TW201902628A - A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters - Google Patents

A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters Download PDF

Info

Publication number
TW201902628A
TW201902628A TW106117936A TW106117936A TW201902628A TW 201902628 A TW201902628 A TW 201902628A TW 106117936 A TW106117936 A TW 106117936A TW 106117936 A TW106117936 A TW 106117936A TW 201902628 A TW201902628 A TW 201902628A
Authority
TW
Taiwan
Prior art keywords
particles
abrasive
porous
oxide
aggregate
Prior art date
Application number
TW106117936A
Other languages
Chinese (zh)
Inventor
詹耀祁
陳宗旗
Original Assignee
台灣鑽石工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣鑽石工業股份有限公司 filed Critical 台灣鑽石工業股份有限公司
Priority to TW106117936A priority Critical patent/TW201902628A/en
Publication of TW201902628A publication Critical patent/TW201902628A/en

Links

Abstract

A porous abrasive clusters includes a plurality of abrasives, a plurality of ceramic oxide microstructures and a plurality of pores distributed between the abrasives and the ceramic oxide microstructures. The abrasives are bonded to each other by the ceramic oxide microstructures. The pores are the space between abrasives and are not filled with the ceramic oxide microstructures.

Description

多孔性之磨料叢集體、磨削工具及其製 備方法  Porous abrasive bundle collective, grinding tool and preparation method thereof  

本發明係關於一種多孔性之磨料叢集體;關於包含多孔性之磨料叢集體的磨削工具;及關於製備多孔性之磨料叢集體之方法。 The present invention relates to a porous abrasive aggregate; to a grinding tool comprising a porous abrasive aggregate; and to a method for preparing a porous abrasive aggregate.

現有的磨削工具製程,是藉由結合劑將習知的磨料顆粒(如氧化鋁、碳化矽、氧化鋁-氧化鋯、鋁氧氮化物、二氧化鈰、次氧化硼、石榴石、燧石、鑽石、立方氮化硼(CBN)等各式可用來當作磨料的主體),固著於磨削工具的基材表面上所製備。此種磨削工具,係利用磨料顆粒具備高硬度與耐磨之特性,使之於研磨時能達到磨削效果。而作為磨料顆粒之選擇,尤以目前所知最硬的工業材料之一的鑽石為常用之研磨工具材料。 The existing grinding tool process is to use conventional abrasive particles (such as alumina, tantalum carbide, alumina-zirconia, aluminum oxynitride, ceria, borofluoride, garnet, vermiculite, etc.) by means of a bonding agent. Diamonds, cubic boron nitride (CBN), etc. can be used as the main body of the abrasive, and are fixed on the surface of the substrate of the grinding tool. This kind of grinding tool utilizes the characteristics of high hardness and wear resistance of the abrasive particles to achieve the grinding effect when grinding. As an alternative to abrasive particles, diamonds, one of the hardest industrial materials known today, are commonly used abrasive tool materials.

然而,目前習知的磨料顆粒並不適用於具有彈性的結合劑(例如:樹脂、金屬、橡膠、聚氨酯、聚氯乙烯等)。因為在研磨時,磨料所受正向壓力龐大。而磨料顆粒 之硬度大於支撐於其後的結合劑。使得磨削工具在進行研磨時,會有磨料顆粒陷(沉)入結合劑的現象產生。因此徒耗時間與能量,研磨效率不佳。 However, conventional abrasive particles are currently not suitable for elastic bonding agents (for example, resins, metals, rubbers, polyurethanes, polyvinyl chloride, etc.). Because the abrasive is subjected to a large forward pressure during grinding. The hardness of the abrasive particles is greater than the binder supported thereafter. When the grinding tool is ground, there is a phenomenon that the abrasive particles sink (sink) into the bonding agent. Therefore, it takes time and energy, and the grinding efficiency is not good.

另外,目前習知的磨料顆粒所製成的磨削工具,常會有磨料團聚分布不均的現象。因為藉由結合劑將磨料顆粒黏結於基材表面時,磨料顆粒顆粒細小,具有表面能,使得磨料顆粒產生自動聚集減少表面能的傾向。進而團聚形成硬點,不具有切削能力。 In addition, grinding tools made of conventional abrasive grains often have uneven distribution of abrasive agglomeration. Since the abrasive particles are finely bonded to the surface of the substrate by the bonding agent, the abrasive particles are fine and have surface energy, so that the abrasive particles have a tendency to automatically aggregate to reduce surface energy. In turn, agglomeration forms a hard spot and does not have cutting ability.

再者,目前習知的磨削工具中,磨料顆粒(如鑽石)之替換性差。因為磨料顆粒在進行研磨時,其研磨表面會被磨成平面,以至於幾乎沒有削切能力,從而影響研磨之效率。 Moreover, in conventional grinding tools, abrasive particles (such as diamonds) are poorly substituted. Because the abrasive particles are ground while grinding, the abrasive surface is ground to such an extent that there is little cutting ability, which affects the efficiency of the grinding.

本發明之一態樣係提供一種多孔性之磨料叢集體,其包含磨料顆粒、陶瓷氧化物微結構以及分佈在磨料顆粒與陶瓷氧化物微結構之間的孔隙,磨料顆粒係藉由陶瓷氧化物微結構而相互黏結,其中陶瓷氧化物微結構未填滿磨料顆粒之間的空間而形成孔隙。 One aspect of the present invention provides a porous abrasive aggregate comprising abrasive particles, a ceramic oxide microstructure, and pores distributed between the abrasive particles and the ceramic oxide microstructure, the abrasive particles being ceramic oxide The microstructures are bonded to each other, wherein the ceramic oxide microstructure does not fill the space between the abrasive particles to form pores.

在本發明某些實施方式中,以多孔性之磨料叢集體總體積為基準,孔隙為5~80體積%。 In some embodiments of the invention, the porosity is from 5 to 80% by volume based on the total volume of the porous abrasive aggregate.

在本發明某些實施方式中,磨料顆粒係選自由氧化鋁顆粒、碳化矽顆粒、氧化鋁-氧化鋯顆粒、鋁氧氮化物顆粒、二氧化鈰顆粒、次氧化硼顆粒、石榴石顆粒、燧石 顆粒、鑽石顆粒、立方氮化硼(CBN)顆粒以及上述之組合所組成之群組。 In certain embodiments of the invention, the abrasive particles are selected from the group consisting of alumina particles, cerium carbide particles, alumina-zirconia particles, aluminum oxynitride particles, cerium oxide particles, boron oxynitride particles, garnet particles, vermiculite A group of particles, diamond particles, cubic boron nitride (CBN) particles, and combinations of the foregoing.

