TW201917492A - 檢測工具、微影設備、微影系統、檢測方法及器件製造方法 - Google Patents

檢測工具、微影設備、微影系統、檢測方法及器件製造方法 Download PDF

Info

Publication number
TW201917492A
TW201917492A TW107124091A TW107124091A TW201917492A TW 201917492 A TW201917492 A TW 201917492A TW 107124091 A TW107124091 A TW 107124091A TW 107124091 A TW107124091 A TW 107124091A TW 201917492 A TW201917492 A TW 201917492A
Authority
TW
Taiwan
Prior art keywords
electron beam
interest
substrate
control unit
area
Prior art date
Application number
TW107124091A
Other languages
English (en)
Other versions
TWI685725B (zh
Inventor
李察 昆塔尼哈
厄文 保羅 史莫克曼
都古 阿克布魯特
尼蒂希 庫馬
賽巴斯汀亞努斯 安德里亞努斯 高爾登
爾王 達尼 塞帝札
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17181208.4A external-priority patent/EP3428726A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201917492A publication Critical patent/TW201917492A/zh
Application granted granted Critical
Publication of TWI685725B publication Critical patent/TWI685725B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明描述一種用於檢測一半導體基板之檢測工具,該檢測工具包含: - 一基板台,其經組態以固持該基板; - 一電子束源,其經組態以將一電子束投影至該基板之一所關注區域上,該所關注區域包含一埋入式結構; - 一陰極發光偵測器,其經組態以偵測自該埋入式結構發射之陰極發光的光; - 一控制單元,其經組態以: - 控制該電子束源以將電子束投影至該所關注區域上; - 接收表示該經偵測到陰極發光的光之一信號; - 基於該信號判定該埋入式結構之一特性。

