TW201927288A - 適用於治療之微脂體rna配製物的製備及儲存 - Google Patents

適用於治療之微脂體rna配製物的製備及儲存 Download PDF

Info

Publication number
TW201927288A
TW201927288A TW107136678A TW107136678A TW201927288A TW 201927288 A TW201927288 A TW 201927288A TW 107136678 A TW107136678 A TW 107136678A TW 107136678 A TW107136678 A TW 107136678A TW 201927288 A TW201927288 A TW 201927288A
Authority
TW
Taiwan
Prior art keywords
rna
composition
liposome complex
concentration
lipid
Prior art date
Application number
TW107136678A
Other languages
English (en)
Inventor
海因里希 哈斯
賽巴斯汀 霍納
包昆斯 艾薩克 埃斯帕扎
湯瑪斯 希勒
費爾迪亞 貝茲
Original Assignee
德商拜恩迪克Rna製藥有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商拜恩迪克Rna製藥有限公司 filed Critical 德商拜恩迪克Rna製藥有限公司
Publication of TW201927288A publication Critical patent/TW201927288A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本揭示文係關於製備用於在非經口給藥後,特別是靜脈內給藥後將RNA遞送至目標組織的RNA脂質體複合物(lipoplex)粒子之方法,以及包括此RNA脂質體複合物粒子之組成物。本揭示文亦關於得以用符合工業GMP-規範方式製備RNA脂質體複合物粒子之方法。再者,本揭示文係關於在實質上無損失產品品質,及特別是實質上無損失RNA活性下,用於儲存RNA脂質體複合物之方法和組成物。