在本發明某些實施方式中,陶瓷氧化物微結構包含二氧化矽、氧化鋯、氧化鎂、氧化鈣、氧化鈉、氧化鉀、二氧化鈦、氧化鐵、氧化鋁、氧化硼、氧化鈰或上述之組合。 In certain embodiments of the invention, the ceramic oxide microstructure comprises ceria, zirconia, magnesia, calcium oxide, sodium oxide, potassium oxide, titanium dioxide, iron oxide, aluminum oxide, boron oxide, cerium oxide or the like combination.

在本發明某些實施方式中,磨料叢集體粒徑為70-220微米。 In certain embodiments of the invention, the abrasive compact has a collective particle size of from 70 to 220 microns.

本發明之另一態樣係提供一種磨削工具,其包含基材、磨料複合層,磨料複合層包含前述之多孔性之磨料叢集體以及固化結合劑,磨料複合層配置在基材表面上,多孔性之磨料叢集體分散於固化結合劑中。 Another aspect of the present invention provides a grinding tool comprising a substrate, an abrasive composite layer, the abrasive composite layer comprising the porous abrasive aggregate described above, and a curing binder disposed on a surface of the substrate, The porous abrasive bundle is collectively dispersed in the cured binder.

在本發明某些實施方式中,固化結合劑係有彈性的。 In certain embodiments of the invention, the cured binding agent is elastic.

在本發明某些實施方式中,固化結合劑包含樹脂、金屬、橡膠、聚氨酯或聚氯乙烯。 In certain embodiments of the invention, the cured bonding agent comprises a resin, a metal, a rubber, a polyurethane or a polyvinyl chloride.

本發明之另一態樣係提供一種製備多孔性之磨料叢集體之方法,包含下列步驟:(a)混合磨料顆粒、陶瓷氧化物顆粒以及高分子黏結劑,而形成混合物顆粒;(b)將混合物顆粒置入300℃至900℃之環境中進行燒結,以移除混合物顆粒中的高分子黏結劑,並使陶瓷氧化物顆粒至少局部熔融而連結磨料顆粒,而形成多孔性之磨料叢集體。 Another aspect of the present invention provides a method of preparing a porous abrasive aggregate comprising the steps of: (a) mixing abrasive particles, ceramic oxide particles, and a polymeric binder to form a mixture of particles; (b) The mixture particles are placed in an environment of 300 ° C to 900 ° C for sintering to remove the polymer binder in the mixture particles, and the ceramic oxide particles are at least partially melted to join the abrasive particles to form a porous abrasive aggregate.

在本發明某些實施方式中,步驟(a)包含使用一乾式造粒製程或濕式造粒製程。 In certain embodiments of the invention, step (a) comprises using a dry granulation process or a wet granulation process.

100‧‧‧基材 100‧‧‧Substrate

200‧‧‧磨料複合層 200‧‧‧Abrasive composite layer

210‧‧‧多孔性之磨料叢集體 210‧‧‧Porous abrasive aggregates

211‧‧‧磨料顆粒 211‧‧‧ abrasive particles

211a‧‧‧沒有削切能力之磨料顆粒 211a‧‧‧Abrasive particles without cutting ability

212‧‧‧孔隙 212‧‧‧ pores

213‧‧‧陶瓷氧化物微結構 213‧‧‧Ceramic oxide microstructure

213a‧‧‧斷裂的陶瓷氧化物微結構 213a‧‧‧Fractured ceramic oxide microstructure

220‧‧‧固化結合劑 220‧‧‧Curing bonding agent

310~320‧‧‧步驟 310~320‧‧‧Steps

第1圖為本發明實施例之多孔性之磨料叢集體之立體示意圖。 Fig. 1 is a perspective view showing the porous abrasive aggregate of the embodiment of the present invention.

第2圖為本發明實施例之多孔性之磨料叢集體製備方法流程圖。 Fig. 2 is a flow chart showing a method for collectively preparing a porous abrasive aggregate according to an embodiment of the present invention.

第3圖為本發明實施例之磨削工具之立體示意圖。 Figure 3 is a perspective view of a grinding tool according to an embodiment of the present invention.

第4A圖與第4B圖為本發明實施例之多孔性之磨料叢集體自生示意圖。 4A and 4B are schematic diagrams showing the collective self-generation of porous abrasive aggregates according to an embodiment of the present invention.

為了使本發明揭示內容的敘述更加詳盡與完備,下文係舉實施例配合所附圖式作詳細說明本發明之實施態樣與具體實施例;但所描述的具體實施例僅僅用以解釋本發明,並不用來限定本發明。在全篇說明書與申請專利範圍所使用之用詞(terms),通常具有每個用詞使用在此領域中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。 In order to make the description of the present invention more detailed and complete, the embodiments of the present invention are described in detail with reference to the accompanying drawings. It is not intended to limit the invention. The terms used throughout the specification and the scope of the patent application usually have the usual meaning of each term used in the field. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide additional guidance to those skilled in the art in the description of the disclosure.

多孔性之磨料叢集體 Porous abrasive cluster

請參考第1圖,其為本發明實施例之多孔性之磨料叢集體210之立體示意圖。多孔性之磨料叢集體210包含複數個磨料顆粒211、複數個陶瓷氧化物微結構213以及分佈在磨料顆粒211與陶瓷氧化物微結構213之間的複數個孔隙212。磨料顆粒211係藉由陶瓷氧化物微結構213而相互黏 結,其中陶瓷氧化物微結構213未填滿磨料顆粒211之間的空間而形成孔隙212。 Please refer to FIG. 1 , which is a perspective view of a porous abrasive aggregate 210 of an embodiment of the present invention. The porous abrasive compact collective 210 includes a plurality of abrasive particles 211, a plurality of ceramic oxide microstructures 213, and a plurality of pores 212 distributed between the abrasive particles 211 and the ceramic oxide microstructures 213. The abrasive particles 211 are bonded to each other by a ceramic oxide microstructure 213 which does not fill the space between the abrasive particles 211 to form the pores 212.