Description

檢測工具、微影設備、微影系統、檢測方法及器件製造方法
本發明係關於一種檢測工具、一種微影設備、一種微影系統、一種檢測方法及一種用於製造器件之方法。
微影設備為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影設備可用於例如積體電路(IC)之製造中。在此狀況下,圖案化器件(其被替代地被稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上之電路圖案。此圖案可轉印至基板(例如矽晶圓)上之目標部分(例如包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。習知的微影設備包括:所謂的步進器,其中藉由一次性將整個圖案曝光至目標部分上來輻照每一目標部分;及所謂的掃描器,其中藉由在給定方向(「掃描」方向)上經由輻射光束而掃描圖案同時平行或反平行於此方向而同步地掃描基板來輻照每一目標部分。亦有可能藉由將圖案壓印至基板上而將圖案自圖案化器件轉印至基板。
通常施加在微影設備中之輻射光束可例如為DUV輻射光束(例如具有為248奈米或193奈米之波長)或EUV輻射光束(例如具有為11奈米或13.5奈米之波長)。
積體電路之製造可通常需要複數個層之堆疊,其中需要準確地對準層。在無此對準之情況下,層之間的所需連接可能有缺陷,從而導致該積體電路發生故障。
通常,積體電路之底部層將含有最小結構,諸如電晶體或其組件。後續層之結構通常較大且實現底部層中之結構與外部世界之連接。鑒於此,兩個層之對準在積體電路之底部部分中將最具挑戰性。
為了實現此對準,使用通常由經提供在基板上之複數個對準標記製成之層,對準標記之位置指示經圖案化結構之位置。歸因於在兩個連續層之曝光程序之間執行的各種程序步驟,判定對準標記之實際位置可能為繁瑣的。詳言之,諸如CMP之處理步驟可引起對準標記之變形。因此,對準標記之實際位置之判定可能有缺陷,從而導致經圖案化結構之位置之不正確的或不準確的評估。
在對對準標記之位置進行不正確的評估之狀況下,可在曝光程序期間造成疊對誤差,下一經圖案化層藉由該曝光程序產生。此錯誤可影響經製造之半導體器件之功能性。
在製造程序初期評估是否將滿足半導體器件之所要功能性將為有益的。
需要使得能夠較早評估半導體器件是否將具有所要功能性。
根據本發明之一實施例,提供一種用於檢測一半導體基板之檢測工具,該檢測工具包含 - 一基板台,其經組態以固持該基板; - 一電子束源,其經組態以將一電子束投影至該基板之一所關注區域上,該所關注區域包含一埋入式結構; - 一陰極發光偵測器,其經組態以偵測自該埋入式結構發射之陰極發光的光; - 一控制單元,其經組態以: - 接收表示該經偵測到陰極發光的光之一信號; - 基於該信號判定該埋入式結構之一特性。
根據本發明之一實施例,提供一種微影設備,其包含: - 一照明系統,其經組態以調節一輻射光束; - 一支撐件,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束; - 一投影系統,其經組態以將該經圖案化輻射光束投影至一基板之一目標部分上; 其中該設備進一步包含一根據本發明之檢測工具及一載物台設備,該載物台設備經組態以定位該基板台以便將該經圖案化輻射光束賦予該基板。
根據本發明之一實施例,提供一種微影系統,其包含: - 一微影設備,其包含: - 一照明系統,其經組態以調節一輻射光束; - 一支撐件,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束; - 一投影系統,其經組態以將該經圖案化輻射光束投影至一基板之一目標部分上; - 一載物台設備,其經組態以定位該基板台以便將該經圖案化輻射光束賦予該基板; - 一根據本發明之檢測工具。
根據本發明之一實施例,提供一種檢測方法,該方法包含以下步驟: - 提供具有一所關注區域之一基板,該所關注區域包含一埋入式結構; - 使用一電子束掃描該所關注區域; - 捕捉自該所關注區域發射之CL-光; - 判定該埋入式結構之一特性。
根據本發明之一實施例,提供一種器件製造方法,其包含將一經圖案化輻射光束投影至一基板上,其中將該經圖案化輻射光束投影至該基板上之步驟係在根據本發明之檢測方法之前。
圖1示意性地描繪根據本發明之一個實施例之微影設備。該設備包括:照明系統(照明器) IL,其經組態以調節輻射光束B (例如UV輻射或任何其他合適輻射);光罩支撐結構(例如光罩台) MT,其經建構以支撐圖案化器件(例如光罩) MA且連接至經組態以根據某些參數準確地定位圖案化器件之第一***件PM。該設備亦包括基板台(例如晶圓台) WT或「基板支撐件」,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數準確地定位基板之第二***件PW。該設備進一步包括投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包括一或多個晶粒)上。
照明系統可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
光罩支撐結構支撐(亦即,承載)圖案化器件。光罩支撐結構以取決於圖案化器件之定向、微影設備之設計及其他條件(諸如圖案化器件是否被固持於真空環境中)的方式來固持圖案化器件。光罩支撐結構可使用機械、真空、靜電或其他夾持技術以固持圖案化器件。光罩支撐結構可為(例如)框架或台,其可根據需要而固定或可移動。光罩支撐結構可確保圖案化器件(例如)相對於投影系統處於所要位置。可認為本文中對術語「倍縮光罩」或「光罩」之任何使用均與更一般術語「圖案化器件」同義。
本文中所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂的輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如,積體電路)中之特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合式光罩類型。可程式化鏡面陣列之實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
本文中所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用均與更一般之術語「投影系統」同義。
如此處所描繪,設備屬於透射類型(例如,使用透射性光罩)。替代地,該設備可屬於反射類型(例如,使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。
微影設備可屬於具有兩個(雙載物台)或多於兩個基板台或「基板支撐件」(及/或兩個或多於兩個光罩台或「光罩支撐件」)之類型。在此等「多載物台」機器中,可並行地使用額外台或支撐件,或可對一或多個台或支撐件進行預備步驟,同時將一或多個其他台或支撐件用於曝光。
微影設備亦可屬於如下類型:其中基板之至少一部分可由具有相對高折射率之液體例如水覆蓋以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影設備中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術可用以增加投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參考圖1,照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源及微影設備可為分離的實體。在此等狀況下,不認為源形成微影設備之部分,且輻射光束係憑藉包括(例如)合適導向鏡面及/或擴束器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影設備之整體部分。源SO及照明器IL連同光束遞送系統BD (在需要時)可被稱作輻射系統。
照明器IL可包括經組態以調整輻射光束之角強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包括各種其他組件,諸如積光器IN及聚光器CO。照明器可用於調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於經固持在光罩支撐結構(例如光罩台MT)上之圖案化器件(例如光罩MA)上,且藉由圖案化器件圖案化。在已橫穿光罩MA的情況下,輻射光束B傳遞通過投影系統PS,該投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二***件PW及位置感測器IF (例如干涉量測器件、線性編碼器或電容式感測器),基板台WT可準確地移動,例如以便將不同目標部分C定位在輻射光束B之路徑中。類似地,第一***件PM及另一位置感測器(其未在圖1中明確描繪)可用於例如在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑準確地定位光罩MA。一般而言,可憑藉形成第一***件PM之部分之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現光罩台MT之移動。類似地,可使用形成第二***件PW之部分之長衝程模組及短衝程模組來實現基板台WT或「基板支撐件」之移動。在步進器(相對於掃描器)之狀況下,光罩台MT可僅連接至短衝程致動器,或可固定。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準光罩MA及基板W。儘管所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在多於一個晶粒提供於光罩MA上之情形中,光罩對準標記可位於該等晶粒之間。
所描繪設備可用於以下模式中之至少一者中: 1. 在步進模式中,當將賦予至輻射光束之整個圖案一次性投影至目標部分C上時,光罩台MT或「光罩支撐件」及基板台WT或「基板支撐件」保持基本上靜止(亦即單次靜態曝光)。接著,使基板台WT或「基板支撐件」在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像的目標部分C之大小。 2. 在掃描模式中,當將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描光罩台MT或「光罩支撐件」及基板台WT或「基板支撐件」(亦即單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT或「基板支撐件」相對於光罩台MT或「光罩支撐件」之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。 3. 在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使光罩台MT或「光罩支撐件」保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT或「基板支撐件」。在此模式中,通常,使用脈衝式輻射源且在基板台WT或「基板支撐件」之每一移動之後或在掃描期間之連續輻射脈衝之間視需要更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