Description

適用於治療之微脂體RNA配製物的製備及儲存
本揭示文係關於製備用於在非經口給藥後,特別是靜脈內給藥後將RNA遞送至目標組織的RNA脂質體複合物(lipoplex)粒子之方法,以及包括此RNA脂質體複合物粒子之組成物。本揭示文亦關於得以用符合工業GMP-規範方式製備RNA脂質體複合物粒子之方法。再者,本揭示文係關於在實質上無損失產品品質,及特別是實質上無損失RNA活性下,用於儲存RNA脂質體複合物之方法和組成物。文中所述的RNA脂質體複合物粒子調配物可藉由冷凍乾燥、噴霧乾燥或相關方法冷凍或脫水,得到比液體儲存保存期限更長的產品。在一實施例中此RNA脂質體複合物粒子係包括單股RNA,例如編碼一感興趣胜肽或蛋白之mRNA,例如具醫藥活性的胜肽或蛋白。此RNA係由目標組織的細胞所吸收並將RNA轉譯成可展現其生理活性之編碼的胜肽或蛋白。此感興趣之胜肽或蛋白可為包括一或多個表位供誘發或促進針對該一或多個表位之免疫反應的胜肽或蛋白。文中所述的方法和組成物係適合以符合醫藥產品之要求,更特言之符合GMP製造之要求及供非經口應用之醫藥產品品質要求的方式來使用。
使用RNA將外來的基因訊息傳遞到目標細胞提供了具吸引力之DNA替代。使用RNA的好處包括暫時性表現和非轉化特性。RNA不需要進入胞核以進行表現且再者無法整合到宿主的基因體中,藉此消除了致癌性的風險。RNA可藉由所謂的脂質體複合物調配物來遞送,其中RNA係與由陽離子脂質和輔助脂質之混合物所組成的微脂體結合,形成可注射的奈米粒子調配 物。然而,用於將即使在調配物儲存後仍具生物活性的RNA遞送到目標組織之調配物的開發,仍未滿足需求。此外,用於保存期限長之可注射RNA脂質體複合物粒子調配物且符合GMP-規範製造之方法的開發仍未提供滿足的需求。因此提供對於將生物活性RNA遞送到目標組織之調配物仍有需求,其中該遞送的RNA係有效地轉譯成其編碼的胜肽或蛋白。再者,在實質上無損失產品品質,及特別是實質上無損失RNA之生物活性下,提供此等儲存穩定的調配物仍有需求。
本發明者們令人驚訝地發現文中所述的RNA脂質體複合物粒子調配物滿足了上述要求。
I.用於製備RNA脂質體複合物粒子的方法、RNA脂質體複合物粒子和包括RNA脂質體複合物粒子之組成物
在第一態樣中,本揭示文係關於製備具有改良的生物活性之RNA脂質體複合物粒子的方法,根據本揭示文所製備的RNA脂質體複合物粒子以及包括此等RNA脂質體複合物粒子之組成物。RNA脂質體複合物粒子和包括RNA脂質體複合物粒子之組成物可用於在非經口給藥後,特別是靜脈內給藥後將RNA遞送至目標組織。RNA脂質體複合物粒子係使用微脂體所製備,而該微脂體係藉由將高濃縮脂質之乙醇溶液注射到水中或適合的水相中所獲得。在一實施例中,RNA脂質體複合物產品其特徵為具有一特定的x-光散射模式,其中在約1nm-1觀察到單一的布拉格峰(Bragg peak),其中該峰寬係小於0.2nm-1
在一實施例中,此微脂體和RNA脂質體複合物粒子係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)和1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。脂質混合物中DOPE的濃度係高於DOPE單獨在乙醇中的平衡溶解度。在室溫下,單獨的DOPE具有約50mM的溶解度,與DOTMA一起則其係具有100mM或更高的溶解度。可從其得到高活性脂質體複合物之形成微脂體的脂質溶液,可具有270mM或更高的總脂質濃度(例如DOPE為90mM或更高)。可藉由增加溫度甚至可得到較高濃度的乙醇中溶液。從 其中DOPE濃度高於平衡溶解度之脂質溶液所得到的微脂體明顯地係大於從其中DOPE濃度為平衡溶解度或以下之脂質溶液所得到的微脂體。微脂體尺寸係隨乙醇中的濃度單調遞增。
根據本揭示文之微脂體可藉由將微脂體與RNA混合供製備RNA脂質體複合物粒子。在一實施例中,係在混合之前將RNA與NaCl溫育(incubate),以便於調整增加脂質體複合物活性所需之特定的離子強度。從這些較大微脂體所形成的脂質體複合物,如在活體外和活體內實驗中所驗證的,明顯地係具有較高的生物活性。這些具有較高活性的脂質體複合物可與該等較低活性者,藉由特定的物理化學參數清楚分辨,例如(i)較低的布拉格峰之峰寬以及(ii)尺寸測量之分散分析法,如場流分離(field-flow fractionation)中不同的分離性質。具有較低活性之脂質體複合物平均上為較小。此外,其亦具有不同的溶離性質,可能係與如分子構形、形狀和體相(bulk phase)之交互作用的參數有關。
因此,在此態樣中,本揭示文係關於製造微脂體膠體之方法,其係包括將一脂質之乙醇溶液注射至水相中,產生該微脂體膠體,其中至少一種脂質溶液中的脂質濃度係相當於或高於該至少一種脂質於乙醇中的平衡溶解度。
在一實施例中,此方法係包括將脂質溶液加熱以增加該脂質溶液中脂質的濃度。在一實施例中,該脂質溶液係加熱到至少約40℃,或至少約60℃之溫度。
在一實施例中,該脂質溶液為二或三種不同脂質之混合物的溶液。
在一實施例中,該脂質溶液中的一脂質濃度係相當於或高於該脂質於乙醇中的平衡溶解度。
在一實施例中,脂質溶液中的總脂質濃度係從約180mM至約600mM,從約300mM至約600mM,或約330mM。
在一實施例中,該脂質溶液係包括至少一種陽離子脂質及至少一種另外的脂質。
在一實施例中,脂質溶液中另外的脂質之濃度係相當於或高於該另外脂質於乙醇中的平衡溶解度。
在一實施例中,至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
在一實施例中,至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
在一實施例中,至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
在一實施例中,至少一種陽離子脂質與至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
在一實施例中,該脂質溶液係包括莫耳比從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE。
在一實施例中,脂質溶液中的DOPE濃度為至少約60mM,或至少約90mM。
在一實施例中,該脂質溶液係以從約50rpm至約150rpm之水相攪拌速度注射至水相中。
在一實施例中,該水相為水。
在一實施例中,該水相係具有酸性pH。在一實施例中,該水相係包括乙酸,例如約5mM之量。
在一實施例中,此方法進一步係包括攪拌該微脂體膠體。
在一實施例中該微脂體膠體係攪拌約15min至約60min,或約30min。
本揭示文進一步係關於製造微脂體膠體之方法,其係包括將包含莫耳比為約2:1之DOTMA和DOPE的乙醇中脂質溶液注射到以約150rpm之攪拌速度攪拌的水中,產生微質體膠體,其中該脂質溶液中的DOTMA和DOPE濃度為約330mM。
在一實施例中,製造微脂體的方法不包括擠壓微脂體之步驟。
本揭示文進一步係關於可藉由製造微脂體之方法得到的微脂體膠體。
在一實施例中,微脂體係具有至少約250nm之平均直徑。
在一實施例中,微脂體係具有範圍從約250nm至約800nm之平均直徑。
在一實施例中,微脂體係具有小於約0.5,小於約0.4,或小於約0.3之多分散性指數。
在一實施例中,該微脂體為陽離子微脂體。
在一實施例中,該微脂體係包括至少一種陽離子脂質和至少一種另外的脂質。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
在一實施例中,該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
在一實施例中,至少一種陽離子脂質與至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
在一實施例中,微脂體係包括莫耳比從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE。
本揭示文進一步係關於製備RNA脂質體複合物粒子之方法,其係包括將上述的脂質體膠體加到包括RNA的溶液中。
在一實施例中,RNA脂質體複合物之X-光散射模式其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
在一實施例中,RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均直徑。
本揭示文進一步係關於包括如上述可得到的RNA脂質體複合物粒子之組成物。
在一實施例中,該RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
在一實施例中,該RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼一胜肽或蛋白之RNA,其係包括至少一表位,及至少一種陽離子脂質和至少一種另外的脂質,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,且其中RNA脂質體複合物粒子其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
在一實施例中,該組成物進一步係包括濃度從約10mMM至約300mM,從約45mM至約300mM,從約10mM至約50mM,或從約80mM至約150mM之氯化鈉。
在一實施例中,該組成物進一步係包括緩衝劑。
在一實施例中,該組成物進一步係包括螯合劑。
在一實施例中,在此態樣I中所述之RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400mm之平均直徑。
在一實施例中,RNA脂質體複合物粒子係具有小於約0.5,小於約0.4,或小於約0.3之多分散性指數。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
在一實施例中,該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三 甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
在一實施例中,該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
在一實施例中,該RNA脂質體複合物粒子係包括莫耳比從約10:0至1:9,從約4:1至1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE,且其中DOTMA之正電荷與RNA之負電荷的電荷比係從約1:2至1.9:2。
在一實施例中,螯合劑為乙二胺四乙酸(EDTA)。
在一實施例中,該EDTA濃度係從約0.25mM至約5mM,或約2.5mM。
在一實施例中,該組成物進一步係包括佐劑。
在一實施例中,該組成物係經調配供全身性給藥。
在一實施例中,該全身性給藥係藉由靜脈內投予。
本揭示文進一步係關於所述之組成物作為治療之用途。
II.以符合工業GMP-規範之方式製備RNA脂質體複合物粒子的方法
在第二態樣中,本揭示文係關於得以用符合工業GMP-規範方式製備RNA脂質體複合物粒子之方法。
在本揭示文之一實施例中,係使用流體通路系統來進行醫藥RNA脂質體複合物粒子產品之GMP-製造,該GMP-製造能精確控制RNA與微脂體脂混合比率,其對於產品品質至關重要。在一實施例中,該流體通路係包括將微脂體溶液和RNA溶液以1:1(體積/體積)方式混合,其中組成份的濃度係經選擇以便於確切地維持所欲的電荷比。在一實施例中,係在混合前將RNA以NaCl溫育,以便於調整脂質體複合物活性所需之特定的離子強度。在一實施例中,係施行一完全以單次使用材料為基準之Y-型混合設定。流體動力學係經最適化以維持粒子特性及避免堵塞。相反的,當使用市售的微流體裝置在一段時間後發生堵塞,則無法適用於GMP。
在一實施例中,脂質體複合物係藉由將RNA以陽離子微脂體培養所製造,其中混合比率及混合條件係藉由使用一注射器泵浦[輸注泵(perfusor pump)]精確控制,其中二個注射器,一個包括微脂體而另一個包括RNA, 係***注射泵浦中,較佳地係平行***相同的泵浦。二個泵浦的活塞係藉由相同的驅動器向前移動,因此精確地控制所混合的相對體積。在所選擇的程序條件中,二種溶液係使用相同的注射器,因此能確保一比一的混合條件。在混合前藉由調整二種溶液的濃度,則能精確地控制RNA和微脂體(陽離子脂質)之間的比率。
因此,在本態樣中,本揭示文係關於連續流製造RNA脂質體複合物粒子之方法,其係包括將一包括RNA之溶液及一包括陽離子微脂體之溶液在控制的RNA和陽離子微脂體之混合條件下混合。
在一實施例中,包括陽離子微脂體之溶液為如上述之微脂體膠體。
在一實施例中,包括RNA的溶液和包括陽離子微脂體的溶液為水溶液。
在一實施例中,係使用得以混合包括RNA的溶液和包括陽離子微脂體的溶液的流率(flow rate)。
在一實施例中,該液流的特徵為雷諾數(Reynolds number)大於300,或從約500至約2100。
在一實施例中,控制混合條件包括控制包含RNA的溶液和包含陽離子微脂體的溶液之混合比率。
在一實施例中,控制混合條件包括控制所混合之包含RNA的溶液和包含陽離子微脂體的溶液之相對體積。
在一實施例中,RNA和陽離子微脂體之混合比率係藉由使用相同混合體積(v/v)之包括RNA的溶液和包括陽離子微脂體的溶液,以及調整個別溶液中RNA和陽離子微脂體的濃度來控制。
在一實施例中,控制混合條件係經選擇用以維持RNA脂質體複合物粒子之特性同時避免堵塞。
在一實施例中,該方法係包括使用Y-型或T-型混合元件。
在一實施例中,Y-型或T-型混合元件係具有從約1.2mm至約50mm的直徑。
在一實施例中,該方法係包括使用混合元件,例如Y-型或T-型混合元件,其中來自二條硬管或軟管的液流係匯集一起且其中並無內部靜態混合 元件,例如***和組合、交錯人字形、之字形或扭曲管道,或三維捲曲管道存在。混合元件可具有藉於1.2至50.0mm之直徑。
在一實施例中,該方法係包括使用裝置,其中二個注射器,一個包括陽離子微脂體的溶液及一個包括RNA的溶液,係平行***相同或二個支撐架中,而該裝置之活塞係藉由一或二個精密的致動器伸出。在一實施例中,該方法係包括使用一注射器泵浦,其中二個注射器,一個包括陽離子微脂體的溶液及一個包括RNA的溶液係平行***相同的泵浦中。
在一實施例中,該方法係包括使用加壓容器、膜泵浦、齒輪泵浦、磁浮泵浦、蠕動泵、HPLC/FPLC泵浦或任何其他的活塞泵浦,視需要與流率感測器組合,視需要與反饋迴路組合供線上控制和即時調整流率。
在一實施例中,包括RNA的溶液和包括微脂體的溶液之混合物係包括濃度從約45mM至約300mM之氯化鈉,或包括相當於濃度從約45mM至約300mM之氯化鈉的離子強度。
在一實施例中,RNA溶液係包括濃度從約90mM至約600mM之氯化鈉,或包括相當於濃度從約90mM至約600mM之氯化鈉的離子強度。
在一實施例中,包括RNA的溶液和包括微脂體的溶液之混合物係具有至少約50mM之離子強度。
在一實施例中,在X-光散射模式中,RNA脂質體複合物其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
在一實施例中,RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均直徑。
本揭示文進一步係關於包括可如上述得到的RNA脂質體複合物粒子之組成物。
在一實施例中,該RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
在一實施例中,該RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼胜肽或蛋白之RNA,其係包括至少一表位,及至少一種陽離子脂質和至少一種另外的脂質,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,且其中RNA脂質體複合物粒子其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
在一實施例中,該組成物進一步係包括濃度從約10mM至約300mM,從約45mM至約300mM,從約10mM至約50mM,或從約80mM至約150mM之氯化鈉。
在一實施例中,該組成物進一步係包括緩衝劑。
在一實施例中,該組成物進一步係包括螯合劑。
在一實施例中,在態樣II中所述之RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均徑長。
在一實施例中,RNA脂質體複合物粒子係具有小於約0.5,小於約0.4,或小於約0.3之多分散性指數。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
在一實施例中,該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
在一實施例中,該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
在一實施例中,該RNA脂質體複合物粒子係包括莫耳比從約10:0至1:9,從約4:1至1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE,且其中DOTMA之正電荷與RNA之負電荷的電荷比係從約1:2至1.9:2。
在一實施例中,螯合劑為乙二胺四乙酸(EDTA)。
在一實施例中,該EDTA濃度係從約0.25mM至約5mM,或2.5mM。
在一實施例中,該組成物進一步係包括佐劑。
在一實施例中,該組成物係經調配供全身性給藥。
在一實施例中,該全身性給藥係藉由靜脈內給藥。
本揭示文進一步係關於所述之組成物作為治療之用途。
III.儲存RNA脂質體複合物粒子之方法和組成物
在第三態樣中,本揭示文係關於在無實質損失產品品質,及特別是無實質損失RNA活性下,用於儲存RNA脂質體複合物粒子之方法和組成物。特言之,本揭示文係關於在無實質損失RNA脂質體複合物粒子品質,及特別是無實質損失RNA活性下,得以冷凍、凍乾或噴霧乾燥RNA脂質體複合物粒子之調配物。
文中所述的RNA脂質體複合物粒子調配物可藉由冷凍乾燥、噴霧乾燥或相關的方法冷凍或脫水,得到比液體儲存保存期限更長的產品。
為了能冷凍,係加入安定劑(低溫保護劑)。在一實施例中,在製造後,脂質體複合物係以安定劑(低溫保護劑)稀釋,因此能調整離子強度,較佳地降低離子強度並調整適當的安定劑濃度。就產品之冷凍,安定劑濃度可能高於該值以得到生理滲透壓。在該情況下,就投藥,產品係以適合的水相稀釋(例如注射用水、食鹽水)以調整所欲的滲透壓和離子強度。可使用如葡萄糖、蔗糖或海藻糖,以及其他化合物,如葡聚糖作為安定劑。
令人驚訝地,根據本揭示文已發現,包括如文中所述之安定劑的RNA脂質體複合物調配物亦可凍乾。就凍乾,所需的安定劑(低溫保護劑)濃度可能比冷凍低,且耐受的NaCl濃度(離子強度)可能比冷凍高。若需要大規模經濟性脫水,此產品亦可噴霧乾燥。
某些RNA脂質體複合物調配物之pH值係經調整至低於通常的生理範圍及體相中RNA儲存通常的最佳pH。最佳pH為約6.2,適合的範圍係介於約5.7 至約6.7。就其他的調配物,理想的pH可能甚至更低。假設,由於陽離子脂質之正電荷,RNA脂質體複合物內的局部pH係高於體相pH。
在本揭示文這些實施例中,其中RNA脂質體複合物組成物係經冷凍儲存者,組成物可解凍及視需要可藉由加入水性液體調整組成物的滲透壓、離子強度及/或pH。所生成的組成物可投予一對象。
在本揭示文這些實施例中,其中RNA脂質體複合物組成物係經凍乾或冷凍乾燥儲存者,則組成物可藉由加入水性液體重建及視需要藉由加入水性液體調整組成物的滲透壓、離子強度及/或pH。所生成的組成物可投予一對象。
因此,在本態樣中,本揭示文係關於製備包括冷凍組成物RNA脂質體複合物粒子之組成物的方法,其係包括(i)提供一包括RNA脂質體複合物粒子和安定劑之水性組成物,及(ii)冷凍該組成物。
在一實施例中,冷凍係在從約-15℃至約-40℃,或約-30℃之溫度。
在一實施例中,該組成物係儲存於,例如從約-15℃至約-40℃,或約-20℃之儲存溫度。
在一實施例中,該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
在一實施例中,提供一包括RNA脂質體複合物粒子和安定劑之水性組成物係包括提供一包括RNA脂質體複合物粒子之水性組成物並將安定劑加至一包含RNA脂質體複合物粒子之水性組成物中。
因此,製備供冷凍的組成物之方法係包括提供一包括RNA脂質體複合物粒子之組成物及將安定劑加入該包括RNA脂質體複合物粒子之水性組成物中。
在一實施例中,將安定劑加入包括RNA脂質體複合物粒子之水性組成物中降低了包括RNA脂質體複合物粒子之水性組成物的離子強度。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係高於生理滲透壓所需的值。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係足以維持RNA脂質體複合物粒子的質性,且特言之,在組 成物於約-15℃至約-40℃之溫度儲存至少1個月,至少6個月,至少12個月,至少24個月或至少36個月後,避免RNA活性之實質損失。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係從約5%至約35.0%(w/v),從約10%至約30.0%(w/v),從約12.5%至約25.0%(w/v),或約22.0%(w/v)。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物的pH係低於通常RNA儲存的最佳pH。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物係包含濃度從約10mM至約50mM的氯化鈉,或包括相當於濃度從約10mM至約50mM之氯化鈉的離子強度。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物係具有相當於濃度約20mM之氯化鈉的離子強度。
在一實施例中,RNA脂質體複合物粒子可藉由如上述於I和II下的方法獲得。
在一實施例中,製備凍乾組成物的方法進一步係包括儲存包括RNA脂質體複合物粒子之冷凍組成物。該組成物可儲存於相當於或基本上相當於冷凍溫度,或高於或低於冷凍溫度之溫度下。一般而言,組成物係儲存於從約-15℃至約-40℃之溫度,例如約-20℃。
本揭示文進一步係關於一包括RNA脂質體複合物粒子之組成物,其可藉由上述製備經冷凍組成物之方法來製得。本揭示文亦關於一包括RNA脂質體複合物粒子之組成物,其可藉由上述製備供冷凍之組成物的方法來製得。
在一實施例中,RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
在一實施例中,RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
在一實施例中,該組成物進一步係包括濃度從約10mM至約50mM的氯化鈉。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼胜肽或蛋白之RNA,其係包括至少一表位,至少一種陽離子脂質和至少一種另外的脂質,其中RNA脂質體複合物粒子中之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,濃度從0mM至約40mM的氯化鈉,以及安定劑。
在一實施例中,該組成物進一步係包括緩衝劑。
在一實施例中,組成物中RNA的量係從約0.01mg/mL至約1mg/mL,約0.05mg/mL至約0.5mg/mL,或約0.05mg/mL。
在一實施例中,氯化鈉的濃度係從約20mM至約30mM。
在一實施例中,氯化鈉的濃度為約20mM。
在一實施例中,氯化鈉的濃度為約30mM。
在一實施例中,組成物中安定劑的濃度係高於生理滲透壓所需的值。
在一實施例中,組成物中安定劑的濃度係從約5至約35重量體積百分比(%w/v),或從約12.5至約25重量體積百分比(%w/v)。
在一實施例中,該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
在一實施例中,該安定劑為濃度從約5至約25重量體積百分比(%w/v)之蔗糖。
在一實施例中,蔗糖濃度係從約15%(w/v)至約25%(w/v)。
在一實施例中,蔗糖濃度係從約20%(w/v)至約25%(w/v)。
在一實施例中,蔗糖濃度為約22%(w/v)。
在一實施例中,蔗糖濃度為約20%(w/v)。
在一實施例中,該組成物係具有低於通常RNA儲存的最佳pH。
在一實施例中,該組成物係具有從約5.7至約6.7,或約6.2之pH。
在一實施例中,該緩衝劑為2-[4-(2-羥乙基)哌-1-基]乙磺酸(HEPES)。
在一實施例中,HEPES的濃度係從約2.5mM至約10mM,或約7.5mM。
在一實施例中,該組成物進一步係包括螯合劑。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼胜肽或蛋白之RNA,其係包括至少一表位,濃度為約0.05mg/mL,及莫耳比約2:1之DOTMA和DOPE其中RNA脂質體複合物粒子中之正電荷與負電荷的比率為約1.3:2.0,濃度約20mM的氯化鈉,濃度約22%(w/v)的蔗糖,濃度約7.5mM,具有pH約6.2之HEPES,及`濃度約2.5mM之EDTA。
在一實施例中,該組成物為液體或冷凍狀態。
在一實施例中,該冷凍的組成物在從約-15℃至約-40℃的溫度下歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月為安定的。
在一實施例中,該冷凍的組成物在約-15℃的溫度下歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月為安定的。
在一實施例中,該冷凍的組成物在約-15℃的溫度下歷經至少2個月為安定的。
在一實施例中,該冷凍的組成物在約-20℃的溫度下歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月為安定的。
在一實施例中,該冷凍的組成物在約-20℃的溫度下歷經至少2個月為安定的。
在一實施例中,該冷凍的組成物在約-30℃的溫度下歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月為安定的。
在一實施例中,該冷凍的組成物在約-30℃的溫度下歷經至少2個月為安定的。
本揭示文進一步係關於包括RNA脂質體複合物粒子之水性組成物,其可藉由將上述的冷凍組成物解凍及視需要藉由加入水性液體調整滲透壓及離子強度來獲得。
在一實施例中,該組成物的滲透壓係從約200mOsmol至約450mOsmol。
在一實施例中,該組成物係包括濃度從約80mM至約150mM的氯化鈉。
在一實施例中,該RNA脂質體複合物粒子可藉由如上述I和II下的方法來獲得。
本揭示文進一步係關於製備一包括RNA脂質體複合物粒子之脫水,例如凍乾或噴霧乾燥組成物的方法,其係包括(i)提供一包括RNA脂質體複合物粒子和安定劑之水性組成物,及(ii)脫水,例如凍乾或噴霧乾燥該組成物。
在一實施例中,該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
在一實施例中,提供一包括RNA脂質體複合物粒子和安定劑之水性組成物係包括提供一包括RNA脂質體複合物粒子之水性組成物並將安定劑加至該包含RNA脂質體複合物粒子之水性組成物中。因此,製備供脫水,例如凍乾或噴霧乾燥的組成物之方法係包括提供一包括RNA脂質體複合物粒子之組成物及將安定劑加入該包括RNA脂質體複合物粒子之水性組成物中。
在一實施例中,將安定劑加入包括RNA脂質體複合物粒子之水性組成物中降低了包括RNA脂質體複合物粒子之水性組成物的離子強度。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係高於生理滲透壓所需的值。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係足以維持RNA脂質體複合物粒子的質性,且特言之,在儲 存組成物歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月後,避免RNA活性之實質損失。
在一實施例中,包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係從約5%至約35.0%(w/v),從約10%至約30.0%(w/v),從約12.5%至約25.0%(w/v),或約22.0%(w/v)。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物的pH係低於通常RNA儲存的最佳pH。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物係包含濃度從約10mM至約80mM,或從約10mM至約50mM的氯化鈉,或包括相當於濃度從約10mM至約80mM,或從約10mM至約50mM之氯化鈉的離子強度。
在一實施例中,包括RNA脂質體複合物和安定劑之水性組成物係具有相當於濃度約20mM,約40mM,約60mM,或約80mM之氯化鈉的離子強度。
在一實施例中,RNA脂質體複合物粒子可藉由如上述於I和II下的方法獲得。
在一實施例中,製備脫水,例如凍乾或噴霧乾燥組成物的方法進一步係包括儲存該包括RNA脂質體複合物粒子之凍乾或噴霧乾燥的組成物。一般而言,組成物係儲存於從約-15℃至約-40℃之溫度,例如約-20℃。在特定的實施例中,該組成物係儲存在高於0℃的溫度,例如約25℃或約4℃,例如室溫。
本揭示文進一步係關於一包括RNA脂質體複合物粒子之組成物,其可藉由上述製備脫水,例如凍乾或噴霧乾燥組成物之方法來獲得。本揭示文亦關於一包括RNA脂質體複合物粒子之組成物,其可藉由上述製備供脫水,例如凍乾或噴霧乾燥之組成物的方法來獲得。
在一實施例中,RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
在一實施例中,RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