在本發明某些實施方式中,以多孔性之磨料叢集體總體積為基準,孔隙為5~80體積%,例如為10體積%、20體積%、30體積%、40體積%、50體積%、60體積%、70體積%或75體積%。若孔隙的體積百分比大於80%,則多孔性之磨料叢集體的機械強度不足,但當孔隙的體積百分比小於某一數值時,則無法達成本發明的某些技術效果,下文將更詳細敘述。因此根據本發明某些實施方式,孔隙的體積百分比存在一個適當的範圍。 In certain embodiments of the present invention, the pores are 5 to 80% by volume based on the total volume of the porous abrasive aggregate, for example, 10% by volume, 20% by volume, 30% by volume, 40% by volume, and 50% by volume. 60% by volume, 70% by volume or 75% by volume. If the volume percentage of the pores is more than 80%, the mechanical strength of the porous abrasive aggregate is insufficient, but when the volume percentage of the pores is smaller than a certain value, some technical effects of the present invention cannot be achieved, which will be described in more detail below. Thus, according to some embodiments of the invention, there is a suitable range of volume percentages of pores.

在本發明某些實施方式中,磨料顆粒之材料選自由氧化鋁顆粒、碳化矽顆粒、氧化鋁-氧化鋯顆粒、鋁氧氮化物顆粒、二氧化鈰顆粒、次氧化硼顆粒、石榴石顆粒、燧石顆粒、鑽石顆粒、立方氮化硼(CBN)顆粒以及上述之組合所組成之群組。 In certain embodiments of the invention, the material of the abrasive particles is selected from the group consisting of alumina particles, cerium carbide particles, alumina-zirconia particles, aluminum oxynitride particles, cerium oxide particles, boron oxynitride particles, garnet particles, A group of vermiculite particles, diamond particles, cubic boron nitride (CBN) particles, and combinations thereof.

在本發明某些實施方式中,陶瓷氧化物微結構包含二氧化矽、氧化鋯、氧化鎂、氧化鈣、氧化鈉、氧化鉀、二氧化鈦、氧化鐵、氧化鋁、氧化硼、氧化鈰或上述之組合。 In certain embodiments of the invention, the ceramic oxide microstructure comprises ceria, zirconia, magnesia, calcium oxide, sodium oxide, potassium oxide, titanium dioxide, iron oxide, aluminum oxide, boron oxide, cerium oxide or the like combination.

在本發明某些實施方式中,磨料顆粒之粒徑為1~100微米,較佳為80微米以下,更佳為60微米以下,再更佳為40微米以下。本說明書中「粒徑」係指相當球徑,即具有與顆粒同體積之圓球直徑,具體上係指經雷射繞射/散射法所測量之粒徑。 In some embodiments of the invention, the abrasive particles have a particle size of from 1 to 100 microns, preferably less than 80 microns, more preferably less than 60 microns, and still more preferably less than 40 microns. In the present specification, "particle size" means a substantially spherical diameter, that is, a sphere having the same volume as the particle, specifically, a particle diameter measured by a laser diffraction/scattering method.

在本發明某些實施方式中,多孔性之磨料叢集體粒徑為10~220微米,例如為20微米、30微米、40微米、 50微米、60微米、70微米、80微米、90微米、100微米、110微米、120微米、130微米、140微米、150微米、160微米、170微米、180微米、190微米、200微米或210微米。 In certain embodiments of the invention, the porous abrasive compact has a collective particle size of 10 to 220 microns, such as 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100. Micro, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 or 210 microns.

多孔性之磨料叢集體製備方法 Porous abrasive aggregate collective preparation method

請參考第2圖,其為本發明實施例之多孔性之磨料叢集體製備方法流程圖。在本發明某些實施方式中,多孔性之磨料叢集體製備方法包含下列步驟:(a)混合複數個磨料顆粒、複數個陶瓷氧化物顆粒以及高分子黏結劑,而形成至少一混合物顆粒;(b)將混合物顆粒置入300℃至900℃之環境中進行燒結,以移除混合物顆粒中的高分子黏結劑,並使陶瓷氧化物顆粒至少局部熔融而連結磨料顆粒,而形成一多孔性之磨料叢集體。 Please refer to FIG. 2, which is a flow chart of a method for collectively preparing porous abrasive aggregates according to an embodiment of the present invention. In some embodiments of the present invention, the porous abrasive aggregate collective preparation method comprises the steps of: (a) mixing a plurality of abrasive particles, a plurality of ceramic oxide particles, and a polymer binder to form at least one mixture particle; b) placing the mixture particles in an environment of 300 ° C to 900 ° C for sintering to remove the polymer binder in the mixture particles, and at least partially melting the ceramic oxide particles to bond the abrasive particles to form a porosity The abrasive aggregates collective.

在本發明某些實施方式中,在上述步驟(a)中,陶瓷氧化物顆粒之平均粒徑大致上接近磨料顆粒之平均粒徑。例如,陶瓷氧化物顆粒之平均粒徑為磨料顆粒之平均粒徑的±80%、±50%、或±20%,藉由陶瓷氧化物微結構與磨料顆粒尺寸相近,從而使磨料顆粒與陶瓷氧化物顆粒具有較好的分散效果。 In certain embodiments of the invention, in the above step (a), the average particle size of the ceramic oxide particles is substantially close to the average particle size of the abrasive particles. For example, the average particle size of the ceramic oxide particles is ±80%, ±50%, or ±20% of the average particle size of the abrasive particles, and the ceramic oxide microstructure is similar to the abrasive grain size, thereby making the abrasive particles and ceramics The oxide particles have a good dispersion effect.

在本發明某些實施方式中,混合物顆粒中的磨料顆粒與陶瓷氧化物微結構的體積比為9:1至1:9,例如為8:2、7:3、6:4、5:5、4:6、3:7或2:8。 In certain embodiments of the invention, the volume ratio of abrasive particles to ceramic oxide microstructures in the mixture particles is from 9:1 to 1:9, such as 8:2, 7:3, 6:4, 5:5 4:6, 3:7 or 2:8.

在本發明某些實施方式中,混合物顆粒包含1~40體積%的高分子黏結劑,例如為5體積%、10體積%、15體積%、20體積%、25體積%、30體積%或35體積%。 In certain embodiments of the invention, the mixture particles comprise from 1 to 40% by volume of a polymeric binder, for example, 5% by volume, 10% by volume, 15% by volume, 20% by volume, 25% by volume, 30% by volume, or 35% volume%.