亦可使用對上文所描述之使用模式之組合及/或變化或完全不同之使用模式。
在如所展示之實施例中,微影設備進一步包含根據本發明之檢測工具IT。此檢測工具IT可例如使得能夠判定結構之特性,尤其是存在於由微影設備處理之基板W的所關注區域上或中之埋入式結構。在實施例中,如將在下文更詳細地論述,檢測工具可包含用於檢測基板之電子束源。
在實施例中,第二***件PW可經組態以將基板W定位在檢測工具IT之操作範圍中。在此實施例中,檢測工具IT可例如經組態以判定經提及結構之特性,例如電氣特性、材料特性及/或幾何特性。在實施例中,此資訊可隨後提供至微影設備之控制單元,且在曝光程序期間使用,例如藉由基於該資訊控制照明系統、投影系統或***件中之一者中之一或多者。
在如所展示之實施例中,微影設備可經組態以施加用於輻射光束之DUV輻射。在此狀況下,圖案化器件MA可為透射圖案化器件且投影系統PS可包含一或多個透鏡。
替代地,根據本發明之微影設備可經組態以施加用於輻射光束之EUV輻射。在此狀況下,圖案化器件MA可為反射性圖案化器件且投影系統PS可包含一或多個鏡面。在此實施例中,該設備可包含用於容納照明系統IL及/或投影系統PS之一或多個真空腔室。
根據本發明之一態樣,提供一種經組態以檢測諸如基板之物件之檢測工具。圖2示意性地展示此檢測工具100之實施例。根據本發明,檢測工具100包含電子束源110,另外亦被稱作電子束(e-beam)源110。 一般而言,此電子束源110係已知的,且可應用在本發明中以將電子束120投影至例如基板之物件130之區域上。在如所展示之實施例中,物件130藉助於夾持機構134 (例如真空夾具或靜電夾具)安裝至物件台132。電子束所投影至之物件之區域亦可被稱作樣本。此電子束源110可例如用於產生具有範圍介於0.2 keV至100 keV之能量之電子束120。電子束源110通常可具有用於將電子束120聚焦至直徑約0.4至5奈米之光點上之一或多個透鏡。在實施例中,電子束源110可進一步包含一或多個掃描線圈或偏光器板,其可偏轉電子束120。藉此,電子束120可例如沿著X軸及Y軸(垂直於X軸及Z軸)偏轉,使得可掃描物件之區域,XY平面平行於物件之表面。 在本發明之實施例中,電子束源經組態以將複數個電子束投影至所關注區域之各別複數個子區域上。藉此,可放大可每單位時間檢查或檢測之所關注區域。此外,在本發明之實施例中,電子束源可經組態以產生具有不同能量位準之電子束。如將在下文更詳細地解釋,取決於用於電子束之經施加能量位準,可檢查不同部分或結構,例如埋入式結構。 當此電子束120照射在表面上時,表面上之相互作用及與表面下方之材料之相互作用將出現,從而引起經曝光表面發射輻射及電子兩者。通常,當電子束120與樣本相互作用時,構成射束之電子將經由散射及吸收在眼淚狀體積(被稱為相互作用體積)內散失能量。電子束與樣本之間的能量交換通常將產生以下各者之組合: - 高能量電子藉由彈性散射之反射, - 二次電子藉由非彈性散射之發射, - 藉由與樣本彈性散射相互作用而自相互作用體積反射或反向散射離開之電子的發射, - X射線發射,及 - 例如在自深UV至IR之範圍內之電磁輻射的發射。 電磁輻射之後一發射通常被稱作陰極發光的光或CL-光。在圖2中,箭頭140指示經發射陰極發光的光。 在本發明之實施例中,檢測工具100進一步包含用於偵測由樣本發射之此類陰極發光的光140之偵測器150。在如所展示之實施例中,檢測工具100包含反射器160,例如橢圓形或抛物面反射器,以將CL-光140重新導向朝向偵測器150,如由箭頭142指示。在如所展示之實施例中,反射器160具備孔徑170,電子束120可經由該孔徑而經導向朝向物件130。
經應用在根據本發明之檢測工具100中之偵測器150可例如形成為CCD陣列,例如二維CCD陣列、高光譜感測器或光譜儀。在本發明之一實施例中,檢測工具進一步包含用於處理由偵測器150偵測到之CL-光140、142之控制單元170或處理單元,例如包含微處理器、電腦或其類似者。在實施例中,控制單元170包含用於自偵測器150接收信號152之輸入端子172,該信號152表示由物件130發射之經偵測到CL-光142。 在實施例中,控制單元可另外具有用於輸出控制信號112之輸出端子174,該控制信號用於控制電子束源110。在實施例中,控制單元170可控制電子束源110以將電子束120投影至待檢測之物件(例如半導體基板)之所關注區域上。 在實施例中,控制單元170可經組態以控制電子束源110以掃描所關注區域。
在物件之所關注區域之此掃描期間,偵測器可自所關注區域之不同部分接收CL-光142。作為一實例,經施加電子束可例如具有直徑為1至4奈米之橫截面,而所關注區域為100奈米×100奈米。因而,當已掃描所關注區域時,對橫跨所關注區域之電子束之回應可由CL-光偵測器150捕捉到。
在實施例中,亦可施加具有實質上匹配或超過所關注區域之橫截面之電子束。在此實施例中,偵測器可例如經組態以捕捉整個所關注區域之影像。此偵測器可例如包含用於自所關注區域上之複數個不同位置捕捉經發射CL-光之二維光纖陣列。在實施例中,所關注區域可例如包含在所關注區域之表面下方之埋入式結構。此埋入式結構可例如為對準標記。
在實施例中,經應用在根據本發明之檢測工具100中之控制單元170可經組態以判定由偵測器150接收之CL-光之頻譜。
圖3示意性地展示指示隨波長λ而變之經接收CL-光之強度I的頻譜200。 一般而言,經接收CL-光之頻譜可取決於各種參數。如將理解,頻譜可取決於由電子束探測之材料。在半導體基板之狀況下,經檢查之所關注區域可包含形成半導體器件之積體電路之部分的結構。此等結構或器件通常將包含不同材料,例如具有不同摻雜劑材料或不同摻雜劑濃度之不同半導體材料。此等材料中之每一者可引起產生具有特定頻譜之特定CL-光。在相互作用體積將涵蓋不同材料或結構之狀況下,由於CL-光係在物件之表面下方之被稱作相互作用體積的體積中產生,因此經接收之CL-光可來源於不同材料之組合。 如將在下文更詳細地解釋,藉由改變電子束之能量,有可能改變經探測體積且尤其是經探測體積(亦即相互作用體積)之深度,從而使得能夠接近埋入式材料及結構且使得能夠產生3D映射。
圖4高度示意性地展示包含多個層及不同材料之半導體結構400之橫截面視圖。如在圖4中示意性地展示之結構400包含第一材料之底部層402,第二材料之三個豎直延伸的結構404在該底部層402之頂部上,鄰近結構402之間的間隙部分地填充有第三材料之結構406,且結構404及406由第四材料之頂部層408覆蓋。圖4進一步示意性地展示照射在結構400之頂部表面412上之電子束410。電子束410之相互作用體積係由虛線414指示,亦即其中CL-光可由於經施加電子束而產生之體積。可注意到,雖然電子束可僅具有若干奈米之直徑,但相互作用體積通常將具有較大直徑,例如10至20奈米。圖4進一步說明電子束(由箭頭420指示)朝向右邊之掃描,藉此橫跨結構404及406移動相互作用體積414。在該掃描期間,相互作用體積414將涵蓋結構之各種材料。因而,在此掃描移動期間,將出現CL-光之頻譜之變化;基於此等變化,因而可推斷不同材料或結構存在於表面412下方。就此而言,可注意到,經產生CL-光通常與材料強烈相關。亦可指出,由於可判定CL影像解析度之量子效應,諸如激子之量子限制,經產生之CL-光亦取決於經照明物件或樣本之尺寸。通常,矽具有約10奈米之激子半徑,但歸因於幾何限制,激子無法進一步漫射掉且CL在經檢測奈米結構中產生。歸因於此量子限制,獲得經改良解析度。通常,CL量測將具有約100奈米至1微米之解析度。歸因於量子限制,解析度可變為5至10奈米。
關於在圖4中示意性地指示之相互作用體積414,進一步值得提及,除其他之外,相互作用體積414之高度或深度430亦將取決於經施加電子束410之能量位準。如熟習此項技術者將理解,電子束410將不能夠在電子之能量位準相對較低之狀況下深入結構400。在此狀況下,相互作用可限於與表面412處或附近之材料(亦即材料408)之相互作用。
當運用具有相對較高能量位準之電子束410掃描表面412時,相互作用體積將基於在掃描期間觀測到之CL-光頻譜之經觀測變化而延伸至結構400中較深處,從而導致偵測不同材料及結構。 因而,藉由運用具有不同強度或能量位準之電子束掃描所關注區域,可知曉各種結構之部位及/或不同材料層之厚度。 此外,可提及,偵測到頻譜變化所在之位置可用於獲取經檢查結構之幾何特性。圖5中示意性地說明此情形。
圖5高度示意性地描繪所關注區域500之橫截面視圖,該所關注區域包含提供於層502上之埋入式結構510,該層例如由第一材料製成。埋入式結構510包含:豎直延伸的結構510.1,其由另一第二材料製成;及圍封結構510.2,其由第三材料製成且環繞結構510.1之側表面及頂部表面。結構510進一步由又另一材料之層508嵌入、圍封或覆蓋。在如所指示運用具有相互作用體積514之電子束515在如由箭頭520指示之方向上掃描所關注區域之表面512之狀況下,可觀測到經發射CL-光之頻譜之一些變化。詳言之,在電子束515沿著X軸自如所展示之位置開始移動之狀況下,可預期頻譜以第一頻譜保持實質上恆定,直至電子束515達至其中相互作用體積將開始與圍封結構510.2相互作用之位置(沿著X軸)為止。當電子束515進一步向右移動時,頻譜將逐漸改變,將在沿著X軸之一定位移內以第二頻譜保持恆定,且將接著再次朝向第一頻譜逐漸改變。
圖6中示意性地展示此轉變。圖6示意性地展示當橫跨所關注區域亦即在如圖5中所指示之X方向上掃描電子束515時觀測到之頻譜FS。如可看出,自頻譜FS1開始,頻譜將在某一時刻朝向第二頻譜FS2開始改變,該第二頻譜可保持恆定且接著將再次朝向第一頻譜FS1逐漸改變。由於轉變之位置可與電子束之相互作用體積相關聯(該電子束自與例如層508之材料之一種材料相互作用逐漸改變為與例如圍封結構510.2之材料之另一材料相互作用),所以基於沿著X軸之進行轉變之位置,可能夠判定或估計具有第二頻譜FS2之材料之寬度Wd。
以類似方式,可預期,當施加較強烈電子束時,亦即具有深入所關注區域之相互作用體積之電子束,可出現至第三頻譜之轉變,其表示將使得能夠在X方向上評估結構510.1之寬度之結構510.1的材料。因而,在使用根據本發明之檢測工具之情況下,可對埋入式結構之材料或化學特性以及幾何特性進行評估。
作為藉助於評估經觀測到之頻譜之變化來判定埋入式結構之幾何屬性的替代方案,亦可考慮使用經發射CL-光產生所關注區域之影像且基於該影像評估任何幾何屬性。此影像可含有具有不同強度或顏色之區域,其中輪廓或邊界之部位可用於評估結構之幾何屬性。可值得提及,兩個區域之間的此類邊界可能略微模糊。此可理解為原因在於以下事實:材料之探測實際上在相互作用體積中進行,因而引起材料或結構之間的逐漸轉變。然而,應注意,前述量子效應可抵消此邊界模糊且產生較清晰轉變。
圖7示意性地展示圖5之埋入式結構之可能影像700,其中影像揭示兩個不同區:一個區710,其中電子束之相互作用體積僅與圖5之層508之材料相互作用;及一個區720,其中相互作用區亦與圍封結構510.2相互作用。圖8示意性地展示同一所關注區之影像800,但該所關注區具有亦穿透結構510.1之相互作用體積。在影像800中,可識別4個不同區:一個區810,其中電子束之相互作用體積僅與圖5之層508之材料相互作用;一個區820,其中相互作用區與層508及圍封結構510.2相互作用;一個區830,其中相互作用區與層508、結構510.1及圍封結構510.2相互作用;以及一個區840,其中相互作用區與層508及結構510.1相互作用。在檢閱影像後,即可例如注意到結構510.1在Y方向上比圍封結構510.2延伸得較長。基於影像且例如結合先驗已知的設計資料,可例如認識到結構510.1可例如為鰭式FET之鰭片且圍封結構510.2可例如為圍封鰭式FET之鰭片之閘電極。
除評估與經施加之電子束之相互作用體積相互作用之不同區或結構的材料或化學特性之外,亦可識別結構中之任何不規則性。為了恰當地運行,對於形成半導體器件之不同材料或結構存在不同要求。此等要求包括具有適當的材料特性及適當的大小之材料或結構,但不同結構亦需要相對於彼此處於適當的位置。在使用根據本發明之檢測工具之情況下,可同樣評估不同埋入式結構或結構組件是否相對於彼此如所預期來配置。參考圖5中所展示之結構,可例如需要亦即圍封結構510.2之閘電極對稱地定位在亦即結構510.1之鰭式結構上方。基於經捕捉CL-光之影像,例如圖8之影像800,可評估此對稱性是否存在。在所關注區域上方之經捕捉CL-光之影像看起來如同圖9中之影像900之狀況下,可例如推定亦即圖5中所展示之結構510.2之閘電極並不圍繞亦即圖5中所展示之結構510.1之鰭式FET對稱地配置。此不對稱性可導致鰭式FET之並非最佳操作。
因而,在本發明之一實施例中,經獲得資訊--材料特性或屬性或幾何特性或兩者,可用於評估經製造半導體器件之功能性。應注意,在實施例中,來源於檢測工具之操作之資訊亦可與其他來源之資訊組合以得出半導體器件之功能性之評估。詳言之,可評估半導體器件之電屬性,詳言之,可使用根據本發明之檢測工具在空間上評估此類參數之均質性及均一性。
可使用本發明判定之結構之恰當相對位置的評估之另一實例為疊對之評估。一般而言,疊對係指形成於半導體基板上之兩個連續層對準之方式。為了評估此對準,第一結構可例如在底部層之曝光期間形成於底部層中,且第二結構可例如在頂部層之曝光期間形成於頂部層中。第一及第二結構之組合可例如被稱作疊對標記。圖10示意性地展示此疊對標記1000之橫截面視圖,其展示包含第一結構1012之底部經圖案化層1010及包含第二結構1022之頂部經圖案化層1020,底部層1010經配置於基板之層1005上,且頂部層1020由例如抗蝕劑層之層1030覆蓋。藉由掃描包含疊對標記(由電子束1015、相互作用體積1014及方向1016示意性地指示)之所關注區域之表面1012,可以與如上文所論述之類似方式識別且評估亦即疊對標記之埋入式結構。詳言之,可評估疊對標記之第一及第二結構之恰當幾何結構以及結構在水平面中之相對位置,藉此評估疊對誤差。如將進一步解釋,根據本發明之檢測工具可亦配備有多個不同感測器,例如用於偵測反向散射電子或二次電子之感測器
在本發明之一實施例中,根據本發明之檢測工具經組態以評估埋入式結構之幾何屬性。作為此幾何屬性之一實例,可提及埋入式結構之位置。根據本發明,基於在掃描樣本上之所關注區域或將所關注區域曝光至電子束期間所發射之經接收陰極發光的光對幾何屬性進行評估。
在本發明之一實施例中,可藉由將應變引入至樣本中而促進埋入式結構之幾何特性之判定。根據本發明之一實施例,此可藉由將聲波引入至該樣本中而實現。由於引入此聲波,該樣本將經受應力或應變。在該樣本含有具有與其周圍不同的物理或機械屬性之埋入式結構之狀況下,非均一應變分佈可在該樣本中出現。此應變或應力分佈可由根據本發明之檢測工具偵測到,因為當物件或結構經受應力時,回應於電子束的施加而由物件或結構發射之CL-光可變化。在本發明之一實施例中,利用此特性。詳言之,在本發明中,由檢測工具之偵測器捕捉之CL-光係用於判定橫跨所關注區域及所關注區域之表面下方的應力分佈。藉由掃描所關注區域且觀測經產生CL-光,經觀測頻譜之變化可指示在經觀測材料(亦即存在於相互作用體積中之材料)中出現之機械應力。根據本發明之一實施例,經偵測到CL-光可用於判定位於所關注區域之表面下方之體積中的所出現應力或應力分佈。
圖11經示意性地說明歸因於應力在材料中之出現之CL-光頻譜的移位。詳言之,圖11示意性地展示在標稱條件下(曲線600)及當經受某一應力位準時(曲線610)用於特定材料之CL-光之頻譜。在如所展示之實施例中,該應力誘發頻譜之移位。因而,當使用電子束掃描表面區域,諸如所關注區域400、500或1000之區域412、512或1012時,可觀測到CL-光之頻譜之移位或一般而言變化,其中該等變化可與材料中之某些應力位準相關聯。
藉助於實驗,某一應力量對經發射CL-頻譜之影響可針對各種類型的材料加以判定,且例如儲存於資料庫中。在本發明之一實施例中,檢測工具之控制單元,例如圖2中所展示之控制單元170,可連接至此資料庫。可進一步指出,此資料庫可進一步可用於區分由應力引起之頻譜之變化與由一種材料或結構至另一材料或結構之轉變或其他應力源引起之變化。如上文所指示,藉由調整經施加電子束之能量,可調整經探測之所關注區域之表面下方的體積,亦即其中產生CL-光之相互作用體積。詳言之,使用相對較低能量電子束將引起CL-光在所關注區域之表面處或附近產生,而施加相對較高能量電子束將引起CL-光在所關注區域之表面下方的體積(亦即相互作用體積)中產生。 在本發明之一實施例中,聲波可藉助於脈衝式光束引入在樣本中。圖12示意性地說明根據本發明之檢測工具1200之實施例,其中可產生此聲波或超聲波。檢測工具1200包含電子束源110,該電子束源經組態以將電子束120投影至樣本1230之所關注區域上。在如所展示之實施例中,樣本1230包含複數個堆疊層,其中經配置在表面1232下方之層中之一者包含結構1240,例如光柵或標記。在如所展示之實施例中,檢測工具1200進一步包含用於偵測樣本發射之由箭頭140指示的陰極發光的光之偵測器150。在如所展示之實施例中,檢測工具100包含反射器160,例如橢圓形或抛物面反射器,以將CL-光140重新導向朝向偵測器150,如由箭頭142指示。在如所展示之實施例中,反射器160具備孔徑170,電子束120可經由該孔徑而經導向朝向樣本1230。圖12進一步示意性地展示可由反射器160聚焦至樣本1230上之光束1250。在一實施例中,光束1250可例如為例如產生短雷射脈衝之雷射光束。此雷射光束1250亦可被稱作例如用於泵-探針對準中之泵射束。歸因於經施加光束1250,聲波1260可在樣本1230中產生。在如所展示之實施例中,雷射光束1250因而用作用於在樣本1230之所關注區域中產生聲波1260之聲波產生器。此聲波將與埋入式結構1240相互作用。由於此相互作用,應力或應變分佈將在所關注區域中產生。詳言之,聲波1260可引起埋入式結構附近之應變分佈,其中該應變分佈可延伸至樣本1230之表面1232。因而,歸因於聲波1260與埋入式結構之相互作用,應力或應變分佈可在所關注區域之表面1232處或附近出現。在如所展示之實施例中,此所出現應力或應變分佈係由線段1270示意性地指示。由於表面1232處或附近之此應變分佈1270係由埋入式結構1240與聲波1260之相互作用引起,因此應變分佈1270可表示埋入式結構1240,亦即其提供關於埋入式結構1240之空間或幾何資訊。在使用如上文所論述之檢測工具1200之情況下,可在掃描樣本1230期間基於經接收CL-光判定此應變分佈1270。由於埋入式結構1240與聲波1260之間的相互作用可引起表面1232處或附近之應變分佈,因此不需要電子束120探測至樣本1230中之深處,亦即電子束120之相互作用體積無需與埋入式結構1240自身相互作用,但可例如限於僅與樣本1230之上部部分或層相互作用。因而,可施加相對較低能量電子束120。
關於在樣本1230中產生聲波,可指出,亦可考慮用以產生此聲波之替代方式。
作為使用例如脈衝雷射光束之光束之替代方案,可提及使用聲學轉換器,例如壓電轉換器。此轉換器可例如經配置於物件台上,例如如圖2中所展示之物件台132,樣本1230安裝在該物件台上。
因而,在本發明之一實施例中,提供一種檢測工具,其包含 - 物件台,例如基板台,其用於固持需要檢測之物件; - 電子束源,其經組態以將電子束投影至物件之所關注區域上,其中所關注區域包含諸如光柵之埋入式結構; - 聲波產生器,其經組態以在所關注區域中產生聲波,藉此在所關注區域中產生應變分佈; - 陰極發光偵測器,其經組態以當應變分佈存在於所關注區域中時偵測自所關注區域發射之陰極發光的光; - 控制單元,其經組態以: - 接收表示經偵測到陰極發光的光之信號; - 基於該信號判定埋入式結構之特性。
在一實施例中,根據本發明之檢測工具係用於判定埋入式結構在半導體基板上之位置。在此實施例中,可應用檢測工具以用於判定如埋入式結構之對準標記之位置。在此實施例中,檢測工具亦可被稱作對準工具,其可例如併入於微影設備中且經組態以在基板在曝光程序期間經受經圖案化輻射光束之前判定複數個對準標記在基板上之位置。
在本發明之一實施例中,亦可施加可具有實質上匹配或超過所關注區域之橫截面之經施加電子束。在此實施例中,偵測器可例如經組態以捕捉整個所關注區域之影像。在實施例中,所關注區域可例如包含在所關注區域之表面下方之埋入式結構。此埋入式結構可例如為對準標記。藉由施加橫截面匹配或超過埋入式結構之大小之電子束,可產生整個埋入式結構之影像。此影像接著可例如覆蓋約80微米×40微米或50微米×50微米或更大之區域;經施加電子束可例如具有視場,該視場具有100微米直徑。在此實施例中,整個所關注區域可曝光於寬的未成形的電子束,從而使CL-光自整個經曝光所關注區域發射。藉助於恰當光學件,經發射CL-光之影像可產生且例如經導向至偵測器。