在一實施例中,該組成物進一步係包括濃度從約10mM至約80mM,或從約10mM至約50mM的氯化鈉。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼胜肽或蛋白之RNA,其係包括至少一表位,至少一種陽離子脂質和至少一種另外的脂質,其中RNA脂質體複合物粒子中之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,濃度從約10mM至約80mM的氯化鈉,以及安定劑。
在一實施例中,該組成物進一步係包括緩衝劑。
在一實施例中,組成物中RNA的量係從約0.01mg/mL至約1mg/mL,約0.05mg/mL至約0.5mg/mL,或約0.05mg/mL。
在一實施例中,氯化鈉的濃度係從約20mM至約30mM。
在一實施例中,氯化鈉的濃度為約20mM。
在一實施例中,氯化鈉的濃度為約30mM。
在一實施例中,組成物中安定劑的濃度係高於生理滲透壓所需的值。
在一實施例中,組成物中安定劑的濃度係從約5至約35重量體積百分比(%w/v),或從約10至約25重量體積百分比(%w/v)。
在一實施例中,該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
在一實施例中,該安定劑為濃度從約5至約35重量體積百分比(%w/v)之海藻糖。
在一實施例中,海藻糖濃度係從約5%(w/v)至約25%(w/v)。
在一實施例中,海藻糖濃度係從約10%(w/v)至約25%(w/v)。
在一實施例中,海藻糖濃度為約10%(w/v)。
在一實施例中,海藻糖濃度為約15%(w/v)。
在一實施例中,該組成物係具有低於通常RNA儲存的最佳pH。
在一實施例中,該組成物係具有從約5.7至約6.7,或約6.2之pH。
在一實施例中,該緩衝劑為2-[4-(2-羥乙基)哌-1-基]乙磺酸(HEPES)。
在一實施例中,HEPES的濃度係從約2.5mM至約10mM,或約7.5mM。
在一實施例中,該組成物進一步係包括螯合劑。
本揭示文進一步係關於一組成物,其係包括:包含下列之RNA脂質體複合物粒子:編碼胜肽或蛋白之RNA,其係包括至少一表位,濃度為約0.05mg/mL,及莫耳比約2:1之DOTMA和DOPE其中RNA脂質體複合物粒子中之正電荷與負電荷的比率為約1.3:2.0,濃度約20mM的氯化鈉,濃度約10%(w/v)的海藻糖,濃度約7.5mM,具約有pH約6.2之HEPES,及濃度約2.5mM之EDTA。
一實施例中,該組成物為液體或脫水,例如凍乾或冷凍乾燥狀態。
在一實施例中,該脫水,例如凍乾或冷凍乾燥的組成物歷經至少1個月,歷經至少6個月,歷經至少12個月,歷經至少24個月,或歷經至少36個月為安定的。在一實施例中,該組成物係儲存在高於0℃的溫度,例如約25℃或約4℃,或例如室溫。
在一實施例中,該脫水,例如凍乾或冷凍乾燥的組成物歷經至少1個月為安定的。
在一實施例中,該脫水,例如凍乾或冷凍乾燥的組成物歷經至少2個月為安定的。
本揭示文進一步係關於包括RNA脂質體複合物粒子之水性組成物,其可藉由將上述的脫水,例如凍乾或冷凍乾燥的組成物重建及視需要藉由加入水性液體調整滲透壓及離子強度來獲得。
在一實施例中,該組成物的滲透壓係從約150mOsmol至約450mOsmol。
在一實施例中,該組成物係包括濃度從約80mM至約150mM的氯化鈉。
在一實施例中,該RNA脂質體複合物粒子可藉由如上述I和II下的方法來獲得。
在一實施例中,本態樣III中所述的RNA脂質體複合物其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
在一實施例中,本態樣III中所述的RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均直徑。
在一實施例中,RNA脂質體複合物粒子係具有小於約0.5,小於約0.4,或小於約0.3之多分散性指數。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
在一實施例中,該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
在一實施例中,該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
在一實施例中,該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
在一實施例中,該RNA脂質體複合物粒子係包括莫耳比從約10:0至1:9,從約4:1至1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE,且其中DOTMA之正電荷與RNA之負電荷的電荷比係從約1:2至1.9:2。
在一實施例中,該螯合劑為乙二胺四乙酸(EDTA)。
在一實施例中,該EDTA濃度係從約0.25mM至約5mM,或約2.5mM。
在一實施例中,該組成物進一步係包括佐劑。
在一實施例中,該組成物係經調配供全身性給藥。
在一實施例中,該全身性給藥係藉由靜脈內給藥。
本揭示文進一步係關於所述之組成物作為治療之用途。
本揭示文進一步係關於製備一包括RNA脂質體複合物粒子之水性組成物的方法,其係包括將上述冷凍的組成物解凍或將上述凍乾或噴霧乾燥的組成物重建及視需要藉由加入水性液體調整滲透壓及離子強度。
在一實施例中,係加入水性液體,得到從約200mOsmol至約450mOsmol的組成物滲透壓。
在一實施例中,係加入水性液體,得到濃度從約80mM至約150mM的氯化鈉。
圖1係顯示脂質儲存液濃度和微脂體大小之間的相關性。微脂體係藉由將乙醇注射入水中(乙醇注射後無進行過濾程序)來製備。微脂體的大小隨乙醇中脂質的濃度增加。本實例:具有66:33之%莫耳比的脂質混合物DOTMA/DOPE。
圖2係顯示存在以不同濃度之不同脂質溶液所製備的DOTMA/DOPE微脂體調配物中的粒子量。
圖3係顯示微脂體前驅物大小(使用未過濾微脂體膠體)對RNA-脂質體複合物大小之影響。當使用小的微脂體時則形成小的RNA-脂質體複合物。在所有以較大微脂體製備的RNA-脂質體複合物中並未發現微脂體大小和RNA-脂質體複合物大小之間的明確相關性。
圖4係顯存在以不同微脂體前驅物(未過濾微脂體)所製備的RNA-脂質體複合物調配物中之粒子量。在以較大微脂體所製備的RNA-脂質體複合物調配中0.5μm粒子的量增加。微脂體係使用不同濃度之不同脂質儲存液藉由乙醇注射所製備。
圖5係顯示由4/1(上方)之電荷比和1.3/2之電荷比製備的微脂體所形成的RNA-脂質體複合物之SAXS測量所得到的繞射曲線,其中用於形成脂質 體複合物之微脂體係以400mM、300mM和100mM之乙醇中脂質儲存液所製得。
圖6係顯示以不同的微脂體前驅物所製備的不同RNA-脂質體複合物之活體外(人類樹突細胞)關聯長度和轉染效率。生物活性(活體外)隨RNA-脂質體複合物之關聯長度單調遞增。微脂體係藉由乙醇注射及以不同濃度脂質所製備的不同脂質儲存液所製備。
圖7係顯示由150mM的乙醇中儲存液,或400mM的乙醇中儲存液所製造的二種不同類型微脂體之脂質體複合物的AF4測量。
圖8係顯示樹突細胞中不同RNA-脂質體複合物的活體外轉染效率。螢光酶訊號隨著用於形成RNA-脂質體複合物之微脂體大小單調遞增。
圖9係顯示樹突細胞中不同RNA-脂質體複合物的活體外轉染效率。螢光酶訊號隨著微脂體大小單調遞增。
圖10係顯示施用6h後,RNA-脂質體複合物調配物的活體內轉染效率。螢光酶訊號隨著用於形成RNA-脂質體複合物之微脂體大小單調遞增。RNA-脂質體複合物係以較小的微脂體所製備(未過濾微脂體)。以較大的微脂體所製備的RNA-脂質體複合物產生較高的螢光酶表現。
圖11係顯示施用6h後,RNA-脂質體複合物調配物的活體內影像。RNA-脂質體複合物係以小的和大的微脂體所製備。A)從原料膠體以小微脂體所製備的RNA-脂質體複合物。B)從原料膠體以較大微脂體所製備的RNA-脂質體複合物。C)以小的過濾微脂體所製備的RNA-脂質體複合物。D)以大的過濾微脂體所製備的RNA-脂質體複合物。以較大的微脂體所製備的RNA-脂質體複合物得到較高的生物發光訊號。
圖12係顯示用於RNA脂質體複合物之自動化批式製造的通用製程。
圖13係顯示使用具有3.2mm內徑之Y-型混合元件以不同流率所製備的RNA脂質體複合物之Z-平均和多分散性。
圖14:係顯示使用具有2.4mm內徑之Y-型混合元件以不同流率所製備的RNA脂質體複合物之Z-平均和多分散性。
圖15係顯示脂質體複合物形成時粒子大小和RNA濃度的相關性。在冷凍前進行PCS測量。
圖16係顯示三個冷凍解凍循環後,脂質體複合物形成時粒子特性和RNA濃度的相關性。
圖17係顯示粒子特性和範圍從1.0:2.0至2.1:2.0的電荷比(正電:負電)之相關性。
圖18係顯示粒子特性和範圍從2.0:1.0至5.0:1.0的電荷比(正電:負電)之相關性。
圖19係顯示脂質體複合物形成時粒子特性和NaCl濃度的相關性。
圖20係顯示脂質體複合物形成時生物活性和NaCl濃度的相關性。
圖21係顯示在無低溫保護劑下使用不同緩衝物質(HEPES;乙酸鈉;磷酸鈉;碳酸鈉),在七種pH-值下於+40℃加速劣變儲存後,RNA(LIP)組成物中RNA完整度之測量值。不同的長條,由左(3天)至右(21天),係表示漸增的儲存期。
圖22係顯示以蔗糖作為低溫保護劑使用HEPES作為緩衝物質,在七種pH-值下於+40℃加速劣變儲存後,RNA脂質體複合物調配物中RNA完整度之測量值。不同的長條,由左(1天)至右(21天),係表示漸增的儲存期。
圖23係顯示儲存於40℃具不同含量的EDTA之RNA脂質體複合物中RNA的完整度。
圖24為指出NaCl和低溫保護劑濃度在各步驟中最佳化之總圖。
圖25係顯示在漸增量的替代低溫保護劑之存在下冷凍的RNA脂質體複合物之Z-平均和多分散性。
圖26係顯示在漸增量的替代低溫保護劑之存在下冷凍的RNA脂質體複合物調配物中10μm之微可見粒子的數目。
圖27係顯示含有5-20%w/v蔗糖(X-軸)和各種低NaCl濃度之RNA脂質體複合物調配物中於-30℃冷凍前後之粒子大小的測量值。
圖28係顯示含有5-20%w/v海藻糖二水合物(X-軸)和各種低NaCl濃度之RNA脂質體複合物調配物中於-30℃冷凍前後之粒子大小的測量值。
圖29係顯示於多數個冷凍解凍循環後,含有50mM NaCl和各種量的海藻糖二水合物(%wv)之RNA脂質體複合物調配物中粒子大小的測量值。
圖30係顯示於多數個冷凍解凍循環後,含有70mM NaCl和各種量的海 藻糖二水合物(%w/v)之RNA脂質體複合物調配物中粒子大小的測量值。
圖31係顯示於多數個冷凍解凍循環後,含有90mM NaCl和各種量的海藻糖二水合物(%w/v)之RNA脂質體複合物調配物中粒子大小的測量值。
圖32係顯示於-15℃儲存8個月後,含有5-20%w/v蔗糖和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。不同的長條,由左(0個月)至右(8個月),係表示漸增的儲存期。低於8個長條之蔗糖/NaCl組合,在二個後續的時間點粒子大小超過規格並停止分析。
圖33係顯示於-30℃儲存8個月後,含有5-20%w/v蔗糖和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。不同的長條,由左(0個月)至右(8個月),係表示漸增的儲存期。低於8個長條之蔗糖/NaCl組合,在二個後續的時間點粒子大小超過規格並停止分析。
圖34係顯示於-15℃儲存8個月後,含有5-20%w/v海藻糖二水合物和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。不同的長條,由左(0個月)至右(8個月),係表示漸增的儲存期。低於8個長條之海藻糖/NaCl組合,在二個後續的時間點粒子大小超過規格並停止分析。
圖35係顯示於-30℃儲存8個月後,含有5-20%w/v海藻糖二水合物和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。不同的長條,由左(0個月)至右(8個月),係表示漸增的儲存期。低於8個長條之海藻糖/NaCl組合,在二個後續的時間點粒子大小超過規格並停止分析。
圖36係顯示於-20℃儲存後,含有22%w/v蔗糖和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。
圖37係顯示於-20℃儲存後,含有22%w/v海藻糖二水合物和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。
圖38係顯示於-20℃儲存後,含有22%w/v葡萄糖和各種低NaCl濃度之RNA脂質體複合物調配物中粒子大小的測量值。
圖39係顯示於-15至-40℃冷凍和儲存之含有22%w/v葡萄糖和20mM NaCl的RNA脂質體複合物調配物中粒子大小之測量值。
圖40係顯示於-20℃儲存後,在含有表10中所列的低溫保護劑組合之組成物中冷凍的RNA脂質體複合物之粒子大小測量值。
圖41係顯示於冷凍-解凍後,或冷凍乾燥和重建後,RNA脂質體複合物調配物[RNA(lip)]中海藻糖濃度的效應
圖42係顯示以22%海藻糖所製備之冷凍乾燥RNA(lip)調配物,在用0.9%NaCl溶液或WFI(注射用水)重建後,粒子大小變化。
圖43係顯示以22%海藻糖於不同NaCl濃度所製備之冷凍乾燥RNA脂質體複合物調配物[RNA(lip)]的Luc-RNA活體外轉染。冷凍乾燥的樣本係以0.9%NaCl溶液重建。(斜紋柱:液體對照組)。
圖44係顯示以不同海藻糖/NaCl比率調配,於2-8℃或25℃儲存之冷凍乾燥的RNA脂質體複合物調配物[RNA(lip)],以0.9%NaCl溶液重建後之Z-平均直徑。調配物係在冷凍乾燥後以原體積重建。
圖45係顯示以不同海藻糖/NaCl比率調配之冷凍乾燥的RNA(lip),以0.9%NaCl溶液重建及於2-8℃或25℃儲存後之RNA完整度(%全長RNA)。調配物係在冷凍乾燥後以原體積重建並用0.9%NaCl溶液以1:1稀釋用於細胞培養實驗(0.01mg/mL RNA)。
雖然本揭示文係詳細說明於下,但應了解,本揭示文不限於文中所述之特定方法、規程和試劑,因為這些可能會改變。亦應了解,文中所使用的術語僅就描述特定的實施例之目的,且不希望限制本揭示文之範圍,而本揭示文之範圍僅受限於所附的申請專利範圍。除非另有定義,否則文中所用的所有技術和科學術語係具有熟習本項技術之一般技術者正常理解之相同意義。
較佳地,文中所用的術語係定義為如「A multilingual glossary of biotechnological terms:(IUPAC Recommendations)",H.G.W.Leuenberger,B.Nagel,and H.Kölbl,Eds.,Helvetica Chimica Acta,CH-4010 Basel,Switzerland,(1995)」中所述。
本揭示文之施行,除非另有指出,否則將應用習知的化學、生化、細胞生物、免疫學和重組DNA之方法,其係釋義於本項領域之文獻中(參照, 例如Molecular Cloning:A Laboratory Manual,2nd Edition,J.Sambrook et al.eds.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor 1989)。
在下文中,將說明本揭示文之元素。這些元素係以特定的實施例列出,應了解,其可以任何方式及以任何數目組合,創造出另外的實施例。各種不同描述之實例和實施例不應解釋為本揭示文僅限於該等明確描述的實施例。本說明書應了解係揭示及涵蓋其係組合任何數目之所揭示元素的明確描述實施例之實施例。再者,除非內文中有指出,否則所有所述元素之任何排列和組合應視為由本說明書所揭示。
術語「約」係指大約或近似於,且在文中所陳述之數值或範圍的內容中係指±20%,±10%,±5%,或±3%之所述或聲稱的數值或範圍。
除非在文中另有指出或明確與內容牴觸,否則在描述本揭示文之內容中所用的「一」、「此」和「該」及類似參照(特別是在申請專利範圍的內容中)應視為涵蓋單數和複數二者。文中所引述的數值之範圍僅希望作為個別指出落在該範圍內的各個別數值之簡便方法。除非內文中有指出,否則各個別數值係併入說明書中如同在文中個別陳述。除非內文中另有指出或明確牴觸內容,否則所有文中所述的方法可以任何適合的順序進行。文中所提供之任何和所有實例之使用,或示例語言(如,「例如」),僅希望能更佳闡釋本揭示文且不會對申請專利範圍構成任何限制。在本說明書中不應有任何語言係視為指稱任何非申請元素為施行本揭示文所必須。
除非有明確表示,否則術語「包含」用於本文件之內容中係指除了由「包含」所導入的表列成員之外,可視需要有另外的成員存在。然而,當作為本揭示文的特定實施例時,期望「包含」係涵蓋無另外的成員存在之可能性,亦即就本實施例之目的,「包含」應理解為具有「由...組成」之意義。
整個說明書之內容中係陳述數個文件。文中所陳述的各文件(包括所有的專利、專利申請案、科學出版品、製造商規範、說明書等),無論上文或下文,係以全文引用的方式併入。文中任何內容不應解釋為承認本揭示文無權早於此等揭示文。
定義
在下文中將提供適用於本揭示文所有態樣之定義。除非另有指出,否則下列術語係具有下列意義。任何未定義的術語係具有其技術所理解之意義。
術語例如「降低」或「抑制」如文中所用係指造成整體下降之能力,例如約5%或更多,或約10%或更多,約20%或更多,約50%或更多,約75%或更多之程度。術語「抑制」或類似詞語包括完全或基本上完全抑制,亦即降到零或基本上降到零。
術語例如「增加」或「增進」在一實施例中係關於增加或增進至少約10%,至少約20%,至少約30%,至少約40%,至少約50%,至少約80%,或至少約100%。
「生理pH」如文中所用係指pH約7.5。
如本揭示文中所用「%w/v」係指重量體積百分比,其為測量以每毫升溶液之總體積百分比表示之溶質克(g)重的濃度單位。
術語「離子強度」係指在特定溶液中不同離子種類之數目與其個別電荷間的數學關係式。因此,離子強度I在數學上係由下式代表 其中c為特定離子種類之莫耳濃度而z為其電荷的絕對值。總和Σ係採溶液中所有不同總類的離子(i)。
根據本揭示文,術語「離子強度」在一實施例中係關於存在的單價離子。有關存在的二價離子,在一實施例中由於有螯合劑存在,在特定的二價陽離子中,其濃度或有效濃度(存在的游離離子)係夠低而能防止RNA降解。在一實施例中,二價離子的濃度或有效濃度係在用於水解RNA核苷酸間的磷酸二酯鍵之催化量以下。在一實施例中,游離的二價離子之濃度為20μM或更低。在一實施例中,並無或基本上無游離的二價離子。
「滲透壓」係指以每公斤溶劑之溶質滲透壓莫耳數(osmole)表示的特定溶質的濃度。
雷諾數為無因次數,其可使用下列公式來計算: 其中ρ為流體之密度,v為流體之速度,l為特徵長度(本處為混合元件的內徑),而η為黏度。
術語「冷凍」係關於液體之硬化,通常伴隨移除熱。
術語「凍乾」係指藉由將物質冷凍及然後降低周圍壓力讓物質中的冷凍介質直接從固相昇華為氣相之冷凍乾燥。
術語「噴霧乾燥」係指藉由將(加熱的)氣體與一流體混合,將其在一容器內(噴霧乾燥器)霧化(噴霧),其中係將所形成的液滴之溶劑蒸發,產生一乾燥粉末,來噴霧乾燥一物質。
術語「低溫保護劑」係關於在冷凍階段期間加到調配物中用以保護活性成份之物質。
術語「凍乾保護劑」係關於在乾燥階段期間加到調配物中用以保護活性成份之物質。
術語「重建」係指將溶劑例如水,加到乾燥產品中,使其回到液體狀態,例如其原來的液體狀態。
術語「重組」在本揭示文之內文中係指「經由基因工程製作」。在一實施例中,「重組物」在本揭示文之內文中並非天然生成的。術語「天然生成的」如文中所用係指一物件可在自然界中發現之事實。例如,一胜肽或核酸,其係存在生物體(包括病毒)中且可從天然來源分離出,以及其並非由人類在實驗室中特意改造,為天然生成的。術語「自然界中發現」係指「自然存在」並包括已知的物體以及尚未發現的物體及/或從自然界分離的,但其可能在未來由一天然來源發現及/或分離。
術語「平衡溶解度」係指溶質溶解之速率和溶質從溶液中沉積的速率相等時之溶質濃度。在一實施例中,此術語係關於室溫時之個別濃度。
如文中所用,術語「室溫」係指大於4℃的溫度,較佳地從約15℃至約40℃,從約15℃至約30℃,從約15℃至約24℃,或從約16℃至約21℃。此溫度將包括14℃、15℃、16℃、17℃、18℃、19℃、20℃、21℃和22℃。
在本揭示文之內文中,術語「粒子」係指由分子或分子複合物所形成的結構實體。在一實施例中,術語「粒子」係關於微米-或奈米-大小的緻密結構。
在本揭示文之內文中,術語「RNA脂質體複合物粒子」如文中所用係關於含有脂質,特別是陽離子脂質和RNA之粒子。正電微脂體和負電RNA間的靜電交互作用造成複合作用及自發性形成RNA脂質體複合物粒子。正電的微脂體一般可使用陽離子脂質,例如DOTMA,及另外的脂質,例如DOPE來合成。在一實施例中,RNA脂質體複合物粒子為奈米粒子。
如本揭示文中所用,「奈米粒子」係指包括RNA和至少一陽離子脂質並具有適合靜脈給藥之平均直徑。
術語「平均直徑」如文中所用係指藉由動態光散射(DLS)以數據分析使用所謂的累積量演算法所測量的水力直徑(hydrodynamic diameter),其係在產生所謂的長度直徑的Z平均和無因次多分散性指數(PI)時提供(Koppel,D.,J.Chem.Phys.57,1972,pp 4814-4820,ISO 13321)。本處「平均直徑」、「直徑」或「大小」係與Z平均值同義使用。
術語「多分散性指數」用於文中為粒子,例如奈米粒子整體之大小分布的測量值。多分散性指數係以動態光散射測量值為基準,藉由所謂的累積量分析來計算。
如文中所用,術語「微可見粒子」係指具有低於100微米(μm)之平均粒徑的粒子。微可見粒子的數目可使用不透光度,顯示本揭示文中RNA脂質體複合物粒子的聚集程度。在某些實施例中,係測量具有大於或等於10μm之平均直徑的微可見粒子數目。在其他的實施例中,係測量具有大於或等於25μm之平均直徑的微可見粒子數目。
術語「乙醇注射技術」係指一程序,其中係將包括脂質的乙醇溶液經由針快速地注射至一水溶液中。此動作係將脂質分散到整個溶液並促進脂質結構形成,例如脂囊泡形成,如微脂體形成。一般而言,文中所述的RNA脂質體複合物粒子可藉由將RNA加到膠體微脂體分散液中來製得。使用乙醇注射技術,此膠體微脂體分散液,在一實施例中,係如下所形成:將包括脂質,例如陽離子脂質如DOTMA和另外脂質的乙醇溶液注射至一攪拌下的水溶液中。在一實施例中,文中所述的RNA脂質體複合物粒子可在無擠壓步驟下獲得。
術語「擠壓」係指製造具有一固定、橫截面性質之粒子。特言之,其係指縮小粒子,因此粒子係強力通過具有定義孔洞之過濾器。
RNA脂質體複合物粒子直徑
文中所述的RNA脂質體複合物粒子係具有一平均直徑,其在一實施例中範圍係從約200nm至約1000nm,從約200nm至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm。在特定的實施例中,該RNA脂質體複合物粒子係具有約200nm,約225nm,約250nm,約275nm,約300mm,約325nm,約350nm,約375nm,約400nm,約425nm,約450nm,約475nm,約500nm,約525nm,約550nm,約575nm,約600nm,約625nm,約650nm,約700nm,約725nm,約750nm,約775nm,約800nm,約825nm,約850nm,約875nm,約900nm,約925nm,約950nm,約975nm,或約1000nm之平均直徑。在一實施例中,該RNA脂質體複合物粒子係具有範圍從約250nm至約700nm之平均直徑。在另外的實施例中,該RNA脂質體複合物粒子係具有範圍從約300nm至約500nm之平均直徑。在一示例的實施例中,該RNA脂質體複合物粒子係具有約400nm之平均直徑。
藉由文中所述的方法所產生之文中所述的RNA脂質體複合物粒子,具有低於約0.5,低於約0.4,或低於約0.3之多分散性指數。例如,RNA脂質體複合物粒子可具有約0.1至約0.3範圍內的多分散性指數。
脂質
在一實施例中,文中所述的脂質溶液、微脂體和RNA脂質體複合物粒子包括陽離子脂質。如文中所用「陽離子脂質」係指具有總正電荷之脂質。陽離子脂質藉由靜電交互作用使帶負電的RNA與脂質基質結合。一般而言,陽離子脂質係具有一親脂性基團,例如固醇、醯基或二醯鏈,且脂質的前端基團典型地係帶有正電。陽離子脂質的實例包括,但不限於1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA);二甲基雙十八烷基銨鹽(DDAB);1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP);1,2-二油醯基-3-二甲基銨鹽-丙烷(DODAP);1,2-二醯氧基-3-二甲基銨鹽-丙烷;1,2-二烷氧基-3-二甲基銨鹽-丙烷;雙十八烷基二甲基氯化銨(DODAC)、2,3-二(十四烷基)丙基-(2-羥乙 基)-二甲基銨鹽(DMRIE)、1,2-二肉豆蔻醯基-sn-甘油-3-乙基磷醯膽鹼(DMEPC)、1,2-二肉豆蔻醯基-3-三甲基銨鹽-丙烷(DMTAP)、1,2-二油醯氧基丙基-3-二甲基-羥乙基溴化銨(DORIE),以及2,3-二油醯氧基-N-[2(精胺甲醯胺)乙基]-N,N-二甲基-1-丙基三氟乙酸銨(DOSPA)。較佳地為DOTMA、DOTAP、DODAC和DOSPA。在特定的實施例中,該至少一種陽離子脂質為DOTMA及/或DOTAP。
可併入另外的脂質用以調節整體的正電與負電比率和RNA脂質體複合物粒子的物理安定性。在特定的實施例中,另外的脂質為中性脂質。如文中所用,「中性脂質」係指具有總電荷為零之脂質。中性脂質的實例包括,但不限於1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)、二醯基磷脂醯膽鹼、二醯基磷脂醯乙醇胺、神經醯胺、神經鞘磷脂、腦磷脂、胆固醇和腦苷脂。在特定的實施例中,該第二脂質為DOPE、膽固醇及/或DOPC。
在特定的實施例中,RNA脂質體複合物粒子包括一種陽離子脂質和一種另外的脂質。在一示例的實施例中,該陽離子脂質為DOTMA而該另外的脂質為DOPE。不希望受限於理論,該至少一種陽離子脂質之量相較於該至少一種另外脂質之量可能對RNA脂質體複合物粒子特性有重大影響,例如電荷、粒子大小、安定性、組織選擇性和RNA的生物活性。因此,在某些實施例中,該至少一種陽離子脂質與至少一種另外脂質之莫耳比係從約10:0至約1:9,約4:1至約1:2,或約3:1至約1:1。在特定的實施例中,莫耳比可為約3:1,約2.75:1,約2.5:1,約2.25:1,約2:1,約1.75:1,約1.5:1,約1.25:1,或約1:1。在一示例的實施例中,該至少一種陽離子脂質與至少一種另外脂質之莫耳比為約2:1。
RNA
在本揭示文中,術語「RNA」係關於包括核苷酸殘基之核酸分子。在較佳的實施例中,該RNA係含有所有或主要的核苷酸殘基。如文中所用,「核苷酸」係指在β-D-呋喃核糖基基團的2'-位置帶有一羥基之核苷酸。RNA係涵蓋(不限於)雙股RNA、單股RNA、分離的RNA,例如部分純化的RNA、基本上純化的RNA、合成的RNA、重組製造的RNA,以及有別於天然生成 的RNA藉由加入、刪除、取代及/或改變一或多個核苷酸之修飾RNA。此改變可能係指添加非核苷酸物質至內部RNA核苷酸或RNA的末端。文中亦預期,RNA中的核苷酸可能為非標準核苷酸,例如化學合成的核苷酸或去氧核苷酸。就本揭示文,這些改變的RNA被視為天然生成RNA之類似物。
在本揭示之特定的實施例中,此RNA為一訊息RNA(mRNA),其係關於編碼一胜肽或蛋白之RNA轉錄。如本項技術中所建立的,mRNA一般係含有一5'非轉譯區(5'-UTR)、一胜肽編碼區及一3'非轉譯區(3'-UTR)。在某些實施例中,此RNA係藉由活體外轉錄或化學合成所產生。在一實施例中,此mRNA係使用一DNA模板藉由活體外轉錄所產生,其中DNA係指含有去氧核糖核苷之核酸。
在一實施例中,RNA係於活體外轉錄RNA(IVT-RNA)且可藉由活體外轉錄一適當的DNA模板來獲得。用於控制轉錄之啟動子可為任何用於RNA聚合酶之啟動子。用於活體外轉錄之DNA模板可藉由核酸之轉殖,特別是cDNA,並將其導入一適合供活體外轉錄的載體來製得。cDNA可藉由RNA的反轉錄來製得。
在本揭示文之特定的實施例中,文中所述之RNA脂質體複合物組成物中的RNA濃度係從約0.01mg/mL至約1mg/mL,或從約0.05mg/mL至約0.5mg/mL。在特定的實施例中,RNA濃度為約0.05mg/mL,約0.06mg/mL,約0.07mg/mL,約0.08mg/mL,約0.09mg/mL,約0.10mg/mL,約0.11mg/mL,約0.12mg/mL,約0.13mg/mL,約0.14mg/mL,約0.15mg/mL,約0.16mg/mL,約0.17mg/mL,約0.18mg/mL,約0.19mg/mL,約0.20mg/mL,約0.21mg/mL,約0.22mg/mL,約0.23mg/mL,約0.24mg/mL,約0.25mg/mL,約0.26mg/mL,約0.27mg/mL,約0.28mg/mL,約0.29mg/mL,約0.30mg/mL,約0.31mg/mL,約0.32mg/mL,約0.33mg/mL,約0.34mg/mL,約0.35mg/mL,約0.36mg/mL,約0.37mg/mL,約0.38mg/mL,約0.39mg/mL,約0.40mg/mL,約0.41mg/mL,約0.42mg/mL,約0.43mg/mL,約0.44mg/mL,約0.45mg/mL,約0.46mg/mL,約0.47mg/mL,約0.48mg/mL,約0.49mg/mL,或約0.50mg/mL。在一示例的實施例中,RNA濃度為0.05mg/mL。
在一實施例中,RNA可具有修飾的核糖核苷。修飾的核糖核苷之實例包括,不限於,5-甲基胞苷和假尿苷。
在某些實施例中,根據本揭示文之RNA係包括一5’-端帽。在一實施例中,本揭示文之RNA不具有無端帽之5'-三磷酸酯。在一實施例中,RNA可藉由一5'-端帽類似物加以修飾。術語「5'-端帽」係指在mRNA分子之5'-端所發現的結構,且一般係由鳥嘌呤核苷經由5'對5'三磷酸鍵聯與mRNA相連接。在一實施例中,此鳥嘌呤核苷係在7-位置經甲基化。提供一帶有5'-端帽或5'-端帽類似物之RNA可藉由活體外轉錄來完成,其中5'-端帽係共轉錄表現至RNA股,或使用戴帽酵素與RNA後轉錄連接。
在某些實施例中,根據本揭示文之RNA係包括一5’-UTR及/或一3’-UTR。術語「非轉譯區」或「UTR」係指DNA分子中的一區其係經轉錄但不轉譯至胺基酸序列,或一RNA分子,例如mRNA分子的對應區。非轉譯區(UTR)可存在開放閱讀框的5’(上游)(5’-UTR)及/或開放閱讀框的3’(下游)(3’-UTR)。5’-UTR,若存在,係位於5'端,蛋白編碼區的起始密碼子之上游。5’-UTR為5’-端帽(若存在)之下游,例如直接與5'-端帽相鄰。3’-UTR,若存在,係位於3'端,蛋白編碼區的終止密碼子之下游,但術語「3’-UTR」較佳地並不包括多聚腺苷酸尾部[poly(A)tail]。因此,3’-UTR為多聚腺苷酸(若存在)之上游,例如直接與多聚腺苷酸(poly(A))序列相鄰。
在某些實施例中,根據本揭示文之RNA係包括3’-多聚腺苷酸序列。術語「多聚腺苷酸序列」係關於腺苷酸(A)殘基之序列,其典型地係位於RNA分子的3'-端。根據本揭示文,在一些實施例中,多聚腺苷酸序列係包括至少約20個,至少約40個,至少約80個,或至少約100個,及至高約500個,至高約400個,至高約300個,至高約200個,或至高約150個,及特言之約120個腺苷酸。
在本揭示文之內文中,術語「轉錄」係關於一種過程,其中係將DNA序列中的基因碼轉錄至RNA。隨後,RNA可轉譯成胜肽或蛋白。
就RNA而言,術語「表現」或「轉譯」係關於細胞之核糖體中的程序,藉由該程序將mRNA的一股導向胺基酸序列之組裝,用以製造胜肽或蛋白。
在一實施例中,在投予文所述的RNA脂質體複合物粒子後,至少一部分的RNA係遞送到目標細胞。在一實施例中,至少一部分的RNA係遞送到目標細胞的細胞質。在一實施例中,該RNA為編碼一胜肽或蛋白的RNA,且該RNA係藉由目標細胞轉譯,產生一胜肽或蛋白。在一實施例中,該目標細胞為脾臟細胞。在一實施例中,該目標細胞為抗原呈現細胞,例如脾臟中的專門抗原呈現細胞。在一實施例中,該目標細胞為脾臟中的樹突細胞。因此,文中所述的RNA脂質體複合物粒子可用於將RNA遞送到該目標細胞中。因此,本揭示文亦關於以文中所述的RNA脂質體複合物粒子投予至一對象中,將RNA遞送到目標細胞之方法。在一實施例中,RNA係遞送到目標細胞的細胞質。在一實施例中,該RNA為編碼一胜肽或蛋白的RNA,且該RNA係藉由目標細胞轉譯,產生該胜肽或蛋白。
在一實施例中,RNA係編碼一醫藥活性胜肽或蛋白。
根據本揭示文,術語「RNA編碼」係指該RNA,若存在適當的環境中,例如在目標組織的細胞內,可引導胺基酸的組裝,用以製造胜肽或蛋白,其係在轉譯過程期間編碼。在一實施例中,RNA能與細胞轉譯機制相互作用,而得以轉譯此胜肽或蛋白。一細胞可能在細胞內(例如在細胞質及或在細胞核中)產生該編碼的胜肽或蛋白,可能分泌該編碼的胜肽或蛋白,或可能在表面產生該編碼的胜肽或蛋白。
根據本揭示文,術語「胜肽」係包括寡肽和多肽並且係指包括約二個或更多,約3個或更多,約4個或更多,約6個或更多,約8個或更多,約10個或更多,約13個或更多,約16個或更多,約20個或更多,及至高約50個,約100個或約150個連續胺基酸經由胜肽鏈彼此相連接的物質。術語「蛋白」係指較大的胜肽,特言之,具有至少約151個胺基酸之胜肽,術語「胜肽」和「蛋白」在文中通常係同義使用。
「醫藥上活性胜肽或蛋白」當以治療上有效量提供給一對象時,對於該對象之症狀或疾病狀態係具有一正面或有利的效應。在一實施例中,醫藥上活性胜肽或蛋白係具有治療或減緩特性且可經投予用以改善、緩解、減緩、反轉、延遲一或多項疾病癥狀嚴重性之發生或減輕嚴重度。醫藥上活性胜肽或蛋白可能具有預防性質且可用於延遲疾病之發生或減輕此疾病 或生理症狀之嚴重度。術語「醫藥上活性胜肽或蛋白」包括完整的蛋白或多肽且亦可指其醫藥上活性片段。其亦可包括一胜肽或蛋白之醫藥上活性類似物。
醫藥上活性蛋白之實例包括,但不限於細胞激素和免疫系統蛋白,例如免疫學上活性化合物(例如介白素、群落刺激因數(CSF)、粒細胞群落刺激因數(G-CSF)、粒細胞巨噬細胞群落刺激因數(GM-CSF)、紅血球生成素、腫瘤壞死因數(TNF)、干擾素、整合素、位址素、選擇素、歸巢受體、T細胞受體、免疫球蛋白、可溶性主要組織相容性複合抗原、免疫活性抗原,例如細菌、寄生物或病毒抗原、過敏原、自體抗原、抗體)、激素(胰島素、甲狀腺激素、兒茶酚胺、***、促激素、泌乳素、催產素、多巴胺、牛生長激素、瘦體素等等)、生長激素(例如人類生長激素)、生長因數(例如表皮生長因數、神經生長因數、類胰島素生長因數及其類似物))、生長因數受體、酵素(組織纖維蛋白溶解酶原活化因數、鏈球菌致活酶、膽固醇生物合成或降解、類固醇生成酵素、激酶、磷酸二酯酶、甲基化酶、去甲基酶、去氫酶、纖維素酶、蛋白酶、脂解酶、磷脂酶、芳香酶、細胞色素、腺苷酸或鳥苷酸環化酶、神經胺酸酶及其類似物)、受體(類固醇激素受體、勝肽受體)、結合蛋白(生長激素或生長因數結合蛋白及其類似物)、轉錄和轉譯因數、腫瘤生長抑制蛋白(例如抑制血管新生之蛋白)、結構蛋白(例如膠原蛋白、絲蛋白、纖維蛋白原、微管蛋白、肌動蛋白和肌凝蛋白)、血液蛋白(凝血酶、血清白蛋白、因數VII、因數VIII,胰島素、因數IX、因數X、組織纖維溶酶原活化因數、蛋白C、溫韋伯氏因數(von Wilebrand factor)、抗凝血酶III、葡萄糖腦苷酶、紅血球生成素粒細胞群落刺激因數(GCSF)或修飾的因數VIII、抗凝血劑及其類似物。
術語「免疫學上活性化合物」係關於任何改變免疫反應的化合物,例如藉由引發及/或抑制免疫細胞成熟、引發及/或抑制細胞激素生物合成,及/或藉由刺激B細胞產生抗體改變體液免疫。免疫學上活性化合物具有強力的免疫刺激活性包括,但不限於,抗病毒和抗腫瘤活性,且亦可下調其他方面的免疫反應,例如將免疫反應遠離TH2免疫反應,其可有效用於治療廣範圍的TH2介導疾病。免疫學上活性化合物可用作疫苗佐劑。
在一實施例中,醫藥上活性胜肽或蛋白係包括一或多個抗原,或一或多個表位,亦即將該胜肽或蛋白投予一對象係引出對象中對抗該一或多個抗原或一或多個表位之免疫反應,其可能為治療性或部分或完全保護性。
術語「抗原」係關於包括一對抗可能產生免疫反應之表位的試劑。術語「抗原」係包括,特言之,蛋白和胜肽。在一實施例中,一抗原係藉由免疫系統的細胞呈現,例如抗原呈現細胞,如樹突細胞或巨噬細胞。抗原或其加工產物,例如T細胞表位在一實施例中係與T或B細胞受體,或與免疫球蛋白分子,例如抗體結合。因此,一抗原或其加工產物可專一與抗體或T-淋巴細胞(T-細胞)作用。在一實施例中,抗原為一疾病相關抗原,亦如腫瘤抗原、病毒抗原或細菌抗原,且表位係衍生自此抗原。
術語「疾病相關抗原」以最廣義使用係指任何與疾病有關的抗原。疾病相關抗原為含有表位之分子,其係刺激宿主免疫系統製造細胞抗原-專一性免疫反應及/或體液抗體反應對抗該疾病。疾病相關抗原或其表位因此可用於治療目的。疾病相關抗原可能於微生物之感染有關,典型地微生物抗原,或與癌症有關,典型地腫瘤。
術語「腫瘤抗原」係指癌細胞的組成物,其可能衍生自細胞質、細胞表面和細胞核。特言之,其係指該等胞內所產生或為腫瘤細胞上之表面抗原的抗原。術語「病毒抗原」係指具有抗原性質之任何病毒組份,亦即能在個體中引起免疫反應。病毒抗體可為病毒核糖核蛋白或套膜蛋白。
術語「細菌抗原」係指具有抗原性質之任何細菌組份,亦即能在個體中引起免疫反應。細菌抗原可能衍生自細菌的細胞壁或細胞質膜。
術語「表位」係指分子的一部份或片段,例如可被免疫系統辨識的抗原。例如,表位可被T細胞、B細胞或抗體所辨識。抗原之表位可包括一連續或非連續的抗原部分且長度可介於約5個至約100個胺基酸之間。在一實施例中,一表位的長度係介於約10個至約25個胺基酸之間。術語「表位」包括T細胞表位。
當在MHC分子的內容中出現時,術語「T細胞表位」係指能被T細胞所辨識之蛋白的一部份或片段。術語「主要組織相容性複合物」和縮寫「MHC」係包括第I型MHC和第II型MHC以及係關於存在所有脊椎動物中之基因複 合物。MHC蛋白或分子對於淋巴細胞和抗原呈現細胞或免疫細胞中罹病細胞間的訊號傳遞至關重要,其中MHC蛋白或分子係與胜肽表位結合並呈現供T細胞上的T細胞受體辨識。由MHC所編碼的蛋白係表現在細胞表面,並對T細胞展現自體抗原(來自本身細胞的胜肽片段)和非自體抗原(例如入侵的微生物之片段)。就第I型MHC/胜肽複合物的情況,結合的胜肽典型地為約8至約10個胺基酸長,雖然實際上可能較長或較短。就第II型MHC/胜肽複合物的情況,結合的胜肽典型地為約10至約25個胺基酸長,特別是約13至約18個胺基酸長,然而實際上可能較長或較短。
在本揭示文之特定實施例中,RNA係編碼至少1個表位。在特定的實施例中,此表位係衍生自腫瘤抗原。該腫瘤抗原可為一般已知表現在各種癌症上的「標準」抗原。該腫瘤抗原可為對一個別腫瘤具專一性且之前未被免疫系統所辨識的「新抗原」。新抗原或新表位可能來自癌細胞基因體中一或多個癌症專一性突變而造成胺基酸改變。腫瘤抗原之實例包括,不限於,p53、ART-4、BAGE、β-連環蛋白(beta-catenin)/m、Bcr-abL CAMEL、CAP-1、CASP-8、CDC27/m、CDK4/m、CEA,claudin家族的細胞表面蛋白,例如CLAUD ΓN-6、CLAUDIN-18.2和CLAUDIN-12,c-MYC、CT、Cyp-B、DAM、ELF2M、ETV6-AML1、G250、GAGE、GnT-V、Gap 100、HAGE、HER-2/neu、HPV-E7、15HPV-E6、HAST-2、hTERT(or hTRT)、LAGE、LDLR/FUT、MAGE-A,較佳地MAGE-A1、MAGE-A2、MAGE-A3、MAGE-A4、MAGE-A5、MAGE-A6、MAGE-A7、MAGE-A8、MAGEA9、MAGE-A 10、MAGE-A 1 1、or MAGE-A12、MAGE-B、MAGE-C、MART-1/Melan-A、MC1R、肌凝蛋白/m、MUC1、MUM-1、MUM-2、MUM-3、NA88-A、NF1、NY-ESO-1、NY-BR-1、pl90次要BCR-abL、Pml/RARa、PRAME、蛋白酶3、PSA、PSM、RAGE、RU1或RU2、SAGE、SART-1 or SART-3、SCGB3A2、SCP1、SCP2、SCP3、SSX、SURVIVIN、TEL/AML1、TPI/m、TRP-1、TRP-2、TRP-2/INT2、TPTE、WT和WT-1。
癌突變係隨個體而變。因此,編碼新表位之癌突變在疫苗組成物的開發和免疫治療上代表著具吸引力的標的。腫瘤免疫治療之效用係仰賴能在宿主中引發強力免疫反應之癌-專一性抗原和表位的選擇性。RNA可用於遞 送病患-專一性腫瘤表位給病患。駐留在脾臟中的樹突細胞(DC)代表著對致免疫表位或抗原,例如腫瘤表位之RNA表現特別有利的抗原呈現細胞。使用多數個表位已顯示提升腫瘤疫苗組成物中的治療效用。快速定序腫瘤突變組(mutanome)可提供多個用於個體化疫苗之表位,其可能由文中所述的RNA所編碼,例如為單一多肽,其中該等表位係視需要以連接子分開。在本揭示文之特定的實施例中,RNA係編碼至少一個表位,至少二個表位,至少三個表位,至少四個表位,至少五個表位,至少六個表位,至少七個表位,至少八個表位,至少九個表位,或至少十個表位。示例的實施例包括編碼至少五個表位(稱為「pentatope」)之RNA和編碼至少十個表位(稱為「decatope」)之RNA。
電荷比
本揭示文之RNA脂質體複合物粒子的電荷為存在至少一種陽離子脂質中的電荷以及存在RNA中的電荷之總和。電荷比為存在至少一種陽離子脂質中的正電荷以及存在RNA中的負電荷之電荷比。存在至少一種陽離子脂質中的正電荷以及存在RNA中的負電荷之電荷比係藉由下列公式所計算:電荷比=[(陽離子脂質濃度(mol))*(陽離子脂質中正電荷的總數)]/[(RNA濃度(mol))*(RNA中負電荷的總數)]。RNA濃度和至少一種陽離子脂質的量可由熟習本項技術者使用路徑法來測定。
在一第一實施例中,在生理pH時RNA脂質體複合物粒子中的正電荷和負電荷的電荷比係從約1.9:2至約1:2。在特定的實施例中,RNA脂質體複合物粒子中的正電荷和負電荷的電荷比在生理pH時係從約1.9:2.0,約1.8:2.0,約1.7:2.0,約1.6:2.0,約1.5:2.0,約1.4:2.0,約1.3:2.0,約1.2:2.0,約1.1:2.0,或約1:2.0。在一實施例中,RNA脂質體複合物粒子中的正電荷和負電荷的電荷比在生理pH時為1.3:2.0。在另外的實施例中,文中所述的RNA脂質體複合物粒子在生理pH時可具有相等數目的正電荷和負電荷,產生具有總中性電荷比之RNA脂質體複合物粒子。
在一第二實施例中,在生理pH時RNA脂質體複合物粒子中的正電荷和負電荷的電荷比係從約6:1至約1.5:1。在特定的實施例中,RNA脂質體複合物粒子中的正電荷和負電荷的電荷比在生理pH時為約6.0:1.0,約5.9: 1.0,約5.8:1.0,約5.7:1.0,約5.6:1.0,約5.5:1.0,約5.4:1.0,約5.3:1.0,約5.2:1.0,約5.1:1.0,約5.0:1.0,約4.9:1.0,約4.8:1.0,約4.7:1.0,約4.6:1.0,約4.5:1.0,約4.4:1.0,約4.3:1.0,約4.2:1.0,約4.1:1.0,約4.0:1.0,約3.9:1.0,約3.8:1.0,約3.7:1.0,約3.6:1.0,約3.5:1.0,約3.4:1.0,約3.3:51.0,約3.2:1.0,約3.1:1.0,約3.0:1.0,約2.9:1.0,約2.8:1.0,約2.7:1.0,約2.6:1.0,約2.5:1.0,約2.4:1.0,約2.3:1.0,約2.2:1.0,約2.1:1.0,約2.0:1.0,約1.9:1.0,約1.8:1.0,約1.7:1.0,約1.6:1.0,或約1.5:1.0。
對於以RNA為基礎的免疫治療,以準確的器官例如脾臟為標靶對於避免其他器官之自體免疫反應和潛在的毒性為必須的。根據本揭示文,RNA可以不同的細胞、組織或器官為標靶。
已發現,具有根據第一實施例之電荷比的RNA脂質體複合物粒子可用於優先瞄準脾臟組織或脾臟細胞,例如抗原呈現細胞,特別是樹突細胞。因此,在一實施例中,在投予RNA脂質體複合物粒子之後,於脾臟中發生RNA累積及/或RNA表現。因此,本揭示文之RNA脂質體複合物粒子可用於在脾臟中表現RNA。在一實施例中,在投予RNA脂質體複合物粒子之後,於肺及/或肝臟中並無或基本無RNA累積及/或RNA表現發生。在一實施例中,在投予RNA脂質體複合物粒子之後,於抗原呈現細胞,例如脾臟中之專門抗原呈現細胞發生RNA累積及/或RNA表現。因此,本揭示文之RNA脂質體複合物粒子可用於在該等抗原呈現細胞中表現RNA。在一實施例中,該抗原呈現細胞為樹突細胞及/或巨噬細胞。
已發現,具有根據第二實施例之電荷比的RNA脂質體複合物粒子可用於優先瞄準肺組織或肺細胞。因此,在一實施例中,在投予RNA脂質體複合物粒子之後,於肺中發生RNA累積及/或RNA表現。因此,本揭示文之RNA脂質體複合物粒子可用於在肺中表現RNA。因此,若希望RNA表現在脾臟以外的組織,在文中所述的實施例中有關根據第一實施例之電荷比,例如從約1:2至約1.9:2之電荷比,可使用根據第二實施例之電荷比,例如從約6:1至約1.5:1之電荷比取代根據第一實施例之電荷比。在文中所述的這些和其他實施例中,可使用編碼包括至少一表位之胜肽或蛋白的RNA,例如 編碼一文中所述之醫藥活性胜肽或蛋白之RNA以外的RNA。在一實施例中,該醫藥活性胜肽或蛋白為細胞激素及/或係希望治療肺癌。
包括RNA脂質體複合物粒子之組成物 A.鹽和離子強度
根據本揭示文,文中所述之組成物可包括例如氯化鈉之鹽類。不希望受限於理論,氯化鈉係作為RNA在與至少一種陽離子脂質混合前的預調理離子滲透壓試劑。在本揭示文中,特定的實施例係涵蓋氯化鈉的替代有機或無機鹽類。替代的鹽類包括,不限於,氯化鉀、磷酸氫二鉀、磷酸二氫鉀、乙酸鉀、碳酸氫鉀、硫酸鉀、乙酸鉀、磷酸氫二鈉、磷酸二氫鈉、乙酸鈉、碳酸氫鈉、硫酸鈉、乙酸鈉、氯化鋰、氯化鎂、磷酸鎂、氯化鈣和乙二胺四乙酸(EDTA)之鈉鹽。
一般而言,包括文中所述之RNA脂質體複合物粒子的組成物係包括濃度,較佳地範圍從0mM至約500mM,從約5mM至約400mM,或從約10mM至約300mM之氯化鈉。在一實施例中,包括RNA脂質體複合物粒子的組成物係包括相當於該氯化鈉濃度之離子強度。
一般而言,用於或由RNA和微脂體形成RNA脂質體複合物粒子,例如該等文中所述者所生成的組成物係包括高氯化鈉濃度,或包括高離子強度。在一實施例中,氯化鈉濃度為至少45mM。在一實施例中,氯化鈉濃度為約45mM至約300mM,或從約50mM至約150mM。在一實施例中,組成物係包括相當於該等氯化鈉濃度之離子強度。
一般而言,用於儲存RNA脂質體複合物粒子,例如冷凍的RNA脂質體複合物粒子,例如該等文中所述者之組成物係包括低氯化鈉濃度,或包括低離子強度。在一實施例中,氯化鈉濃度係從0mM至約50mM,從0mM至約40mM,或從約10mM至約50mM。在特定的實施例中,氯化鈉濃度為約1mM,約2mM,約3mM,約4mM,約5mM,約6mM,約7mM,約8mM,約9mM,約10mM,約11mM,約12mM,約13mM,約14mM,約15mM,約16mM,約17mM,約18mM,約19mM,約20mM,約21mM,約22mM,約23mM,約24mM,約25mM,約26mM,約27mM,約28mM,約29mM,約30mM,約31mM,約32mM,約33mM,約34mM,約35mM,約36mM, 約37mM,約38mM,約39mM,約40mM,約41mM,約42mM,約43mM,約44mM,約45mM,約46mM,約47mM,約48mM,約49mM,或約50mM。在較佳的實施例中,氯化鈉濃度為約20mM,約30mM,或約40mM。在一示例的實施例中,氯化鈉濃度為20mM。在另外的實施例中,氯化鈉濃度為30mM。在一實施例中,組成物係包括相當於該等氯化鈉濃度之離強度。
一般而言,由解凍的RNA脂質體複合物粒子組成物及視需要藉由加入水性液體調整滲透壓和離子強度所生成的組成物,係包括高氯化鈉濃度,或高離子強度。在一實施例中,氯化鈉濃度為約50mM至約300mM,或從約80mM至約150mM。在一實施例中,組成物係包括相當於該等氯化鈉濃度之離子強度。
B.安定劑
文中所述的組成物可包括一安定劑以避免在冷凍、凍乾或噴霧乾燥組成物之冷凍、凍乾或噴霧乾燥及儲存期間實質損失產品質性及,特言之,實質損失RNA活性。此一組成物在文中亦稱為安定的。典型地安定劑係在冷凍、凍乾或噴霧乾燥處理之前存在並持續在所生成的冷凍、凍乾或冷凍乾燥製備物中。其可在冷凍、凍乾或冷凍乾燥製備物之冷凍、凍乾或噴霧乾燥和儲存期間用於保護RNA脂質體複合物粒子,例如降低或防止聚集、粒子瓦解、RNA降解及/或其他類型的損傷。
在一實施例中,此安定劑為碳水化合物。術語「碳水化合物」如文中所用係指及涵蓋單糖、雙糖、三糖、寡糖和多糖。
在一實施例中,此安定劑為單糖。術語「單糖」如文中所用係指單一碳水化合物單位(例如單糖),其無法再水解成更簡單的碳水化合物單位。示例的單糖安定劑包括包括葡萄糖、果糖、半乳糖、木糖、核糖及其類似物。
在一實施例中,此安定劑為雙糖。術語「雙糖」如文中所用係指由2個單糖單位經由糖苷鍵聯,例如經由1-4鍵聯或1-6鍵聯連結一起所形成的化合物或化學基團。雙糖可水解成二個單糖。示例的雙糖安定劑包括蔗糖、海藻糖、乳糖、麥芽糖及其類似物。
術語「三糖」係指三個糖連結一起形成一分子。三糖之實例包括棉子糖和松三糖。
在一實施例中,此安定劑為寡糖。術語「寡糖」如文中所用係指由3至約15個,較佳地3至約10個單糖單位,經由糖苷鍵聯,例如經由1-4鍵聯或1-6鍵聯連結一起形成直鏈、支鏈或環狀結構所形成的化合物或化學基團。示例的寡糖安定劑包括環狀糊精、棉子糖、松三糖、麥芽三糖、水蘇糖(stachyose)、阿卡波糖(acarbose)及其類似物。寡糖可經氧化或還原。
在一實施例中,此安定劑為環狀寡糖。術語「環狀寡糖」如文中所用係指由3至約15個,較佳地6、7、8、9或10個單糖單位,經由糖苷鍵聯,例如經由1-4鍵聯或1-6鍵聯連結一起形成一環狀結構所形成的化合物或化學基團。示例的環狀寡糖安定劑包括微離散化合物之寡糖,例如α環狀糊精、β環狀糊精或γ環狀糊精。
其他的示例環狀寡糖安定劑包括在一較大的結構中包含一環狀糊精基團之化合物,例如含有一環狀寡糖基團之聚合物。環狀寡糖可經氧化或還原,例如氧化成二羰基形式。術語「環狀糊精基團」如文中所用係指併入或為較大分子結構,例如聚合物之一部份的環狀糊精基(例如α、β或γ環狀糊精)。環狀糊精基團可直接或經由視需要的連接子與一或多個其他基團鍵結。環狀糊精基團可經氧化或還原,例如氧化成二羰基形式。
碳水化合物安定劑,例如環狀寡糖安定劑,可為衍生化碳水化合物。例如,在一實施例中,該安定劑為衍生化環狀寡糖,例如衍生化環狀糊精,例如部分醚化環狀糊精(例如部分醚化β環狀糊精)。
一示例的安定劑為多糖。術語「多糖」如文中所用係指由至少16個單糖單位,經由糖苷鍵聯,例如經由1-4鍵聯或1-6鍵聯鍵結一起形成一直鏈、支鏈或環狀結構所形成的化合物或化學基團且係包括包含多糖作為其部分骨架結構之聚合物。在骨架中,多糖可為直鏈或環狀。示例的多糖安定劑包括肝醣、澱粉酶、纖維素、聚葡糖、麥芽糊精及其類似物。
在一實施例中,該安定劑為糖醇。如文中所用,術語「糖醇」係指「糖」之還原產物並且係指單一糖醇分子中的所有氧原子係以羥基基團的形式存在。糖醇為「多醇(polyol)」。此術語係指含有三或多個羥基基團之化學化 合物,且係與另外的習用術語多元醇(polyhydric alcohol)同義。糖醇之實例包括,但不限於山梨醇、甘露醇、乳糖醇、赤藻糖醇、乾油、木糖醇或肌醇。
根據本發明,係提供包括蔗糖作為安定劑之醫藥組成物。不希望受限於理論,蔗糖係用作提升組成物之低溫保護,藉此防止RNA脂質體複合物粒子聚集並維持組成物的化學和物理安定性。在本揭示文中另外的實施例係考量蔗糖之替代安定劑。替代安定劑包括,不限於,海藻糖、葡萄糖、果糖、精胺酸、甘油、甘露醇、脯胺酸、山梨醇、甘胺酸甜菜鹼和聚葡糖。在一特定的實施例中,蔗糖之替代安定劑為海藻糖。
在一實施例中,安定劑的濃度係從約5%(w/v)至約35%(w/v),或從約10%(w/v)至約25%(w/v)。在特定的實施例中,安定劑的濃度為約10%(w/v),約11%(w/v),約12%(w/v),約13%(w/v),約14%(w/v),約15%(w/v),約16%(w/v),約17%(w/v),約18%(w/v),約19%(w/v),約20%(w/v),約21%(w/v),約22%(w/v),約23%(w/v),約24%(w/v),或約25%(w/v)。在一較佳的實施例中,安定劑的濃度係從約15%(w/v)至約25%(w/v)。在另外較佳的實施例中,安定劑的濃度係從約20%(w/v)至約25%(w/v)。在一示例的實施例中,安定劑的濃度為約25%(w/v)。在另外示例的實施例中,安定劑的濃度為約22%(w/v)。在本揭示文之實施例中,該安定劑為蔗糖或海藻糖。在本揭示文之一實施例中,該安定劑為蔗糖。在本揭示文之一實施例中,該安定劑為海藻糖。
根據本揭示文,文中所述的RNA脂質體複合物粒子組成物具有一適合組成物安定性之安定劑濃度,特別是適合RNA脂質體複合物粒子之安定性及RNA之安定性。
C.pH和緩衝劑
根據本揭示文,文中所述的RNA脂質體複合物粒子組成物具有一適合RNA脂質體複合物粒子安定性,及特別是適合RNA安定性之pH。在一實施例中,文中所述的RNA脂質體複合物粒子組成物係具有從約5.7至約6.7之pH。在特定的實施例中,組成物係具有約5.7,約5.8,約5.9,約6.0,約6.1,約6.2,約6.3,約6.4,約6.5,約6.6,或約6.7之pH。
根據本揭示文,係提供包括緩衝劑之組成物。不希望受限於理論,使用緩衝劑係在組成物的製造、儲存和使用期間維持組成物的pH。在本揭示文特定的實施例中,該緩衝劑可為碳酸氫鈉、磷酸二氫鈉、磷酸二氫鉀、磷酸氫二鉀、[叁(羥甲基)甲基胺基]丙磺酸(TAPS)、2-(雙(2-羥乙基)胺基)乙酸(Bicine)、2-胺基-2-(羥甲基)丙-1,3-二醇(Tris)、N-(2-羥基-1,1-雙(羥甲基)乙基)甘胺酸(Tricine)、3-[[1,3-二羥基-2-(羥甲基)丙-2-基]胺基]-2-羥丙基-1-磺酸(TAPSO)、2-[4-(2-羥乙基)哌-1-基]乙磺酸(HEPES)、2-[[1,3-二羥基-2-(羥甲基)丙-2-基]胺基]乙磺酸(TES)、1,4-哌二乙磺酸(PIPES)、二甲次胂酸、2-嗎福啉-4-基乙磺酸(MES)、3-嗎福啉-2-羥基丙磺酸(MOPSO),或磷酸緩衝食鹽水(PBS)。其他適合的緩衝劑可為乙酸之鹽類、檸檬酸之鹽類、硼酸之鹽類和磷酸之鹽類。
在某些實施例中,該緩衝劑係具有從約5.7至約6.7之pH。在特定的實施例中,該緩衝劑係具有約5.7,約5.8,約5.9,約6.0,約6.1,約6.2,約6.3,約6.4,約6.5,約6.6,或約6.7之pH。在一實施例中,該緩衝劑為HEPES。在一較佳的實施例中,HEPES係具有從約5.7至約6.7之pH。在特定的實施例中,HEPES係具有約5.7,約5.8,約5.9,約6.0,約6.1,約6.2,約6.3,約6.4,約6.5,約6.6,或約6.7之pH。在一示例的實施例中,HEPES係具有約6.2之pH。
又在另外的實施例中,該緩衝劑係具有從約2.5mM至約10mM之濃度。在特定的實施例中,其中HEPES為緩衝劑,HEPES的濃度為約2.5mM,約2.75mM,3.0mM,約3.25mM,約3.5mM,約3.75mM,約4.0mM,約4.25mM,約4.5mM,約4.75mM,約5.0mM,約5.25mM,約5.5mM,約5.75mM,約6.0mM,約6.25mM,約6.5mM,約6.75mM,約7.0mM,約7.25mM,約7.5mM,約7.75mM,約8.0mM,約8.25mM,約8.5mM,約8.75mM,約9.0mM,約9.25mM,約9.5mM,約9.75mM,或約10.0mM。在一較佳的實施例中,HEPES的濃度為約7.5mM。
D.螯合劑
本揭示文之特定的實施例係考量使用螯合劑。螯合劑係指能與金屬離子形成至少二個配位共價鍵,藉此產生一安定、水溶性複合物之化學化合 物。不希望受限於理論,本揭示文中螯合劑係降低可能引發加速RNA降解之游離二價離子之濃度。適合的螯合劑之實例包括,不限於,乙二胺四乙酸(EDTA)、EDTA之鹽類、去鐵胺B(desferrioxamine B)、去鐵敏(deferoxamine)、二乙基二硫代氨基甲酸鈉(dithiocarb sodium)、青黴胺(penicillamine)、噴替酸鈣(pentetate calcium)、噴替酸之鈉鹽、琥巰酸(succimer)、三乙烯四胺(trientine)、氮基三乙酸(nitrilotriacetic acid)、反式二胺基環己四乙酸(DCTA)、二乙烯三胺五乙酸(DTPA)、雙(胺乙基)乙二醇醚-N,N,N',N'-四乙酸、亞胺基二乙酸、檸檬酸、酒石酸、延胡索酸或其鹽類。在特定的實施例中,該螯合劑為EDTA或EDTA之鹽類。在一示例的實施例中,該螯合劑為EDTA二鈉二水合物。
在某些實施例中,EDTA的濃度係從約0.25mM至約5mM。在特定的實施例中,EDTA的濃度為約0.25mM,約0.3mM,約0.4mM,約0.5mM,約0.6mM,約0.7mM,約0.8mM,約0.9mM,約1.0mM,約1.1mM,約1.2mM,約1.3mM,約1.4mM,約1.5mM,約1.6mM,約1.7mM,約1.8mM,約1.9mM,約2.0mM,約2.1mM,約2.2mM,約2.3mM.約2.4mM,約2.5mM,約2.6mM,約2.7mM,約2.8mM,約2.9mM,約3.0mM,約3.1mM,約3.2mM,約3.3mM,約3.4mM,約3.5mM,約3.6mM,約3.7mM,約3.8mM,約3.9mM,約4.0mM,約4.1mM,約4.2mM,約4.3mM,約4.4mM,約4.5mM,約4.6mM,約4.7mM,約4.8mM,約4.9mM,或約5.0mM。在一較佳的實施例中,EDTA的濃度為約2.5mM。
E.例示的本揭示文之組成物
在一例示的實施例中,RNA脂質體複合物粒子之組成物係包括莫耳比從約2:1至約1:1之DOTMA和DOPE和濃度為約0.05mg/mL之編碼至少一個表位的RNA,其中在生理pH時,RNA脂質體複合物粒子中的正電和負電之電荷比為約1.3:2.0;氯化鈉濃度為約20mM;蔗糖濃度為約22%(w/v);HEPES濃度為約7.5mM,pH為約6.2;及EDTA濃度為約2.5mM。在另外特定的實施例中,該RNA係編碼5個表位或10個表位。
在另外的例示實施例中,RNA脂質體複合物粒子之組成物係包括從約2:1至約1:1之DOTMA和DOPE和濃度為約0.05mg/mL之編碼至少一個表位的 RNA,其中在生理pH時,RNA脂質體複合物粒子中的正電和負電之電荷比為約1.3:2.0;氯化鈉濃度為約30mM;蔗糖濃度為約20%(w/v);HEPES濃度為約7.5mM,pH為約6.2;及EDTA濃度為約2.5mM。在另外特定的實施例中,該RNA係編碼5個表位或10個表位。
F.本揭示文組成物之安定性
如文中所用,「安定」係指一組成物其各種生理化學參數之測量值係在一定義的範圍內。在一實施例中,該組成物係根據各種參數分析,評估安定性。根據本揭示文,安定性參數包括,不限於,RNA脂質體複合物粒子脂平均直徑、多分散性指數、RNA的完整性、RNA含量、pH、滲透壓和微可見粒子的數目。熟習本項技術者應能使用例行的實驗室技術和儀器測量此等參數。例如,安定性參數可使用動態光散射、不透光度、光譜和瓊脂糖凝膠電泳、生物分析儀或任何其他適合的技術來評估。在一實施例中,此生物分析儀為能測量RNA完整性和RNA含量之Agilent 2100 Bioanalyzer(Agilent Technologies)。在一實施例中,此生物分析儀為Advanced Analytical公司之Fragment Analyzer。
不希望受限於理論,DLS測量可用於分析有關本揭示文之RNA脂質體複合物粒子的參數。在一實施例中,DLS可用來測量RNA脂質體複合物粒子之平均直徑,其係藉由Z-avg(平均粒子大小之測量值)來表示。在另外的實施例中,DLS可用於測定RNA脂質體複合物粒子之多分散性指數,其係顯示RNA脂質體複合物粒子之大小和重量分布。
在特定的實施例中,當安性性參數的測量值係在一定義範圍內時,該組成物為安定的。在一安定組成物之實施例中,RNA脂質體複合物粒子在儲存後,例如在從約-15℃至約-40℃之溫度儲存後,係具有與原來平均直徑(亦即在冷凍、冷凍乾燥噴霧乾燥和解凍或重建之前的平均直徑)相差不大於±20%、±10%、±5%或±3%之平均直徑。在一安定組成物之實施例中,RNA脂質體複合物粒子,在儲存後,例如在從約-15℃至約-40℃之溫度儲存後,相較於原來的平均直徑(亦即在冷凍、冷凍乾燥噴霧乾燥和解凍或重建之前的平均直徑),係具有不大於20%、10%、5%或3%之平均直徑。在一安定組成物之另外的實施例中,RNA脂質體複合物粒子在儲存後,例如在從約 -15℃至約-40℃之溫度儲存後,係具有與原來多分散性指數(亦即在冷凍、冷凍乾燥噴霧乾燥和解凍或重建之前的多分散性指數)相差不大於±20%、±10%、±5%或±3%之多分散性指數。在一實施例中,一安定的組成物在儲存後,例如在從約-15℃至約-40℃之溫度儲存後,係具有不多於6,000個直徑大於或等於10μm之微可見粒子。在一實施例中,一安定的組成物在儲存後,例如在從約-15℃至約-40℃之溫度儲存後,係具有不多於600個直徑大於或等於25μm之微可見粒子。
在一安定組成物之實施例中,在儲存後,例如在從約-15℃至約-40℃之溫度儲存後,RNA之完整性為至少80個百分比。在一實施例中,該組成物在從約-15℃至約-40℃之儲存溫度下為安定的。在特定的實施例中,該組成物在約-15℃,約25-16℃,約-17℃,約-18℃,約-19℃,約-20℃,約-21℃,約-22℃,約-23℃,約-24℃,約-25℃,約-26℃,約-27℃,約-28℃,約-29℃,約-30℃,約-31℃,約-32℃,約-33℃,約-34℃,約-35℃,約-36℃,約-37℃,約-38℃,約-39℃,或約-40℃之儲存溫度下為安定的。在一較佳的實施例中,該組成物在約-15℃,約-20℃,約-30℃,或約-40℃之溫度下為安定的。
在一實施例中,當醫藥組成物避開光時,該組成物在從約-15℃至約-40℃之溫度下為安定的。在一較佳的實施例中,當醫藥組成物避開光時,該組成物在從約-15℃至約-25℃之溫度下為安定的。
在一實施例中,該組成物在從約-15℃至約-40℃之溫度下歷經至少1個月至高約24個月為安定的。在特定的實施例中,該組成物在從約-15℃至約-40℃之溫度下歷經至少1個月,至少2個月,至少3個月,至少4個月,至少5個月,至少6個月,至少7個月,至少8個月,至少9個月,至少10個月,至少11個月,至少12個月,至少13個月,至少14個月,至少15個月,至少16個月,至少17個月,至少18個月,至少19個月,至少20個月,至少21個月,至少22個月,至少23個月,至少24個月,至少25個月,至少26個月,至少27個月,至少28個月,至少29個月,至少30個月,至少31個月,至少32個月,至少33個月,至少34個月,至少35個月,至少36個月為安定的。
在一較佳的實施例中,該組成物在從約-15℃至約-40℃之溫度下歷經至少1個月,至少2個月,至少3個月,至少4個月,至少5個月,或至少6個月為安定的。
在另外較佳的實施例中,該組成物在約-20℃之溫度下歷經至少1個月,至少2個月,至少3個月,至少4個月,至少5個月,至少6個月為安定的。
又在另外較佳的實施例中,該組成物在約-30℃之溫度下歷經至少1個月,至少2個月,至少3個月,至少4個月,至少5個月,至少6個月為安定的。
在一實施例中,該組成物在從約-15℃至約-40℃之溫度下冷凍並解凍至約4℃至約25℃的溫度(周圍溫度)後為安定的。在另外的實施例中,該組成物在從約-15℃至約-40℃之溫度下冷凍並解凍至約4℃至約25℃的溫度(周圍溫度)之多數個冷凍-解凍循環後為安定的。
G.本揭示文組成物之物理狀態
在實施例中,本揭示文之組成物為液體或固體。固體之非限定實例包括冷凍形式或凍乾形式。在一較佳的實施例中,該組成物為液體。
本揭示文之醫藥組成物
包括文中所述的RNA脂質體複合物粒子之組成物可用作或用於製備醫藥組成物或醫藥品供治療或預防性治療。
本揭示文之粒子可以任何適合的醫藥組成物形式給藥。術語「醫藥組成物」係關於包括治療上有效試劑,較佳地與醫藥上可接受載劑、稀釋劑及/或賦形劑一起之調配物。藉由將該醫藥組成物投予一對象,該醫藥組成物可用於治療、防止或降低疾病或病症的嚴重性。醫藥組成物在本項技術中亦稱為醫藥調配物。在本揭示文之內文中,醫藥組成物係包括如文中所述之RNA脂質體複合物粒子。
本揭示文之醫藥組成物較佳地係包括一或多種佐劑或可與一或多種佐劑共同給藥。術語「佐劑」係關於延長、促進或加速免疫反應之化合物。佐劑係包括一群異質性化合物,例如油乳化液(例如佛朗氏佐劑(Freund's adjuvant))、無機化合物(例如明礬)、細菌性產物(例如百日咳博德特氏桿菌(Bordetella pertussis)毒素),或免疫刺激複合物。佐劑之實例包括,不限於,LPS、GP96、CpG寡聚去氧核糖核苷酸、生長因數和細胞激素,例如單核細 胞激素、淋巴激素、介白素、趨化激素。趨化激素可為IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、INFa、INF-γ、GM-CSF、LT-a。另外已知的佐劑有氫氧化鋁、佛朗氏佐劑或油,例如Montanide® ISA51。其他適用於本揭示文之佐劑包括脂肽,例如Pam3Cys。
根據本揭示文之醫藥組成物一般係以「醫藥上有效量」和「醫藥上可接受製備物」來施用。
術語「醫藥上可接受」係指不會與醫藥組成物的活性組份相互作用之非毒性物質。
術語「醫藥上有效量」係指單獨或與另外的給劑共同達到所欲反應或所欲效用之量。在治療特定疾病的情況下,所欲的反應較佳地係關於抑制疾病進程。此項係包括延緩疾病的進行及,特言之,干擾或反轉疾病的進行。在治療疾病上的所欲反應亦可為使該疾病或該症狀延遲發作或防止發作。文中所述粒子或組成物之有效量將依所欲治療的症狀、疾病嚴重性、病患之個體參數,包括年齡、生理狀態、體型大小和體重、治療期、伴隨治療之類型(若有的話)、特定的給藥路徑和類似因素而定。因此,文中所述之粒子或組成物的給藥劑量可隨各種此等參數而定。在病患對於最初劑量反應不足之情況下,可使用較高劑量(或藉由不同、更局部化之給藥路徑達到有效較高劑量)。
本揭示文之醫藥組成物可含有鹽類、緩衝劑、防腐劑和視需要其他治療劑。在一實施例中,本揭示文之醫藥組成物係包括一或多種醫藥上可接受載劑、稀釋劑及/或賦形劑。
適合用於本揭示文之醫藥組成物的防腐劑包括,不限於氯化苄二甲烴銨(benzalkonium chloride)、氯丁醇、對羥基苯甲酸酯、硫柳汞(thimerosal)。
術語「賦形劑」如文中所用係指可能存在本揭示文之醫藥組成物中,但並非活性成份之物質。賦形劑之實例包括(不限於)載劑、結著劑、稀釋劑、潤滑劑、增稠劑、介面活性劑、防腐劑、安定劑、乳化劑、緩衝劑、調味劑或色劑。
術語「稀釋劑」係關於一稀釋試劑及/或減黏試劑。再者,術語「稀釋劑」係包括任何的一或多種流體、液體或固體懸液及/或混合媒劑。適合的稀釋之實例包括乙醇、甘油和水。
術語「載劑」係指可為天然、合成、有機、無機之組份,在其中係與活性成份組合用以幫助、促進或得以投予該醫藥組成物。載劑如文中所用可為一或多種適合投予對象之相容的固體或液體填充劑、稀釋劑、包膠物質。適合的載劑包括,不限於,無菌水、林格氏液、乳酸林格氏液、無菌氯化鈉溶液、等張食鹽水、聚二醇類、氫化萘及特別是生物相容的乳酸交酯聚合物、乳酸交酯/甘醇酸交酯共聚物或聚氧乙烯/聚氧-丙烯共聚物。在一實施例中,本揭示文之醫藥組成物包括等張食鹽水。
用於治療用途的醫藥上可接受載劑、賦形劑或稀釋劑已為醫藥技術所熟知,且係描述於,例如Remington's Pharmaceutical Sciences,Mack Publishing Co.(A.R Gennaro edit.1985)中。
醫藥載劑、賦形劑或稀釋劑可就所希望的給藥路徑和標準醫藥施行來作選擇。
本揭示文醫藥組成物之給藥路徑
在一實施例中,文中所述之醫藥組成物可以靜脈內、動脈內、皮下、皮內或肌肉內給藥。在特定的實施例中,醫藥組成物係經調配供局部或全身給藥。全身給藥可包括涉及經由胃腸道吸收之腸內給藥,或非經口給藥。如文中所用,「非經口給藥」係指以任何經由胃腸道以外的方式給藥,例如經由靜脈注射。在一較佳的實施例中,醫藥組成物係經調配供全身給藥。在另外的較佳實施例中,全身給藥係藉由靜脈內投予。
製品
在一態樣中,文中所述的RNA脂質體複合物粒子係存在醫藥組成物中。在另外的態樣中,文中所述的組成物為一醫藥組成物。
在一態樣中,本揭示文係關於含有文中所述之醫藥組成物的小瓶。在另外的態樣中,本揭示文係關於含有文中所述之醫藥組成物的注射器。
本揭示文之醫藥組成物的用途
文中所述的RNA脂質體複合物粒子可用於治療性或預防性治療各種疾 病,特別是其中提供一胜肽或蛋白給一對象,產生治療性或預防性效用之疾病。例如,提供一衍生自病毒的抗原或表位可用於治療各種由該病毒所造成的病毒性疾病。提供一腫瘤抗原或表位可用於治療其中癌細胞係表現該腫瘤抗原之癌症疾病。
術語「疾病」係指影響個體之身體的異常症狀。疾病通常被認為是與特定癥狀和體癥有關的醫學症狀。疾病可能由起源於外部來源之因素所造成,例如感染性疾病,或其可能係由內部功能障礙所造成,例如自體免疫疾病。在人類中,「疾病」通常更廣泛用來指任何造成疼痛、功能障礙、痛苦、社會問題或折磨個人至死亡之症狀,或與個人相關聯之類似問題。以更廣義而言,其有時候係包括受傷、失能、病症、癥狀、感染、孤立癥狀、偏差行為以及結構和功能之非典型變異,而在其他內容中及就其他目的,這些可為考量的可分辨範疇。疾病通常不僅在身體上,亦在情感上影響個人,因為感染或患有許多疾病可能改變個人對生命的觀點及個性。
在本內文中,術語「治療」或「治療干預」係關於就打擊症狀例如疾病或病症之目的,管理和照顧對象。此術語希望係包括對於該對象所罹患的特定症狀之全方位治療,例如投予治療上有效的化合物,用以減緩癥狀或併發症,用以延遲疾病、病症或症狀之進行,用以緩和癥狀和併發症,及/或治癒或消除疾病、病症或症狀,以及防止症狀,其中防止應理解為就打擊疾病、症狀或病症之目的,管理和照顧對象,並包括投予活性化合物用以防止癥狀或併發症的發生。
術語「治療性治療」係關於增進健康狀態及/或延長(增加)個體之壽命。該治療可能消除個體中的疾病、阻止或延緩個體中疾病之發展,抑制或延緩個體中疾病之發展,降低個體中癥狀的頻率或嚴重性,及/或降低目前或之前具有一疾病之個體中的再發生率。
術語「預防性治療」或「防止性治療」係關於希望在一個體中防止疾病發生之任何治療。術語「預防性治療」或「防止性治療」於文中可交換使用。
術語「個體」或「對象」於文中可交換使用。其係指可能罹患或易罹患一疾病或病症(例如癌症),但可能有或可能沒有該疾病或病症之人類或其 他哺乳動物(例如小鼠、大鼠、兔、狗、貓、豬、綿羊、馬或靈長類)。在許多實施例中,該個體為人類。除非另有陳述,否則術語「個體」和「對象」並非指特定年齡,且因此係涵蓋成人、年長者、孩童和新生兒。在本揭示文之實施例中,「個體」或「對象」為一病患。
術語「病患」係指進行治療之個體或對象,特言之,罹病的個體或對象。在本揭示文之一實施例中,目標係提供一免疫反應對抗表現一抗原之罹病的細胞,例如表現一腫瘤抗原之癌細胞,以及治療一疾病,例如涉及表現一抗原(例如腫瘤抗原)之細胞的癌症疾病。
包括如文中所述之RNA脂質體複合物粒子的醫藥組成物,而該RNA脂質體複合物粒子係包括編碼一包含一或多個抗原或一或多個表位之胜肽或蛋白的RNA,可投予至一對象,於該對象中引發對抗該一或多個抗原或一或多個表位之免疫反應,其可為治療性或完全保護性。熟習本項技術者應了解,免疫治療和疫苗接種之一原則係以藉由用與所治療之疾病為免疫學上相關的抗原或表位使一對象免疫,產生對一疾病之免疫保護反應的事實為基礎。因此,文中所述的醫藥組成物可用於引發或增進免疫反應。文中所述的醫藥組成物因此可有效用於預防性及/或治療性治療一涉及抗原或表位之疾病。
如文中所用,「免疫反應」係指對抗原或表現一抗原之細胞的整合身體反應,且係指細胞的免疫反及/或體液免疫反應。細胞免疫反應包括,不限於,針對表現一抗原及特徵為呈現具有第I型或第II型MHC分子之細胞的細胞反應。細胞反應係關於T淋巴細胞,可分類為幫手T細胞(亦稱為CD4+ T細胞),其藉由調節免疫反應扮演一中樞性角色,或殺手細胞(亦稱為細胞毒性T細胞、CD8+ T細胞或CTL),其係在感染的細胞或癌細胞中引發細胞凋亡。在一實施例中,投予本揭示文之醫藥組成物係涉及刺激抗-腫瘤CD8+ T細胞反應,對抗表現一或多個腫瘤抗原之癌細胞。在特定的實施例中,腫瘤抗原係以第I型MHC分子呈現。
本揭示文係考量可為保護性、防止性、預防性及/或治療性之免疫反應。如文中所用「引發免疫反應」可指在誘發前並無對抗一特定抗原之免疫反應存在,或其可指在誘發前有一對抗特定抗原之基本程度的免疫反應,其 在誘發後增強了。因此,「引發免疫反應」係包括「增強免疫反應」。
術語「免疫治療」係關於藉由引發或增強一免疫反應來治療一疾病或症狀。術語「免疫治療」係包括抗原致免疫或抗原疫苗接種。
術語「致免疫」或「疫苗接種」係描述以引發免疫反應之目的,就治療性或預防性理由投予一抗原至一個體的方法。
在一實施例中,本揭示文係預想其中如文中所述的RNA脂質體複合物粒子係以脾臟組織為標靶來給藥之實施例。該RNA係編碼一包括一例如文中所述的抗原或表位之胜肽或蛋白。該RNA係被脾臟中的抗原呈現細胞,例如樹突細胞所吸收,用以表現此胜肽或蛋白。在視需要被抗原呈現細胞處理和呈現後,可能產生對抗該抗原或表位之免疫反應,導致預防性及/或治療性治療一涉及該抗原或表位之疾病。在一實施例中,由文中所述的RNA脂質體複合物粒子所引發的免疫反應係包括藉由抗原呈現細胞,例如樹突細胞及/或巨噬細胞呈現一抗原或其片段,例如一表位,以及由於此呈現而活化細胞毒性T細胞。例如由該RNA或其序列產物所編碼的胜肽或蛋白,因此可藉由表現在抗原呈現細胞上的主要組織相容性複合(MHC)蛋白來呈現。然後MHC胜肽複合物可被免疫細胞例如T細胞或B細胞辨識,導致其活化。
因此,在一實施例中,文中所述的RNA脂質體複合物粒子中的RNA,在給藥後係遞送到脾臟及/或表現在脾臟。在一實施例中,RNA脂質體複合物粒子係遞送到脾臟供活化脾臟抗原呈現細胞。因此,在一實施例中,於RNA脂質體複合物粒子給藥後,發生RNA遞送及/或RNA表現在抗原呈現細胞。抗原呈現細胞可為專門抗原呈現細胞或非專門抗原呈現細胞。專門抗原呈現細胞可為樹突細胞及/或巨噬細胞,甚佳地脾臟樹突細胞及/或脾臟巨噬細胞。
因此,本揭示文係關於RNA脂質體複合物粒子或包括如文中所述之RNA脂質體複合物粒子的醫藥組成物供用於引發或增強免疫反應,較佳地對抗癌症之免疫反應。
在另一實施例中,本揭示文係關於RNA脂質體複合物粒子或包括如文中所述之RNA脂質體複合物粒子的醫藥組成物供用於預防性及/或治療性治療涉及一抗原之疾病,較佳地癌症疾病。
在另一實施例中,本揭示文係關於將一抗原或一表位遞送到抗原呈現細胞例如脾臟中之專門抗原呈現細胞,或於抗原呈現細胞例如脾臟中之專門抗原呈現細胞中表現一抗原或一抗原之表位的方法,其係包括將RNA脂質體複合物粒子或將包含如文中所述的RNA脂質體複合物粒子之醫藥組成物投予一對象。在一實施例中,該抗原為腫瘤抗原。在此態樣中,該抗原或一抗原之表位較佳地係由RNA脂質體複合物粒子中的RNA所編碼。
在一實施例中,全身性投予RNA脂質體複合物粒子或包含如文中所述的RNA脂質體複合物粒子之醫藥組成物造成瞄準及/或RNA脂質體複合物粒子或RNA累積在脾臟中而非肺及/或肝中。在一實施例中,RNA脂質體複合物粒子在脾臟中釋放RNA及/或進入脾臟的細胞。在一實施例中,全身性投予RNA脂質體複合物粒子或包含如文中所述的RNA脂質體複合物粒子之醫藥組成物係將RNA遞送到脾臟的抗原呈現細胞。在一特定的實施例中,脾臟的抗原呈現細胞為樹突細胞或巨噬細胞。
在另一實施例中,本揭示文係關於於一對象中引發或增強免疫反應之方法,其係包括將RNA脂質體複合物粒子或將包含如文中所述的RNA脂質體複合物粒子之醫藥組成物投予一對象。在一示例的實施例中,該免疫反應係對抗癌症。
術語「巨噬細胞」係指由單核細胞分化所產生的吞噬細胞亞群。因發炎、免疫細胞激素或微生物產物所活化的巨噬細胞係在巨噬細胞內藉由水解和氧化性攻擊造成病原降解,非專一性吞沒和殺死外來病原。來自降解蛋白的胜肽係展露在巨噬細胞表面,其可被T細胞所辨識,且其可直接與B細胞表面上的抗體相互作用,導致T和B細胞活化和進一步刺激免疫反應。巨噬細胞係屬於抗原呈現細胞之類別。在一實施例中,該巨噬細胞為脾臟的巨噬細胞。
術語「樹突細胞」(DC)係指另一種屬於抗原呈現細胞類的巨噬細胞亞型。在一實施例中,樹突細胞係衍生自造血骨隨前驅細胞。這些前驅細胞最初係轉化成未成熟的樹突細胞。這些未成熟的細胞其特徵為高吞噬活性及低T細胞活化力。未成熟的樹突細胞經常對周圍環境的病原,例如病毒和細菌進行採樣。一旦他們接觸到可呈現的抗原,則即活化為成熟的樹突細 胞及開始遷移到脾臟或淋巴結。未成熟的樹突細胞吞噬病原並將其蛋白降解成小塊,且在成熟後使用MHC分子將這些片段呈現在其細胞表面。同時,其上調細胞表面受體,作為T細胞活化,例如CD80、CD86和CD40中之共受體,增強其活化T細胞的能力。其亦上調CCR7,一種引發樹突細胞行經血液到達脾臟或經由淋巴系統到淋巴結之趨化受體。本處其係作為抗原呈現細胞並藉由對彼等呈現抗原以及非抗原專一性共刺激訊號,活化幫手T細胞和殺手T細胞以及B細胞。因此,樹突細胞可有效地引發T細胞或B細胞相關的免疫反應。在一實施例中,此樹突細胞為脾臟樹突細胞。
術語「抗原呈現細胞」(APC)為一種能在其細胞表面上展露、獲取及/或呈現至少一種抗原或抗原片段之各式各樣細胞。抗原呈現細胞可區分為專門抗原呈現細胞和非專門抗原呈現細胞。
術語「專門抗原呈現細胞」係關於組成上表現與初始T細胞相互作用所需之第II型主要組織相容性複合物(第II型MHC)的抗原呈現細胞。若T細胞與第II型MHC分子複合物在抗原呈現細胞的膜上相互作用,則該抗原呈現細胞會產生一共刺激分子引發T細胞活化。專門抗原呈現細胞係包括樹突細胞和巨噬細胞。
術語「非專門抗原呈現細胞」係關於一種抗原呈現細胞,其不會組成上表現第II型MHC分子,但在被特定的細胞激素,例如干擾素γ刺激後則會。示例的非專門抗原呈現細胞包括纖維母細胞、胸腺上皮細胞、甲狀腺上皮細胞、膠質細胞、胰腺β細胞或血管內皮細胞。
「抗原處理」係指將抗原降解成一行列產物,其為該抗原之片段(例如將蛋白降解成胜肽)且一或多個這些片段係與MHC分子連接(經由鍵結)供細胞,例如抗原呈現細胞呈現給特定的T細胞。
術語「涉及一抗原之疾病」或「涉及一表位之疾病」係指牽涉一抗原或表位之任何疾病,例如特徵為呈現一抗原或表位之疾病。涉及一抗原或一表位之疾病可為感染性疾病,或癌症疾病或簡單癌症。如上文所提,該抗原可為疾病相關抗原,例如腫瘤相關抗原、病毒抗原或細菌抗原,而該表位可衍生自此抗原。
術語「感染性疾病」係指可在個體間或生物體間傳送,且係由微生物 所造成之任何疾病(例如一般感冒)。感染性疾病已為本項技術所知並且係包括,例如病毒性疾病、細菌性疾病或寄生性疾病,該等疾病分別係由病毒、細菌和寄生物所造成。就此,感染性疾病可為,例如肝炎、性傳染病(例如衣原體或淋病)、結核病、HIV/後天免疫缺乏症候群(AIDS)、白喉、B型肝炎、C型肝炎、霍亂、嚴重急性呼吸道症候群(SARS)、禽流感和流感。
術語「癌症疾病」係指或描述個體之生理狀況,典型地特徵為細胞生長失調。癌症的實例包括(但不限於)癌、淋巴瘤、纖維母細胞瘤、肉瘤和白血病。更特言之,此等癌症之實例包括骨癌、血癌、肺癌、肝癌、胰臟癌、皮膚癌、頭頸癌、皮膚或眼內黑素瘤、尿道癌、卵巢癌、直腸癌、肛門部位癌症、胃癌、大腸癌、乳癌、***癌、尿道癌、性器官和生殖器官癌症、何杰金氏症(Hodgkin's Disease)、食道癌、小腸癌、內分泌系統癌症、甲狀腺癌、副甲狀腺癌、腎上腺癌、軟組織癌、膀胱癌、腎癌、腎細胞癌、腎盂癌、中樞神經系統(CNS)腫瘤、神經外胚層腫瘤、脊椎腫瘤、神經膠質瘤、腦膜瘤和垂體腺瘤。術語「癌症」根據本揭示文亦包括癌症轉移。
由於產生協同效應,組合的癌症治療策略可能為所欲的,其可能比單一治療法之影響強很多。在一實施例中,此醫藥組成物係以單一治療劑來給藥。
如文中所用「免疫治療劑」係關於可能涉及活化特定免疫反應及/或免疫效應子功能之任何試劑。本揭示文考量使用一抗體作為免疫治療劑。不希望受限於理論,抗體能經由各種機制達到對抗癌症細胞之治療效應,包括細胞凋亡、阻斷訊號傳導路徑之組份或抑制腫瘤細胞之增生。在特定的實施例中,此抗體為單株抗體。單株抗體可經由抗體依賴的細胞媒介細胞毒性(ADCC),或結合導致針對細胞毒性之補體蛋白,亦稱為補體依賴的細胞毒性(CDC),引發細胞死亡。可與本揭示文組合使用之抗癌抗體和潛在的抗體標靶(括弧內)之非限定實例包括:阿巴伏單抗(Abagovomab)(CA-125)、阿昔單抗(Abciximab)(CD41)、阿德木單抗(Adecatumumab)(EpCAM)、阿夫土珠單抗(Afutuzumab)(CD20)、培阿賽珠單抗(Alacizumab pegol)(VEGFR2)、阿妥莫單抗噴替酸鹽(Altumomab pentetate)(CEA)、阿麥妥昔單抗(Amatuximab)(MORAb-009)、馬安那莫單抗(Anatumomab mafenatox)(TAG-72)、阿泊珠單抗(Apolizumab)(HLA-DR)、阿西莫單抗(Arcitumomab)(CEA)、阿特珠單抗(Atezolizumab)(PD-L1)、巴維昔單抗(Bavituximab)(磷脂絲胺酸)、貝妥莫單抗(Bectumomab)(CD22)、貝利木單抗(Belimumab)(BAFF)、貝伐單抗(Bevacizumab)(VEGF-A)、莫-比伐珠單抗(Bivatuzumab mertansine)(CD44 v6)、博纳吐單抗(Blinatumomab)(CD 19)、貝倫妥單抗維多汀(Brentuximab vedotin)(CD30 TNFRSF8)、莫-坎妥珠單抗(Cantuzumab mertansin)(黏蛋白CanAg)、拉-坎妥珠單抗(Cantuzumab ravtansine)(MUC1)、卡羅單抗噴地肽(Capromab pendetide)(***癌細胞)、卡魯單抗(Carlumab)(CNT0888)、卡妥索單抗(Catumaxomab)(EpCAM(CD3))、西妥昔單抗(Cetuximab)(EGFR)、泊西他珠單抗(Citatuzumab bogatox)(EpCAM)、西妥木單抗(Cixutumumab)(IGF-1受體)、Claudiximab(Claudin)、Clivatuzumab tetraxetan(MUC1)、可那木單抗(Conatumumab)(TRAIL-R2)、達西珠單抗(Dacetuzumab)(CD40)、達洛珠單抗(Dalotuzumab)(類胰島素生長因子I受體)、地諾單抗(Denosumab)(RANKL)、地莫單抗(Detumomab)(B-淋巴瘤細胞)、多茲圖單抗(Drozitumab)(DR5)、依美昔單抗(Ecromeximab)(GD3神經節苷脂)、依決洛單抗(Edrecolomab)(EpCAM)、依洛珠單抗(Elotuzumab)(SLAMF7)、依納伐妥珠單抗(Enavatuzumab)(PDL192)、恩司昔單抗(Ensituximab)(NPC-1C)、依帕珠單抗(Epratuzumab)(CD22)、厄馬索單抗(Ertumaxomab)(HER2/neu,CD3)、艾達珠單抗(Etaracizumab)(整合素αvβ3)、法勒珠單抗(Farletuzumab)(葉酸受體1)、FBTA05(CD20)、芬克拉妥珠單抗(Ficlatuzumab)(SCH 900105)、芬妥木單抗(Figitumumab)(IGF-1受體)、弗拉伏妥單抗(Flanvotumab)(糖蛋白75)、夫蘇木單抗(Fresolimumab)(TGF-β)、加利昔單抗(Galiximab)(CD80)、甘尼妥單抗(Ganitumab)(IGF-I)、吉妥珠單抗-奧佐米星(Gemtuzumab ozogamicin)(CD33)、Gevokizumab(IL-1β)、吉瑞昔單抗(Girentuximab)(碳酸酐酶9(CA-IX))、格萊木單抗-維多汀(Glembatumumab vedotin)(GPNMB)、替伊莫單抗(Ibritumomab tiuxetan)(CD20)、伊克蘆庫單抗(Icrucumab)(VEGFR-1)、伊戈伏單抗(Igovoma)(CA-125)、拉-英達西單抗(Indatuximab ravtansine)(SDC1)、英妥木單抗(Intetumumab)(CD51)、伊珠單 抗-奧佐米星(Inotuzumab ozogamicin)(CD22)、伊匹木單抗(Ipilimumab)(CD152)、伊妥木單抗(Iratumumab)(CD30)、拉貝珠單抗(Labetuzumab)(CEA)、來沙木單抗(Lexatumumab)(TIRAIL-R2)、利韋單抗(Libivirumab)(B型肝炎表面抗原)、林妥珠單抗(Lintuzumab)(CD33)、莫-洛伏珠單抗(Lorvotuzumab mertansine)(CD56)、魯卡木單抗(Lucatumumab)(CD40)、魯昔單抗(Lumiliximab)(CD23)、馬帕木單抗(Mapatumumab)(TRAIL-R1)、馬妥珠單抗(Matuzumab)(EGFR)、美泊利單抗(Mepolizumab)(IL-5)、米拉珠單抗(Milatuzumab)(CD74)、米妥莫單抗(Mitumomab)(GD3神經節苷脂)、莫加珠單抗(Mogamulizumab)(CCR4)、Moxetumomab pasudotox(CD22)、他那可單抗(Nacolomab tafenatox)(C242抗原)、他那莫單抗(Naptumomab estafenatox)(5T4)、納那妥單抗(Narnatumab)(RON)、奈昔木單抗(Necitumumab)(EGFR)、尼妥珠單抗(EGFR)、納武單抗(Nivolumab)(IgG4)、奧法木單抗(Ofatumumab)(CD20)、奧拉圖單抗(Olaratumab)(PDGF-Rα)、奧納珠單抗(Onartuzumab)(人類散射因數受體激酶)、莫奧珠單抗(Oportuzumab monatox)(EpCAM)、奧戈伏單抗(Oregovomab)(CA-125)、歐西魯單抗(Oxelumab)(OX-40)、帕尼單抗(Panitumumab)(EGFR)、帕曲土單抗(Patritumab)(HER3)、帕尼單抗(Pemtumomab)(MUC1)、培妥珠單抗(Pertuzuma)(HER2/neu)、平妥單抗(Pintumomab)(腺癌抗原)、普托木單抗(Pritumumab)[vimentin波形蛋白]、雷妥莫單抗(Racotumomab)(N-羥乙醯神經胺酸)、雷德圖單抗(Radretumab)(纖連蛋白外結構域-B)、瑞非韋魯(Rafivirumab)(狂犬病病毒糖蛋白)、雷莫蘆單抗(Ramucirumab)(VEGFR2),利妥木單抗(Rilotumumab)(HGF)、利妥昔單抗(Rituximab)(CD20)、羅妥木單抗(Robatumumab)(IGF-1受體)、奧馬珠單抗(Samalizumab)(CD200)、西羅珠單抗(Sibrotuzumab)(FAP)、司妥昔單抗(Siltuximab)(IL-6)、Tabalumab(BAFF)、Taeatuzumab tetraxetan(α-胎兒蛋白)、帕-他莫單抗(Taplitumomab paptox)(CD19)、替妥莫單抗(Tenatumomab)(tenascin C)、替妥木單抗(Teprotumumab)(CD221)、替西木單抗(Ticilimumab)(CTLA-4)、替加珠單抗(Tigatuzumab)(TRAIL-R2)、TNX-650(IL-13)、托西莫單抗(Tositumomab)(CD20)、曲妥珠單抗(Trastuzumab)(HER2/neu)、TRBS07(GD2)、 曲美木單抗(Tremelimumab)(CTLA-4)、西莫白介素(Tucotuzumab celmoleukin)(EpCAM)、Ublituximab(MS4A1)、烏瑞魯單抗(Urelumab)(4-1BB)、伏洛昔單抗(Volociximab)(整合素α5β1)、伏妥昔單抗(Votumumab)(腫瘤抗原CTAA16.88)、紮蘆木單抗(Zalutumumab)(EGFR)、Zanolimumab(CD4)。
在一實施例中,該免疫治療劑為PD-1軸結合拮抗劑。PD-1軸結合拮抗劑包括,但不限於PD-1結合拮抗劑、PD-L1結合拮抗劑和PD-L2結合拮抗劑。「PD-1」的替代名稱包括CD279和SLEB2。「PD-L1」的替代名稱包括B7-H1、B7-4、CD274和B7-H。「PD-L2」的替代名稱包括B7-DC、Btdc和CD273。在某些實施例中,PD-1結合拮抗劑為抑制PD-1與其配體結合夥伴結合之分子。在一特定的態樣中,PD-1配體結合夥伴為PD-L1及/或PD-L2。在另外的實施例中,PD-L1結合拮抗劑為抑制PD-L1與其結合夥伴結合之分子。在一特定的態樣中,PD-L1結合夥伴為PD-1及/或B7-1。在另外的實施例中,PD-L2結合拮抗劑為抑制PD-L2與其結合夥伴結合之分子。在一特定的態樣中,PD-L2結合夥伴為PD-1。PD-1結合拮抗劑可為一抗體、其抗原結合片段、免疫黏附素、融合蛋白或寡肽。在某些實施例中,PD-1結合拮抗劑為一抗-PD-1抗體(例如,人類抗體、人源化抗體或嵌合抗體)。抗-PD-1抗體之實例包括,不限於,MDX-1106(納武單抗,OPDIVO)、Merck 3475(MK-3475,帕博利珠單抗(Pembrolizumab),KEYTRUDA)、MEDI-0680(AMP-514)、PDR001、REGN2810、BGB-108和BGB-A317。
在一實施例中,PD-1結合拮抗劑為免疫黏附素,包括與恆定區融合之PD-L1或PD-L2的胞外或PD-1結合部分。在一實施例中,PD-1結合拮抗劑為AMP-224(亦稱為B7-DCIg,為一PD-L2-Fc),其為WO2010/027827和WO2011/066342中所述之融合可溶性受體。
在一實施例中,PD-1結合拮抗劑為一抗-PD-L1抗體,其係包括,不限於,YW243.55.S70、MPDL3280A(阿特珠單抗)、MEDI4736(度伐魯單抗(Durvalumab))、MDX-1105和MSB0010718C(阿維魯單抗(Avelumab))。在一實施例中,該免疫治療劑為一PD-1結合拮抗劑。在另外的實施例中,該PD-1結合拮抗劑為一抗-PD-L1抗體。在一示例的實施例中,該抗-PD-L1抗體為阿特珠單抗。
文中所參照的文件和研究之引述並不希望視為承認任何前述文為相關的先前技術。所有的聲明就這些文件的內容係以申請人可取得的資訊為基準且不應視為任何承認這些文件之內容的正確性。
提出下列說明係讓本項技術之一般技術者能製作和使用各種實施例。特定裝置、技術和應用之說明僅提供作為實例。文中所述的實例之各種修正對於本項技術之一般技術者為顯而易見的,且在不悖離各種實施例的精神和範圍下,文中所定義的通則可適用其他實例和應用。因此,各種實施例不希望受限於文中所述和所顯示的實例,而是符合與申請專利範圍一致的範圍。
實例 實例1:材料
用於下立所述的實驗中之顯著材料有:
實例2:製備脂質混合物
分別以2:1之脂質莫耳比於乙醇中製備不同濃度的DOTMA/DOPE脂質混合物。如下製備該溶液:
- 秤取DOPE脂質
- 計算DOTMA的量使莫耳%保持在2:1 DOTMA/DOPE
- 秤取DOTMA脂質
- 計算需要溶解該脂質之無水乙醇之量
- 秤取無水乙醇
- 在37℃水浴的幫助下將脂質溶於酒精。
藉由製備300mM DOPE或330mM DOPE/DOTMA(66:33)之乙醇中溶液評估DOPE和DOPE/DOTMA在乙醇中的溶解度。藉由將脂質於37℃溫育20分鐘溶解脂質。將DOPE溶液以17000G離心1h並藉由HPLC測量上清液中DOPE濃度。將DOTMA/DOPE經由0.22μm PES注射器過濾器過濾並以HPLC測量濾液中的脂質濃度。
藉由下列本實例中所述的基本步驟可同樣製備另外的脂質混合物,但是係使用其他的脂質作為起始物及/或計算其他的莫耳比。
實例3:製備微脂體
如下藉由乙醇注射製備微脂體:在配置有0.9 x 40mm針頭之1mL注射器的幫助下將0.2mL DOTM/DOPE或(其他脂質溶液)乙醇中溶液注射至以120rpm攪拌下的9.8mL水中。將微脂體膠體攪拌30分鐘。經由0.45或1.2或5μm CA注射器過濾器將微脂體過濾或不過濾。將微脂體膠體儲存於4-8℃。以50mM中間步驟製備66:33%莫耳比,從100至400mM之不同總脂質濃度的DOTMA/DOPE脂質溶液。
實例4:製備RNA脂質體複合物
如下製備RNA脂質體複合物調配物:首先將RNA溶液(例如luc-RNA溶液)與NaCl溶液混合用以預縮合luc-RNA。之後,將微脂體膠體和luc-RNA-NaCl溶液混合,形成RNA脂質體複合物。將RNA脂質體複合物調配物於室溫培育10分鐘並儲存於4-8℃。以0.65之N/P比率製備不同的RNA脂質體複合物調配物。在這些不同的RNA脂質體複合物調配物中RNA濃度 為0.1mg/mL而NaCl濃度為50mM。使用不同的微脂體前驅物(不同大小)製備RNA脂質體複合物。
實例5:動態光散射
以已知的動態光散射(DLS)方法使用Nicomp儀器(PSS.Santa Barbara.USA),測量微脂體大小和RNA脂質體複合物大小。將微脂體樣本以水稀釋至1mM之總脂質濃度。將RNA脂質體複合物樣本以1比5用0.9%NaCl溶液稀釋。以5x50mm培養試管(Kimble.USA)測量樣本。
實例6:不透光度-動態光散射
使用Accusizer A7000儀器(PSS.Santa Barbara.USA)進行大小範圍介於0.5-5μm之不同微脂體和RNA脂質體複合物調配物之粒子計數/測量。進行3次體積5mL(2.5μL樣本/20mL無粒子水)的測量。得到的結果代表三次測量之粒子數的平均值。
實例7:小角度X-光散射
藉由小角度X光散射(SAXS)測量以不同微脂體前驅物所製備的不同RNA脂質體複合物調配物的內部結構參數。SAXS為一種當X-光通過物質時於小角度記錄其散射,藉由分析彈性散射行為可定量樣本中奈米級密度差異之技術。計算每個檢測的RNA-調配物之關聯長度和d-間距參數。RNA脂質體複合物調配物係以0.65N/P比率,0.1mg/mL RNA和112mM NaCl所製備。
實例8:瓊脂糖凝膠電泳
藉由凝膠電泳測量不同RNA脂質體複合物樣本中游離的RNA之量。使用含有次氯酸鈉之1%瓊脂糖凝膠進行此項測量。將RNA脂質體複合物樣本用DNA追蹤染劑(DNA loading dye)以1:6稀釋。將12μL稀釋過的RNA脂質體複合物樣本小心地載入瓊脂糖凝膠中。以80V及40min操作時間進行電泳。
實例9:HPLC
以HPLC(Agilent technologies.Santa Clara.USA)使用Sunfire C18 2.5μm 4.6 x 75mm管柱(Waters.Massachusetts.USA)和205nm波長測量不同微脂體調配物中脂質濃度。移動相A為70%甲醇/30%異丙醇/0.1%TFA之混合物, 移動相B為55%甲醇/15%異丙醇/30%水/0.1%TFA之混合物。微脂體樣本係以水稀釋或未稀釋為3mM總脂質濃度。
實例10:細胞培養:活體外樹突細胞中之RNA轉染
以不同微脂體前驅物和luc-RNA製備RNA脂質體複合物調配物。以0.9%NaCl溶液將RNA脂質體複合物稀釋成0.01mg/mL RNA供進行細胞培養實驗。於植入培養基或全血內之人類樹突細胞中評估不同RNA脂質體複合物調配物的RNA轉染效率。
實例11:動物模型:以脾臟為標靶及樹突細胞中的RNA轉染
於BALB/c小鼠中評估不同RNA脂質體複合物調配物之轉染效率。以眼球後注射20μg經調配的RNA脂質體複合物及於6小時後測量樹突細胞中(脾臟標靶)螢光酶表現。RNA脂質體複合物係以luc-RNA和不同微脂體前驅物,由原料膠體所得到的小或大的微脂體以及0.45μm過濾後之小或大的微脂體,0.65的N/P比率和112mM NaCl所製備。
實例12:溶解度檢測
檢測是否可製備較高濃度之含DOPE的溶液(過飽和狀況)並用於乙醇注射供製造微脂體(下一章節)。於此溶解度檢測系列中所得到的結果係如表1和2中所示:
根據這些結果,購自不同供應商的DOPE在乙醇中具有約50至60mM(室溫)之平衡溶解度。然而,若製備含有陽離子脂質DOTMA共溶液,則平衡溶解度顯著增加,例如若使用66:33莫耳比的DOTMA/DOPE共溶液,增加至約90至100mM。
實例13:製造不同大小之微脂體
藉由乙醇注射使用如實例3中所述之方法製造微脂體。在乙醇注射後無進行過濾程序。固定所有其他參數,但改變乙醇中脂質的濃度。如實例5和6中所述以動態光散射(DLS)測量微脂體大小。
作為實例,有關從66:33的%莫耳比DOTMA/DOPE混合物所得到的微脂體結果係如(下)表3和圖1和2中所示。
如所見,所得到的微脂體大小(Z-平均)隨著用於乙醇注射的乙醇溶液中的脂質濃度增加。因此,乙醇中的脂質濃度可有效用於控制微脂體大小。有利地,若DOPE濃度低於和高於DOPE單獨在乙醇的平衡溶解度,則大小的變化最顯著。若DOPE濃度高於50mM(150mM總脂質濃度),所得到的微脂體大小大幅增加,從<50nm增加至大於500nm(圖1)。然而,同樣高於溶解度極限,微脂體大小進一步隨脂質濃度增加而單調增加。
0.5μm微脂體部分係存在所有的微脂體調配物中,在以300mM脂質溶液所製備的微脂體中該微脂體的分量為較高,而在以較低或較高的脂質濃度所製備的微脂體中則下降。再者,在以較高的脂質濃度所製備的微脂體調配物中,測量到0.6μm和0.7μm微脂體分量(圖2)。高濃度脂質溶液之乙醇注射後,形成較大的微脂體。相較於以較低脂質濃度之脂質溶液所製備的微脂體調配物,所形成的微脂體總量較低。所得到的結果係代表3次測量的總粒子量之平均值。
實例14:由不同大小的微脂體製造RNA脂質體複合物
如實例4中所述使用不同的微脂體前驅物製造RNA脂質體複合物,其中係改變用於其形成之微脂體大小,但固定所有其他的參數。以如實例5和6中所述的動態光散射(DLS)實驗之過程測定微脂體大小(z-平均)和多分散性指數(PDI)。有關於供微脂體製備之脂質濃度對RNA脂質體複合物大小(Z-平均)之影響(及因而對微脂體前驅物大小之影響)結果係如(下)表4和對應的圖3和4中所示。
根據本試驗系列,由小微脂體所得到的RNA脂質體複合物小於由大微脂體所製得的。以300mM或更高溶液製造的微脂體所製得的RNA脂質體複合物比該等來自以150mM儲存液所製得的微脂體者約大2倍。在所有以較大微脂體所製備的RNA脂質體複合物中並未發現微脂體和RNA脂質體複合物間的相關性(圖3)。
得到的RNA脂質體複合物之量隨著用於其形成的微脂體大小增加。在以較大微脂體所製備的調配物中測量到較高量的較大RNA-脂質體複合物粒子,其確認了由動態光散射測量中所得到的數據(圖4)。所得到的結果係代表3次測量的粒子量之平均值。
實例15:不同脂質體複合物之小角度X-光散射(SAXS)
以來自不同濃度儲存液之微脂體所製得的RNA脂質體複合物如所述進行小角度X-光散射實驗。例如由DOTMA/DOPE 2/1(mol/mol)微脂體和RNA以1.3至2之電荷比形成RNA脂質體複合物。微脂體係藉由如所述的乙醇注射從100mM、300mM和400mM之乙醇中脂質濃度所製造。
由以4/1之電荷比(上方)和1.3/2之電荷比製備的微脂體所形成之RNA脂質體複合物,從小角度X-光散射測量所得到的繞射曲線係如圖5中所示,其中用於形成脂質體複合物之微脂體係以400mM、300mM和100mM之乙醇中脂質儲存液所製得。
散射圖係包括在約1nm-1之單布拉格峰。其為以脾臟為標靶的脂質體複 合物之典型繞射圖,其中係使用過量的(帶負電)RNA來形成脂質體複合物。若脂質體複合物不是帶負電,則散射為完全不同。舉例而言,測量+/-4/1電荷比之RNA脂質體複合物,其中會發現較不明顯的波峰。以及一可識別的第二級波峰(雖然強度低)。事實上,脂質體複合物之X-光散射圖的一般特徵為具有數個可能為等距離,可能具有其他間距的波峰,其係依相態而定。本處,相反地,僅測定到一個單峰。再者,依照原先用於製造微脂體的儲存液濃度,峰寬會改變。若在乙醇中的濃度較高,則峰寬較低。該布拉格峰顯示脂質體複合物為規律有序,其中由波峰位置得到重複距離(d-間距):
本處q為動量傳遞,其中,n為級數而qmax為個別布拉格波的最 大位置,λ為波長,而θ為角度。可衍生自布拉格波的d-間距大概為6.5nm。
峰寬△q隨著堆疊中重複單元的數目增加而降低。就液體晶體陣列,關聯長度可為:
就本處之脂質體複合物產物,散射膜式與用於微脂體製造的前述乙醇中之脂質濃度有明確的相關性,且可衍生生物活性。當波峰位置不變時,峰寬係隨所用的乙醇中脂質濃度單調變化。乙醇中脂質濃度增加(其導致微脂體大小增加)對應峰寬下降及因此使關聯長度較高。同時,生物活性隨著關聯長度增加。因此,具有增強活性之所述的脂質體複合物,其係用來自使用較高濃度的脂質之乙醇儲存液所製造的微脂體所製,可藉由明確的結構特性來辨別。此外,又藉由其他方法,如不對稱流場分離(AF4),具有增強活性之所述的脂質體複合物可與該等活性較低者區別。
實例16:RNA脂質體複合物在人類樹突細胞之轉染效率
如所述使用不同微脂體前驅物製造Luc-RNA脂質體複合物,其中係改變用於其形成之微脂體大小(藉由改變起始的脂質濃度進行其形成),而固定所有其他的參數。之後,於植入培養基或全血中的人類樹突細胞內評估不同RNA脂質體複合物調配物之RNA轉染效率。
說明藉由測量螢光表現測定活體外(人類樹突細胞)轉染效率之結果,和以不同脂質前驅物所製備的不同RNA脂質體複合物之對應生物活性係如圖6中所示。
生物活性(活體外RNA轉染)隨著RNA脂質體複合物的關聯長度單調增加。較高的關聯長度代表RNA脂質體複合物中更同質性的雙層脂質群族。
實例17:不同脂質體複合物的不對稱流場分離
不對稱流場分離(AF4),現今一種用於分提和分離粒子之常見和新進技術的方法,係用於測定RNA脂質體複合物之進一步的差異。根據AF4理論,具有類似性質和大小相等的粒子應同時溶離出。
一些有關來自2種不同類型微脂體,由150mM乙醇儲存液或400mM乙醇儲存液所製造之脂質體複合物的AF4測量結果,係如圖7中所示。
總言之,不對稱流場分離係驗證來自150mM乙醇中脂質濃度的微脂體之脂質體複合物,在質性上和量性上與該等來自400mM脂質濃度者不同。150mM衍生的脂質體複合物較小,但與直覺相反地,後溶離出,因此二者間一定有質性上的差異(形狀、介質相互作用、電荷)。來自150mM乙醇溶液的RNA脂質體複合物後溶離出,雖然其粒子較小。此項顯示出使用150mM乙醇中脂質溶液之微脂體所製造的RNA脂質體複合物平均小於該等來自400mM乙醇中脂質者。即使大小相同,150mm衍生的脂質體複合物與400mm衍生者係具有不同的物理化學性質。這些大小和物理化學性質上的差異係與400mm衍生的RNA脂質體複合物之較高的生物活性相關聯。
實例18:RNA脂質體複合物在活體外的生物活性
就以如所述微質體、不同脂質儲存液及/或不同脂質濃度製備之不同大小的螢光酶編碼RNA脂質體複合物,藉由細胞培養轉染實驗(樹突細胞)所測,螢光酶訊號及因而生物活性係隨脂質起始濃度單調增加,且因此係隨用於RNA脂質體複合物形成之微脂體大小單調增加。對應的結果係如圖6、8和9中所示。
總言之,由較高脂質濃度製造微脂體所產生的RNA脂質體複合物具有明顯較高的活體外活性。
實例19:RNA脂質體複合物之活體內生物活性
就以不同大小微脂體製備之螢光酶編碼RNA脂質體複合物,藉由細胞培養轉染實驗(樹突細胞)所測,以較大微脂體所製備之RNA脂質體複合物產生明顯較高的螢光酶表現和對應的生物活性。
此試驗系列的非限定實例係如圖10和11所示。以來自360mM原料膠體之較大微脂體所製備的RNA脂質體複合物,比來自200mM原料膠體之小的RNA脂質體複合物,導致明顯活體內表現訊號。
實例20:RNA脂質體複合物之自動化製造
就RNA脂質體複合物之自動化批式製造,一般而言已開發可應用的製程,其係如圖12中所示。所有的步驟係使用預先殺菌的單次使用液體路徑以便得以進行安全無菌的原料處理。首先,調整RNA濃度至微脂體濃度並加入NaCl供RNA縮合。藉此,將RNA溶液調整至RNA濃度以便讓同體積的RNA和微脂體混合。將RNA和微脂體溶液轉置於較大體積的注射器並將二支注射器安裝在一單一注射器泵浦同時驅動二個注射器的活塞。在RNA脂質體複合物形成後,加入低溫保護劑溶液並調整最終的藥物產品濃度。在將藥物產品填入玻璃瓶後,將藥物產品冷凍為供長期儲存的濃縮液。
RNA脂質體複合物之重要的品質屬性為藉由RNA和微脂體間的混合比率調整電荷比。開發能有效控制混合比率供RNA脂質體複合物之可自動化和可擴展的工業製程。在一小規模的製程中(10公升),控制同體積之二種含有微脂體和RNA水溶液的混合係藉由使用單一注射器泵浦同時驅動二個填入RNA或微脂體之大體積注射器來達成。就大體積(10公升)之相等泵唧係使用泵唧系統如加壓容器、膜泵浦、齒輪泵浦、磁浮式泵浦或蠕動泵浦與帶有返饋迴路之流率感測器組合,供線上控制和即時調整流率。
對於自動化RNA脂質體複合物製造,須要確保含有RNA和微脂體之水溶液有效混合之靜態混合元件。已發現,含有卷繞和嵌入式結構供促進混合之市售微流體元件,以及帶有相當建構之原型混合元件在製造其間會組塞。因此這些混合元件不適合用於自動化製造RNA脂質體複合物。發現具有直徑介於1.2至50.0mm之Y-型和T-型混合元件適合用於RNA脂質體複合物之自動化生產。
方法:藉由使用不同的混合元件製造RNA脂質體複合物(表1)。在脂質體複合物製造期間,係由操作者觀察該混合元件並記載原料沉積或阻塞。
結果:以市售的微流體晶片(NanoAssemblrTM,Precision Nanosystems,Vancouver,Canada),在製備3mL的RNA脂質體複合物後觀察到堵塞。在其他的原型微流體混合元件試驗期間進行類似的觀察(表5)。然而就所有包括相當於市售混合元件結構之(微)流體混合元件,可觀察到元件之沉積和部分阻塞,但使用Y型或T型混合元件時則未觀察到。除了具有2.4mm直徑之所述Y型混合元件,亦以較大直徑的混合元件試驗。因未發現對Y型混合元件直徑的限制,所述方法以至高直徑50mm之Y型混合元件被認為係適合製備RNA脂質體複合物。
當使用Y-型或T-型混合元件,需要最小流率以便達到充分混合。RNA脂質體複合物製備可藉由使用直徑1.6至50mm的Y-型或T-型混合元件混合二種含有RNA和微脂體的水溶液來進行。由該混合流率所產生的雷諾數不應低於約300,以確保有效混合。流率與混合元件直徑比率不應低於約150,以確保有效混合。實驗檢測至高約2100雷諾數並發現適合用於自動化製造。此數據亦支持較高的流率為可行的。其係衍生自在2100的雷諾數時,已在擾流模式之狀況的事實,且因此即使較高的流率亦期望類似的混合條件。
方法:藉由使用單一注射器泵浦由吸汲RNA溶液和微脂體溶液製備RNA脂質體複合物。以包括2.4和3.2mm.內徑的代表性Y型混合元件進行RNA脂質體複合物形成。以光子相關光譜(PCS)測量來分析RNA脂質體複合物之粒子大小和多分散性。使用公式計算理論上由探討的流率和混合元件直徑之組合所產生的雷諾數(圖13)。
藉由將流率(cm3/min)除以混合元件直徑(cm),計算流率與混合元件直徑比率。此因數係作為無因次數。
結果:當以流率和混合元件組合產生低於約300之理論計算雷諾數來製造RNA脂質體複合物時,形成粒子大小和多分散性增加的RNA脂質體複合物(圖13和表6)。為了確保可重複形成帶有所欲粒子特性之RNA脂質體複合物,理論上雷諾數最小應為約300(圖13和14,以及表6)而流率與混合元件直徑比率最小應為約150。發現在廣泛範圍流率下(60至240mL/min),2.4mm混合元件能充份及可重複混合RNA和微脂體。在這些研究期間,並未發現有上限,雷諾數或流率與混合元件直徑比率預期並無上限。
a用來計算雷諾數的水之黏度(0.001Pas)和密度(1000kg/m3)
b藉由將流率(cm3/min)除以混合元件直徑(cm),計算此因數。此因數係作為無因次數。
實例21:RN濃度的影響
以具有代表性直徑(2.4mm)之Y型混合元件製備RNA脂質體複合物。為了鑑定在目前設定中可製備的RNA脂質體複合物之濃度範圍,RNA濃度係系統性於0.05mg/mL至0.5mg/mL間變化。為了調查所形成的脂質體複合物之安定性,將最終的調配物調整至0.05mg/mL RNA,22%蔗糖和20mM NaCl並將調配物冷凍三次。
在RNA脂質體複合物形成期間,RNA濃度介於0.1至0.5mg/mL之RNA脂質體複合物形成產生相當的粒子特性(圖15)。在三次冷凍後,此等粒子的粒子特性亦可保留,其代表示一有關RNA濃度變化之非常堅實的製造方法(圖16)。因為並無線索示意在RNA脂質體複合物製備期間對RNA濃度的限制,因此所述的設定在至高5mg/mL的RNA濃度時被認為係適合RNA脂質體複合物製備。
所述的自動化製造RNA脂質體複合物之方法得以重複製備具有不同電荷比的穩定RNA脂質體複合物。
方法:為了證明有關電荷比之半自動化製備RNA脂質體複合物的堅實性,此參數係系統性從1.0:2.0至2.1:2.0及從2.0:1.0至5.0:1:0變化。以光子相關光譜(PCS)測量來分析RNA脂質體複合物之粒子大小和多分散性。
結果:發現在1.0:2.0至2.1:2.0的電荷比間,電荷比改變對RNA脂質體複合物之粒子大小和多分散性並無影響(圖17)。因此,範圍介於1.0:2.0至2.1:2.0間被認為產生同等質性之RNA脂質體複合物製備物。另外,在介於3.0:1.0至5.0:1.0電荷比間,形成具有定義大小和多分散性之安定粒子(圖18)。
實例22:RNA脂質體複合物形成期間之鹽濃度
對於包括高生物活性之RNA脂質體複合物的自動化製造,需要在RNA脂質體複合物形成期間控制離子條件。為了確保生物活性,RNA脂質體複合物形成必須要在45至300mM NaCl的存在下進行。其他離子化合物,例如EDTA、HEPES等,有助於離子強度並可降低所需的最小NaCl濃度。
方法:在RNA脂質體複合物形成期間以不同濃度的NaCl自動化製備RNA脂質體複合物。以光子相關光譜(PCS)測量來分析RNA脂質體複合物之粒子大 小和多分散性。另外,藉由測量活體外螢光酶訊號評估脂質體複合物之生物可利用性。
結果:粒子特性應可藉由調整離子強度來控制。在製造期間增加鹽濃度引發些微增加粒子大小(圖19)。已發現鹽濃度對於生物可利用具有影響。在製造期間增加的鹽濃度引發粒子大小增加(圖20)。因此,在RNA脂質體複合物形成期間NaCl濃度不應低於45mM NaCl。
實例23:RNA脂質體複合物之安定性
在pH 5.5至6.7之pH範圍用於安定脂質體複合物中RNA之緩衝系統如HEPES、乙酸/乙酸鈉和磷酸鈉可在有或無低溫保護劑的存在下用於安定RNA脂質體複合物中的RNA。發現碳酸鈉系統並未產生相當的安定效用。
方法:用於研究最佳pH範圍和檢測涵蓋不同pH-範圍之不同緩衝劑的安定性(HEPES pH 6.8-8.2,乙酸/乙酸鈉pH 3.7-5.6,磷酸鈉pH 5.8-8.0及碳酸鈉pH 6.2-8.6)。起初將RNA脂質體複合物在無低溫保護劑存在下於壓力條件下(40℃)溫育。藉由毛細電泳於21天期間分析RNA完整性。為了研究在示例的低溫保護劑存在下之最佳pH範圍,係將RNA脂質體複合物在HEPES和蔗糖的存在下於40℃溫育並於21天期間分析RNA完整性。
結果:僅管就緩衝系統HEPES、乙酸/乙酸鈉和磷酸鈉得到相當的結果,但碳酸鹽系統並未產生相當的RNA安定作用(圖21)。RNA完整性係依賴調配物的pH值而定。最佳的pH範圍經鑑定係在介於pH 5.5至7.4之間。在示例的低溫保護劑蔗糖之存在下,pH 5.5至8.0的pH範圍經鑑定產生最佳的RNA安定作用(圖22)。
二價的金屬離子可能從RNA合成過程、調配物賦形劑或玻璃容器中產生並可能影響RNA安定性。EDTA鈉鹽與鹼土金屬和重金屬離子形成安定的水溶性複合物。EDTA二鈉鹽貢獻了存在RNA脂質體複合物形成期間離子之濃度且藉此降低製備生物活性RNA脂質體複合物所需的NaCl濃度。以所述的製程在EDTA(0至20mM)的存在下形成RNA脂質體複合物為可能的。方法:在遞增濃度EDTA之存在下(至高18mM)形成RNA脂質體複合物及在稀釋後於減低的EDTA含量(0.1mM至5.4mM)下於40℃溫育。在21天期間分析RNA完整性作為主要物理化學參數。
結果:發現在高濃度EDTA之存在下(至高18mM)形成RNA脂質體複合物與在較低濃度存在下製備造成相當的粒子特性。發現在儲存期間含有介於0.01%(wv)(0.1mM)至0.2%(wv)(5.4mM)EDTA之不同組間並無顯著差異(圖23)。因EDTA鈉鹽貢獻了存在RNA脂質體複合物形成期間之離子強度並可作為可能降低RNA完整性之二價金屬離子的清除劑,在RNA脂質體複合物形成期間存在的EDTA濃度至高20mM被認為是有利的。
實例24:最佳化NaCl和低溫保護劑含量
在RNA脂質體複合物製造、儲存和施用於病患期間需要調整離子條件(圖24)。在RNA脂質體複合物形成期間NaCl的濃度可為45至300mM;在RNA脂質體複合物以冷凍狀態長期儲存期間為10至50mM;而在解凍並以食鹽水稀釋後為80至150mM。
就各NaCl濃度70mM,發現個別的低溫保護劑含量不應過低以確保多次冷凍後粒子性質的安定性。可使用濃度介於12.5至35.0%(w:v)間的單和雙分子糖如葡萄糖、蔗糖、甘露糖、海藻糖、山梨醇、三醇類如甘油及其混合物作為低溫保護劑。相較於後面的化合物,山梨醇的安定效用較低,而精胺酸無法在冷凍期間有效安定RNA脂質體複合物。
方法:評估單糖(葡萄糖和山梨醇),雙糖(蔗糖和海藻糖),胺基酸(精胺酸、脯胺酸),三醇類(甘油)以及低溫保護劑系統,含有不同糖類混合物(山梨醇和蔗糖)之低溫保護劑系統的不同化合物代表以便鑑別適合的低溫保護劑(圖25和26)。因此,在遞增濃度的這些化合物之存在下冷凍RNA脂質體複合物。為了鑑別在特定NaCl濃度之下低溫保護劑的最小含量,係將RNA脂質體複合物在遞增量的蔗糖或海藻糖作為代表低溫保護劑之存在下冷凍(表7)。將樣本起初冷凍一段單一時間以便測定所欲詳細評估的低溫保護劑之濃度範圍。在第三個實驗中,藉由在低溫保護劑海藻糖的存在下將RNA脂質體複合物冷凍至高10次,挑戰粒子大小的安定效用(表8)。
結果:僅管精胺酸明顯地使RNA脂質體複合物不穩定,但其他低溫保護劑一般而言可在冷凍期間適用於安定RNA脂質體複合物(圖25和26)。甘油、甘露醇和蔗糖(1:1,ww)、脯胺酸和山梨醇可用作RNA脂質體複合物之低溫保護劑。除了精胺酸之外,所有另外檢測的安定劑顯示為適合的,其表示廣範圍的胺基酸、糖類和此等化合物之混合物適用於在冷凍期間安定RNA脂質體複合物。當相較於其後的化合物時,山梨醇的安定效用較低。在各濃度之NaCl下詳細評估所需的低溫保護劑量(表8),在單次冷凍步驟後發現NaCl濃度和所需的低溫保護劑濃度間的直接相關性(圖27和28)。儘管就0至60mM的NaCl於20%(wv)蔗糖或海藻糖二水合物之單一冷凍後,發現可接受的維持粒子大小,但就較低百分比的低溫保護劑,發現不充份的安定作用(例如就60mM NaCl為15%;就40mM NaCl為10%;就20mM NaCl為5%)。在研究的範圍內,發現蔗糖和海藻糖之間並無差異。當在表9.3.2中所示的NaCl和海藻糖組合之存在下,於1、2、3、5和10個冷凍步驟後分析RNA脂質體複合物,得到下列結果。僅管在50mM NaCl時,12.5%海藻糖係足以安定RNA脂質體複合物粒子性質,即使在10次冷凍之後(圖29),在70mM的NaCl時,需要12.5%供最小安定作用且需要22.5%供確實維持 粒子大小(圖30)。在90mM NaCl時,需要15.0%海藻糖供最小安定作用,但即使在27.5%的最高研究濃度時仍無法達到確實維持粒子大小(圖31)。
實例25:用於長期儲存的鹽和低溫保護劑之組合
就特定溫度之長期儲存,應使用表9中所列的NaCl和低溫保護劑之組合。
方法:就研究於-15至-30℃在特定的NaCl濃度下用於長期儲存之最小低溫保護劑含量,係將RNA脂質體複合物在NaCl和蔗糖或海藻糖之組合的存在下冷凍。將樣本於-30℃下冷凍及然後轉置於個別的溫度進行長期儲存(-15或-30℃)。在定義的儲存時間後,分析樣本及藉由使用PCS測量粒子大小分析膠體安定性之維持。
結果:儘管在至高70mM NaCl存在下的冷凍期間,可保留RNA脂質體複合物之粒子特性,但在這些實驗中可觀察到造成膠體安定性之不穩定性的另外效應。又就例如60mM NaCl和20%蔗糖之組合,冷凍後於-15℃的儲存溫度一段時間,這些調配物的粒子大小隨時間顯著增加,確認了可接受的粒子特質之安定性(圖32和33)。在-30℃儲存後此效應降低(圖34和35)。
在特定NaCl含量下RNA脂質體複合物之安定性係依照低溫保護劑的量而定。安定所需之低溫保護劑的量隨著儲存溶液內的鹽含量而增加。此效應係依用作低溫保護劑之糖類型而定。用於-15或-30℃冷凍狀態下長期儲存之RNA脂質體複合物組合物應含有表9中所列的低溫保護劑含量。
實例26:不同低溫保護劑之長期儲存
以10至40mM NaCl,於22%(wv)單或雙分子糖類的存在下,在9個月的時間內安定作用為可能的。這些調配物可於-15至-40℃冷凍並可在各溫度持續長期儲存。在12.6至16.8%(wv)葡聚糖的存在下,10至30mM NaCl為可行的。
方法:就研究用於-20℃長期儲存之代表性低溫保護劑如蔗糖、海藻糖、葡萄糖和包括葡聚糖的混合物之所需最小含量,係將RNA脂質體複合物以固定的低溫保護劑含量與各種NaCl濃度組合冷凍。就單體或二聚體分子之低溫保護劑如葡萄糖、蔗糖和海藻糖,係調整22%(wv)的濃度。將這些調配物冷凍及儲存於-15至-40℃,並於定義的儲存時間後使用PCS測量粒子大小評估長期安定性。
就含有聚合物葡聚醣之混合物的調配物,係調整表9.5.1中的組成物。將樣本冷凍並儲存於-20℃。於定義的儲存時間後,分析樣本及藉由測量粒子大小分析膠體安定的維持
結果:就所有研究的單體或二聚體分子低溫保護劑,發現不應超過最大NaCl濃度以確保RNA脂質體複合物在冷凍狀態的長期安定性。僅管60和80mM之NaCl造成脂質體複合物快速去安定化,當NaCl濃度40mM當於-20℃儲存時,膠體性質可維持至少9個月(表10和圖36至38)。
就蔗糖、海藻糖和葡萄糖,發現在安定效用上並無差異。就包括20mM NaCl之調配物,當樣本冷凍並儲存於-15至-40℃時,發現在安定效用上並無差異(圖39)。
當以較低的低溫保護劑含量(12.6至16.8%(wv))研究含有葡聚糖的調配物,相較於單或雙分子糖類,安定性的效用相當或更佳(圖40)。
實例27:冷凍乾燥 a)冷凍解凍
為了測定最佳的有效低溫/凍乾保護劑濃度,係進行冷凍解凍研究。將RNA脂質體複合物調配物於5mM HEPES、80mM NaCl、2.6mM EDTA添加10%、15%、20%、25%和30%海藻糖中冷凍解凍。在儲存於-20℃的前後測定粒子大小。在缺乏海藻糖之冷凍調配物中觀察粒子的聚集但並未測定其粒子大小。根據圖41,在較低的凍乾/低溫保護劑濃度時,含有低溫/凍乾保護劑之冷凍調配物顯示濃度依賴的低溫保護作用。在22%w/v海藻糖,僅觀察到最低的粒子大小增加,具有1.04之Sf/Si(Sf=最終大小,Si=最初的大小),當低於1.3仍被視為可接受的。在較低海藻糖濃度時,Sf/Si比率較高。從冷凍-解凍研究得到的Sf/Si比率,與從冷凍乾燥和重建後之相同調配物所得到的Sf/Si比率相關聯。
b)重建和粒子安定性
將以5mM HEPES、2.6mM EDTA、0mM、10mM、20mM、30mM、40mM、50mM、60mM、80mM NaCl和5%、10%、15%及22%海藻糖所製備的RNA脂質體複合物調配物冷凍乾燥。所有冷凍乾燥樣本展現良好的餅塊外觀。將樣本以0.9%NaCl溶液,以原體積重建。在以0.9%NaCl溶液或WFI重建後,所有的冷凍乾燥RNA脂質體複合物調配物即刻溶解。在以0.9%NaCl溶液或水重建後,測定以22%海藻糖所製備的冷凍乾燥RNA脂質體複合物調配物中粒子大的變化。
根據圖42,在冷凍乾燥和重建後,所有含有海藻糖之冷凍乾燥RNA脂質體複合物的粒子大小仍為穩定的。相較於以水重建的冷凍乾燥樣本,當以0.9%NaCl重建冷凍乾燥樣本時,觀察到RNA脂質體複合物的大小些微下降。觀察到NaCl與海藻糖比率和粒子安定性之間的相關性。以較低的海藻 糖濃度和較高的NaCl濃度所製備之調配物中,RNA脂質體複合物粒子的大小增加。
c)冷凍乾燥RNA脂質體複合物調配物之細胞培養實驗
進行以22%海藻糖、不同NaCl濃度所製備的冷凍乾燥螢光酶-編碼RNA脂質體複合物調配物之活體外轉染實驗。以0.9%NaCl溶液重建冷凍乾燥樣本。
根據圖43,以22%海藻糖和不同NaCl濃度所製備的冷凍乾燥RNA脂質體複合物調配物在樹突細胞顯示類似的luc-RNA轉染程度。發現存在RNA脂質體複合物調配物中的NaCl濃度和活體外RNA轉染之間無關聯性。相較於新鮮的RNA脂質體複合物對照組,冷凍乾燥樣本顯示類似或甚至更佳的luc-RNA轉染。
d)安定性研究
於4℃、25℃和40℃(1個月和6個月)進行含有10%海藻糖、22%海藻糖和0mM、20mM、40mM、60mM及80mM NaCl之冷凍乾燥RNA脂質體複合物調配物的安定性研究。以0.9%NaCl溶液以原來體積重建後,將樣本就粒子大小和RNA完整性進行定性(%全長RNA)。
根據圖44和45,不同RNA脂質體複合物的大小隨著時間並未顯著改變,與調配物或儲存溫度無關。有利地,較低量的低溫保護劑(例如10%)足以維持冷凍乾燥調配物之粒子安定性,然而就冷凍調配物的情況係需要較高的量(例如22%)。在4℃儲存6個月後冷凍乾燥樣本中RNA完整性(%全長RNA)係介於94%至100%之間,而於25℃儲存之RNA(lip)調配物係介於85%至94%之間。然而,鑑定出海藻糖與NaCl濃度比率或儲存時間並無關聯。

Claims (115)

  1. 一種製造微脂體膠體之方法,其係包括將脂質之乙醇溶液注射至水相中,產生微脂體膠體,其中至少一種脂質在脂質溶液中的濃度係相當於或高於該至少一種脂質於乙醇中的平衡溶解度。
  2. 如請求項1之方法,其中該脂質溶液為二或多種不同脂質混合物的溶液。
  3. 如請求項1或2之方法,其中該脂質溶液中的一脂質濃度係相當於或高於室溫下該脂質於乙醇中的平衡溶解度。
  4. 如請求項1至3中任一項之方法,其中該脂質溶液中的總脂質濃度係從約180mM至約600mM,從約300mM至約600mM,或約330mM。
  5. 如請求項1至4中任一項之方法,其中該脂質溶液係包括至少一種陽離子脂質及至少一種另外的脂質。
  6. 如請求項5之方法,其中該脂質溶液中一另外的脂質濃度係相當於或高於該另外脂質於乙醇中的平衡溶解度。
  7. 如請求項5或6之方法,其中該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
  8. 如請求項5至7中任一項之方法,其中該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
  9. 如請求項5至8中任一項之方法,其中該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
  10. 如請求項5至9中任一項之方法,其中該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比率係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
  11. 如請求項1至10中任一項之方法,其中該脂質溶液係包括莫耳比從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE。
  12. 如請求項8至11中任一項之方法,其中該脂質溶液中的DOPE濃度為至少約60mM,或至少約90mM。
  13. 如請求項1至12中任一項之方法,其中該脂質溶液係以從約50rpm至約150rpm之水相攪拌速度注射至水相中。
  14. 如請求項1至13中任一項之方法,其中該水相為水。
  15. 如請求項1至14中任一項之方法,其中該方法進一步係包括攪拌微脂體膠質。
  16. 如請求項1至15中任一項之方法,其中係攪拌該微脂體膠體約15min至約60min,或約30min。
  17. 一種製造微脂體膠體之方法,其係包括將包含莫耳比為約2:1之DOTMA和DOPE的乙醇中脂質溶液注射到以約150rpm之攪拌速度攪拌的水中,產生微質體膠體,其中該脂質溶液中的DOTMA和DOPE濃度為約330mM。
  18. 一種微脂體膠體,其可藉由如請求項1至17任一項中之方法製得。
  19. 如請求項18之微脂體膠體,其中該微脂體係具有至少約250nm之平均直徑。
  20. 如請求項18或19之微脂體膠體,其中該微脂體係具有範圍從約250nm至約800nm之平均直徑。
  21. 如請求項18至20中任一項之微脂體膠體,其中該微脂體為陽離子微脂體。
  22. 如請求項18至21中任一項之微脂體膠體,其中該微脂體係包括至少一種陽離子脂質和至少一種另外的脂質。
  23. 如請求項22之微脂體膠體,其中該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
  24. 如請求項22或23之微脂體膠體,其中該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
  25. 如請求項22至24中任一項之微脂體膠體,其中該至少一種陽離子脂質 係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
  26. 如請求項22至25中任一項之微脂體膠體,其中該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
  27. 如請求項18至26中任一項之微脂體膠體,其中該微脂體係包括莫耳比從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE。
  28. 一種製備RNA脂質體複合物粒子之方法,其係包括將如請求項18至27中任一項之脂質體膠體加到包括RNA的溶液中。
  29. 一種用於連續流製造RNA脂質體複合物粒子之方法,其係包括將包括RNA之溶液及包括陽離子微脂體之溶液在控制的RNA和陽離子微脂體之混合條件下混合。
  30. 如請求項29之方法,其中該包括陽離子微脂體之溶液為如請求項18至27中任一項之微脂體膠體。
  31. 如請求項29或30之方法,其中該包括RNA的溶液和該包括陽離子微脂體的溶液為水溶液。
  32. 如請求項29至31中任一項之方法,其中係使用得以混合包括RNA的溶液和包括陽離子微脂體的溶液之流率。
  33. 如請求項29至32中任一項之方法,其中該液流的特徵為雷諾數(Reynolds number)大於300,或從約500至約2100。
  34. 如請求項29至33中任一項之方法,其中該控制混合條件係包括控制包含RNA的溶液和包含陽離子微脂體的溶液之混合比率。
  35. 如請求項29至34中任一項之方法,其中該控制混合條件係包括控制所混合之包含RNA的溶液和包含陽離子微脂體的溶液之相對體積。
  36. 如請求項29至35中任一項之方法,其中該RNA和陽離子微脂體之混合比率係藉由使用相同混合體積(v/v)之包括RNA的溶液和包括陽離子微脂體的溶液,以及調整個別溶液中RNA和陽離子微脂體的濃度來控 制。
  37. 如請求項29至36中任一項之方法,其中該控制混合條件係經選擇用以維持RNA脂質體複合物粒子之特性同時避免堵塞。
  38. 如請求項29至37中任一項之方法,其中該方法係包括使用Y-型或T-型混合元件。
  39. 如請求項29至38中任一項之方法,其中該Y-型或T-型混合元件係具有從約1.2mm至約50mm的直徑。
  40. 如請求項29至39中任一項之方法,其中該方法係包括使用一注射器泵浦,其中二個注射器,一個包括陽離子微脂體的溶液及一個包括RNA的溶液係平行***相同的泵浦中。
  41. 如請求項29至40中任一項之方法,其中該方法係包括使用加壓容器、膜泵浦、齒輪泵浦、磁浮泵浦或蠕動泵與流率感測器組合,視需要與反饋迴路組合供線上控制和即時調整流率。
  42. 如請求項29至41中任一項之方法,其中包括RNA的溶液和包括微脂體的溶液之混合物係包括濃度從約45mM至約300mM之氯化鈉,或包括相當於濃度從約45mM至約300mM之氯化鈉的離子強度。
  43. 如請求項29至42中任一項之方法,其中包括RNA溶液和包括微脂體溶液之混合物係具有至少約50mM之離子強度。
  44. 如請求項28至43中任一項之方法,其中在X-光散射模式中,RNA脂質體複合物其特徵為在約1nm-1有一單布拉格峰(single Bragg peak),其中峰寬係小於0.2nm-1
  45. 如請求項28至44中任一項之方法,其中該RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均直徑。
  46. 一種製備包括RNA脂質體複合物粒子之冷凍組成物的方法,其係包括(i)提供一包括RNA脂質體複合物粒子和安定劑之水性組成物,及(ii)冷凍該組成物。
  47. 如請求項46之方法,其中冷凍係在從約-15℃至約-40℃,或約-30℃之溫度。
  48. 如請求項47之方法,其中該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
  49. 如請求項46至48中任一項之方法,其中提供包括RNA脂質體複合物粒子和安定劑之水性組成物係包括提供包括RNA脂質體複合物粒子之水性組成物並將安定劑加至包含RNA脂質體複合物粒子之水性組成物中。
  50. 如請求項46至49中任一項之方法,其中將安定劑加入包括RNA脂質體複合物粒子之水性組成物中降低了包括RNA脂質體複合物粒子之水性組成物的離子強度。
  51. 如請求項46至50中任一項之方法,其中包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係高於生理滲透壓所需的值。
  52. 如請求項46至51中任一項之方法,其中包括RNA脂質體複合物粒子和安定劑之水性組成物中的安定劑濃度係足以維持RNA脂質體複合物粒子的質性,且特言之,在組成物於約-15℃至約-40℃之溫度儲存至少1個月,至少6個月,至少12個月,至少24個月或至少36個月後,避免RNA活性之實質損失。
  53. 如請求項46至52中任一項之方法,其中該包括RNA脂質體複合物和安定劑之水性組成物的pH係低於RNA儲存的通常最佳pH。
  54. 如請求項46至53中任一項之方法,其中該包括RNA脂質體複合物和安定劑之水性組成物係包含濃度從約10mM至約50mM的氯化鈉,或包括相當於濃度從約10mM至約50mM之氯化鈉的離子強度。
  55. 如請求項46至54中任一項之方法,其中該包括RNA脂質體複合物和安定劑之水性組成物係具有相當於濃度約20mM之氯化鈉的離子強度。
  56. 如請求項46至55中任一項之方法,其中該RNA脂質體複合物粒子可藉由如請求項28至44中任一項之方法獲得。
  57. 一種包括RNA脂質體複合物粒子之組成物,其可藉由如請求項28至45中任一項之方法獲得。
  58. 如請求項57之組成物,其中該RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
  59. 如請求項57或58之組成物,其中該RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
  60. 一種組成物,其係包括:包含下列之RNA脂質體複合物粒子:RNA,其係編碼包括至少一表位的胜肽或蛋白,及至少一種陽離子脂質和至少一種另外的脂質,其中該RNA脂質體複合物粒子中之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,及其中該RNA脂質體複合物其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1。。
  61. 如請求項57至60中任一項之組成物,其中該組成物進一步係包括濃度從約10mM至約300mM,從約45mM至約300mM,從約10mM至約50mM,或從約80mM至約150mM之氯化鈉。
  62. 如請求項57至61中任一項之組成物,其中該組成物進一步係包括緩衝劑。
  63. 如請求項57至62中任一項之組成物,其中該組成物進一步係包括螯合劑。
  64. 一種包括RNA脂質體複合物粒子之組成物,其可藉由如請求項46至56中任一項之方法獲得。
  65. 如請求項64之組成物,其中該RNA脂質體複合物粒子係包括至少一種陽離子脂質和至少一種另外的脂質。
  66. 如請求項64或65之組成物,其中該RNA係編碼包括至少一個表位之胜肽或蛋白,其中RNA脂質體複合物粒子之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0。
  67. 如請求項64至66中任一項之組成物,其中該組成物進一步係包括濃度從約10mM至約50mM之氯化鈉。
  68. 一種組成物,其係包括:包含下列之RNA脂質體複合物粒子: RNA,其係編碼包括至少一表位之胜肽或蛋白,至少一種陽離子脂質和至少一種另外的脂質,其中該RNA脂質體複合物粒子中之正電荷與負電荷的比率係從約1:2至約1.9:2,或約1.3:2.0,濃度從約0mM至約40mM的氯化鈉,以及安定劑。
  69. 如請求項64至68中任一項之組成物,其中該組成物進一步係包括緩衝劑。
  70. 如請求項64至69中任一項之組成物,其中該組成物中RNA的量係從約0.01mg/mL至約1mg/mL,約0.05mg/mL至約0.5mg/mL,或約0.05mg/mL。
  71. 如請求項67至70中任一項之組成物,其中該氯化鈉的濃度係從約20mM至約30mM。
  72. 如請求項67至71中任一項之組成物,其中該氯化鈉的濃度為約20mM。
  73. 如請求項67至71中任一項之組成物,其中該氯化鈉的濃度為約30mM。
  74. 如請求項64至73中任一項之組成物,其中該組成物中的安定劑濃度係高於生理滲透壓所需的值。
  75. 如請求項64至74中任一項之組成物,其中該組成物中安定劑的濃度係從約5至約35重量體積百分比(%w/v),或從約12.5至約25重量體積百分比(%w/v)。
  76. 如請求項64至75中任一項之組成物,其中該安定劑為選自單糖、雙糖、三糖、糖醇、寡糖或其對應糖醇之碳水化合物,以及直鏈多醇。
  77. 如請求項64至76中任一項之組成物,其中該安定劑為濃度從約5至約25重量體積百分比(%w/v)之蔗糖。
  78. 如請求項77之組成物,其中該蔗糖濃度係從約15%(w/v)至約25%(w/v)。
  79. 如請求項77之組成物,其中該蔗糖濃度係從約20%(w/v)至約25%(w/v)。
  80. 如請求項77之組成物,其中該蔗糖濃度為約22%(w/v)。
  81. 如請求項77之組成物,其中該蔗糖濃度為約20%(w/v)。
  82. 如請求項64至81中任一項之組成物,其中該組成物係具有低於通常RNA儲存的最佳pH。
  83. 如請求項64至82中任一項之組成物,其中該組成物係具有從約5.7至約6.7,或約6.2之pH。
  84. 如請求項68至83中任一項之組成物,其中該緩衝劑為2-[4-(2-羥乙基)哌-1-基]乙磺酸(HEPES)。
  85. 如請求項84之組成物,其中HEPES的濃度係從約2.5mM至約10mM,或約7.5mM。
  86. 如請求項64至85中任一項之組成物,其中該組成物進一步係包括螯合劑。
  87. 一種組成物,其係包括:包含下列之RNA脂質體複合物粒子:RNA,其係編碼包括至少一表位之胜肽或蛋白,濃度為約0.05mg/mL,及莫耳比約2:1之DOTMA和DOPE其中RNA脂質體複合物粒子中之正電荷與負電荷的比率為約1.3:2.0,濃度約20mM的氯化鈉,濃度約22%(w/v)的蔗糖,濃度約7.5mM,具有約pH約6.2之HEPES,及濃度約2.5mM之EDTA。
  88. 如請求項64至87中任一項之組成物,其中該組成物為液態或冷凍狀態。
  89. 如請求項88之冷凍組成物,其中該組成物在從約-15℃至約-40℃的溫度下歷經至少1個月為安定的。
  90. 如請求項88之冷凍組成物,其中該組成物在約-15℃的溫度下歷經至少1個月為安定的。
  91. 如請求項88之冷凍組成物,其中該組成物在約-15℃的溫度下歷經至少2個月為安定的。
  92. 如請求項88之冷凍組成物,其中該組成物在約-20℃的溫度下歷經至少1個月為安定的。
  93. 如請求項88之冷凍組成物,其中該組成物在約-20℃的溫度下歷經至少2個月為安定的。
  94. 如請求項88之冷凍組成物,其中該組成物在約-30℃的溫度下歷經至少1個月為安定的。
  95. 如請求項88之冷凍組成物,其中該組成物在約-30℃的溫度下歷經至少2個月為安定的。
  96. 一種包括RNA脂質體複合物粒子之水性組成物,其可藉由將如請求項88至95中任一項之冷凍組成物解凍及視需要藉由加入水性液體調整滲透壓及離子強度來獲得。
  97. 如請求項96之組成物,其中該組成物的滲透壓係從約200mOsmol至約450mOsmol。
  98. 如請求項96或97之組成物,其中該組成物係包括濃度從約80mM至約150mM的氯化鈉。
  99. 如請求項64至98中任一項之組成物,其中該RNA脂質體複合物可藉由如請求項28至45中任一項之方法獲得。
  100. 如請求項64至99中任一項之組成物,其中該RNA脂質體複合物其特徵為在約1nm-1有一單布拉格峰,其中峰寬係小於0.2nm-1
  101. 如請求項57至100中任一項之組成物,其中該RNA脂質體複合物粒子係具有範圍從約200至約800nm,從約250至約700nm,從約400至約600nm,從約300nm至約500nm,或從約350nm至約400nm之平均直徑。
  102. 如請求項58至63,65至86,及88至101中任一項之組成物,其中該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽-丙烷(DOTMA)及/或1,2-二油醯基-3-三甲基銨鹽-丙烷(DOTAP)。
  103. 如請求項58至63,65至86,及88至102中任一項之組成物,其中該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)、膽固醇(Chol)及/或1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷膽鹼(DOPC)。
  104. 如請求項58至63,65至86,及88至103中任一項之組成物,其中該至少一種陽離子脂質係包括1,2-二-O-十八烯基-3-三甲基銨鹽丙烷(DOTMA)而該至少一種另外的脂質係包括1,2-二-(9Z-十八烯醯基)-sn-甘油-3-磷醯乙醇胺(DOPE)。
  105. 如請求項58至63,65至86,及88至104中任一項之組成物,其中該至少一種陽離子脂質與該至少一種另外的脂質之莫耳比係從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1。
  106. 如請求項58至63,65至86,及88至105中任一項之組成物,其中該RNA微脂體係包括莫耳比從約10:0至約1:9,從約4:1至約1:2,從約3:1至約1:1,或約2:1之DOTMA和DOPE,且其中該DOTMA的正電與RNA負電之電荷比係從約1:2至1.9:2。
  107. 如請求項63、86及88至106中任一項之組成物,其中該螯合劑為乙二胺四乙酸(EDTA)。
  108. 如請求項107之組成物,其中該EDTA濃度係從約0.25mM至約5mM,或2.5mM。
  109. 如請求項57至108中任一項之組成物,進一步係包括佐劑。
  110. 如請求項57至109中任一項之組成物,其係經調配供全身性給藥。
  111. 如請求項110之組成物,其中該全身性給藥係藉由靜脈內投予。
  112. 如請求項57至111中任一項之組成物,係作為治療之用途。
  113. 一種製備包括RNA脂質體複合物粒子之水性組成物的方法,其係包括將如請求項88至112中任一項之冷凍組成物解凍及視需要藉由加入水性液體調整滲透壓及離子強度。
  114. 如請求項113之方法,其中係加入水性液體得到從約200mOsmol至約450mOsmol之組成物滲透壓。
  115. 如請求項113或114之方法,其中係加入水性液體得到從約80mM至約150mM之氯化鈉濃度。
TW107136678A 2017-10-20 2018-10-18 適用於治療之微脂體rna配製物的製備及儲存 TW201927288A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762574965P 2017-10-20 2017-10-20
US62/574,965 2017-10-20

Publications (1)

Publication Number Publication Date
TW201927288A true TW201927288A (zh) 2019-07-16

Family

ID=63965663

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110132980A TW202146031A (zh) 2017-10-20 2018-10-18 適用於治療之微脂體rna配製物的製備及儲存
TW107136678A TW201927288A (zh) 2017-10-20 2018-10-18 適用於治療之微脂體rna配製物的製備及儲存

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110132980A TW202146031A (zh) 2017-10-20 2018-10-18 適用於治療之微脂體rna配製物的製備及儲存

Country Status (16)

Country Link
US (2) US11395799B2 (zh)
EP (2) EP3858333A1 (zh)
JP (2) JP2021500324A (zh)
KR (1) KR20200100619A (zh)
CN (3) CN111246845A (zh)
AR (2) AR113782A1 (zh)
AU (2) AU2018350846B2 (zh)
BR (1) BR112020007470A2 (zh)
CA (1) CA3078292A1 (zh)
IL (1) IL273852A (zh)
MX (1) MX2020003413A (zh)
RU (1) RU2022103533A (zh)
SG (1) SG11202002579SA (zh)
TW (2) TW202146031A (zh)
WO (1) WO2019077053A1 (zh)
ZA (1) ZA202001675B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472339B (zh) 2008-01-30 2015-02-11 Genentech Inc 包含結合至her2結構域ii之抗體及其酸性變異體的組合物
BRPI0812682A2 (pt) 2008-06-16 2010-06-22 Genentech Inc tratamento de cáncer de mama metastático
CN116531511A (zh) 2017-03-02 2023-08-04 豪夫迈·罗氏有限公司 Her2阳性乳腺癌的辅助治疗
AU2018350846B2 (en) 2017-10-20 2022-12-08 BioNTech SE Preparation and storage of liposomal RNA formulations suitable for therapy
CN111971066A (zh) * 2018-01-18 2020-11-20 伊泽阿恩埃免疫疗法股份有限公司 脂质纳米颗粒
WO2020200472A1 (en) * 2019-04-05 2020-10-08 Biontech Rna Pharmaceuticals Gmbh Preparation and storage of liposomal rna formulations suitable for therapy
EP4210864A2 (en) 2020-09-08 2023-07-19 Genentech, Inc. Systems and methods for producing pharmaceutical compositions using peristaltic pumps and dampeners
TW202228727A (zh) * 2020-10-01 2022-08-01 德商拜恩迪克公司 適用於治療之微脂體rna調配物之製備及儲存
CA3209153A1 (en) * 2021-02-23 2022-09-01 Alexander Koglin Lipid nanoparticle (lnp) encapsulation of mrna products
WO2022235853A1 (en) 2021-05-04 2022-11-10 BioNTech SE Immunogen selection
KR20240042414A (ko) 2021-07-29 2024-04-02 비온테크 에스이 흑색종의 치료용 조성물 및 방법
WO2023057596A1 (en) 2021-10-06 2023-04-13 Leon-Nanodrugs Gmbh Method for preparing lipid nanoparticles
CN114601747A (zh) * 2022-03-07 2022-06-10 广州市万千粉丝化妆品有限公司 一种催生蛋白及rna具有延长细胞端粒和增殖的核蛋白端粒酶在化妆品中的应用
WO2024011033A1 (en) 2022-07-07 2024-01-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Immunogens and methods for inducing an immune response
WO2024056856A1 (en) 2022-09-15 2024-03-21 BioNTech SE Systems and compositions comprising trans-amplifying rna vectors with mirna

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1196145A1 (en) * 1999-07-15 2002-04-17 Inex Pharmaceuticals Corp. Methods and apparatus for preparation of lipid vesicles
DE10109897A1 (de) * 2001-02-21 2002-11-07 Novosom Ag Fakultativ kationische Liposomen und Verwendung dieser
JP4550421B2 (ja) * 2001-12-12 2010-09-22 メイン・ファ−マ・インタ−ナショナル・プロプライエタリ−・リミテッド ウイルスの保存のための組成物
US7008403B1 (en) 2002-07-19 2006-03-07 Cognitive Ventures Corporation Infusion pump and method for use
WO2005000271A1 (en) * 2003-06-04 2005-01-06 Georgetown University Method for improving stability and shelf-life of liposome complexes
EP1512393A1 (de) * 2003-09-08 2005-03-09 BOEHRINGER INGELHEIM PHARMA GMBH &amp; CO. KG Verfahren zur Herstellung von homogenen Liposomen und Lipoplexen
US20110165223A1 (en) * 2008-01-02 2011-07-07 The Johns Hopkins University Antitumor Immunization by Liposomal Delivery of Vaccine to the Spleen
EA201170375A1 (ru) 2008-08-25 2012-03-30 Эмплиммьюн, Инк. Антагонисты pd-1 и способы их применения
JP2013512251A (ja) 2009-11-24 2013-04-11 アンプリミューン、インコーポレーテッド Pd−l1/pd−l2の同時阻害
WO2011127255A1 (en) * 2010-04-08 2011-10-13 Merck Sharp & Dohme Corp. Preparation of lipid nanoparticles
WO2012112730A2 (en) * 2011-02-15 2012-08-23 Merrimack Pharmaceuticals, Inc. Compositions and methods for delivering nucleic acid to a cell
CN102144973A (zh) * 2011-03-31 2011-08-10 中国药科大学 一种优化的siRNA阳离子脂质体的处方组成
CN102727436A (zh) * 2011-04-15 2012-10-17 百奥迈科生物技术有限公司 核酸脂质体药物制剂
AU2012330819B2 (en) * 2011-11-04 2017-08-31 Nitto Denko Corporation Single use system for sterilely producing lipid-nucleic acid particles
PL3427723T3 (pl) * 2012-03-26 2021-01-11 Biontech Rna Pharmaceuticals Gmbh Preparat rna do immunoterapii
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
CN103194489B (zh) 2013-03-26 2015-09-30 中国科学院过程工程研究所 新型阳离子脂质体核酸类药物制剂,及其制备方法和应用
AU2014310930A1 (en) * 2013-08-21 2016-01-21 Curevac Ag Composition and vaccine for treating prostate cancer
WO2015043613A1 (en) * 2013-09-26 2015-04-02 Biontech Ag Particles comprising a shell with rna
WO2016045732A1 (en) * 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
WO2016138175A1 (en) * 2015-02-24 2016-09-01 The University Of British Columbia Continuous flow microfluidic system
CN107427791B (zh) * 2015-03-19 2021-05-14 康涅狄格大学 用于连续制造脂质体药物制剂的***和方法
WO2016155809A1 (en) * 2015-03-31 2016-10-06 Biontech Rna Pharmaceuticals Gmbh Lipid particle formulations for delivery of rna and water-soluble therapeutically effective compounds to a target cell
AU2018350846B2 (en) 2017-10-20 2022-12-08 BioNTech SE Preparation and storage of liposomal RNA formulations suitable for therapy

Also Published As

Publication number Publication date
CN114392233A (zh) 2022-04-26
CA3078292A1 (en) 2019-04-25
AU2023201185A1 (en) 2023-04-06
RU2022103533A (ru) 2022-03-10
US20210161818A1 (en) 2021-06-03
JP2021500324A (ja) 2021-01-07
WO2019077053A1 (en) 2019-04-25
RU2020113577A (ru) 2021-11-22
CN114344486A (zh) 2022-04-15
AR127361A2 (es) 2024-01-17
KR20200100619A (ko) 2020-08-26
ZA202001675B (en) 2021-07-28
AU2018350846A1 (en) 2020-04-23
EP3858333A1 (en) 2021-08-04
AU2018350846B2 (en) 2022-12-08
JP2023052184A (ja) 2023-04-11
MX2020003413A (es) 2020-07-20
US20200246267A1 (en) 2020-08-06
US11395799B2 (en) 2022-07-26
RU2020113577A3 (zh) 2022-02-16
EP3697384A1 (en) 2020-08-26
TW202146031A (zh) 2021-12-16
IL273852A (en) 2020-05-31
BR112020007470A2 (pt) 2020-10-27
AR113782A1 (es) 2020-06-10
SG11202002579SA (en) 2020-05-28
CN111246845A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
US20210161818A1 (en) Preparation and storage of liposomal rna formulations suitable for therapy
JP7096282B2 (ja) 免疫療法のためのrna製剤
US20220143069A1 (en) Preparation and storage of liposomal rna formulations suitable for therapy
US11224665B2 (en) Mitochondrial antiviral signaling (MAVS) protein compositions and methods of using the same
KR20210138586A (ko) 전립선암 치료용 rna
US20230145774A1 (en) Treatment involving non-immunogenic rna for antigen vaccination
RU2784928C2 (ru) Изготовление и хранение липосомальных РНК-составов, подходящих для терапии
RU2807543C2 (ru) Получение и хранение липосомных препаратов рнк, пригодных для терапии
KR20230079064A (ko) 요법에 적합한 리포솜 rna 제형의 제조 및 저장
WO2023052531A1 (en) Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists