TW201834966A - 碳同素異形體 - Google Patents

碳同素異形體 Download PDF

Info

Publication number
TW201834966A
TW201834966A TW107110121A TW107110121A TW201834966A TW 201834966 A TW201834966 A TW 201834966A TW 107110121 A TW107110121 A TW 107110121A TW 107110121 A TW107110121 A TW 107110121A TW 201834966 A TW201834966 A TW 201834966A
Authority
TW
Taiwan
Prior art keywords
carbon
aggregates
aggregate
walled spherical
ratio
Prior art date
Application number
TW107110121A
Other languages
English (en)
Other versions
TWI760460B (zh
Inventor
丹尼爾 庫克
霍辛-阿里 蓋澤爾巴許
布萊斯 H. 安吉爾莫
大衛 坦納
施里尤克塔 辛格
Original Assignee
美商萊登股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/470,450 external-priority patent/US9862602B1/en
Application filed by 美商萊登股份有限公司 filed Critical 美商萊登股份有限公司
Publication of TW201834966A publication Critical patent/TW201834966A/zh
Application granted granted Critical
Publication of TWI760460B publication Critical patent/TWI760460B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/056Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2604/00Fullerenes, e.g. C60 buckminsterfullerene or C70

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本發明係關於奈米顆粒或聚結物,其含有包覆於石墨層中之經連接之多壁球形富勒烯(fullerene)。在不同的實施例中,該等奈米顆粒及聚結物具有以下之不同組合:與存在之其他碳同素異形體相比之高質量分數、低濃度之缺陷、低濃度之元素雜質、高布魯諾-埃梅特-特勒(Brunauer, Emmett and Teller,BET)比表面積及/或高電導率。提供在不使用觸媒之情形下以高產生速率產生該等奈米顆粒及聚結物之方法。

Description

碳同素異形體
相關申請案之交叉參考   本專利申請案主張於2017年10月26日提出申請之標題為「碳同素異形體(Carbon Allotropes)」之美國專利申請案第15/794,965號之優先權;其係於2017年5月12日提出申請之標題為「碳同素異形體(Carbon Allotropes)」且頒佈為美國專利第9,862,606號之美國專利申請案第15/594,032號之接續案;其係於2017年3月27日提出申請之標題為「製程氣體之裂解(Cracking of a Process Gas)」且頒佈為美國專利第9,862,602號之美國專利申請案第15/470,450號之部分接續申請案;所有該等申請案均係以引用的方式併入本文中。
本發明係有關於碳同素異形體。
可將各種粗製或精製烴類(例如,甲烷、乙烷、丙烷等)熱解或裂解以合成氫且產生高階碳物質(例如,石墨烯及富勒烯(fullerene))。然而,用以產生該等高階碳物質之一些製程需要使用觸媒,例如金屬觸媒。另外,一些製程導致在高階碳物質內存在雜質。此外,一些製程需要形成高階碳物質圍繞其來形成之「種子」或「核心」。
碳之不同同素異形體可藉由利用熱製程裂解烴類來生成。生成低階碳物質(例如,碳黑)之製程之一個實例係太陽能熱解甲烷(在具有或不具觸媒下)以產生氫及碳黑。生成高階碳物質之製程之實例係在石英管狀反應器中催化分解甲烷以產生氫及高度石墨化之碳奈米管、微纖維、微球及碳洋蔥(carbon onion)。
高階碳同素異形體之一些實例示於圖1中。圖1A顯示石墨之示意圖,其中碳形成二維原子級六方晶格之多個層,在其中一個原子形成每一頂點。石墨烯係石墨之單層。圖1B顯示碳奈米管之示意圖,其中碳原子形成彎曲成圓柱體之六方晶格。碳奈米管亦可稱為圓柱形富勒烯。圖1C顯示C60巴克敏斯特富勒烯(buckminsterfullerene)之示意圖,其中碳原子之六方晶格之單層形成球體。存在其他球形富勒烯,其含有碳原子之六方晶格之單層,且可含有60個原子、70個原子或70個以上之原子。圖1D顯示來自美國專利第6,599,492號之碳奈米洋蔥之示意圖,其含有球形富勒烯之多個同心層。
在一些實施例中,碳奈米顆粒包含至少兩個經連接之多壁球形富勒烯,及塗覆該等經連接之多壁球形富勒烯之石墨烯層。在一些實施例中,使用532 nm入射光,碳奈米顆粒之拉曼(Raman)光譜在大約1350 cm-1 處具有第一拉曼峰且在大約1580 cm-1 處具有第二拉曼峰,且第一拉曼峰之強度對第二拉曼峰之強度之比率係0.9至1.1。在一些實施例中,石墨烯對多壁球形富勒烯之比率係10%至80%。
在一些實施例中,上文所闡述之碳奈米顆粒含有在多壁球形富勒烯之中心不包含種子顆粒或空隙之多壁球形富勒烯。在一些實施例中,上文所闡述之碳奈米顆粒含有平均直徑為50 nm至500 nm之多壁球形富勒烯。
在一些實施例中,碳聚集物包含複數個上文所闡述之碳奈米顆粒,其中跨越碳聚集物之直徑係10微米至500微米。在一些實施例中,碳聚集物之石墨烯對多壁球形富勒烯之比率為10%至80%。在一些實施例中,在碳聚集物中,碳聚集物之碳對其他元素(H除外)之比率大於99.9%。在一些實施例中,碳聚集物之碳聚集物布魯諾-埃梅特-特勒(Brunauer, Emmett and Teller,BET)比表面積為10 m2 /g至200 m2 /g。在一些實施例中,將複數個碳聚集物壓縮成糰粒,且該糰粒之電導率為500 S/m至20000 S/m。
在一些實施例中,混合物包含液體及複數個上文所闡述之碳奈米顆粒。在一些實施例中,導電油墨包含複數個上文所闡述之碳奈米顆粒。
在一些實施例中,一種方法包括使烴原料製程氣體流入反應區中,熱裂解該反應區中之該原料製程氣體之分子,使該等經熱裂解之分子反應以形成碳聚集物(其各自包含至少兩個包覆於石墨烯層中之經連接之多壁球形富勒烯)及收集該等碳聚集物。在一些實施例中,使用532 nm入射光,碳聚集物之拉曼光譜在約1350 cm-1處具有第一拉曼峰且在約1580 cm-1處具有第二拉曼峰,且第一拉曼峰之強度對第二拉曼峰之強度之比率係0.9至1.1。在一些實施例中,所收集之碳聚集物係藉由機械方式使尺寸減小。
在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯在多壁球形富勒烯之中心不包含種子顆粒或空隙。在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯之跨越碳聚集物之平均直徑為10微米至500微米。在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯之平均直徑為50 nm至500 nm。在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯之石墨烯對多壁球形富勒烯之比率為10%至80%。在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯在碳聚集物中之碳對其他元素(H除外)之比率大於99.9%。在一些實施例中,使用上文所闡述之方法產生的多壁球形富勒烯之碳聚集物布魯諾-埃梅特-特勒(BET)比表面積為10 m2/g至200 m2/g。
在一些實施例中,藉由上文所闡述之方法產生碳聚集物,且接著壓縮成糰粒,其中該糰粒之電導率為500 S/m至20000 S/m。在一些實施例中,藉由上文所闡述之方法,使用0.1秒至30秒之氣體共振時間來產生碳聚集物。在一些實施例中,藉由上文所闡述之方法,使用1 slm至10 slm之氣體流速及10 g/小時至200 g/小時之產生速率來產生碳聚集物。
在一些實施例中,藉由上文所闡述之方法產生碳聚集物,且接著使用選自由以下組成之群之方法進行後處理:化學蝕刻、熱退火、顆粒燒結、火花電漿燒結、汽蒸、過濾、凍乾(lypolizing)、使用赫默法(Hummers’ method)處理、摻雜及添加元素。
本揭示案係關於包括碳之不同同素異形體(亦即碳之各種形式,包括石墨烯、各種富勒烯及其組合)之碳奈米顆粒及聚集物,如下文所闡述。在一些實施例中,該等碳奈米顆粒及聚集物之特徵在於高「均勻性」(亦即高質量分數之期望碳同素異形體)、高度「有序」(亦即低濃度之缺陷)及/或高「純度」(亦即低濃度之元素雜質),此與利用習用系統及方法可達成之均勻性較低、有序性較小及純度較低之顆粒形成對比。在一些實施例中,本文所闡述之碳奈米顆粒及聚集物之特徵在於實質上大於相當之先前技術顆粒之尺寸。在一些實施例中,本文所闡述之碳奈米顆粒及聚集物之特徵在於具有高純度之有序性良好結構,如藉由圖2中所示之理想化之碳奈米顆粒200所圖解說明。圖2中之碳同素異形體含有兩個經連接之多壁球形富勒烯(MWSF) 201及202,且該等經連接之MWSF201及202塗覆有石墨烯層203)。圖2中所示之同素異形體亦係無核心的(亦即,在球形富勒烯之中心不含除碳以外材料之核心)。圖2中所示之理想化的奈米顆粒由於MWSF對石墨烯之比率較高而具有高均勻性,由於無點缺陷(例如,缺少碳原子)且無扭曲碳晶格而有序性良好,且由於無除碳以外之元素(例如,雜質核心)而具有高純度,此與混合有其他碳同素異形體之MWSF之低均勻性混合物、具有許多點缺陷及扭曲晶格之有序性差的MWSF及低純度MWSF (例如,在核心處具有種子顆粒)形成對比。在其他實施例中,經連接之MWSF含有核心。在一些實施例中,核心係空隙、非MWSF之基於碳之材料(例如,非晶形碳)或不基於碳之種子。
在一些實施例中,使用本文所闡述之方法產生的奈米顆粒含有MWSF或經連接之MWSF,且具有高均勻性(例如,石墨烯對MWSF之比率為20%至80%)、高有序度(例如,ID /IG 比率為0.95至1.05之拉曼特徵(Raman signature))及高純度(例如,碳對除H以外的其他元素之比率大於99.9%)。在一些實施例中,使用本文所闡述之方法產生的奈米顆粒含有MWSF或經連接之MWSF,且該等MWSF不含由除碳以外之雜質元素構成之核心。在一些情形下,使用本文所闡述之方法產生的顆粒係含有上文所闡述之具有較大直徑(例如,跨越大於10微米)之奈米顆粒之聚集物。
已使用習用方法來產生含有多壁球形富勒烯(MWSF)且高度有序之顆粒,但習用方法導致碳產物具有多個缺點。舉例而言,高溫合成技術導致顆粒含有許多碳同素異形體之混合物,且因此均勻性較低(例如,少於20%之富勒烯對其他碳同素異形體)及/或粒度較小(例如,小於1微米,或在一些情形中小於100 nm)。利用觸媒之方法導致產物包括觸媒元素,且因此具有低純度(例如,少於95%之碳對其他元素)。該等不期望性質亦常常導致所得碳顆粒具有不期望之電性質(例如,電導率小於1000 S/m)。
在一些實施例中,本文所闡述之碳奈米顆粒及聚集物之特徵在於指示結構之高有序度及均勻性之拉曼光譜。在一些實施例中,本文所闡述之均勻、有序及/或純的碳奈米顆粒及聚集物係使用相對較高之速度、低成本改良之熱反應器及方法來產生,如下文所闡述。其他優點及/或改良亦將自以下揭示內容而變得顯而易見。
在本揭示案中,術語「石墨烯」係指呈二維原子級六方晶格形式之碳之同素異形體,其中一個原子形成每一頂點。石墨烯中之碳原子係sp2鍵結的。另外,石墨烯具有有兩個主峰之拉曼光譜:大約1580 cm-1 處之G模式及大約1350 cm-1 處之D模式(當使用532 nm激發雷射時)。
在本揭示案中,術語「富勒烯」係指呈空心球體、橢圓體、管或其他形狀形式之碳分子。球形富勒烯亦可稱為巴克敏斯特富勒烯或巴基球(buckyball)。圓柱形富勒烯亦可稱為碳奈米管。富勒烯在結構上與石墨相似,石墨烯係由具有連接六邊形環之堆疊石墨烯片構成。富勒烯亦可含有五邊形(或有時七邊形)環。
在本揭示案中,術語「多壁富勒烯」係指具有多個同心層之富勒烯。舉例而言,多壁奈米管(MWNT)含有石墨烯之多個輥軋層(同心管)。多壁球形富勒烯(MWSF)含有富勒烯之多個同心球體。
在本揭示案中,術語「奈米顆粒」係指尺寸為1 nm至900 nm之顆粒。奈米顆粒可包括一或多種類型之結構(例如,晶體結構、缺陷濃度等)及一或多種類型之原子。奈米顆粒可呈任何形狀,包括(但不限於)球形、類球形、啞鈴形、圓柱形、細長圓柱類型形狀、矩形稜柱形、盤形、線形、不規則形狀、緻密形狀(亦即,具有少量空隙)、多孔形狀(亦即,具有許多空隙)等。
在本揭示案中,術語「聚集物」係指藉由凡得瓦力(Van der Waals force)、藉由共價鍵、藉由離子鍵、藉由金屬鍵或藉由其他物理或化學相互作用連接在一起之複數個奈米顆粒。聚集物之尺寸變化可相當大,但通常大於約500 nm。
在一些實施例中,如本文所闡述之碳奈米顆粒包括兩個或更多個經連接之多壁球形富勒烯(MWSF)及塗覆該等經連接之MWSF之石墨烯層。在一些實施例中,如本文所闡述之碳奈米顆粒包括兩個或更多個經連接之多壁球形富勒烯(MWSF)及塗覆該等經連接之MWSF之石墨烯層,且該等MWSF不含由除碳以外之雜質元素構成之核心。在一些實施例中,如本文所闡述之碳奈米顆粒包括兩個或更多個經連接之多壁球形富勒烯(MWSF)及塗覆該等經連接之MWSF之石墨烯層,且該等MWSF在中心不含空隙(亦即,無碳原子之空間大於大約0.5 nm或1 nm)。在一些實施例中,經連接之MWSF係由sp2雜化碳原子之同心、有序性良好之球體形成,與有序性差的、非均勻、非晶形碳顆粒之球體形成對比。
在一些實施例中,含有經連接之MWSF之奈米顆粒的平均直徑係在以下範圍內:5 nm至500 nm、或5 nm至250 nm、或5 nm至100 nm、或5 nm至50 nm、或10 nm至500 nm、或10 nm至250 nm、或10 nm至100 nm、或10 nm至50 nm、或40 nm至500 nm、或40 nm至250 nm、或40 nm至100 nm、或50 nm至500 nm、或50 nm至250 nm、或50 nm至100 nm。
在一些實施例中,本文所闡述之碳奈米顆粒形成聚集物,其中許多奈米顆粒聚集在一起以形成更大之單元。在一些實施例中,碳聚集物包括複數個碳奈米顆粒。跨越碳聚集物之直徑係在以下範圍內:10微米至500微米、或50微米至500微米、或100微米至500微米、或250微米至500微米、或10微米至250微米、或10微米至100微米、或10微米至50微米。在一些實施例中,聚集物係自複數個碳奈米顆粒形成,如上文所定義。在一些實施例中,聚集物含有經連接之MWSF。在一些實施例中,聚集物含有具有高均勻性(例如,石墨烯對MWSF之比率為20%至80%)、高有序度(例如,ID /IG 比率為0.95至1.05之拉曼特徵)及高純度(例如,大於99.9%之碳)之經連接之MWSF。
產生尤其直徑在上文所闡述範圍內之碳奈米顆粒的聚集物之一個益處在於,大於10微米之顆粒的聚集物較小於500 nm之顆粒或顆粒聚集物易於收集。收集之簡便性降低用於產生碳奈米顆粒之製造設備之成本且增加碳奈米顆粒之產率。另外,與處置較小奈米顆粒之風險相比,尺寸大於10微米之顆粒所造成之安全性問題較少,例如,因吸入較小奈米顆粒所致之潛在健康及安全風險。較低之健康及安全風險由此進一步降低製造成本。
在一些實施例中,碳奈米顆粒之石墨烯對MWSF之比率為10%至90%、或10%至80%或10%至60%、或10%至40%、或10%至20%、或20%至40%、或20%至90%、或40%至90%、或60%至90%、或80%至90%。在一些實施例中,碳聚集物之石墨烯對MWSF之比率為10%至90%、或10%至80%或10%至60%、或10%至40%、或10%至20%、或20%至40%、或20%至90%、或40%至90%、或60%至90%、或80%至90%。在一些實施例中,碳奈米顆粒之石墨烯對經連接之MWSF之比率為10%至90%、或10%至80%或10%至60%、或10%至40%、或10%至20%、或20%至40%、或20%至90%、或40%至90%、或60%至90%、或80%至90%。在一些實施例中,碳聚集物之石墨烯對經連接之MWSF之比率為10%至90%、或10%至80%、或10%至60%、或10%至40%、或10%至20%、或20%至40%、或20%至90%、或40%至90%、或60%至90%、或80%至90%。
在一些實施例中,使用拉曼光譜來表徵碳同素異形體以區分其分子結構。舉例而言,可使用拉曼光譜來表徵石墨烯以確定諸如有序/無序、邊緣及晶界、厚度、層數、摻雜、應變及熱導率之資訊。亦已使用拉曼光譜來表徵MWSF以確定MWSF之有序度。
在一些實施例中,使用拉曼光譜來表徵MWSF或經連接之MWSF之結構。拉曼光譜中之主峰係G模式及D模式。G模式係歸因於sp2雜化碳網絡中碳原子之振動,且D模式係與具有缺陷之六邊形碳環之呼吸有關。當使用532 nm入射光時,平面石墨之拉曼G模式通常在1582 cm-1 ,但MWSF或經連接之MWSF之拉曼G模式可下移(例如,至1565-1580 cm-1 )。在MWSF或經連接之MWSF之拉曼光譜中的大約1350 cm-1 處觀察到D模式。D模式峰對G模式峰之強度之比率(亦即,ID /IG )與MWSF之有序度有關,其中較低之ID /IG 指示較高之有序度。接近或低於1之ID /IG 指示相對較高之有序度,且大於1.1之ID /IG 指示較低之有序度。
在一些實施例中,當使用532 nm入射光時,如本文所闡述之含有MWSF或經連接之MWSF之碳奈米顆粒或碳聚集物具有第一拉曼峰在約1350 cm-1 處且第二拉曼峰在約1580 cm-1 處之拉曼光譜。在一些實施例中,本文所闡述之奈米顆粒或聚集物之第一拉曼峰之強度對第二拉曼峰之強度之比率(亦即,ID /IG )係在0.95至1.05、或0.9至1.1、或0.8至1.2、或0.9至1.2、或0.8至1.1、或0.5至1.5範圍內,或小於1.5、或小於1.2、或小於1.1、或小於1、或小於0.95、或小於0.9、或小於0.8。
在一些實施例中,如上文所定義之含有MWSF或經連接之MWSF之碳聚集物具有高純度。在一些實施例中,含有MWSF或經連接之MWSF之碳聚集物之碳對金屬的比率為大於99.99%、或大於99.95%、或大於99.9%、或大於99.8%、或大於99.5%、或大於99%。在一些實施例中,碳聚集物之碳對其他元素之比率為大於99.99%、或大於99.95%、或大於99.9%、或大於99.5%、或大於99%、或大於90%、或大於80%、或大於70%、或大於60%。在一些實施例中,碳聚集物之碳對其他元素(H除外)之比率為大於99.99%、或大於99.95%、或大於99.9%、或大於99.8%、或大於99.5%、或大於99%、或大於90%、或大於80%、或大於70%、或大於60%。
在一些實施例中,如上文所定義之含有MWSF或經連接之MWSF之碳聚集物具有高比表面積。在一些實施例中,碳聚集物之布魯諾-埃梅特-特勒(BET)比表面積為10 m2 /g至200 m2 /g、或10 m2 /g至100 m2 /g、或10 m2 /g至50 m2 /g、或50 m2 /g至200 m2 /g、或50 m2 /g至100 m2 /g、或10 m2 /g至1000 m2 /g。
在一些實施例中,如上文所定義之含有MWSF或經連接之MWSF之碳聚集物具有高電導率。在一些實施例中,將如上文所定義之含有MWSF或經連接之MWSF之碳聚集物壓縮成糰粒,且該糰粒之電導率為大於500 S/m、或大於1000 S/m、或大於2000 S/m、或大於3000 S/m、或大於4000 S/m、或大於5000 S/m、或大於10000 S/m、或大於20000 S/m、或大於30000 S/m、或大於40000 S/m、或大於50000 S/m、或大於60000 S/m、或大於70000 S/m、或為500 S/m至100000 S/m、或500 S/m至1000 S/m、或500 S/m至10000 S/m、或500 S/m至20000 S/m、或500 S/m至100000 S/m、或1000 S/m至10000 S/m、或1000 S/m至20000 S/m、或10000 S/m至100000 S/m、或10000 S/m至80000 S/m、或500 S/m至10000 S/m。在一些情形下,糰粒之密度為大約1 g/cm3 、或大約1.2 g/cm3 、或大約1.5 g/cm3 、或大約2 g/cm3 、或大約2.2 g/cm3 、或大約2.5 g/cm3 、或大約3 g/cm3 。另外,已實施測試,其中已用2000 psi及12000 psi之壓縮及800℃及1000℃之退火溫度來形成碳聚集物材料之壓縮糰粒。較高之壓縮及/或較高之退火溫度通常使得糰粒具有較高之電導率,包括12410.0 S/m至13173.3 S/m範圍內之電導率。使用熱處理系統產生之高純度碳同素異形體
在一些實施例中,本文所闡述之碳奈米顆粒及聚集物係使用熱反應器及方法來產生,例如上文所提及之美國專利申請案15/470,450中所闡述之任何適當熱反應器及/或方法,該專利申請案與本申請案受讓於同一受讓人,且出於所有目的如同完全陳述於本文中一般以引用的方式併入本文中。另外,可在熱反應器中使用前體(例如,包括甲烷、乙烷、丙烷、丁烷及天然氣)以產生本文所闡述之碳奈米顆粒及碳聚集物。
在一些實施例中,本文所闡述之碳奈米顆粒及聚集物係使用具有以下氣體流速之熱反應器來產生:1 slm至10 slm、或0.1 slm至20 slm、或1 slm至5 slm、或5 slm至10 slm、或大於1 slm、或大於5 slm。在一些實施例中,本文所闡述之碳奈米顆粒及聚集物係使用具有以下氣體共振時間之熱反應器來產生:0.1秒至30秒、或0.1秒至10秒、或1秒至10秒、或1秒至5秒、5秒至10秒、或大於0.1秒、或大於1秒、或大於5秒、或小於30秒。
在一些實施例中,本文所闡述之碳奈米顆粒及聚集物係使用具有以下產生速率之熱反應器來產生:10 g/小時至200 g/小時、或30 g/小時至200 g/小時、或30 g/小時至100 g/小時、或30 g/小時至60 g/小時、或10 g/小時至100 g/小時、或大於10 g/小時、或大於30 g/小時、或大於100 g/小時。
在一些實施例中,可使用熱反應器(或裂解裝置)及方法將原料製程氣體精製、熱解、離解或裂解成組成組分以產生本文所闡述之碳奈米顆粒及碳聚集物以及氣體固體及/或氣態產物(例如,氫氣及/或低階烴類氣體)。原料製程氣體通常包括(例如)氫氣(H2)、二氧化碳(CO2)、C1-10烴類、芳香族烴類、其他烴類氣體、天然氣、甲烷、乙烷、丙烷、丁烷、異丁烷、飽和/不飽和烴氣體、乙烯、丙烯等及其混合物。碳奈米顆粒及碳聚集物可包括(例如)多壁球形富勒烯(MWSF)、經連接之MWSF、碳奈米球體、石墨烯、石墨、高度有序之熱解石墨、單壁奈米管、多壁奈米管、其他固體碳產物及/或本文所闡述之碳奈米顆粒及碳聚集物。
用於產生本文所闡述之碳奈米顆粒及碳聚集物之一些實施例包括使用(例如)視情況包封於熱裂解裝置之細長殼體、外殼或主體內之細長縱向加熱元件的熱裂解方法。主體通常包括(例如)由不鏽鋼、鈦、石墨、石英或諸如此類製得之一或多個管或其他適當包殼。在一些實施例中,熱裂解裝置之主體通常呈圓柱形,具有垂直配置之中心細長縱向軸線及在主體之頂部或頂部附近之原料製程氣體入口。原料製程氣體縱向向下流經主體或其一部分。在垂直構形中,氣流及重力二者均有助於使固體產物自熱裂解裝置之主體去除。
加熱元件通常包括(例如)加熱燈、一或多個電阻絲或細絲(或絞合線)、金屬細絲、金屬條或棒及/或可加熱至足以熱裂解原料製程氣體分子之指定溫度(亦即,分子裂解溫度)的其他適當熱自由基發生器或元件。通常將加熱元件安置、定位或配置成在熱裂解裝置之主體內沿其中心縱向軸線以中心方式延伸。舉例而言,若僅存在一個加熱元件,則將其置於中心縱向軸線處或與中心縱向軸線同心,且若存在複數個加熱元件,則通常使其在靠近且圍繞且平行於中心縱向軸線之位置處對稱或同心地間隔或偏移。
產生本文所闡述之碳奈米顆粒及聚集物之熱裂解通常係藉由使原料製程氣體經過縱向細長反應區內之加熱元件上方、與該加熱元件接觸或在該加熱元件之鄰近內經過以將原料製程氣體加熱至指定分子裂解溫度或在指定分子裂解溫度下加熱來達成,該縱向細長反應區係由來自加熱元件之熱量生成且由主體界定且含於主體內。反應區視為係包圍加熱元件且與加熱元件足夠近以使原料製程氣體接受足夠之熱量從而將其分子熱裂解之區域。因此,反應區通常與主體之中心縱向軸線軸向對齊或與其同心。在一些實施例中,熱裂解係在指定壓力下實施。在一些實施例中,使原料製程氣體圍繞或跨越反應區或加熱室之容器外表面循環,以便冷卻容器或室且在使原料製程氣體流入反應區中之前將原料製程氣體預熱。
在一些實施例中,本文所闡述之碳奈米顆粒及聚集物及/或氫氣係在不使用觸媒之情形下產生。換言之,該製程係無觸媒製程。
使用熱裂解裝置及方法產生本文所闡述之碳奈米顆粒及聚集物之一些實施例提供獨立式系統,其可根據所期望之不同產生程度而有利地快速擴大規模或縮小規模。舉例而言,一些實施例可經縮放以提供獨立式氫及/或碳奈米顆粒產生站系統、烴源或燃料電池站。一些實施例可經擴大規模以提供更高之容量系統,例如,用於精製廠或諸如此類。
在一些實施例中,用於裂解原料製程氣體以產生本文所闡述之碳奈米顆粒及聚集物之熱裂解裝置包括主體、原料製程氣體入口及細長加熱元件。主體具有具縱向軸線之內部體積。內部體積具有與縱向軸線同心之反應區。原料製程氣體在熱裂解操作期間穿過原料製程氣體入口流入至內部體積中。細長加熱元件安置在沿縱向軸線之內部體積內且由反應區包圍。在熱裂解操作期間,細長加熱元件藉由電力加熱至分子裂解溫度以生成反應區,原料製程氣體藉由來自細長加熱元件之熱量加熱,且熱量將反應區內之原料製程氣體分子熱裂解成分子之組成組分。
在一些實施例中,裂解原料製程氣體以產生本文所闡述之碳奈米顆粒及聚集物之方法包括提供熱裂解裝置,其具有具縱向軸線之內部體積及沿該縱向軸線安置在該內部體積內之細長加熱元件;藉由電力將該細長加熱元件加熱至分子裂解溫度以在該內部體積內生成縱向細長反應區;使原料製程氣體流入該內部體積內且穿過該縱向細長反應區,其中該原料製程氣體係藉由來自該細長加熱元件之熱量來加熱;當該原料製程氣體流動穿過該縱向細長反應區時,將該縱向細長反應區內之該原料製程氣體之分子熱裂解成其組成組分(例如,氫氣及一或多種固體產物);及收集該等組成組分。
在一些實施例中,產生本文所闡述之碳奈米顆粒及聚集物之原料製程氣體包括烴氣體,且組成組分包括氫及本文所闡述之碳奈米顆粒及聚集物。在一些實施例中,碳奈米顆粒及聚集物包括兩個或更多個MWSF及塗覆該等MWSF之石墨烯層,及/或經連接之MWSF及塗覆該等經連接之MWSF之石墨烯層。在一些實施例中,藉由在使原料製程氣體流入內部體積中之前使該原料製程氣體流動穿過熱裂解裝置之加熱室與殼之間的氣體預熱區來預熱該原料製程氣體(例如,至100-500℃)。在一些實施例中,使其中具有奈米顆粒之氣體流入內部體積中且穿過縱向細長反應區與原料製程氣體混合;且圍繞該等奈米顆粒形成固體產物(例如,石墨烯層)之塗層。
關於產生本文所闡述之碳奈米顆粒及聚集物之熱裂解系統方法及裝置之其他資訊及實施例闡述於上文所提及之美國專利申請案15/470,450中。後處理高純度碳同素異形體
在一些實施例中,產生且收集本文所闡述之含有多壁球形富勒烯(MWSF)或經連接之MWSF之碳奈米顆粒及聚集物,且不進行後處理。在其他實施例中,產生且收集本文所闡述之含有多壁球形富勒烯(MWSF)或經連接之MWSF之碳奈米顆粒及聚集物,且進行一些後處理。後處理之一些實例包括機械處理,例如球磨、研磨、砂磨、微流化及降低粒度而不損害MWSF之其他技術。後處理之一些實例包括剝落製程,尤其例如剪切混合、化學蝕刻、氧化(例如,赫默法)、熱退火、藉由在退火期間添加元素(例如,S及N)摻雜、汽蒸、過濾及凍乾。後處理之一些實例包括可在惰性氣體中在高壓及高溫下進行之燒結製程,例如SPS (火花電漿燒結,亦即直流燒結(Direct Current Sintering))、微波及UV (紫外)。在一些實施例中,多種後處理方法可一起或連續地使用。在一些實施例中,後處理將產生含有多壁球形富勒烯(MWSF)或經連接之MWSF之官能化碳奈米顆粒或聚集物。
在一些實施例中,材料以不同的組合混合在一起。在一些實施例中,將本文所闡述之含有MWSF或經連接之MWSF之不同碳奈米顆粒及聚集物在後處理之前混合在一起。舉例而言,可將具有不同性質(例如,不同尺寸、不同組成、不同純度、來自不同處理運行等)之含有MWSF或經連接之MWSF之不同碳奈米顆粒及聚集物混合在一起。在一些實施例中,可將本文所闡述之含有MWSF或經連接之MWSF之碳奈米顆粒及聚集物與石墨烯混合,以改變混合物中經連接之MWSF對石墨烯之比率。在一些實施例中,本文所闡述之含有MWSF或經連接之MWSF之不同碳奈米顆粒及聚集物係在後處理之後混合在一起。舉例而言,可將具有不同性質及/或不同後處理方法(例如,不同尺寸、不同組成、不同官能度、不同表面性質、不同表面積)之含有MWSF或經連接之MWSF之不同碳奈米顆粒及聚集物混合在一起。
在一些實施例中,產生且收集本文所闡述之碳奈米顆粒及聚集物,且隨後藉由機械研磨、碾磨或剝落處理。在一些實施例中,處理(例如,藉由機械研磨、碾磨、剝落等)降低顆粒之平均尺寸。在一些實施例中,處理(例如,藉由機械研磨、碾磨、剝落等)增加顆粒之平均表面積。在一些實施例中,藉由機械研磨、碾磨或剝落之處理剪切掉一部分碳層,從而產生與碳奈米顆粒混合之石墨片。在一些實施例中,機械研磨或碾磨係使用球磨機、行星式磨機、棒磨機、剪切混合機、高剪切製粒機、自磨機或其他類型之用於藉由研磨、壓碎或切割將固體材料破碎成更小碎片之機器來實施。在一些實施例中,濕式或乾式實施機械研磨、碾磨或剝落。在一些實施例中,機械研磨係藉由研磨一定時間段,接著空轉一定時間段及重複該研磨及空轉達數個循環來實施。在一些實施例中,研磨時期為1分鐘至20分鐘、或1分鐘至10分鐘、或3分鐘至8分鐘、或大約3分鐘、或大約8分鐘。在一些實施例中,空轉時期為1分鐘至10分鐘、或大約5分鐘、或大約6分鐘。在一些實施例中,研磨及空轉循環數為1至100、或5至100、或10至100、或5至10、或5至20。在一些實施例中,研磨及空轉之總時間量為10分鐘至1200分鐘、或10分鐘至600分鐘、或10分鐘至240分鐘、或10分鐘至120分鐘、或100分鐘至90分鐘、或10分鐘至60分鐘、或大約90分鐘、或大約120分鐘。
在一些實施例中,循環中之研磨步驟係藉由在第一循環中在一個方向上旋轉碾磨機(例如,順時針),且接著在相反方向(例如,逆時針)上旋轉碾磨機進行下一循環來實施。在一些實施例中,機械研磨或碾磨係使用球磨機來實施,且研磨步驟係使用100 rpm至1000 rpm、或100 rpm至500 rpm或大約400 rpm之轉速來實施。在一些實施例中,機械研磨或碾磨係使用球磨機使用直徑為0.1 mm至20 mm、或0.1 mm至10 mm、或1 mm至10 mm、或大約0.1 mm、或大約1 mm、或大約10 mm之碾磨介質來實施。在一些實施例中,機械研磨或碾磨係使用球磨機使用由金屬(例如鋼)、氧化物(例如氧化鋯(zirconium oxide)(氧化鋯(zirconia))、經氧化釔穩定化之氧化鋯、二氧化矽、氧化鋁、氧化鎂)或其他硬質材料(例如碳化矽或碳化鎢)構成之碾磨介質來實施。
在一些實施例中,產生且收集本文所闡述之碳奈米顆粒及聚集物,且隨後使用升高溫度(例如熱退火或燒結)來處理。在一些實施例中,使用升高溫度之處理係在惰性環境(例如氮或氬)中進行。在一些實施例中,使用升高溫度之處理係在大氣壓下、或在真空下、或在低壓下進行。在一些實施例中,使用升高溫度之處理係在以下溫度下進行:500℃至2500℃、或500℃至1500℃、或800℃至1500℃、或800℃至1200℃、或800℃至1000℃、或2000℃至2400℃、或大約800℃、或大約1000℃、或大約1500℃、或大約2000℃、或大約2400℃。
在一些實施例中,產生且收集本文所闡述之碳奈米顆粒及聚集物,且隨後添加其他元素或化合物,藉此使碳奈米顆粒及聚集物之獨特性質併入至材料之其他混合物中。舉例而言,可添加鎳以增加碳奈米顆粒及聚集物之磁導率或碳奈米顆粒及聚集物因應所施加磁場而獲得之磁化度。另一實例係添加硫以藉由強制碳層分離來增加碳奈米顆粒及聚集物之表面積。舉例而言,與不含硫之材料相比,添加硫可使表面積增加2倍或3倍。增加表面積之另一方法係藉助氧化,然而,所得化合物(例如,氧化石墨烯)係絕緣體。本文所闡述之方法(例如,使用硫)可產生具有導電性之高表面積顆粒。
在一些實施例中,在後處理之前或之後,將本文所闡述之碳奈米顆粒及聚集物添加至其他元素或化合物之固體、液體或漿體以形成併入碳奈米顆粒及聚集物之獨特性質之材料的其他混合物。在一些實施例中,將本文所闡述之碳奈米顆粒及聚集物與其他固體顆粒、聚合物或其他材料混合。所得之顆粒於不同材料的固體基質中之粉末或複合物可用於不同應用中,例如潤滑劑或結構複合材料中。在一些實施例中,將本文所闡述之碳奈米顆粒及聚集物與液體混合以產生用於不同應用之油墨,例如導電油墨。亦可將所得油墨塗覆於基材上或注入另一材料中用於各種應用,例如電容器或電池組電極。在一些實施例中,將本文所闡述之碳奈米顆粒及聚集物與溶劑及視情況其他顆粒混合以產生漿體,其可接著塗覆或印刷至各種應用中之其他表面上,例如印刷導體天線。
在一些實施例中,在後處理之前或之後,本文所闡述之碳奈米顆粒及聚集物用於各種應用中,包括(但不限於)潤滑調配物(例如,尤其用於高速或高應力應用之潤滑劑、用於高溫環境之潤滑劑、用於高熱導率應用之潤滑劑及抗黏滯潤滑劑)、過濾及分離應用(例如,尤其化學過濾器、水過濾、脫鹽、氣體分離、氧化障壁、不透膜、非反應性過濾器及碳封存材料)、運輸及工業應用(例如,尤其橡膠添加劑、輪胎添加劑、汽車輪胎添加劑、輪胎中之主要組分、用於輪胎之功能化添加劑、聯軸器、安裝件(mounts)、彈性體o型圈、軟管、密封劑及環氧樹脂)、超材料(metamaterial)調配物(例如,經Ni、Co或Fe奈米絲、碳介電層狀材料及具有官能化表面之界面材料裝飾之顆粒或聚集物以及與產生意想不到性質之其他材料之組合)、電子油墨調配物(例如,尤其導電油墨、透明導電油墨、3D印刷電路及PCB、電阻油墨、介電油墨、撓性電子器件、壓電體、天線、校正天線、智慧型校正天線、電致變色器件、摩擦電器件、微波設備、系統油墨及鑑別系統)、其他油墨(例如,尤其化妝品及3D印刷結構油墨)、塗層(例如,抗腐蝕塗層、超疏水塗層、房間加熱塗層、除冰塗層、冷卻塗層、靜電放電(ESD)塗層、射頻屏蔽(EMF屏蔽)塗層、射頻吸收(EMF吸收)塗層及織物及紡織品塗層)、電容器材料調配物(例如,超級電容器添加劑、高表面積碳、高純度碳、高表面積高純度碳及隔板)、感測器及固態電子應用(例如,尤其化學、濕度、觸摸、光、電晶體、二極體及集成器件)、複合材料調配物(例如,尤其作為水泥、鋼、鋁、塑膠及碳纖維之添加劑)、能量應用(例如,尤其氫儲存、陽極複合物、陰極複合物、電池組、燃料電池電極、電容器及電容器/電池組混合體)、活體內生物醫學應用(例如,尤其組織工程學、藥物遞送、金屬遞送、用於神經再生之生物可降解奈米絲及更佳健康)及離體生物醫學應用(例如,過濾、皮膚電極及其他醫療器件)。實例 實例 1 :來自熱式熱絲處理系統之實驗數據
對於此實例,碳奈米顆粒及聚集物係使用上文實施例中所闡述之熱裂解裝置來生成。該熱裂解裝置具有自不鏽鋼製得且具有石英內壁材料之主體及包括鉭/鎢電阻絲之加熱元件。反應區體積為大約2000 cm3 。前體材料係甲烷,且自5 slm至10 slm流動。在彼等流速及工具幾何形狀之情形下,反應室中氣體之共振時間為大約0.1秒至10秒,且碳顆粒產生速率為大約140 g/小時。
圖3A及3B顯示此實例之合成原態碳奈米顆粒之TEM影像。該等碳奈米顆粒含有經連接之多壁球形富勒烯(MWSF)且該等經連接之MWSF塗覆有石墨烯層。由於共振時間相對較短,在此實例中MWSF對石墨烯同素異形體之比率為大約80%。圖3A中之MWSF之直徑為大約5-10 nm,且使用上文所闡述之條件直徑可為5 nm至500 nm。在一些實施例中,跨越MWSF之平均直徑係在以下範圍內:5 nm至500 nm、或5 nm至250 nm、或5 nm至100 nm、或5 nm至50 nm、或10 nm至500 nm、或10 nm至250 nm、或10 nm至100 nm、或10 nm至50 nm、或40 nm至500 nm、或40 nm至250 nm、或40 nm至100 nm、或50 nm至500 nm、或50 nm至250 nm、或50 nm至100 nm。此製程中不使用觸媒,且因此不存在含有污染物之中心種子。此實例中所產生之聚集物顆粒之粒度為大約10微米至100微米或大約10微米至500微米。圖3C顯示在此實例中用532 nm入射光所得到之合成原態聚集物之拉曼光譜。此實例中所產生之聚集物之ID /IG 為大約0.99至1.03,此指示該等聚集物係由高度有序之碳同素異形體構成。
圖4A及4B顯示此實例之碳奈米顆粒藉由在球磨機中進行研磨尺寸減小之後之TEM影像。球磨係以以下循環實施:3分鐘逆時針研磨步驟、之後6分鐘空轉步驟、之後3分鐘順時針研磨步驟、之後6分鐘空轉步驟。研磨步驟係使用400 rpm之轉速實施。碾磨介質係氧化鋯,且尺寸範圍為0.1 mm至10 mm。總尺寸減小處理時間為60分鐘至120分鐘。在尺寸減小之後,此實例中所產生之聚集物顆粒之粒度為大約1微米至5微米。尺寸減小之後的碳奈米顆粒係經連接之MWSF且該等經連接之MWSF塗覆有石墨烯層。圖4C顯示來自此實例之聚集物在尺寸減小之後用532 nm入射光得到之拉曼光譜。此實例中之聚集物顆粒在尺寸減小之後的ID /IG 係大約1.04。另外,尺寸減小之後的顆粒之布魯諾-埃梅特-特勒(BET)比表面積為大約40 m2 /g至50 m2 /g。
使用質譜法及x射線螢光光譜法(XRF)來量測此樣品中所產生之聚集物之純度。在16個不同批次中所量測之碳對其他元素(H除外)之比率為99.86%至99.98%,平均為99.94%。實例 2 :來自熱式熱絲處理系統之實驗數據
在此實例中,碳奈米顆粒係使用實例1中所闡述之熱式熱絲處理系統生成。前體材料係甲烷,且自1 slm至5 slm流動。在彼等流速及工具幾何形狀之情形下,反應室中氣體之共振時間為大約20秒至30秒,且碳顆粒產生速率為大約20 g/小時。
圖5A、5B及5C顯示此實例之合成原態碳奈米顆粒之TEM影像。該等碳奈米顆粒含有經連接之多壁球形富勒烯(MWSF)且該等經連接之MWSF塗覆有石墨烯層。由於共振時間相對較長從而容許更厚或更多之石墨烯層塗覆MWSF,此實例中多壁富勒烯對石墨烯同素異形體之比率為大約30%。此製程中不使用觸媒,且因此不存在含有污染物之中心種子。此實例中所產生之合成原態聚集物顆粒之粒度為大約10微米至500微米。圖5D顯示來自此實例之聚集物之拉曼光譜。此實例中合成原態顆粒之拉曼特徵指示將MWSF包覆於合成原態材料中之較厚之石墨烯層。另外,該等合成原態顆粒之布魯諾-埃梅特-特勒(BET)比表面積為大約90 m2 /g至100 m2 /g。
圖6A及6B顯示此實例之碳奈米顆粒藉由在球磨機中進行研磨尺寸減小之後之TEM影像。尺寸減小製程條件與實例1中所闡述之彼等條件相同。尺寸減小之後,此實例中所產生之聚集物顆粒之粒度為大約1微米至5微米。TEM影像顯示埋於石墨烯塗層中之經連接之MWSF可在尺寸減小之後觀察到。圖6C顯示來自此實例之聚集物在尺寸減小之後用532 nm入射光得到之拉曼光譜。此實例中之聚集物顆粒在尺寸減小之後的ID /IG 係大約1,此指示埋於合成原態石墨烯塗層中之經連接之MWSF在尺寸減小之後拉曼可檢測到且有序性良好。尺寸減小之後的顆粒之布魯諾-埃梅特-特勒(BET)比表面積為大約90 m2 /g至100 m2 /g。
已詳細參考所揭示發明之實施例,其一或多個實例已在附圖中圖解說明。每一實例係以闡釋本技術而非限制本技術之方式來提供。實際上,雖然本說明書已就本發明之具體實施例進行詳細闡述,但應瞭解,熟習此項技術者在獲得對前述內容之理解之後可容易地想到對該等實施例之改變、其變化形式及等效形式。舉例而言,作為一項實施例之一部分圖解說明或描述之特徵可與另一實施例一起使用以產生又一實施例。因此,本發明標的物意欲涵蓋在隨附申請專利範圍之範圍內的所有此等修改及變化形式以及其等效形式。在不背離本發明之範圍之情形下,熟習此項技術者可實踐本發明之該等及其他修改及變化形式。此外,熟習此項技術者應瞭解,上述說明僅係作為實例,且不意欲限制本發明。
200‧‧‧理想化之碳奈米顆粒
201‧‧‧經連接之多壁球形富勒烯(MWSF)、經連接之MWSF
202‧‧‧經連接之多壁球形富勒烯(MWSF)、經連接之MWSF
203‧‧‧石墨烯層
圖1A - 1D係來自先前技術之碳同素異形體之示意圖。
圖2係根據一些實施例之理想化的經連接之多壁球形富勒烯之示意圖。
圖3A - 3C顯示根據一些實施例之來自第一實例中之合成原態(as-synthesized)碳聚集物之TEM影像及拉曼光譜。
圖4A - 4C顯示根據一些實施例之來自第一實例中之尺寸減小的碳聚集物之TEM影像及拉曼光譜。
圖5A - 5D顯示根據一些實施例之來自第二實例中之合成原態碳聚集物之TEM影像及拉曼光譜。
圖6A - 6C顯示根據一些實施例之來自第二實例中之尺寸減小的碳聚集物之TEM影像及拉曼光譜。

Claims (47)

  1. 一種碳奈米顆粒,其包含: 至少兩個經連接之多壁球形富勒烯(fullerene);及 塗覆該等經連接之多壁球形富勒烯之石墨烯層; 其中: 使用532 nm入射光,該碳奈米顆粒之拉曼(Raman)光譜在大約1350 cm-1 處具有第一拉曼峰且在大約1580 cm-1 處具有第二拉曼峰,且該第一拉曼峰之強度對該第二拉曼峰之強度之比率係0.9至1.1。
  2. 如請求項1之碳奈米顆粒,其中: 該等多壁球形富勒烯在該等多壁球形富勒烯之中心不包含種子顆粒或空隙。
  3. 如請求項1之碳奈米顆粒,其中: 該等多壁球形富勒烯之平均直徑為50 nm至500 nm。
  4. 一種碳聚集物,其包含複數個如請求項1之碳奈米顆粒,其中: 跨越該碳聚集物之直徑為10微米至500微米。
  5. 如請求項4之碳聚集物,其中: 石墨烯對多壁球形富勒烯之比率為10%至80%。
  6. 如請求項4之碳聚集物,其中: 該碳聚集物中碳對H除外之其他元素之比率大於99.9%。
  7. 如請求項4之碳聚集物,其中: 該碳聚集物之布魯諾-埃梅特-特勒(Brunauer, Emmett and Teller,BET)比表面積為10 m2 /g至200 m2 /g。
  8. 如請求項4之碳聚集物,其中: 將複數個該等碳聚集物壓縮成糰粒,且該糰粒之電導率為500 S/m至20000 S/m。
  9. 一種碳奈米顆粒,其包含: 至少兩個經連接之多壁球形富勒烯;及 塗覆該等經連接之多壁球形富勒烯之石墨烯層; 其中石墨烯對多壁球形富勒烯之比率為10%至80%。
  10. 一種混合物,其包含液體及複數個如請求項9之碳奈米顆粒。
  11. 一種導電油墨,其包含複數個如請求項9之碳奈米顆粒。
  12. 一種碳聚集物,其包含複數個如請求項9之碳奈米顆粒,其中: 跨越該碳聚集物之直徑為10微米至500微米。
  13. 如請求項12之碳聚集物,其中: 該碳聚集物中碳對H除外之其他元素之比率大於99.9%。
  14. 如請求項12之碳聚集物,其中: 該碳聚集物之布魯諾-埃梅特-特勒(BET)比表面積為10 m2 /g至200 m2 /g。
  15. 如請求項12之碳聚集物,其中: 將該等聚集物壓縮成糰粒,且該糰粒之電導率為500 S/m至20000 S/m。
  16. 一種方法,其包括: 使烴原料製程氣體流入反應區中; 熱裂解該反應區中之該原料製程氣體之分子; 使該等經熱裂解之分子反應以形成碳聚集物,其各自包含至少兩個包覆於石墨烯層中之經連接之多壁球形富勒烯;及 收集該等碳聚集物; 其中: 使用532 nm入射光,該等碳聚集物之拉曼光譜在約1350 cm-1 處具有第一拉曼峰且在約1580 cm-1 處具有第二拉曼峰,且 該第一拉曼峰之強度對該第二拉曼峰之強度之比率為0.9至1.1。
  17. 如請求項16之方法,其進一步包括: 藉由機械處理使該等碳聚集物之尺寸減小。
  18. 如請求項16之方法,其中: 該等多壁球形富勒烯在該等多壁球形富勒烯之中心不包含種子顆粒或空隙。
  19. 如請求項16之方法,其中: 跨越該等碳聚集物之平均直徑為10微米至500微米。
  20. 如請求項16之方法,其中: 該等多壁球形富勒烯之平均直徑為50 nm至500 nm。
  21. 如請求項16之方法,其中: 石墨烯對多壁球形富勒烯之比率為10%至80%。
  22. 如請求項16之方法,其中: 該等碳聚集物中碳對H除外之其他元素之比率大於99.9%。
  23. 如請求項16之方法,其中: 該等碳聚集物之布魯諾-埃梅特-特勒(BET)比表面積為10 m2 /g至200 m2 /g。
  24. 如請求項16之方法,其進一步包括: 將該等碳聚集物壓縮成糰粒,其中該糰粒之電導率為500 S/m至20000 S/m。
  25. 如請求項16之方法,其進一步包括: 以0.1秒至30秒之氣體共振時間形成該等碳聚集物。
  26. 如請求項16之方法,其進一步包括: 以1 slm至10 slm之氣體流速及10 g/小時至200 g/小時之產生速率形成該等碳聚集物。
  27. 如請求項16之方法,其進一步包括使用選自由以下組成之群之方法後處理該等碳聚集物:碾磨、研磨、剝落、退火、燒結、汽蒸、過濾、凍乾(lypolizing)、摻雜及添加元素。
  28. 一種碳聚集物,其包含: 至少兩個經連接之多壁球形富勒烯;及 塗覆該等經連接之多壁球形富勒烯之石墨烯層。
  29. 如請求項28之碳聚集物,其中: 該碳聚集物中碳對H除外之其他元素之比率大於99.9%。
  30. 如請求項28之碳聚集物,其中: 使用532 nm入射光,該碳聚集物之拉曼光譜在大約1350 cm-1 處具有第一拉曼峰且在大約1580 cm-1 處具有第二拉曼峰;且 該第一拉曼峰之強度對該第二拉曼峰之強度之比率為0.9至1.1。
  31. 如請求項28之碳聚集物,其中: 該等多壁球形富勒烯在該等多壁球形富勒烯之中心不包含種子顆粒或空隙。
  32. 如請求項28之碳聚集物,其中: 跨越該碳聚集物之直徑為10微米至500微米。
  33. 如請求項28之碳聚集物,其中: 該碳聚集物中石墨烯對多壁球形富勒烯之比率為10%至80%。
  34. 如請求項28之碳聚集物,其中: 該碳聚集物之布魯諾-埃梅特-特勒(BET)比表面積為10 m2 /g至200 m2 /g。
  35. 如請求項28之碳聚集物,其中: 將複數個該等碳聚集物壓縮成糰粒,且該糰粒之電導率為500 S/m至20000 S/m。
  36. 一種混合物,其包含液體及複數個如請求項28之碳聚集物。
  37. 一種油墨,其包含複數個如請求項28之碳聚集物,其中該油墨係導電油墨。
  38. 一種方法,其包括: 使烴原料製程氣體流入反應區中; 熱裂解該反應區中之該原料製程氣體之分子; 使該等經熱裂解之分子反應以形成碳聚集物,其各自包含至少兩個包覆於石墨烯層中之經連接之多壁球形富勒烯;及 收集該等碳聚集物。
  39. 如請求項38之方法,其中: 該等碳聚集物中碳對H除外之其他元素之比率大於99.9%。
  40. 如請求項38之方法,其中: 使用532 nm入射光,該等碳聚集物之拉曼光譜在約1350 cm-1 處具有第一拉曼峰且在約1580 cm-1 處具有第二拉曼峰,且 該第一拉曼峰之強度對該第二拉曼峰之強度之比率為0.9至1.1。
  41. 如請求項38之方法,其中: 該等多壁球形富勒烯在該等多壁球形富勒烯之中心不包含種子顆粒或空隙。
  42. 如請求項38之方法,其中: 跨越該等碳聚集物之平均直徑為10微米至500微米。
  43. 如請求項38之方法,其中: 石墨烯對多壁球形富勒烯之比率為10%至80%。
  44. 如請求項38之方法,其中: 該等碳聚集物之布魯諾-埃梅特-特勒(BET)比表面積為10 m2 /g至200 m2 /g。
  45. 如請求項38之方法,其進一步包括: 將該等碳聚集物壓縮成糰粒,其中該糰粒之電導率為500 S/m至20000 S/m。
  46. 如請求項38之方法,其進一步包括: 該烴原料製程氣體之流速為1 slm至10 slm;且 該等碳聚集物係在10 g/小時至200 g/小時之產生速率下形成。
  47. 如請求項38之方法,其進一步包括: 使用選自由以下組成之群之方法後處理該等收集之碳聚集物:碾磨、研磨、剝落、退火、燒結、汽蒸、過濾、凍乾、摻雜及添加元素。
TW107110121A 2017-03-27 2018-03-23 碳同素異形體 TWI760460B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15/470,450 US9862602B1 (en) 2017-03-27 2017-03-27 Cracking of a process gas
US15/470,450 2017-03-27
US15/594,032 US9862606B1 (en) 2017-03-27 2017-05-12 Carbon allotropes
US15/594,032 2017-05-12
US15/794,965 US10112837B2 (en) 2017-03-27 2017-10-26 Carbon allotropes
US15/794,965 2017-10-26

Publications (2)

Publication Number Publication Date
TW201834966A true TW201834966A (zh) 2018-10-01
TWI760460B TWI760460B (zh) 2022-04-11

Family

ID=60813517

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107110121A TWI760460B (zh) 2017-03-27 2018-03-23 碳同素異形體

Country Status (3)

Country Link
US (4) US9862606B1 (zh)
TW (1) TWI760460B (zh)
WO (1) WO2018182976A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843975B2 (en) 2015-08-05 2020-11-24 Halliburton Energy Services, Inc. Spark plasma sintered polycrystalline diamond
US10773303B2 (en) 2015-08-05 2020-09-15 Halliburton Energy Services, Inc. Spark plasma sintered polycrystalline diamond compact
US20170260634A1 (en) * 2016-01-29 2017-09-14 John Timothy Sullivan Enhanced Exothermic Reaction (EER) Reactor
US10308512B2 (en) 2016-10-06 2019-06-04 Lyten, Inc. Microwave reactor system with gas-solids separation
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
WO2018169889A1 (en) 2017-03-16 2018-09-20 Lyten, Inc. Carbon and elastomer integration
US9862606B1 (en) * 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US11358869B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Methods and systems for microwave assisted production of graphitic materials
US10465128B2 (en) 2017-09-20 2019-11-05 Lyten, Inc. Cracking of a process gas
DE102017217122A1 (de) * 2017-09-26 2019-03-28 Schunk Kohlenstofftechnik Gmbh Hochtemperaturbauteil und Verfahren zur Herstellung
KR102180627B1 (ko) * 2017-12-04 2020-11-18 주식회사 엘지화학 자동화된 시료 열분해 장치
WO2019126196A1 (en) 2017-12-22 2019-06-27 Lyten, Inc. Structured composite materials
CN112105922A (zh) 2018-01-04 2020-12-18 利腾股份有限公司 谐振气体传感器
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
CN108896524B (zh) * 2018-04-09 2021-02-26 合肥国轩高科动力能源有限公司 一种大面积表征磷酸铁锂-无定形碳复合材料的方法
JP2022508353A (ja) 2018-08-23 2022-01-19 トランスフォーム マテリアルズ エルエルシー 気体を処理するための系および方法
US11633710B2 (en) 2018-08-23 2023-04-25 Transform Materials Llc Systems and methods for processing gases
CN109856114B (zh) * 2019-01-28 2020-08-04 中国科学院半导体研究所 化学气相沉积法制备的多层石墨烯层数的确定方法
US11342561B2 (en) 2019-10-25 2022-05-24 Lyten, Inc. Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11398622B2 (en) 2019-10-25 2022-07-26 Lyten, Inc. Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11545615B2 (en) * 2020-09-09 2023-01-03 Baker Hughes Oilfield Operations Llc Method for manufacturing piezoelectric instrumentation devices with 3D structures using additive manufacturing
US11404692B1 (en) * 2021-07-23 2022-08-02 Lyten, Inc. Lithium-sulfur battery cathode formed from multiple carbonaceous regions
WO2023018543A1 (en) * 2021-08-09 2023-02-16 Phillips 66 Company Methods for preparing nano-ordered carbon anode materials for sodium-ion batteries
WO2023168263A1 (en) 2022-03-04 2023-09-07 Lyten, Inc. Cement compositions with 3d graphene carbons

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL133188C (zh) 1960-12-24
DE1468159A1 (de) 1964-08-05 1969-05-08 Knapsack Ag Verfahren und Vorrichtung zur Spaltung von Kohlenwasserstoffen mit Hilfe des elektrischen Lichtbogens
US3706445A (en) 1971-09-30 1972-12-19 Granco Equipment Fume incinerator
JPH0290939A (ja) 1988-09-29 1990-03-30 Mitsubishi Heavy Ind Ltd メタン分解装置
JP2905910B2 (ja) 1991-04-18 1999-06-14 丸善石油化学株式会社 ジシクロペンタジエンの気相熱分解方法および高純度ジシクロペンタジエンの製造方法
FR2683543B1 (fr) 1991-11-08 1994-02-11 Inst Francais Du Petrole Procede de pyrolyse thermique d'hydrocarbures utilisant un four electrique.
JPH05208805A (ja) 1992-01-29 1993-08-20 Kobe Steel Ltd 塊状カーボン成形体およびその集合体並びにそれらの製法
JP3044934B2 (ja) 1992-07-06 2000-05-22 石川島播磨重工業株式会社 落下型無重力実験装置の切り離し方法
US5876684A (en) * 1992-08-14 1999-03-02 Materials And Electrochemical Research (Mer) Corporation Methods and apparati for producing fullerenes
WO1995026925A1 (en) 1994-03-30 1995-10-12 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
US5572866A (en) 1994-04-29 1996-11-12 Environmental Thermal Oxidizers, Inc. Pollution abatement incinerator system
US5693173A (en) 1994-12-21 1997-12-02 Chorus Corporation Thermal gas cracking source technology
JP3544267B2 (ja) 1996-05-22 2004-07-21 独立行政法人 科学技術振興機構 巨大フラーレンの製造方法
US6017630A (en) 1996-05-22 2000-01-25 Research Development Corporation Ultrafine particle and production method thereof, production method of ultrafine particle bonded body, and fullerene and production method thereof
FR2751830B1 (fr) 1996-07-23 1998-10-23 Prolabo Sa Dispositif pour realiser des reactions chimiques sous micro-ondes sur une grande quantite de produits
JP3437066B2 (ja) 1997-09-12 2003-08-18 科学技術振興事業団 マルチ核フラーレンの製造方法
US6884405B2 (en) 1999-03-23 2005-04-26 Rosseter Holdings Limited Method and device for producing higher fullerenes and nanotubes
JP3074170B1 (ja) 1999-05-27 2000-08-07 大澤 映二 ナノサイズ真球状黒鉛製造方法
JP2001122690A (ja) 1999-10-26 2001-05-08 Toyo Kohan Co Ltd マイクロ波プラズマcvd装置及びダイヤモンド薄膜を形成する方法
JP5162061B2 (ja) 2000-09-07 2013-03-13 株式会社アルバック オニオンフラーレンの生成方法
JP2002105623A (ja) 2000-09-27 2002-04-10 Kobe Steel Ltd カーボンオニオン薄膜およびその製造方法
FR2815888B1 (fr) 2000-10-27 2003-05-30 Air Liquide Dispositif de traitement de gaz par plasma
JP4285992B2 (ja) 2000-12-13 2009-06-24 テキサコ ディベラップメント コーポレイション 単一チャンバーのコンパクトな燃料処理装置
GB0122300D0 (en) 2001-09-14 2001-11-07 Univ Cambridge Tech Method of producing nanoparticles
JP4109952B2 (ja) 2001-10-04 2008-07-02 キヤノン株式会社 ナノカーボン材料の製造方法
EP1456124A4 (en) 2001-11-20 2009-01-28 Univ Wm Marsh Rice COATED FULL RENEES AND COMPOSITE MATERIALS AND DIELECTRICS MANUFACTURED THEREFROM
US20040265211A1 (en) 2001-12-14 2004-12-30 Dillon Anne C. Hot wire production of single-wall carbon nanotubes
CA2365785A1 (en) 2001-12-19 2003-06-19 Louis Obidniak Pyrolysis system
GB0200259D0 (en) 2002-01-07 2002-02-20 Univ Reading The Encapsulated radioactive nuclide microparticles and methods for their production
JP2003206102A (ja) 2002-01-10 2003-07-22 Matsushita Electric Ind Co Ltd 水素生成装置および燃料電池システム
JP2003212502A (ja) 2002-01-21 2003-07-30 Daido Steel Co Ltd 水素発生方法及び水素発生装置
JP4255061B2 (ja) 2003-05-23 2009-04-15 財団法人浜松科学技術研究振興会 マイクロ波プラズマ発生方法およびマイクロ波プラズマ発生装置
US7261779B2 (en) 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US20050003247A1 (en) 2003-07-01 2005-01-06 Ai-Quoc Pham Co-production of hydrogen and electricity using pyrolysis and fuel cells
JP4411039B2 (ja) 2003-09-08 2010-02-10 エス.エス.アロイ株式会社 炭素同素体を有する炭素の製造装置
CN1207189C (zh) 2003-10-10 2005-06-22 太原理工大学 纳米微粒催化电弧法制备洋葱状富勒烯的方法
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
US20060078488A1 (en) 2004-01-14 2006-04-13 Frontier Carbon Corporation Carbon material and process for producing the same
JP4693470B2 (ja) 2004-04-12 2011-06-01 三星エスディアイ株式会社 リチウム二次電池用負極活物質、及びこれを含む負極、及びリチウム二次電池
WO2007001412A2 (en) 2004-10-07 2007-01-04 University Of Virginia Patent Foundation Method for purifying carbon nano-onions
EP1623957B1 (de) 2005-02-10 2008-02-06 Electrovac AG Verfahren und Vorrichtung zur Herstellung von Wasserstoff
US20060185595A1 (en) 2005-02-23 2006-08-24 Coll Bernard F Apparatus and process for carbon nanotube growth
US7833505B2 (en) 2005-04-13 2010-11-16 Continental Carbon Company Methods and systems for synthesis on nanoscale materials
EP1712522A1 (en) 2005-04-14 2006-10-18 Robert Prof. Dr. Schlögl Nanosized carbon material-activated carbon composite
CN100368080C (zh) 2005-08-29 2008-02-13 天津大学 以Ni/Al催化剂化学气相沉积制备碳纳米管和碳洋葱的方法
US7563525B2 (en) 2006-02-15 2009-07-21 Egt Enterprises, Inc. Electric reaction technology for fuels processing
US7588746B1 (en) 2006-05-10 2009-09-15 University Of Central Florida Research Foundation, Inc. Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
US7790243B2 (en) 2006-07-19 2010-09-07 The Aerospace Corporation Method for producing large-diameter 3D carbon nano-onion structures at room temperature
JP5298309B2 (ja) 2007-02-17 2013-09-25 国立大学法人東京工業大学 カーボンオニオンおよびその製造方法、ならびに、ゲル組成物およびその製造方法
FI120450B (fi) 2007-03-21 2009-10-30 Beneq Oy Laite nanoputkien tuottamiseksi
JP4834615B2 (ja) 2007-06-14 2011-12-14 日立造船株式会社 気相生成炭素構造体の製造装置および製造方法
EP2086285A1 (en) 2008-02-01 2009-08-05 Anton Paar GmbH Applicator and Apparatus for heating samples by microwave radiation
US8257867B2 (en) 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
US7923491B2 (en) 2008-08-08 2011-04-12 Exxonmobil Chemical Patents Inc. Graphite nanocomposites
US8216541B2 (en) 2008-09-03 2012-07-10 Nanotek Instruments, Inc. Process for producing dispersible and conductive nano graphene platelets from non-oxidized graphitic materials
DE102008053027A1 (de) 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren,Fullerene und/oder Graphene enthaltenden Beschichtung
JP5375197B2 (ja) 2009-02-28 2013-12-25 伸夫 大前 オニオンライクカーボンの作製方法
WO2012037445A2 (en) 2010-09-17 2012-03-22 Drexel University Novel applications for alliform carbon
TW201038473A (en) 2009-03-11 2010-11-01 Univ Kumamoto Nat Univ Corp Onion-like carbon and method of producing the same
EP2411328B1 (en) 2009-03-26 2019-07-24 Northeastern University Carbon nanostructures from pyrolysis of organic materials
CN101885481A (zh) 2009-05-11 2010-11-17 中国海洋石油总公司 一种碳纳米洋葱的制备方法
CN101580241B (zh) 2009-05-21 2011-01-12 太原理工大学 一种多壁富勒烯的制备方法
WO2011004609A1 (ja) 2009-07-08 2011-01-13 Ohmae Nobuo Co2リサイクリング方法、co2削減方法、および装置
US20120258374A1 (en) 2009-09-10 2012-10-11 The University Western Australia Process for Producing Hydrogen from Hydrocarbons
US9441076B2 (en) 2009-11-12 2016-09-13 The Trustees Of Princeton University Multifunctional graphene-silicone elastomer nanocomposite, method of making the same, and uses thereof
CN101905881B (zh) 2010-08-02 2013-05-22 无锡诚信碳材料科技有限公司 一种石墨化程度高的纳米碳材料制备方法
CN201789030U (zh) 2010-08-02 2011-04-06 无锡诚信碳材料科技有限公司 零排放制氢发电产碳装置
US8691441B2 (en) 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
JP5648251B2 (ja) 2010-09-07 2015-01-07 独立行政法人日本原子力研究開発機構 熱解離機能を有するヒータ
US20120189530A1 (en) 2011-01-20 2012-07-26 Eden Energy Ltd. System And Process For Producing Hydrogen And A Carbon Nanotube Product
WO2012112481A1 (en) 2011-02-16 2012-08-23 Drexel University Electrochemical flow capacitors
GB2490355B (en) 2011-04-28 2015-10-14 Gasplas As Method for processing a gas and a device for performing the method
WO2012147771A1 (ja) 2011-04-28 2012-11-01 東海ゴム工業株式会社 マイクロ波プラズマ生成装置、およびそれを用いたマグネトロンスパッタ成膜装置
US8992880B2 (en) 2011-06-06 2015-03-31 Shinko Seiki Company, Limited Method of manufacturing onion-like carbon
EP2766302A2 (en) 2011-10-14 2014-08-20 Council of Scientific & Industrial Research Laser-induced dissociative stitching (lds) for synthesis of carbon and carbon based nanocomposites
WO2013119295A1 (en) 2011-11-18 2013-08-15 William Marsh Rice University Graphene-carbon nanotube hybrid materials and use as electrodes
US8734683B2 (en) 2011-11-29 2014-05-27 Xerox Corporation Graphene nano-sheets and methods for making the same
KR20140105732A (ko) 2011-12-12 2014-09-02 보르벡크 머터리얼스 코포레이션 그래핀 및 강화제를 포함하는 고무 조성물 및 그로부터 제조된 물품
US9059466B2 (en) 2012-03-22 2015-06-16 Chun-Chieh Chang Direct synthesis of lithium ion battery electrode materials using graphene treated raw materials as the reactant
US20130296479A1 (en) 2012-05-03 2013-11-07 Ppg Industries Ohio, Inc. Rubber formulations including graphenic carbon particles
KR101413237B1 (ko) 2012-05-21 2014-06-27 한국과학기술연구원 고유전 탄성중합체 및 그 제조방법
SG10201703118VA (en) 2012-10-17 2017-05-30 Univ Singapore Technology & Design High specific capacitance and high power density of printed flexible micro-supercapacitors
US9230815B2 (en) * 2012-10-26 2016-01-05 Appled Materials, Inc. Methods for depositing fluorine/carbon-free conformal tungsten
DE102012111900A1 (de) 2012-12-06 2014-06-26 Krones Ag Vorrichtung und Verfahren zum Cracken von Gasen
JP6044934B2 (ja) 2013-02-13 2016-12-14 国立大学法人名古屋大学 グラフェンの製造方法
FR3007019B1 (fr) 2013-06-12 2017-03-17 Commissariat Energie Atomique Nanomateriaux graphitiques sous forme d'oignons de carbone, leur procede de preparation et leur utilisation
US9896340B2 (en) 2013-07-18 2018-02-20 William Marsh Rice University Rebar hybrid materials and methods of making the same
CN103382025B (zh) 2013-07-25 2015-01-14 燕山大学 一种采用液体射流法制备纳米洋葱碳的方法
US9564630B2 (en) 2013-08-08 2017-02-07 Nantek Instuments, Inc. Anode active material-coated graphene sheets for lithium batteries and process for producing same
KR101540067B1 (ko) 2013-09-12 2015-07-30 한국과학기술연구원 플렉시블 전자소재용 탄성중합체-전도성 필러 복합체 및 이의 제조방법
KR101800486B1 (ko) 2013-12-06 2017-11-22 주식회사 엘지화학 전도성이 개선된 복합재 및 이를 함유하는 성형품
US9711256B2 (en) 2013-12-24 2017-07-18 Cheorwon Plasma Research Institute Graphene-nano particle composite having nanoparticles crystallized therein at a high density
GB201405614D0 (en) 2014-03-28 2014-05-14 Perpetuus Res & Dev Ltd Particles
WO2015184555A1 (en) 2014-06-06 2015-12-10 Group Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
PT3164207T (pt) 2014-07-03 2019-02-27 Coolbrook Oy Processo e reator de tipo máquina rotativa
US20180327611A1 (en) 2014-07-30 2018-11-15 Vorbeck Materials Corp. Conductive compositions
EP3191300A1 (en) 2014-09-12 2017-07-19 Northeastern University Fabrication of carbon nanoribbons from carbon nanotube arrays
US20160141114A1 (en) 2014-11-14 2016-05-19 Council Of Scientific & Industrial Research Nanocomposite of multilayer fullerenes with transition metal oxide nanoparticles and a process for the preparation thereof
JP2018512355A (ja) 2015-02-27 2018-05-17 イメリス グラファイト アンド カーボン スイッツァランド リミティド ナノ粒子表面改質炭素質材料及びそのような材料の製造方法
CN105833797B (zh) 2016-03-21 2019-01-11 吉林大学 纳米洋葱碳的高温高压制备方法
CN105870419B (zh) 2016-05-25 2018-04-13 广东石油化工学院 一种石墨烯/富勒烯复合纳米材料的制备方法及其应用
CN106098944B (zh) 2016-07-13 2018-12-25 电子科技大学 一种基于纳米洋葱碳复合阳极缓冲层的太阳能电池
CN106398802A (zh) 2016-09-07 2017-02-15 济南大学 一种石墨烯负载球形无机类富勒烯二硫化钼的激光快速制备方法
US10308512B2 (en) 2016-10-06 2019-06-04 Lyten, Inc. Microwave reactor system with gas-solids separation
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US9862602B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Cracking of a process gas

Also Published As

Publication number Publication date
WO2018182976A1 (en) 2018-10-04
TWI760460B (zh) 2022-04-11
US10112837B2 (en) 2018-10-30
US11560311B2 (en) 2023-01-24
US20190047863A1 (en) 2019-02-14
US11053121B2 (en) 2021-07-06
US9862606B1 (en) 2018-01-09
US20210292170A1 (en) 2021-09-23
US20180273386A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
TWI760460B (zh) 碳同素異形體
TWI766727B (zh) 具有碳同素異形體之無晶種粒子
EP2038209B1 (en) Production of nano-structures
Tjong Polymer composites with carbonaceous nanofillers: properties and applications
Sun et al. Preparation of carbon nanomaterials using two-group arc discharge plasma
KR20130079144A (ko) 분무열분해 공정을 이용한 그래핀-탄소나노튜브 복합체의 제조방법 및 그 제조방법으로 제조된 그래핀-탄소나노튜브 복합체
Hao et al. Synthesis and wave absorption characterization of SiC nanowires/expanded graphite composites
WO2007049591A1 (ja) ふっ素樹脂成形体
Antonucci et al. Review of polymer composites with carbon nanotubes
Soltani et al. The effect of thermal shock-based heat-treatment on the cost-effective and low-temperature synthesis of needle-like r-BN
Wang The Reinforcement of Nanocomposites by Boron Nitride Nanosheets and Nanotubes
Rajukumar Synthesis and Characterization of 3-Dimensional Networks of Different Nanocarbons
Pulickal Rajukumar SYNTHESIS AND CHARACTERIZATION OF 3-DIMENSIONAL NETWORKS OF DIFFERENT NANOCARBONS
Bandyopadhyay et al. Preparation of Graphene Based Nanocomposite Based on TPE
Pakdel et al. Nanoboron nitrides
Inagaki Handbook of Advanced Ceramics: Chapter 2.1. Advanced Carbon Materials
Arani et al. Effect of Nano Carbon Additives on the Graphitization of Polyvinyl Chloride
Orea-Calderón et al. Enhanced Synthesis of Sponge-Type Multiwalled Carbon Nanotubes Using Sio2-Fe2o3 Catalysts Via Aerosol-Assisted Chemical Vapor Deposition: Electrochemical and Absorption Capacity Studies