在本發明某些實施方式中,上述步驟(a)所述形 成至少一混合物顆粒包含使用乾式造粒製程或濕式造粒製程而形成多個混合物顆粒。所述濕式造粒製程係指得添加「溶劑」於混合製程中,從而使磨料顆粒與陶瓷氧化物微結構具有較好的分散效果。在一實施例中,上述溶劑可例如為水或能與水互溶的溶劑,在造粒製程中可藉由添加水使其混合效果更佳。相較於其他習知的黏結劑(如金屬、樹脂)等,本發明某些實施方式之步驟(a)具有得添加水之特點。 In certain embodiments of the invention, forming at least one of the mixture particles as described in step (a) above comprises forming a plurality of mixture particles using a dry granulation process or a wet granulation process. The wet granulation process means that a "solvent" is added to the mixing process, so that the abrasive particles and the ceramic oxide microstructure have a better dispersion effect. In one embodiment, the solvent may be, for example, water or a solvent miscible with water, and the mixing effect may be better by adding water in the granulation process. In contrast to other conventional binders (e.g., metals, resins), etc., step (a) of certain embodiments of the present invention is characterized by the addition of water.

在本發明某些實施方式中,於濕式造粒製程中得添加「分散劑」,從而使磨料顆粒與陶瓷氧化物微結構具有較好的分散效果。適合的「分散劑」為水溶性分散劑。 In some embodiments of the present invention, a "dispersant" is added to the wet granulation process to provide a better dispersion of the abrasive particles and the ceramic oxide microstructure. Suitable "dispersants" are water soluble dispersants.

在本發明某些實施方式中,於乾式造粒製程中的高分子黏結劑包含糊精、澱粉、動物蛋白質膠、其它型式的膠以及其混合物。在某些實施例中,高分子黏結劑可為水溶性材料。 In certain embodiments of the invention, the polymeric binder in the dry granulation process comprises dextrin, starch, animal protein glue, other types of gums, and mixtures thereof. In certain embodiments, the polymeric binder can be a water soluble material.

在本發明某些實施方式中,於濕式造粒製程中的高分子黏結劑係有機材料,尤其係聚合物材料,例如聚酯、聚丙烯醯胺、聚丙烯酸、聚丙烯酸酯、聚乙烯、聚乙烯醇、聚顺丁烯二酸酐、聚乙二醇、環氧樹脂、酚醛樹脂、聚胺基甲酸酯、聚醯胺、聚甲基丙烯酸酯、聚氯乙烯、聚矽氧烷、矽酮、乙酸纖維素、硝酸纖維素、天然橡膠、糊精、澱粉、動物蛋白質膠、其它型式的膠以及其混合物。 In some embodiments of the present invention, the polymer binder in the wet granulation process is an organic material, especially a polymer material such as polyester, polypropylene decylamine, polyacrylic acid, polyacrylate, polyethylene, Polyvinyl alcohol, poly maleic anhydride, polyethylene glycol, epoxy resin, phenolic resin, polyurethane, polyamine, polymethacrylate, polyvinyl chloride, polyoxyalkylene, hydrazine Ketones, cellulose acetate, nitrocellulose, natural rubber, dextrin, starch, animal protein glue, other types of gums, and mixtures thereof.

在本發明之其他部分實施例中,上述步驟(b)所述燒結溫度為350℃至850℃,例如為400℃、500℃、600℃、700℃或800℃。 In other embodiments of the present invention, the sintering temperature in the above step (b) is from 350 ° C to 850 ° C, for example, 400 ° C, 500 ° C, 600 ° C, 700 ° C or 800 ° C.

在本發明某些實施方式中,藉由高分子黏結劑 之添加,高分子黏結劑會因燒結時的高溫分解而自然產生孔隙。因此,可藉由控制混合物顆粒中的高分子黏結劑含量,進而控制多孔性之磨料叢集體的孔隙體積%。 In some embodiments of the present invention, by the addition of a polymer binder, the polymer binder naturally generates pores due to pyrolysis during sintering. Therefore, the pore volume % of the porous abrasive aggregate can be controlled by controlling the content of the polymer binder in the mixture particles.

磨削工具 Grinding tool

請參考第3圖,其為本發明實施例之磨削工具之立體示意圖。磨削工具包含基材100以及磨料複合層200,磨料複合層200包含複數個多孔性之磨料叢集體210以及固化結合劑220。多孔性之磨料叢集體210分散於固化結合劑220中。磨料複合層200黏結在基材100表面上。 Please refer to FIG. 3, which is a perspective view of a grinding tool according to an embodiment of the present invention. The grinding tool comprises a substrate 100 and an abrasive composite layer 200 comprising a plurality of porous abrasive clusters 210 and a cured bonding agent 220. The porous abrasive aggregate 210 is dispersed in the cured binder 220. The abrasive composite layer 200 is bonded to the surface of the substrate 100.

在本發明某些實施方式中,磨料複合層200中可進一步包含其他磨料顆粒,例如氧化鋁顆粒、碳化矽顆粒、氧化鋁-氧化鋯顆粒、鋁氧氮化物顆粒、二氧化鈰顆粒、次氧化硼顆粒、石榴石顆粒、燧石顆粒、鑽石顆粒、或立方氮化硼(CBN)顆粒。 In some embodiments of the present invention, the abrasive composite layer 200 may further comprise other abrasive particles, such as alumina particles, cerium carbide particles, alumina-zirconia particles, aluminum oxynitride particles, cerium oxide particles, hypoxia. Boron particles, garnet particles, vermiculite particles, diamond particles, or cubic boron nitride (CBN) particles.

在本發明某些實施方式中,磨料複合層200中可包含孔隙微通道,這些孔隙微通道分佈在固化結合劑220中。「孔隙微通道」可用以提供研磨流體(如冷卻劑)通道以移除研磨過程產生的熱量。因此,孔隙微通道可避免研磨環境的溫度升高,並為潤滑劑提供通道,降低運動的磨料與工件表面之間的摩擦,並提高磨削與摩損之比。此外,孔隙微通道還能夠對於從被研磨物體上脫落的物質(如金屬碎片和碎屑)提供容納空間,從而避免磨削工具被填塞,導致磨削工具的工作效率降低。 In certain embodiments of the invention, the pores of the abrasive composite layer 200 may comprise pore microchannels distributed in the cured binder 220. The "porosity microchannel" can be used to provide a grinding fluid (such as a coolant) channel to remove heat generated by the grinding process. Thus, the pore microchannels avoid temperature rise in the abrasive environment and provide a path for the lubricant, reducing friction between the moving abrasive and the workpiece surface, and increasing the ratio of grinding to wear. In addition, the aperture microchannels provide space for materials that are detached from the object being ground, such as metal fragments and debris, thereby preventing the grinding tool from being stuffed, resulting in reduced efficiency of the grinding tool.

在本發明某些實施方式中,磨料複合層200黏結在基材100表面上係藉由環氧樹脂、酚醛樹脂或本技術領 域中習知的任何其他黏結劑進行黏結。 In certain embodiments of the invention, the abrasive composite layer 200 is bonded to the surface of the substrate 100 by epoxy, phenolic resin or any other bonding agent known in the art.

在本發明某些實施方式中,固化結合劑220實質上具有彈性,例如由樹脂、金屬、橡膠、聚氨酯或聚氯乙烯所製成。在某些實施例中,固化結合劑的硬度係小於磨料顆粒的硬度。在另外某些實施方式中,固化結合劑220為剛性體,例如由陶瓷材料或其他剛性材料所製成。因此,本發明實施方式所述的多孔性之磨料叢集體可適用在彈性的固化結合劑或剛性的固化結合劑。 In certain embodiments of the invention, the cured bonding agent 220 is substantially elastic, such as made of resin, metal, rubber, polyurethane, or polyvinyl chloride. In certain embodiments, the hardness of the cured binder is less than the hardness of the abrasive particles. In still other embodiments, the cured bonding agent 220 is a rigid body, such as made of a ceramic material or other rigid material. Therefore, the porous abrasive aggregate according to the embodiment of the present invention can be applied to an elastic curing binder or a rigid curing binder.

在本發明某些實施方式中,基材100之材料選自鋁、鐵、樹脂或本技術領域中習知的任何其他基材材料。 In certain embodiments of the invention, the material of substrate 100 is selected from the group consisting of aluminum, iron, resin, or any other substrate material known in the art.

在本發明某些實施方式中,以磨料複合層總體積為基準,多孔性之磨料叢集體體積率為10~60%,例如為20%、30%、40%或50%。 In certain embodiments of the invention, the porous abrasive compact collective volume fraction is from 10 to 60%, such as 20%, 30%, 40%, or 50%, based on the total volume of the abrasive composite layer.

在本發明某些實施方式中,以磨料複合層總體積為基準,固化結合劑體積率為10~60%,例如為20%、30%、40%或50%。 In certain embodiments of the invention, the solidified binder volume fraction is from 10 to 60%, such as 20%, 30%, 40%, or 50%, based on the total volume of the abrasive composite layer.

在本發明某些實施方式中,以磨料複合層總體積為基準,其他磨料顆粒體積率為10~40%,例如為15%、20%、25%、30%或35%。 In certain embodiments of the invention, other abrasive particles have a volume fraction of from 10 to 40%, such as 15%, 20%, 25%, 30%, or 35%, based on the total volume of the abrasive composite layer.

在本發明某些實施方式中,以磨料複合層總體積為基準,孔隙微通道體積率為10~60%,例如為15%、20%、25%、30%、35%、40%、45%、50%或55%。 In some embodiments of the present invention, the pore microchannel volume fraction is 10 to 60% based on the total volume of the abrasive composite layer, for example, 15%, 20%, 25%, 30%, 35%, 40%, 45. %, 50% or 55%.

以下,藉由說明本發明之實施例及比較例,來對本發明進行詳細說明。然而,本發明並未受限於以下之實施例。 Hereinafter, the present invention will be described in detail by explaining examples and comparative examples of the invention. However, the invention is not limited to the following examples.

實施例1:多孔性之磨料叢集體之製備 Example 1: Preparation of porous abrasive aggregates

將9.57克的RVM(Resin Vitrified Metal)鑽石磨料8/16μm(市售)以及12.43克的陶瓷氧化物微結構放入混合罐中使用三維混合機均勻混合3小時。於混合物中添加聚乙二醇(Sigma-Aldrich)水溶液1.43克並製作為球體狀。將球體置於氧化鋁夾缽中放入高溫燒結爐中進行燒結,燒結溫度為650℃,持溫45分鐘後自然冷卻。使用#325篩網將經燒結之球體過篩後即完成叢集球體製作。 9.57 g of RVM (Resin Vitrified Metal) diamond abrasive 8/16 μm (commercially available) and 12.43 g of the ceramic oxide microstructure were placed in a mixing tank and uniformly mixed for 3 hours using a three-dimensional mixer. To the mixture, 1.43 g of a polyethylene glycol (Sigma-Aldrich) aqueous solution was added and prepared into a spherical shape. The spheres were placed in an alumina crucible and placed in a high-temperature sintering furnace for sintering at a sintering temperature of 650 ° C, and were naturally cooled after holding for 45 minutes. The clustered spheres were fabricated by sieving the sintered spheres using a #325 screen.

實施例2:本發明鑽石砂輪之製備 Example 2: Preparation of Diamond Wheel of the Invention

將實施例1的多孔性之磨料叢集體作為本發明鑽石砂輪之鑽石磨料,將多孔性之磨料叢集體、酚醛樹脂(固化結合劑)、碳化矽磨料和孔隙材料均勻混合,並將混合物均勻填入模具,之後進行冷壓、熱壓及固化製程,最後將固化後之磨料層取出黏結於基材上。最終製得之鑽石砂輪的重要參數如下:多孔性之磨料叢集體體積率為25%,酚醛樹脂體積率為30%,碳化矽磨料體積率為15%,孔隙體積率30%。砂輪尺寸為外徑85mm、厚度5mm,型式為11A2。試驗參數:砂輪尺寸:外徑85mm;研磨層厚度:5mm;研削工件:碳化鎢KG3。(春保森拉天時);研磨機:工具磨床;切削液:水溶性切削液;砂輪線速度:20m/s;床台速度:4.5m/min;進刀量:0.005mm/pass;工件去除量:1000mm3。研削測試評價,結果紀載於表一。 The porous abrasive aggregate of Example 1 is used as the diamond abrasive of the diamond grinding wheel of the present invention, and the porous abrasive aggregate, the phenolic resin (curing binder), the cerium carbide abrasive and the pore material are uniformly mixed, and the mixture is uniformly filled. After entering the mold, the cold pressing, hot pressing and curing processes are carried out, and finally the cured abrasive layer is taken out and bonded to the substrate. The important parameters of the finally obtained diamond grinding wheel are as follows: the volume fraction of the porous abrasive aggregate is 25%, the volume ratio of the phenolic resin is 30%, the volume fraction of the cerium carbide is 15%, and the volume fraction of the pores is 30%. The grinding wheel has an outer diameter of 85 mm and a thickness of 5 mm, and the type is 11 A2. Test parameters: grinding wheel size: outer diameter 85mm; grinding layer thickness: 5mm; grinding workpiece: tungsten carbide KG3. (Spring Baosen La Shitian); Grinding machine: tool grinding machine; cutting fluid: water-soluble cutting fluid; grinding wheel linear speed: 20m / s; bed speed: 4.5m / min; feed amount: 0.005mm / pass; Removal amount: 1000mm 3 . Grinding test evaluation, the results are shown in Table 1.

比較例1:一般鑽石砂輪之製備 Comparative Example 1: Preparation of a general diamond grinding wheel

使用RVM(Resin Vitrified Metal)鑽石磨料 8/16μm(市售)作為鑽石砂輪中的鑽石磨料,將鑽石磨料、酚醛樹脂、碳化矽磨料和孔隙材料均勻混合,並將混合物均勻填入模具,之後進行冷壓、熱壓燒結,最後將燒結後之磨料層取出黏結於基材上。最終製得之一般鑽石砂輪的重要參數如下::鑽石磨料體積率為25%,酚醛樹脂體積率為30%,碳化矽磨料體積率為15%,孔隙體積率30%。砂輪尺寸為外徑85mm、厚度5mm,型式為11A2。試驗參數:砂輪尺寸:外徑85mm;研磨層厚度:5mm;研削工件:碳化鎢KG3。(春保森拉天時);研磨機:工具磨床;切削液:水溶性切削液;砂輪線速度:20m/s;床台速度:4.5m/min;進刀量:0.005mm/pass;工件去除量:1000mm3。研削測試評價,結果紀載於表一。 RVM (Resin Vitrified Metal) diamond abrasive 8/16 μm (commercially available) was used as the diamond abrasive in the diamond grinding wheel, and the diamond abrasive, phenolic resin, cerium carbide abrasive and pore material were uniformly mixed, and the mixture was uniformly filled into the mold, followed by Cold pressing, hot pressing sintering, and finally the sintered abrasive layer is taken out and bonded to the substrate. The important parameters of the general diamond grinding wheel finally obtained are as follows: the diamond abrasive volume fraction is 25%, the phenolic resin volume fraction is 30%, the carbonized niobium abrasive volume fraction is 15%, and the pore volume fraction is 30%. The grinding wheel has an outer diameter of 85 mm and a thickness of 5 mm, and the type is 11 A2. Test parameters: grinding wheel size: outer diameter 85mm; grinding layer thickness: 5mm; grinding workpiece: tungsten carbide KG3. (Spring Baosen La Shitian); Grinding machine: tool grinding machine; cutting fluid: water-soluble cutting fluid; grinding wheel linear speed: 20m / s; bed speed: 4.5m / min; feed amount: 0.005mm / pass; Removal amount: 1000mm 3 . Grinding test evaluation, the results are shown in Table 1.

作為評價鑽石砂輪的方法,可從研削測試結果中的研削比、主軸負載值變化量、工件表面粗糙度三者評比。所述「研削比」,係指工件去除體積除以砂輪消耗體積;所述「主軸負載值變化量」,係指研磨機主軸之基礎電流值與試驗過程中主軸電流值之差值。一般馬達轉動會產生主軸負載(基礎電流)。而砂輪進行研磨時,因負載提高的關係, 電流會提高。故主軸負載值變化量越小,代表切削力越好;所述「工件表面粗糙度」,係指使用非接觸式表面粗糙度儀進行量測實驗後工件表面粗糙度。 As a method for evaluating a diamond grinding wheel, the grinding ratio, the amount of change in the spindle load value, and the surface roughness of the workpiece can be evaluated from the results of the grinding test. The “grinding ratio” refers to the workpiece removal volume divided by the grinding wheel consumption volume; the “spindle load value variation amount” refers to the difference between the basic current value of the grinding machine main shaft and the spindle current value during the test. Generally, the rotation of the motor produces a spindle load (base current). When the grinding wheel is ground, the current is increased due to the increased load. Therefore, the smaller the amount of change in the spindle load value, the better the cutting force; the "surface roughness of the workpiece" refers to the surface roughness of the workpiece after the measurement using a non-contact surface roughness meter.

由表一可知,實施例2的研削比為67.8,較比較例1的13.6高,實施例2的主軸負載值變化量為0.31(A),較比較例1的0.65(A)低,實施例2的工件表面粗糙度(Ra/Rz)為40.4(nm)/358.7(nm),比較例的工件表面粗糙度(Ra/Rz)則為89.7(nm)/1040.3(nm),顯示出本發明的鑽石砂輪具有良好的切削性能。 As can be seen from Table 1, the grinding ratio of Example 2 was 67.8, which was higher than 13.6 of Comparative Example 1, and the amount of change in the spindle load value of Example 2 was 0.31 (A), which was lower than 0.65 (A) of Comparative Example 1, and Examples The workpiece surface roughness (Ra/Rz) of 2 was 40.4 (nm) / 358.7 (nm), and the surface roughness (Ra / Rz) of the workpiece of the comparative example was 89.7 (nm) / 1040.3 (nm), showing the present invention. The diamond wheel has good cutting performance.

由上述發明實施例可知,在此揭露的多孔性之磨料叢集體具有下述特點。當使用彈性的固化結合劑製造磨削工具,此磨削工具於研磨時,具有較大體積的多孔性之磨料叢集體,即使受正向壓力龐大,但因埋於結合劑層內之多孔性之磨料叢集體部分接觸面積較大之緣故,能有效分散所受壓力。從而支撐在外進行研磨之部分,避免磨料陷(沉)入結合劑層的現象,因此解決習知技術中彈性結合劑無法使用大部分磨料顆粒的問題。另一方面,作為磨料顆粒之諸如立方氮化硼(CBN)、鑽石等材料比重較大,故選擇添加比重接近磨料顆粒之陶瓷氧化物顆粒作為其間的結合材料,而形成陶瓷氧化物微結構。在某些實施例中,陶瓷氧化物顆粒比重為磨料顆粒比重的±50%、±30%、或±10%。藉由使磨料顆粒與結合劑比重接近,能於混合兩者時時,有效分散磨料顆粒與陶瓷氧化物顆粒,以解決磨料分布不均勻的問題。 As can be seen from the above-described embodiments of the invention, the porous abrasive aggregates disclosed herein have the following characteristics. When a grinding tool is manufactured using an elastic curing bonding agent, the grinding tool has a large volume of porous abrasive aggregate during grinding, and the porosity is buried in the bonding agent layer even if the forward pressure is large. The abrasive aggregate has a large contact area, which can effectively disperse the pressure. Thereby, the portion which is ground outside is supported, and the phenomenon that the abrasive is sunk into the binder layer is avoided, thereby solving the problem that the elastic binder cannot use most of the abrasive particles in the prior art. On the other hand, as abrasive grains such as cubic boron nitride (CBN), diamonds and the like have a large specific gravity, ceramic oxide particles having a specific gravity close to that of the abrasive grains are selected as a bonding material therebetween to form a ceramic oxide microstructure. In certain embodiments, the ceramic oxide particles have a specific gravity of ±50%, ±30%, or ±10% of the specific gravity of the abrasive particles. By making the abrasive particles close to the specific gravity of the binder, the abrasive particles and the ceramic oxide particles can be effectively dispersed when the two are mixed to solve the problem of uneven distribution of the abrasive.

應理解的是,本發明之多孔性之磨料叢集體, 其在進行研磨時,會產生「自生」現象。請參考第4A圖與第4B圖,其為本發明實施例之多孔性之磨料叢集體自生示意圖。「自生」係指對於被磨成平面,而沒有削切能力之磨料顆粒211a(如第4A圖所示),會因黏結其之陶瓷氧化物微結構213斷裂而脫落(如第4B圖所示)。因此,讓未經研磨之完整的磨料顆粒211出現,從而達到良好的磨料替換性。 It should be understood that the porous abrasive aggregates of the present invention produce a "self-generated" phenomenon when subjected to grinding. Please refer to FIG. 4A and FIG. 4B , which are schematic diagrams of collective self-generation of porous abrasive aggregates according to an embodiment of the present invention. "Self-generated" means that the abrasive particles 211a (as shown in Fig. 4A) that are ground to a flat surface without the ability to be cut may fall off due to the fracture of the ceramic oxide microstructure 213 bonded thereto (as shown in Fig. 4B). ). Therefore, the unabrasive intact abrasive particles 211 are allowed to appear, thereby achieving good abrasive replacement.

在本發明某些實施方式中,「自生」現象,受多孔性之磨料叢集體中孔隙比率之影響。如前文所述,當孔隙的體積百分率小於某一數值時,則無法達成本發明的某些技術效果。具體的說,當孔隙的體積百分率小於某一數值時,則多孔性之磨料叢集體整體的機械強度提高,可能導致在切削及/或研磨製程中不會發生上述的「自生」現象。因此,當多孔性之磨料叢集體的孔隙的體積百分比小於例如10體積%或20體積%時,則可能無法具有「自生」現象。應理解的是,能夠發上述「自生」的適當孔隙體積百分率範圍與陶瓷氧化物材料有關。根據本發明的多個實施方式,多孔性之磨料叢集體中孔隙的體積百分率為約20-70體積%、約30-60體積%、約20-50體積%或約40-70體積%。 In certain embodiments of the invention, the "self-generated" phenomenon is affected by the porosity ratio in the porous abrasive aggregate. As described above, when the volume fraction of the pores is smaller than a certain value, some of the technical effects of the present invention cannot be achieved. Specifically, when the volume fraction of the pores is less than a certain value, the overall mechanical strength of the porous abrasive aggregate is increased, which may cause the above-mentioned "self-generated" phenomenon to not occur in the cutting and/or grinding process. Therefore, when the volume percentage of the pores of the porous abrasive aggregate is less than, for example, 10% by volume or 20% by volume, there may be no "self-generated" phenomenon. It should be understood that the range of suitable pore volume percentages capable of producing the above "self-generated" is related to ceramic oxide materials. According to various embodiments of the present invention, the volume fraction of pores in the porous abrasive compact is about 20-70% by volume, about 30-60% by volume, about 20-50% by volume, or about 40-70% by volume.

綜上所述,本發明之多孔性之磨料叢集體,其可藉由結合劑材料黏附至磨削工具的基材表面上,使得磨削工具在執行研磨加工時,進行研磨之磨料可以得到良好的支撐,並且具有好的自銳、自生、切削性能,且使所製得的磨削工具壽命得以延長、工作表面品質佳。 In summary, the porous abrasive aggregate of the present invention can be adhered to the surface of the substrate of the grinding tool by the bonding material, so that the grinding tool can perform the grinding while performing the grinding process. Support, and has good self-sharpening, self-generated, cutting performance, and the life of the obtained grinding tool is extended, and the working surface quality is good.

應了解,上述各實施例僅為示例性質,並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾,因此本發明之保護範圍當以後附之申請專利範圍所界定為準。 It is to be understood that the above-described embodiments are merely exemplary in nature and are not intended to limit the invention, and that the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is defined as defined in the scope of the patent application.

Claims (10)

一種多孔性之磨料叢集體,其包含複數個磨料顆粒、複數個陶瓷氧化物微結構以及分佈在該些磨料顆粒與該些陶瓷氧化物微結構之間的複數個孔隙,該些磨料顆粒係藉由該些陶瓷氧化物微結構而相互黏結,其中該陶瓷氧化物微結構未填滿該些磨料顆粒之間的空間而形成該些孔隙。  A porous abrasive aggregate comprising a plurality of abrasive particles, a plurality of ceramic oxide microstructures, and a plurality of pores distributed between the abrasive particles and the ceramic oxide microstructures, the abrasive particles being Bonded to each other by the ceramic oxide microstructures, wherein the ceramic oxide microstructures do not fill the spaces between the abrasive particles to form the pores.   如申請專利範圍第1項之多孔性之磨料叢集體,其中以該多孔性之磨料叢集體總體積為基準,該孔隙為5~80體積%。  For example, the porous abrasive aggregate of the first aspect of the patent application, wherein the porosity is 5 to 80% by volume based on the total volume of the porous abrasive aggregate.   如申請專利範圍第1項之多孔性之磨料叢集體,其中該些磨料顆粒係選自由氧化鋁顆粒、碳化矽顆粒、氧化鋁-氧化鋯顆粒、鋁氧氮化物顆粒、二氧化鈰顆粒、次氧化硼顆粒、石榴石顆粒、燧石顆粒、鑽石顆粒、立方氮化硼(CBN)顆粒以及上述之組合所組成之群組。  The porous abrasive aggregate according to claim 1, wherein the abrasive particles are selected from the group consisting of alumina particles, cerium carbide particles, alumina-zirconia particles, aluminum oxynitride particles, cerium oxide particles, and the like. A group consisting of boron oxide particles, garnet particles, vermiculite particles, diamond particles, cubic boron nitride (CBN) particles, and combinations thereof.   如申請專利範圍第1項至第3項中任一項所述之多孔性之磨料叢集體,其中該陶瓷氧化物微結構包含二氧化矽、氧化鋯、氧化鎂、氧化鈣、氧化鈉、氧化鉀、二氧化鈦、氧化鐵、氧化鋁、氧化硼、氧化鈰或上述之組合。  The porous abrasive aggregate according to any one of claims 1 to 3, wherein the ceramic oxide microstructure comprises ceria, zirconia, magnesia, calcium oxide, sodium oxide, oxidation Potassium, titanium dioxide, iron oxide, aluminum oxide, boron oxide, cerium oxide or a combination thereof.   如申請專利範圍第1項至第3項中任一項所述之多孔性之磨料叢集體,其粒徑為10~220微米。  The porous abrasive aggregate according to any one of claims 1 to 3, which has a particle size of 10 to 220 μm.   一種磨削工具,其包含一基材、一磨料複合層,該磨料複合層包含至少一個如申請專利範圍第1項至第5項中任一項所述之多孔性之磨料叢集體以及固化結合劑,該磨料複合層配置在該基材表面上,該多孔性之磨料叢集體分散於該固化結合劑中。  A grinding tool comprising a substrate, an abrasive composite layer, the abrasive composite layer comprising at least one porous abrasive cluster according to any one of claims 1 to 5, and a curing combination The abrasive composite layer is disposed on the surface of the substrate, and the porous abrasive aggregate is collectively dispersed in the cured binder.   如申請專利範圍第6項之磨削工具,其中該固化結合劑係有彈性的。  A grinding tool according to claim 6 wherein the curing binder is elastic.   如申請專利範圍第7項之磨削工具,其中該固化結合劑包含樹脂、金屬、橡膠、聚氨酯或聚氯乙烯。  The grinding tool of claim 7, wherein the curing binder comprises a resin, a metal, a rubber, a polyurethane or a polyvinyl chloride.   一種製備多孔性之磨料叢集體之方法,包含下列步驟:(a)混合複數個磨料顆粒、複數個陶瓷氧化物顆粒以及高分子黏結劑,而形成至少一混合物顆粒;(b)將該混合物顆粒置入300℃至900℃之環境中進行燒結,以移除該混合物顆粒中的該高分子黏結劑,並使該些陶瓷氧化物顆粒至少局部熔融而連結該些磨料顆粒,而形成一多孔性之磨料叢集體。  A method for preparing a porous abrasive aggregate comprising the steps of: (a) mixing a plurality of abrasive particles, a plurality of ceramic oxide particles, and a polymer binder to form at least one mixture particle; (b) forming the mixture particles Sintering is carried out in an environment of 300 ° C to 900 ° C to remove the polymer binder in the mixture particles, and the ceramic oxide particles are at least partially melted to bond the abrasive particles to form a porous The abrasives of the collective.   如申請專利範圍第9項所述之方法,其中步驟(a)包含使用一乾式造粒製程或濕式造粒製程。  The method of claim 9, wherein the step (a) comprises using a dry granulation process or a wet granulation process.  
TW106117936A 2017-05-31 2017-05-31 A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters TW201902628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106117936A TW201902628A (en) 2017-05-31 2017-05-31 A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106117936A TW201902628A (en) 2017-05-31 2017-05-31 A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters

Publications (1)

Publication Number Publication Date
TW201902628A true TW201902628A (en) 2019-01-16

Family

ID=65803444

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117936A TW201902628A (en) 2017-05-31 2017-05-31 A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters

Country Status (1)

Country Link
TW (1) TW201902628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113635227A (en) * 2021-08-13 2021-11-12 白鸽磨料磨具有限公司 Polymerized abrasive ceramic grinding wheel for grinding bearing channel and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113635227A (en) * 2021-08-13 2021-11-12 白鸽磨料磨具有限公司 Polymerized abrasive ceramic grinding wheel for grinding bearing channel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6209636B2 (en) Abrasive article
TWI321079B (en) Abrasive tools having a permeable structure
EP1280631B1 (en) Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
TWI257340B (en) Method of roll grinding
KR100623900B1 (en) Porous abrasive tool and method for making the same
JP5314030B2 (en) Polishing hard and / or brittle materials
MX2007002250A (en) Method of centerless grinding.
KR20130062998A (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2016501735A (en) Bonded abrasive article and grinding method
TW201902628A (en) A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters
JP2005342836A (en) Superabrasive tool and manufacturing method thereof
JP4869695B2 (en) Vitrified grinding wheel manufacturing method
CN102066055A (en) Self-bonded foamed abrasive articles and machining with such articles
KR20100009088A (en) Method for manufacturing diamond grinding tool, diamond grinding tool by the same manufacturing method
JPWO2020158631A1 (en) Metal bond grindstone for highly rigid brittle materials
JP2021020263A (en) Vitrified super finishing grinding wheel
JP2000246647A (en) Vitrified extra-abrasive grain grinding wheel and manufacture thereof
Azarhoushang Abrasive tools
JP2000226568A (en) Resin-impregnated vitrified whetstone containing solid lubricant
JP2005349542A (en) Grindstone and method of producing the same
JP2002224963A (en) Super abrasive vitrified bonded whetstone
JP2000061847A (en) Vitrified bond grinding wheel and its manufacture
JP2002346934A (en) Abrasive grain and grinding tool
KR20090092001A (en) Porous oil impregnated resen bond grinding wheel