在一實施例中,經產生影像可成像在參考光柵上。在此實施例中,多模光纖可收集透射通過參考光柵之光且將其引導至檢測工具之偵測器,例如光譜儀。在電子束橫跨所關注區域之掃描期間,所關注區域包含埋入式光柵,經量測CL-光接著可在以下兩個不同CL-頻譜之間振盪:對應於埋入式光柵之頻譜之一個頻譜、對應於光柵之間的溝槽中之材料之一個頻譜。就此而言,可例如參考圖4,其中結構404可例如表示埋入式光柵,而光柵之間的溝槽可含有不同材料之結構406。
在一替代實施例中,經發射CL-光之影像可供應至光纖陣列,例如二維光纖陣列,其中光纖陣列中之每一光纖可連接至光譜儀。在此實施例中,每一光纖及對應的光譜儀將自樣本上之不同位置收集CL-光;每一光纖將因而自所關注區域之特定子區域獲得CL-光。在使用此組態之情況下,有可能運用寬的未成形的電子束照明或曝光整個所關注區域,且產生影像,例如光柵之埋入式結構之特性可自該影像導出。相較於使用參考光柵之實施例,可使此實施例不依賴於間距,間距係指光柵結構(例如圖4之結構404)之間的距離。
在本發明之一實施例中,例如跨越包含埋入式光柵之所關注區域之寬的電子束可用於判定埋入式光柵之位置。檢測工具之此實施例因而亦可用作微影設備中之對準工具。
在一實施例中,根據本發明之檢測工具經組態以評估埋入式結構之特性,材料特性或幾何特性,或針對橫跨半導體基板分佈之複數個此類結構評估功能性。藉此,該等參數之任何變化可在初期處偵測到且可用以調整基板所經受之各種程序。在本發明之一實施例中,根據本發明之檢測工具經應用為配置於微影設備中之直列式工具。在此實施例中,在檢測工具評估應力分佈期間所使用之基板台亦在基板後續曝光至經圖案化輻射光束期間加以使用。因而,在一實施例中,本發明提供一種包含微影設備及檢測工具之微影系統,其中該微影設備包含載物台設備,其經組態以將基板台定位在電子束之操作範圍中以便運用用於檢測之電子束源之電子束掃描基板,且將該基板台定位在投影系統之操作範圍中,以便將由投影系統產生的經圖案化輻射光束賦予基板。在此實施例中,微影系統可經組態以: - 當基板經夾持在由微影設備之載物台設備定位之基板台上時檢測該基板; - 判定基板上之所關注區域之埋入式結構的特性; - 當基板在基板台上時由載物台設備相對於經圖案化輻射光束定位基板,其中定位基板台之程序或產生經圖案化輻射光束之程序可基於經判定特性。
在檢測工具併入於微影設備中之狀況下,其可例如提供於設備之真空腔室中,例如專用真空腔室或已經存在諸如EUV微影設備中之真空腔室。 在此配置中,亦應注意確保檢測工具尤其是電子束源不會由磁場影響,該等磁場可由載物台設備或諸如致動器之其他可能源產生。為了實現此,可施加電磁屏蔽。
作為將檢測工具併入在微影設備中之替代方案,根據本發明之微影系統可包含微影設備、根據本發明之檢測工具及用於將基板自檢測工具轉移至微影設備之轉移系統。在此實施例中,轉移系統可例如在基板經夾持至基板台上時轉移該基板,亦即基板及基板台在夾持狀態中共同自檢測工具轉移至微影設備。
作為另一替代方案,根據本發明之檢測工具可為獨立工具,其具有其自身基板台及用於將基板轉移至工具及自工具轉移基板之界面。
在上文中,已論述CL-光之變化尤其是經捕捉CL-光之頻譜之變化可用於識別不同結構及材料以及此類材料或結構之各種特性。就此而言,值得指出,除頻譜之外,CL-光之其他特性亦可用於評估基板之狀態或檢測基板。除了觀測經接收CL-光之頻譜之外或作為其替代方案,亦可考慮經接收CL-光之其他特性以便評估結構或材料之間的轉變或評估此類材料或結構之各種特性。此類其他特性之實例可例如為CL-光之偏振特性、經接收CL-光之定向或CL-光之瞬態特性。以與評估CL-光之頻譜及其橫跨所關注區域之變化類似之方式,亦可使用經接收CL-光之偏振特性之評估來判定包括應力之材料屬性之變化的出現。類似地,定向尤其是經接收CL-光之角度定向亦可用以評估結構或材料之間的轉變或特性化此類結構或材料。應注意,CL-光之角度定向可例如由光照射在偵測器上之位置判定或特性化。參考圖2,熟習此項技術者應清楚,由箭頭140指示之CL-光之角度定向影響光照射在反射器160上之位置且因此亦影響CL-光照射偵測器150之位置。CL-光之又另一特性為經捕捉光中可感知到之任何瞬態,亦即隨著時間推移之任何變化。
根據本發明之檢測工具經組態以偵測由所關注區域(例如半導體基板之一部分)發射之CL-光。基於CL-光之偵測之基板或其部分的檢測可比基於反向散射電子之偵測更快得執行。通常,相對較大數目之光子在運用電子束曝光基板期間產生,從而使得相較於例如反向散射電子之偵測,此檢測方法之良率或產出率相對較高。然而,可指出,偵測反向散射電子之偵測器之解析度可大於偵測CL-光之偵測器。
在本發明之一實施例中,檢測工具可具備不同類型的偵測器,例如包括反向散射(BS)電子偵測器或二次電子(SE)偵測器。在此實施例中,BS-偵測器或SE-偵測器可例如用於校準目的。作為一實例,BS-偵測器或SE-偵測器可例如用於校準CL-光偵測器。
在本發明之一實施例中,自檢測工具獲得之資料可與自諸如其他檢測工具或度量衡工具之其他工具獲得之資料組合,其中資料之經組合集合係用於判定經製造半導體器件之功能特性或器件功能性。作為一實例,根據本發明之檢測工具之資料可例如與來自掃描電子顯微鏡(SEM)或來自光學臨界尺寸(OCD)度量衡之資料組合,或可與設計參數而非其他量測組合。在使用自根據本發明之檢測工具獲得之資料或經組合資料之情況下,可判定諸如器件電阻性、層厚度、摻雜劑濃度、臨限電壓及其他功能性之器件功能性。
在使用此資訊作為對微影設備之回饋例如以控制經執行之曝光程序使得能夠改良器件效能及設備之良率兩者。經獲得之資訊亦可用於機器學習技術中以例如產生將經判定CL-光特性連結至諸如疊對特性之器件特性的經驗模型。
在上文中,使用根據本發明之檢測工具已經出於檢測半導體基板之目的而加以描述。然而,可指出,其亦可用於檢測例如EUV坯件或EUV光罩。用於製造EUV倍縮光罩或圖案化器件之EUV坯件或石英基板可含有缺陷。可例如指出,用於此類充分無缺陷的EUV坯件之製造程序的良率相對較低。在施加Mo-Si之例如多層堆疊之前的此EUV坯件之檢測可引起在初期偵測有缺陷的坯件。根據本發明之檢測工具可實現此類偵測。詳言之,當EUV坯件之表面曝光於電子束時產生之CL-光受表面形態強烈影響。由此,亦可區別不同類型的缺陷。例如表面上之石英之缺陷可產生再組合中心,其中CL-光之發射將為高的。因而,缺陷存在將突顯且可判定位置。亦可以類似方式偵測到結晶缺陷。因而,在使用根據本發明之檢測工具之情況下,可通常運用<10奈米解析度以相對較高速度成像EUV坯件之表面。 另外,亦可應用根據本發明之檢測工具以檢測多層光罩或倍縮光罩,例如具備Mo及Si層之堆疊之光罩。
因而,在本發明之一實施例中,提供一種用於檢測EUV坯件或EUV光罩之檢測工具,該檢測工具包含 - 物件台,其經組態以固持EUV坯件或EUV光罩; - 電子束源,其經組態以將電子束投影至EUV坯件或EUV光罩之所關注區域上; - 陰極發光偵測器,其經組態以偵測自所關注區域發射之陰極發光的光; - 控制單元,其經組態以: - 控制電子束源以將電子束投影至所關注區域上; - 接收表示經偵測到陰極發光的光之信號; - 基於該信號判定所關注區域上之缺陷之特性或部位。
此工具可經組態以執行以下檢測方法: 一種檢測方法,該方法包含以下步驟: - 提供具有所關注區域之EUV坯件或EUV光罩; - 使用電子束掃描所關注區域; - 捕捉自所關注區域發射之CL-光; - 基於經捕捉光判定所關注區域上之缺陷之特性或部位。
可使用以下條項進一步描述實施例: 1. 一種用於檢測一半導體基板之檢測工具,該檢測工具包含 - 一基板台,其經組態以固持該基板; - 一電子束源,其經組態以將一電子束投影至該基板之一所關注區域上,該所關注區域包含一埋入式結構; - 一陰極發光偵測器,其經組態以偵測自該埋入式結構發射之陰極發光的光; - 一控制單元,其經組態以: - 接收表示該經偵測到陰極發光的光之一信號; - 基於該信號判定該埋入式結構之一特性。 2. 如條項1之檢測工具,其中該控制單元經進一步組態以: - 控制該電子束源以將該電子束投影至該所關注區域上; 3. 如條項1或2之檢測工具,其中該特性為該埋入式結構之至少部分之一材料特性。 4. 如條項3之檢測工具,其中該材料特性為一電氣特性或一化學特性。 5. 如條項3或4之檢測工具,其中該控制單元經組態以判定該經偵測到陰極發光的光之一頻譜。 6. 如條項5之檢測工具,其中該控制單元經組態以基於該頻譜判定該材料特性。 7. 如條項5或6之檢測工具,其中該控制單元經進一步組態以接收表示該結構之一幾何特性之一信號,且其中該控制單元經組態以基於該材料特性及該幾何特性評估半導體器件之功能性。 8. 如條項1或2之檢測工具,其中該特性為該結構之一幾何特性。 9. 如條項8之檢測工具,其中該幾何特性包含該結構之位置資訊。 10. 如條項9之檢測工具,其中該位置資訊包含該結構相對於一另外結構之一位置。 11. 如條項10之檢測工具,其中該結構及該另外結構定位在該半導體基板之不同層中。 12. 如條項11之檢測工具,其中該結構及該另外結構形成一疊對標記。 13. 如條項8至12中任一項之檢測工具,其中該信號表示該埋入式結構之一影像,且其中該控制單元經組態以基於該影像之影像處理判定該埋入式結構之該幾何特性。 14. 如前述條項中任一項之檢測工具,其中該控制單元包含用於輸出表示該經判定特性之一信號之一輸出端子。 15. 如前述條項中任一項之檢測工具,其中該所關注區域包含橫跨該基板分佈之複數個埋入式結構,且其中該控制單元經進一步組態以針對該複數個埋入式結構判定該特性之一變化。 16. 如條項15之檢測工具,其中該控制單元經組態以輸出表示該特性之該變化之一信號。 17. 如前述條項中任一項之檢測工具,其中該電子束源經組態以將複數個電子束投影至該所關注區域之各別複數個子區域上。 18. 如前述條項中任一項之檢測工具,其中該電子束源經組態以產生具有一不同能量位準之電子束。 19. 如條項18之檢測工具,其中該控制單元經組態以: - 控制該電子束源以將具有不同能量位準之複數個電子束投影至該所關注區域上; - 接收表示該經偵測到陰極發光的光之各別複數個信號; - 基於該複數個信號判定該埋入式結構之該特性。 20. 如前述條項中任一項之檢測工具,其進一步包含一反向散射(BS)電子偵測器,該反向散射電子偵測器經組態以偵測自該所關注區域發射之反向散射電子。 21. 如條項20之檢測工具,其中該控制單元經組態以: -接收表示該等經偵測到反向散射電子之一信號,且 -基於表示該經偵測到陰極發光的光之該信號及表示該等經偵測到反向散射電子之該信號判定該特性。 22. 如前述條項中任一項之檢測工具,其中該控制單元經組態以: - 判定該經偵測到陰極發光的光之一角度定向、一偏振或一瞬態。 23. 如條項22之檢測工具,其中該控制單元經組態以: - 基於該經偵測到陰極發光的光之該角度定向、該偏振或該瞬態判定該埋入式結構之該特性。 24. 一種微影設備,其包含: - 一照明系統,其經組態以調節一輻射光束; - 一支撐件,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束; - 一投影系統,其經組態以將該經圖案化輻射光束投影至一基板之一目標部分上; 其中該設備進一步包含一如前述條項中任一項之檢測工具及一載物台設備,該載物台設備經組態以定位該基板台以便將該經圖案化輻射光束賦予該基板。 25. 如條項24之微影設備,其進一步包含一載物台控制單元,該載物台控制單元經組態以控制該載物台設備,該載物台控制單元經組態以接收表示該埋入式結構之該特性之一信號,且其中該載物台控制單元經組態以基於該特性控制該載物台設備。 26. 如條項24或25之微影設備,其進一步包含一投影控制單元,該投影控制單元經組態以控制該投影系統及照明系統,該投影控制單元經組態以接收表示該埋入式結構之該特性之一信號,且其中該投影控制單元經組態以基於該特性控制該投影系統及/或該照明系統。 27. 如條項25至26中任一項之微影設備,其中該基板台包含用於將該基板夾持至該基板台之一夾持機構。 28.如條項26至27中任一項之微影設備,其進一步包含一真空腔室,該真空腔室經組態以圍封該電子束源。 29. 如條項28之微影設備,其中該真空腔室進一步圍封該投影系統。 30. 如條項24至29中任一項之微影設備,其中該載物台設備包含一或多個電磁馬達,且其中該微影設備進一步包含一屏蔽部件,該屏蔽部件經組態以屏蔽該電子束源以免受該載物台設備之一磁場影響。 31. 一種微影系統,其包含: - 一如條項1至23中任一項之檢測工具,及 - 一微影設備,其包含: - 一照明系統,其經組態以調節一輻射光束; - 一支撐件,其經建構以支撐一圖案化器件,該圖案化器件能夠在該輻射光束之橫截面中向該輻射光束賦予一圖案以形成一經圖案化輻射光束; - 一投影系統,其經組態以將該經圖案化輻射光束投影至一基板之一目標部分上; - 一載物台設備,其經組態以定位該基板台以便將該經圖案化輻射光束賦予該基板。 32. 一種檢測方法,該方法包含以下步驟: - 提供具有一所關注區域之一基板,該所關注區域包含一埋入式結構; - 使用一電子束掃描該所關注區域; - 捕捉自該所關注區域發射之CL-光; - 判定該埋入式結構之一特性。 33. 如條項32之檢測方法,其進一步包含: - 基於該經捕捉CL-光產生該埋入式結構之一影像;及 - 基於該經產生影像判定該埋入式結構之該特性。 34. 如條項32或33之檢測方法,其中該埋入式結構包含一堆疊,該堆疊包含一第一層及一第二層,該幾何屬性為該第一層中之該埋入式結構之一第一部分與該第二層中之該埋入式結構之一第二部分之間的一相對位置。 35. 一種器件製造方法,其包含將一經圖案化輻射光束投影至一基板上,其中將該經圖案化輻射光束投影至該基板上之步驟係在如條項32至34中任一項之檢測方法之前。 36. 一種用於檢測一半導體基板之檢測工具,該檢測工具包含 - 一基板台,其經組態以固持該基板; - 一電子束源,其經組態以將一電子束投影至該基板之一所關注區域上,該所關注區域包含一埋入式結構; - 一聲波產生器,其經組態以在該所關注區域中產生一聲波,藉此在該所關注區域中產生一應變分佈; - 一陰極發光偵測器,其經組態以當該應變分佈存在於該所關注區域中時偵測自該所關注區域發射之陰極發光的光; - 一控制單元,其經組態以: - 接收表示該經偵測到陰極發光的光之一信號; - 基於該信號判定該埋入式結構之一特性。 37. 如條項36之檢測工具,其中該聲波產生器包含一雷射,該雷射經組態以產生一雷射脈衝以用於在該所關注區域中產生該聲波。 38. 如條項36之檢測工具,其中該聲波產生器包含一聲學轉換器,該聲學轉換器用於在該所關注區域中產生該聲波。 39. 如條項36至38中任一項之檢測工具,其中該埋入式結構包含一光柵且其中該埋入式結構之該特性包含該光柵之一位置。 40. 如條項1至24或36至39中任一項之檢測工具,其中該電子束源經組態以將一電子束投影至該所關注區域上,該電子束之一橫截面區域實質上跨越該所關注區域。 41. 如條項40之檢測工具,其中該陰極發光偵測器包含一光纖陣列,該光纖陣列經組態以接收自該所關注區域發射之該陰極發光的光。 42. 如條項41之檢測工具,其中該光纖陣列包含一二維光纖陣列,該光纖陣列每一光纖中之每一光纖經組態以接收自該所關注區域之一子區域發射之陰極發光的光。 43. 如條項41或42之檢測工具,其中該陰極發光偵測器進一步包含一光譜儀陣列,該光譜儀陣列中之每一光譜儀連接至該光纖陣列中之一各別光纖。 44. 如條項40之檢測工具,其中該陰極發光偵測器包含一光纖,該光纖用於接收該陰極發光的光及將該陰極發光的光提供至該陰極發光偵測器之一光譜儀。 45. 如條項44之檢測工具,其進一步包含一參考光柵,該參考光柵用於賦予該陰極發光的光。 46. 如條項45之檢測工具,其中該陰極發光的光經成像至該參考光柵上,且其中透射通過該參考光柵之該陰極發光的光經提供至該光譜儀。 47. 如條項36至39中任一項之檢測工具,其中該應變分佈包含關於該埋入式結構之資訊。
儘管在本文中可特定地參考微影設備在IC製造中之使用,但應理解,本文中所描述之微影設備可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,可認為本文中對術語「晶圓」或「晶粒」之任何使用分別與更一般之術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)自動化光阻塗佈及顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或檢測工具中處理本文中所提及之基板。在適用之情況下,可將本文中之揭露內容應用於此等及其他基板處理工具。此外,可將基板處理多於一次,(例如)以便產生多層IC,使得本文中所使用之術語「基板」亦可指已經含有多個經處理層之基板。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,應瞭解,本發明可用於其他應用(例如,壓印微影)中,且在內容背景允許的情況下不限於光學微影。在壓印微影中,圖案化器件中之構形(topography)界定基板上產生之圖案。可將圖案化器件之構形壓入至被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗蝕劑,從而在其中留下圖案。
本文中所使用之術語「輻射」及「光束」涵蓋所有類型的電磁輻射,包括紫外線(UV)輻射(例如具有約365、248、193、157或126奈米之波長)及極紫外線(EUV)輻射(例如具有在5至20奈米範圍內之波長),以及粒子束,諸如離子束或電子束。
術語「透鏡」在內容背景允許之情況下可指各種類型之光學組件中之任一者或其組合,包括折射、反射、磁性、電磁及靜電光學組件。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。舉例而言,本發明可採用以下各者之形式:電腦程式,其含有描述如上文所揭示之方法之機器可讀指令的一或多個序列;或資料儲存媒體(例如半導體記憶體、磁碟或光碟),其儲存有此電腦程式。
以上描述意欲為說明性的,而非限制性的。因此,對於熟習此項技術者而言將顯而易見,可在不脫離下文所闡明之申請專利範圍的範疇的情況下對所描述之本發明進行修改。
100‧‧‧檢測工具
110‧‧‧電子束源
112‧‧‧控制信號
120‧‧‧電子束
130‧‧‧物件
132‧‧‧物件台
134‧‧‧夾持機構
140‧‧‧CL-光/箭頭
142‧‧‧CL-光/箭頭
150‧‧‧偵測器
152‧‧‧信號
160‧‧‧反射器
170‧‧‧孔徑/控制單元
172‧‧‧輸入端子
174‧‧‧輸出端子
200‧‧‧頻譜
400‧‧‧半導體結構/所關注區域
402‧‧‧底部層/鄰近結構
404‧‧‧結構
406‧‧‧結構
408‧‧‧頂部層/材料
410‧‧‧電子束
412‧‧‧頂部表面/區域
414‧‧‧相互作用體積
420‧‧‧箭頭
430‧‧‧高度或深度
500‧‧‧所關注區域
502‧‧‧層
508‧‧‧層
510‧‧‧埋入式結構
510.1‧‧‧豎直延伸的結構
510.2‧‧‧圍封結構
512‧‧‧表面/區域
514‧‧‧相互作用體積
515‧‧‧電子束
520‧‧‧箭頭
600‧‧‧曲線
610‧‧‧曲線
700‧‧‧影像
710‧‧‧區
720‧‧‧區
800‧‧‧影像
810‧‧‧區
820‧‧‧區
830‧‧‧區
840‧‧‧區
900‧‧‧影像
1000‧‧‧疊對標記/所關注區域
1005‧‧‧層
1010‧‧‧底部經圖案化層
1012‧‧‧第一結構/表面/區域
1014‧‧‧相互作用體積
1015‧‧‧電子束
1016‧‧‧方向
1020‧‧‧頂部經圖案化層
1022‧‧‧第二結構
1030‧‧‧層
1200‧‧‧檢測工具
1230‧‧‧樣本
1232‧‧‧表面
1240‧‧‧埋入式結構
1250‧‧‧雷射光束
1260‧‧‧聲波
1270‧‧‧應變分佈
AD‧‧‧調整器
B‧‧‧輻射光束
BD‧‧‧光束遞送系統
C‧‧‧目標部分
CO‧‧‧聚光器
FS1‧‧‧第一頻譜
FS2‧‧‧第二頻譜
IF‧‧‧位置感測器
IL‧‧‧照明系統/照明器
IN‧‧‧積光器
IT‧‧‧檢測工具
M1‧‧‧光罩對準標記
M2‧‧‧光罩對準標記
MA‧‧‧圖案化器件/光罩
MT‧‧‧光罩支撐結構/光罩台
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一***件
PS‧‧‧投影系統
PW‧‧‧第二***件
SO‧‧‧輻射源
W‧‧‧基板
Wd‧‧‧寬度
WT‧‧‧基板台
現將參考隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應參考符號指示對應部分,且在該等圖式中:
圖1描繪根據本發明之實施例之微影設備;
圖2描繪根據本發明之實施例之檢測工具;
圖3描繪可由根據本發明之檢測工具判定之CL-光的頻譜;
圖4示意性地描繪可使用根據本發明之檢測工具檢查之結構的橫截面視圖;
圖5示意性地描繪可使用根據本發明之檢測工具檢查之另一結構的橫截面視圖;
圖6示意性地描繪沿著所關注區域之經接收CL-光之頻譜的變化。
圖7至圖9示意性地展示所關注區域之來源於經捕捉CL-光之可能影像。
圖10示意性地描繪可使用根據本發明之檢測工具檢查之疊對標記的橫截面視圖。
圖11示意性地描繪可由根據本發明之檢測工具判定之CL-光的頻譜及經修改頻譜。
圖12示意性說明根據本發明之檢測工具之實施例,其中可產生聲波。

Claims (15)

  1. 一種用於檢測一半導體基板之檢測工具,該檢測工具包含: 一基板台,其經組態以固持該基板; 一電子束源,其經組態以將一電子束投影至該基板之一所關注區域上,該所關注區域包含一埋入式結構; 一陰極發光偵測器,其經組態以偵測自該埋入式結構發射之陰極發光的光; 一控制單元,其經組態以: 接收表示該經偵測到陰極發光的光之一信號; 基於該信號判定該埋入式結構之一特性。
  2. 如請求項1之檢測工具,其中該控制單元經進一步組態以: 控制該電子束源以將該電子束投影至該所關注區域上。
  3. 如請求項1或2之檢測工具,其中該特性為該埋入式結構之至少部分之一材料特性。
  4. 如請求項3之檢測工具,其中該材料特性為一電氣特性或一化學特性。
  5. 如請求項3之檢測工具,其中該控制單元經組態以判定該經偵測到陰極發光的光之一頻譜。
  6. 如請求項5之檢測工具,其中該控制單元經組態以基於該頻譜判定該材料特性。
  7. 如請求項5之檢測工具,其中該控制單元經進一步組態以接收表示該結構之一幾何特性之一信號,且其中該控制單元經組態以基於該材料特性及該幾何特性評估半導體器件之功能性。
  8. 如請求項1或2之檢測工具,其中該特性為該結構之一幾何特性。
  9. 如請求項8之檢測工具,其中該幾何特性包含該結構之位置資訊。
  10. 如請求項9之檢測工具,其中該位置資訊包含該結構相對於一另外結構之一位置。
  11. 如請求項10之檢測工具,其中該結構及該另外結構定位在該半導體基板之不同層中。
  12. 如請求項8之檢測工具,其中該信號表示該埋入式結構之一影像,且其中該控制單元經組態以基於該影像之影像處理判定該埋入式結構之該幾何特性。
  13. 如請求項1或2之檢測工具,其中該電子束源經組態以產生具有一不同能量位準之電子束,且其中該控制單元經組態以: 控制該電子束源以將具有不同能量位準之複數個電子束投影至該所關注區域上; 接收表示該經偵測到陰極發光的光之各別複數個信號; 基於該複數個信號判定該埋入式結構之該特性。
  14. 如請求項1或2之檢測工具,其進一步包含一反向散射(BS)電子偵測器,該反向散射電子偵測器經組態以偵測自該所關注區域發射之反向散射電子,且其中該控制單元經組態以: 接收表示該等經偵測到反向散射電子之一信號,且 基於表示該經偵測到陰極發光的光之該信號及表示該等經偵測到反向散射電子之該信號判定該特性。
  15. 如請求項1或2之檢測工具,其中該控制單元經組態以: 判定該經偵測到陰極發光的光之一角度定向、一偏振或一瞬態,且 基於該經偵測到陰極發光的光之該角度定向、該偏振或該瞬態判定該埋入式結構之該特性。
TW107124091A 2017-07-13 2018-07-12 檢測工具、微影設備、微影系統、檢測方法及器件製造方法 TWI685725B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EPEP17181208 2017-07-13
??EP17181208 2017-07-13
EP17181208.4A EP3428726A1 (en) 2017-07-13 2017-07-13 Inspection tool, lithographic apparatus, lithographic system, inspection method and device manufacturing method
EPEP17204199 2017-11-28
EP17204199 2017-11-28
??EP17204199 2017-11-28

Publications (2)

Publication Number Publication Date
TW201917492A true TW201917492A (zh) 2019-05-01
TWI685725B TWI685725B (zh) 2020-02-21

Family

ID=62620897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124091A TWI685725B (zh) 2017-07-13 2018-07-12 檢測工具、微影設備、微影系統、檢測方法及器件製造方法

Country Status (2)

Country Link
TW (1) TWI685725B (zh)
WO (1) WO2019011608A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732522B (zh) * 2020-02-24 2021-07-01 大陸商長江存儲科技有限責任公司 用於半導體晶圓表面形貌計量的系統和方法
CN114295908A (zh) * 2021-12-01 2022-04-08 昆山毅普腾自动化技术有限公司 一种基于f-sru网络的纳米电子器件内部微结构快速检测方法
US11448499B2 (en) 2020-02-24 2022-09-20 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology
US11454491B2 (en) 2020-02-24 2022-09-27 Yangtze Memory Technologies Co., Ltd. Systems having light source with extended spectrum for semiconductor chip surface topography metrology
US11562919B2 (en) 2020-02-24 2023-01-24 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712057A (en) * 1983-05-25 1987-12-08 Battelle Memorial Institute Method of examining and testing an electric device such as an integrated or printed circuit
US4929041A (en) * 1989-01-09 1990-05-29 Johnston Pump/General Valve, Inc. Cathodoluminescence system for use in a scanning electron microscope including means for controlling optical fiber aperture
DE102008041815A1 (de) * 2008-09-04 2010-04-15 Carl Zeiss Nts Gmbh Verfahren zur Analyse einer Probe
EP2622330B1 (en) * 2010-10-01 2014-12-17 Attolight SA Deconvolution of time-gated cathodoluminescence images
TWI683997B (zh) * 2015-05-28 2020-02-01 美商克萊譚克公司 用於在檢測工具上之動態看護區域產生的系統及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732522B (zh) * 2020-02-24 2021-07-01 大陸商長江存儲科技有限責任公司 用於半導體晶圓表面形貌計量的系統和方法
US11243067B2 (en) 2020-02-24 2022-02-08 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology
US11448499B2 (en) 2020-02-24 2022-09-20 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology
US11454491B2 (en) 2020-02-24 2022-09-27 Yangtze Memory Technologies Co., Ltd. Systems having light source with extended spectrum for semiconductor chip surface topography metrology
US11562919B2 (en) 2020-02-24 2023-01-24 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology
US11796307B2 (en) 2020-02-24 2023-10-24 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip surface topography metrology
CN114295908A (zh) * 2021-12-01 2022-04-08 昆山毅普腾自动化技术有限公司 一种基于f-sru网络的纳米电子器件内部微结构快速检测方法
CN114295908B (zh) * 2021-12-01 2023-09-26 昆山毅普腾自动化技术有限公司 一种基于f-sru网络的纳米电子器件内部微结构快速检测方法

Also Published As

Publication number Publication date
TWI685725B (zh) 2020-02-21
WO2019011608A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
TWI685725B (zh) 檢測工具、微影設備、微影系統、檢測方法及器件製造方法
KR101357081B1 (ko) 오버레이 측정 장치, 리소그래피 장치, 및 이러한 오버레이 측정 장치를 이용하는 디바이스 제조 방법
KR100989377B1 (ko) 스케터로미터, 리소그래피 장치 및 포커스 분석 방법
KR101149842B1 (ko) 기판 내의 결함들을 결정하는 방법 및 리소그래피 프로세스에서 기판을 노광하기 위한 장치
KR101022395B1 (ko) 위치 측정 시스템 및 리소그래피 장치
TWI435182B (zh) 角度分辨散射計及檢查方法
US20180224753A1 (en) Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
JP5312501B2 (ja) アライメントマーク、基板、パターニングデバイスの組、およびデバイス製造方法
KR101129529B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
JP2008083032A (ja) 検査方法および装置、リソグラフィ装置、リソグラフィ処理セルおよびデバイス製造方法
JP5059916B2 (ja) リソグラフィ装置および監視方法
KR102563726B1 (ko) 검사 툴 및 검사 방법
KR101494725B1 (ko) 리소그래피 장치용 레벨 센서 배열체, 리소그래피 장치, 및 디바이스 제조방법
TW202004848A (zh) 電子束裝置、檢測工具、曝光裝置及檢測方法
TWI754835B (zh) 粒子束設備及缺陷修復方法
TWI440992B (zh) 微影裝置
US11728129B2 (en) Inspection tool and method of determining a distortion of an inspection tool
JP2007123872A (ja) リソグラフィ装置
EP3428725A1 (en) Inspection tool, lithographic apparatus, lithographic system, inspection method and device manufacturing method
TW201945863A (zh) 檢測工具、檢測方法及電腦程式產品
EP3428726A1 (en) Inspection tool, lithographic apparatus, lithographic system, inspection method and device manufacturing method
JP2010050448A (ja) 光学位置センサ、位置検出器、リソグラフィ装置、及び、相対位置測定システムに使用される可動オブジェクトの絶対位置を割り出す方法
TW201118366A (en) Scatterometer method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees