circuit FX detects the charging voltage VFC of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.

並且,將與充電電壓VFC相關的訊息輸出至主控制電路CON。And, the information related to the charging voltage VFC is output to the main control circuit CON.

主控制電路CON根據輸入的來自放電控制電路FX的訊息,間接地檢測出平滑電容器FC的充電電壓。The main control circuit CON indirectly detects the charging voltage of the smoothing capacitor FC based on the input message from the discharge control circuit FX.

根據第二實施方式,其與第一實施方式相比能够簡化電路結構。According to the second embodiment, it can simplify the circuit structure as compared with the first embodiment.

雖然對本發明的幾個實施方式進行了說明,但這些實施方式是作爲示例進行提出的,其並沒有對本發明的範圍進行限定。而這些實施方式能够按照其他各種方式進行實施,且在不脫離發明主旨的範圍內,能够進行各種省略、替換以及變更。這些實施方式以及其變形被包含在發明的範圍與主旨中,同樣地,也被包含在專利申請專利範圍中記載的發明與其均等的範圍內。Although several embodiments of the present invention have been described, these embodiments are presented as examples, and they do not limit the scope of the present invention. These embodiments can be implemented in various other ways, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and similarly, they are also included in the invention described in the patent application patent scope and its equivalent scope.

100‧‧‧電動車輛用控制裝置 B‧‧‧電池 D1、D2、D3、D4、D5、D6‧‧‧二極體 M‧‧‧電機 TB‧‧‧電源端子 TG‧‧‧接地端子 FC‧‧‧平滑電容器 FR‧‧‧放電電阻 FX‧‧‧放電控制電路 Z‧‧‧驅動電路 CON‧‧‧主控制電路 Q1、Q2、Q3、Q4、Q5、Q6‧‧‧電晶體 SW‧‧‧開關 TB‧‧‧電源端子 TU、TV、TW‧‧‧輸出端子 MU、MV、MW‧‧‧交流電壓 VFC‧‧‧充電電壓 S1、S2、S3、S4、S5、S6、S7、S8‧‧‧步驟 t1、t2‧‧‧時間 Z‧‧‧驅動電路100‧‧‧Control device for electric vehicles B‧‧‧Battery D1, D2, D3, D4, D5, D6 ‧‧‧ diode M‧‧‧Motor TB‧‧‧Power terminal TG‧‧‧Ground terminal FC‧‧‧Smoothing capacitor FR‧‧‧Discharge resistance FX‧‧‧Discharge control circuit Z‧‧‧Drive circuit CON‧‧‧Main control circuit Q1, Q2, Q3, Q4, Q5, Q6 SW‧‧‧switch TB‧‧‧Power terminal TU, TV, TW‧‧‧ output terminals MU, MV, MW‧‧‧AC voltage VFC‧‧‧Charging voltage S1, S2, S3, S4, S5, S6, S7, S8 t1, t2‧‧‧ time Z‧‧‧Drive circuit

圖1是第一實施方式涉及的電動車輛用控制裝置100的一例構成圖。FIG. 1 is a configuration diagram of an example of an electric vehicle control device 100 according to the first embodiment.

圖2是展示第一實施方式涉及的電動車輛用控制裝置100的一例運作例的流程圖。2 is a flowchart showing an example of operation of the electric vehicle control device 100 according to the first embodiment.

圖3是展示第一實施方式涉及的電動車輛用控制裝置100的運作例的充電電壓圖表。FIG. 3 is a charging voltage graph showing an operation example of the electric vehicle control device 100 according to the first embodiment.

圖4是第二實施方式涉及的電動車輛用控制裝置100的一例構成圖。FIG. 4 is a configuration diagram of an example of the electric vehicle control device 100 according to the second embodiment.

B‧‧‧電池 B‧‧‧Battery

CON‧‧‧主控制電路 CON‧‧‧Main control circuit

FC‧‧‧平滑電容器 FC‧‧‧Smoothing capacitor

FR‧‧‧放電電阻 FR‧‧‧Discharge resistance

FX‧‧‧放電控制電路 FX‧‧‧Discharge control circuit

M‧‧‧電機 M‧‧‧Motor

SW‧‧‧開關 SW‧‧‧switch

TB‧‧‧電源端子 TB‧‧‧Power terminal

TG‧‧‧接地端子 TG‧‧‧Ground terminal

VFC‧‧‧充電電壓 VFC‧‧‧Charging voltage

Q1、Q2、Q3、Q4、Q5、Q6‧‧‧電晶體 Q1, Q2, Q3, Q4, Q5, Q6

D1、D2、D3、D4、D5、D6‧‧‧二極體 D1, D2, D3, D4, D5, D6 ‧‧‧ diode

TU、TV、TW‧‧‧輸出端子 TU, TV, TW‧‧‧ output terminals

MU、MV、MW‧‧‧交流電壓 MU, MV, MW‧‧‧AC voltage

Z‧‧‧驅動電路 Z‧‧‧Drive circuit

Claims (15)

一種驅動裝置,其包括: 平滑電容器,連接於和電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電; 放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電; 放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制; 主控制電路,對所述放電控制電路的運作進行控制;以及 驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至電機,從而驅動所述電機, 其中,所述主控制電路 在藉由所述放電電阻進行的放電開始前,檢測出所述電源端子與所述接地端子之間的所述平滑電容器的第一充電電壓, 在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓, 在經過所述設定時間時,檢測出所述電源端子與所述接地端子之間的所述平滑電容器的第二充電電壓, 將所述第二充電電壓與所述可繼續放電電壓進行比較, 當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。A driving device including: A smoothing capacitor is connected between the power terminal connected to the positive electrode of the battery and the ground terminal connected to the negative electrode of the battery, using the voltage supplied from the battery to the power terminal and the ground terminal To charge; A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor; A discharge control circuit, connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controlling the discharge of the smoothing capacitor by the discharge resistor; A main control circuit to control the operation of the discharge control circuit; and The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor, Among them, the main control circuit Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal is detected, After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses, When the set time elapses, the second charging voltage of the smoothing capacitor between the power terminal and the ground terminal is detected, Comparing the second charging voltage with the continuous discharge voltage, When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor. 如申請專利範圍第1項所述的驅動裝置,其中, 當所述第二充電電壓小於等於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路,使在所述平滑電容器的充電電壓變得小於等於比所述第二充電電壓更小的第三充電電壓之前繼續藉由所述放電電阻進行所述平滑電容器的放電。The driving device according to item 1 of the patent application scope, wherein, When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit controls the discharge control circuit so that the charging voltage at the smoothing capacitor becomes less than or equal to the second charging voltage The discharge of the smoothing capacitor is continued by the discharge resistor before the small third charging voltage. 如申請專利範圍第1項所述的驅動裝置,其中, 當所述第二充電電壓小於等於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路維持所述放電電阻與所述平滑電容器的連接,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,所述主控制電路控制所述放電控制電路從所述平滑電容器阻斷所述放電電阻。The driving device according to item 1 of the patent application scope, wherein, When the second charging voltage is less than or equal to the continuous discharge voltage, the main control circuit controls the discharge control circuit to maintain the connection between the discharge resistor and the smoothing capacitor. On the other hand, when the second When the charging voltage is greater than the continuous discharge voltage, the main control circuit controls the discharge control circuit to block the discharge resistance from the smoothing capacitor. 如申請專利範圍第1項所述的驅動裝置, 其中,所述主控制電路在藉由所述放電電阻進行的放電開始前計算出所述可繼續放電電壓。The drive device as described in item 1 of the patent application scope, The main control circuit calculates the continuous discharge voltage before the discharge by the discharge resistor starts. 如申請專利範圍第1項所述的驅動裝置, 其中,所述係數被設定爲與經過所述設定時間時所預測的所述平滑電容器的放電量的最小值相關聯。The drive device as described in item 1 of the patent application scope, Here, the coefficient is set to be related to the minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses. 如申請專利範圍第4項所述的驅動裝置, 其中,所述係數被設定爲根據所述放電開始後的經過時間而變化, 所述主控制電路藉由將所述經過時間爲所述設定時間時的係數乘以所述第一充電電壓來計算出所述可繼續放電電壓。The drive device as described in item 4 of the patent application scope, Wherein the coefficient is set to change according to the elapsed time after the discharge starts, The main control circuit calculates the continuous discharge voltage by multiplying the coefficient when the elapsed time is the set time by the first charging voltage. 如申請專利範圍第6項所述的驅動裝置, 其中,所述主控制電路在藉由所述放電電阻進行的放電開始後,按照比所述設定時間更短的週期對所述第一充電電壓與每個週期的所述係數的累加值進行監視,並根據監視結果來控制所述放電控制電路。The drive device as described in item 6 of the patent application scope, The main control circuit monitors the accumulated value of the first charging voltage and the coefficient of each cycle in a cycle shorter than the set time after the discharge by the discharge resistor starts And control the discharge control circuit according to the monitoring result. 如申請專利範圍第4項所述的驅動裝置, 其中,所述主控制電路 藉由將被設定爲與經過所述設定時間時所預測的所述平滑電容器的放電量的最大值相關聯的第二係數乘以所述第一充電電壓,來計算出經過所述設定時間時所預測的所述平滑電容器的下限充電電壓, 當所述第二充電電壓大於等於所述下限充電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續。The drive device as described in item 4 of the patent application scope, Among them, the main control circuit The time when the set time has elapsed is calculated by multiplying the second coefficient set to the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses by the first charging voltage The predicted lower limit charging voltage of the smoothing capacitor, When the second charging voltage is greater than or equal to the lower limit charging voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistor. 如申請專利範圍第1項所述的驅動裝置, 其中,所述主控制電路進一步控制所述驅動電路的運作。The drive device as described in item 1 of the patent application scope, Wherein, the main control circuit further controls the operation of the driving circuit. 如申請專利範圍第8項所述的驅動裝置,其中, 當所述主控制電路控制所述放電控制電路使藉由所述放電電阻進行的所述平滑電容器的放電停止時,藉由控制所述驅動電路來控制藉由所述電機進行的所述平滑電容器的放電。The drive device according to item 8 of the patent application scope, wherein, When the main control circuit controls the discharge control circuit to stop the discharge of the smoothing capacitor by the discharge resistor, the smoothing capacitor by the motor is controlled by controlling the drive circuit Discharge. 如申請專利範圍第9項所述的驅動裝置, 其中,所述驅動電路具有: 第一電晶體,其一端與所述電源端子相連接,其另一端與第一相的第一輸出端子相連接; 第二電晶體,其一端與所述電源端子相連接,其另一端與第二相的第二輸出端子相連接; 第三電晶體,其一端與所述電源端子相連接,其另一端與第三相的第三輸出端子相連接; 第四電晶體,其一端與所述第一輸出端子相連接,其另一端與所述接地端子相連接; 第五電晶體,其一端與所述第二輸出端子相連接,其另一端與所述接地端子相連接;以及 第六電晶體,其一端與所述第三輸出端子相連接,其另一端與所述接地端子相連接, 所述主控制電路藉由控制所述第一至第六電晶體來控制藉由所述電機進行的所述平滑電容器的放電。The drive device as described in item 9 of the patent application scope, Wherein, the driving circuit has: One end of the first transistor is connected to the power terminal, and the other end is connected to the first output terminal of the first phase; The second transistor has one end connected to the power terminal and the other end connected to the second output terminal of the second phase; A third transistor, one end of which is connected to the power supply terminal, and the other end of which is connected to the third output terminal of the third phase; A fourth transistor, one end of which is connected to the first output terminal, and the other end of which is connected to the ground terminal; A fifth transistor having one end connected to the second output terminal and the other end connected to the ground terminal; and A sixth transistor, one end of which is connected to the third output terminal, and the other end of which is connected to the ground terminal, The main control circuit controls the discharge of the smoothing capacitor by the motor by controlling the first to sixth transistors. 如申請專利範圍第1項所述的驅動裝置,其中, 所述主控制電路在所述平滑電容器與所述電池相連接時,根據所述第一充電電壓的檢測結果、所述可繼續放電電壓的計算結果、所述第二充電電壓的檢測結果、以及所述第二充電電壓與所述可繼續放電電壓的比較結果來控制所述放電控制電路。The driving device according to item 1 of the patent application scope, wherein, The main control circuit, when the smoothing capacitor is connected to the battery, based on the detection result of the first charging voltage, the calculation result of the continuous discharge voltage, the detection result of the second charging voltage, and A comparison result of the second charging voltage and the continuous discharge voltage controls the discharge control circuit. 如申請專利範圍第1項所述的驅動裝置, 其中,所述放電控制電路檢測出所述第一充電電壓以及所述第二充電電壓,並將與所述第一以及第二充電電壓相關的訊息輸出至所述主控制電路, 所述主控制電路藉由所述訊息的輸入來檢測出所述第一以及第二充電電壓。The drive device as described in item 1 of the patent application scope, Wherein, the discharge control circuit detects the first charging voltage and the second charging voltage, and outputs information related to the first and second charging voltages to the main control circuit, The main control circuit detects the first and second charging voltages through the input of the message. 一種電動車輛,具備電池、電機、以及驅動裝置,其中, 所述驅動裝置包括: 平滑電容器,連接於和所述電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電; 放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電; 放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制; 主控制電路,對所述放電控制電路的運作進行控制;以及 驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至所述電機,從而驅動所述電機, 其中,所述主控制電路 在藉由所述放電電阻進行的放電開始前,檢測出所述平滑電容器的第一充電電壓, 在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓, 在經過所述設定時間時,檢測出所述平滑電容器的第二充電電壓, 將所述第二充電電壓與所述可繼續放電電壓進行比較, 當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。An electric vehicle includes a battery, a motor, and a driving device, wherein, The driving device includes: A smoothing capacitor is connected between a power terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and is supplied from the battery between the power terminal and the ground terminal Voltage to charge; A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor; A discharge control circuit, connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controlling the discharge of the smoothing capacitor by the discharge resistor; A main control circuit to control the operation of the discharge control circuit; and The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor, Among them, the main control circuit Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor is detected, After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses, When the set time elapses, the second charging voltage of the smoothing capacitor is detected, Comparing the second charging voltage with the continuous discharge voltage, When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor. 一種驅動裝置的控制方法,所述驅動裝置包括: 平滑電容器,連接於和電池的正極相連接的電源端子與和所述電池的負極相連接的接地端子之間,利用被從所述電池提供至所述電源端子與所述接地端子之間的電壓來進行充電; 放電電阻,與所述平滑電容器並聯連接在所述電源端子與所述接地端子之間,用於使所述平滑電容器放電; 放電控制電路,與所述放電電阻串聯連接在所述電源端子與所述接地端子之間,對藉由所述放電電阻進行的所述平滑電容器的放電進行控制;以及 驅動電路,將對所述電源端子與所述接地端子之間的直流電壓進行電力轉換後的交流電壓提供至電機,從而驅動所述電機,其中, 在藉由所述放電電阻進行的放電開始前,檢測出所述平滑電容器的第一充電電壓, 在藉由所述放電電阻進行的放電開始後直至經過預先設定的設定時間前,藉由將所述第一充電電壓與預先設定的係數相乘,從而計算出可繼續放電電壓,所述可繼續放電電壓是指在經過所述設定時間時所預測的可繼續藉由所述放電電阻進行放電的所述平滑電容器的充電電壓, 在經過所述設定時間時,檢測出所述平滑電容器的第二充電電壓, 將所述第二充電電壓與所述可繼續放電電壓進行比較, 當所述第二充電電壓小於等於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電繼續,另一方面,當所述第二充電電壓大於所述可繼續放電電壓時,控制所述放電控制電路使藉由所述放電電阻進行的放電停止。A control method of a driving device, the driving device includes: A smoothing capacitor is connected between the power terminal connected to the positive electrode of the battery and the ground terminal connected to the negative electrode of the battery, using the voltage supplied from the battery to the power terminal and the ground terminal To charge; A discharge resistor connected in parallel with the smoothing capacitor between the power supply terminal and the ground terminal for discharging the smoothing capacitor; A discharge control circuit connected in series with the discharge resistor between the power terminal and the ground terminal to control the discharge of the smoothing capacitor by the discharge resistor; and The driving circuit supplies the AC voltage after power conversion of the DC voltage between the power terminal and the ground terminal to the motor, thereby driving the motor, wherein, Before the discharge by the discharge resistor starts, the first charging voltage of the smoothing capacitor is detected, After the discharge by the discharge resistor starts and before a predetermined set time elapses, by multiplying the first charging voltage by a predetermined coefficient, the continuous discharge voltage is calculated, and the continuous The discharge voltage refers to the charging voltage of the smoothing capacitor that can be predicted to continue to be discharged by the discharge resistor when the set time elapses, When the set time elapses, the second charging voltage of the smoothing capacitor is detected, Comparing the second charging voltage with the continuous discharge voltage, When the second charging voltage is less than or equal to the resumeable discharge voltage, the discharge control circuit is controlled to continue the discharge through the discharge resistor. On the other hand, when the second charging voltage is greater than the dischargeable voltage When the discharge voltage continues, the discharge control circuit is controlled to stop the discharge by the discharge resistor.
TW108110738A 2018-03-28 2019-03-27 Drive device, electric vehicle and control method of drive device TWI732199B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2018/012750 2018-03-28
PCT/JP2018/012750 WO2019186762A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method

Publications (2)

Publication Number Publication Date
TW202005256A true TW202005256A (en) 2020-01-16
TWI732199B TWI732199B (en) 2021-07-01

Family

ID=68059392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110738A TWI732199B (en) 2018-03-28 2019-03-27 Drive device, electric vehicle and control method of drive device

Country Status (4)

Country Link
JP (1) JP7083891B2 (en)
CN (1) CN111886796B (en)
TW (1) TWI732199B (en)
WO (1) WO2019186762A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200803134A (en) * 2006-06-23 2008-01-01 Yuieh Hsene Electronics Co Ltd Driving circuit of power converter for modular matching
JP5094797B2 (en) * 2009-08-07 2012-12-12 日立オートモティブシステムズ株式会社 DC power supply smoothing capacitor discharge circuit
JP5623994B2 (en) * 2011-07-29 2014-11-12 日立オートモティブシステムズ株式会社 Power converter
JP2013143818A (en) 2012-01-10 2013-07-22 Toyota Motor Corp Semiconductor fuse device
JP6255781B2 (en) * 2013-08-02 2018-01-10 株式会社ジェイテクト Abnormality detection method for power supply circuit
CN104953686B (en) * 2014-03-24 2017-02-22 国家电网公司 Control method for charge-discharge virtual synchronization motor for electromobile energy storage
JP2016201929A (en) * 2015-04-10 2016-12-01 オムロンオートモーティブエレクトロニクス株式会社 Power supply device, and control method for power supply device
JP6536812B2 (en) * 2015-09-11 2019-07-03 日産自動車株式会社 Power converter
JP2017060225A (en) * 2015-09-14 2017-03-23 アイシン・エィ・ダブリュ株式会社 Inverter device
JP6561803B2 (en) 2015-12-03 2019-08-21 スズキ株式会社 High voltage controller
US10035422B2 (en) * 2016-06-14 2018-07-31 Ford Global Technologies, Llc Self-limiting active discharge circuit for electric vehicle inverter
CN107809223B (en) * 2016-09-08 2023-06-09 恩智浦美国有限公司 Low temperature coefficient clock signal generator

Also Published As

Publication number Publication date
JP7083891B2 (en) 2022-06-13
CN111886796B (en) 2023-12-12
JPWO2019186762A1 (en) 2021-03-18
WO2019186762A1 (en) 2019-10-03
CN111886796A (en) 2020-11-03
TWI732199B (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP5750799B2 (en) Inverter device
JPWO2012014392A1 (en) Battery heating circuit and battery heating device
JP2007318849A (en) Electric system of electric automobile
JP2004357412A (en) Dc power supply device for inverter
JP2010178421A (en) Power supplying device
JP2016086578A (en) Discharge control device, and power conversion device with the same
JP5557898B2 (en) Load drive device
JP4771172B2 (en) Smoothing capacitor discharge device for vehicle power converter
KR101826992B1 (en) Power system of fuel cell vehicle
JP7230635B2 (en) Electric power system and its control method
JP2007195352A (en) Power supply unit for motor
JP6818835B1 (en) Power controller
JP6392464B2 (en) VEHICLE DRIVE DEVICE, VEHICLE DRIVE SYSTEM, AND CONTROL METHOD FOR VEHICLE DRIVE DEVICE
JP6935592B2 (en) Uninterruptible power system
TWI732199B (en) Drive device, electric vehicle and control method of drive device
JP6671402B2 (en) Power supply for vehicles
JP5944196B2 (en) Motor drive control device
JP5115064B2 (en) Robot controller
JP2008283840A (en) Power system, its method of control, and vehicle
JP2009078744A (en) Motor controller for electric power steering device
JP7259563B2 (en) Rotating electric machine control system
JP2007209118A (en) Electric power steering device
JP2017200308A (en) Power supply device for inductive load
JP2021058058A (en) Power conversion device
JP2010104076A (en) Power converter circuit