TW201832246A - Print-on pastes for modifying material properties of metal particle layers - Google Patents

Print-on pastes for modifying material properties of metal particle layers Download PDF

Info

Publication number
TW201832246A
TW201832246A TW107116394A TW107116394A TW201832246A TW 201832246 A TW201832246 A TW 201832246A TW 107116394 A TW107116394 A TW 107116394A TW 107116394 A TW107116394 A TW 107116394A TW 201832246 A TW201832246 A TW 201832246A
Authority
TW
Taiwan
Prior art keywords
layer
particles
metal
aluminum
intercalation
Prior art date
Application number
TW107116394A
Other languages
Chinese (zh)
Other versions
TWI698888B (en
Inventor
布萊恩 E 哈丁
艾瑞克 索爾
迪埃 蘇賽諾
傑西 J 欣李奇
鈺淳 黃
于唐 林
史蒂芬 T 康納
丹尼爾 J 赫爾布什
克雷格 H 彼得斯
Original Assignee
美商普蘭特光伏有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商普蘭特光伏有限公司 filed Critical 美商普蘭特光伏有限公司
Publication of TW201832246A publication Critical patent/TW201832246A/en
Application granted granted Critical
Publication of TWI698888B publication Critical patent/TWI698888B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Abstract

A method of forming a fired multilayer stack are described. The method involves the steps of (a) applying a wet metal particle layer on at least a portion of a surface of a substrate, (b) drying the wet metal particle layer to form a dried metal particle layer, (c) applying a wet intercalation layer directly on at least a portion of the dried metal particle layer to form a multilayer stack, (d) drying the multilayer stack, and (e) co-firing the multilayer stack to form the fired multilayer stack. The intercalating layer may include one or more of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The wet metal particle layer may include aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel or combinations thereof.

Description

用於改良金屬粒子層的材料屬性的印刷漿料  Printing paste for improving the material properties of the metal particle layer  

本發明是關於嵌入漿料,其包含貴金屬粒子、嵌入粒子以及有機載體。 The present invention relates to an intercalation slurry comprising noble metal particles, embedded particles, and an organic vehicle.

嵌入漿料(intercalation paste)可被用於改進太陽能電池的電力轉換效率。基於銀的嵌入漿料印刷在鋁層上,其在燒製之後具有適度的剝離強度(peel strength)且隨即軟焊至標誌帶(tabbing ribbon)。這一漿料特別好的適用於基於矽的太陽能電池,其使用鋁背面電場(BSF)。典型地,商業上生產的單-和多-晶矽太陽能電池的矽晶片的85-92%的後表面區域由鋁粒子層覆蓋,其形成了背面電場且與矽進行歐姆接觸(ohmic contact)。剩餘的5-10%的後矽表面由銀後標誌層覆蓋,其並不產生電場且不與矽晶片進行歐姆接觸。後標誌層主要用於軟焊標誌帶以電性連接太陽能電池。 An intercalation paste can be used to improve the power conversion efficiency of the solar cell. The silver-based embedded paste was printed on an aluminum layer which had moderate peel strength after firing and was then soldered to a tabbing ribbon. This paste is particularly well suited for use in ruthenium based solar cells using an aluminum back surface electric field (BSF). Typically, 85-92% of the back surface area of the tantalum wafer of commercially produced mono- and poly-crystalline solar cells is covered by a layer of aluminum particles that form a back surface electric field and are ohmic contact with the crucible. The remaining 5-10% of the ruthenium surface is covered by a post-silver mark layer that does not generate an electric field and does not make ohmic contact with the ruthenium wafer. The rear marking layer is mainly used for soldering the marking tape to electrically connect the solar cell.

當銀層與太陽能電池的後側上的矽基板(substrate)直接接觸,而非接觸基板的鋁粒子層時,估計在一絕對基準上太陽能電池的轉換效率降低了0.1%至0.2%。因此,高度需要使用鋁粒子層覆蓋太陽能電池的整個後部,且仍然能夠使用標誌帶將太陽能電池連接在一起。過去,研究者已經嘗試將銀直接印刷在鋁粒子層的頂部,但是在高溫下的在空氣中的 燒製期間,鋁和銀層相互擴散(interdiffusion),且導致層表面變得氧化且損失可焊性。一些研究者已經嘗試改變大氣條件以降低氧化;然而,前側的銀漿料在氧化大氣、例如乾燥空氣中,執行得最佳,且在惰性大氣中的處理之後整個太陽能電池效率降低了。其它研究者已經嘗試降低晶片的峰值燒製溫度以降低相互擴散,但是前側的銀漿料需要高峰值燒製溫度(即,大於650℃)以燒結矽氮氧化物,以與矽基板進行歐姆接觸。近來,研究者已經使用直接在鋁頂部上的錫合金的超聲波軟焊,以產生可軟焊表面(solderable surface)。這一技術已經實現了足夠的剝離強度(即,1-1.5N/mm),但是需要額外的設備且使用大量的錫,這增加了成本。此外,在易碎材料、例如鋁和矽晶片上使用超聲波軟焊會增加晶片破裂且減低處理產量。 When the silver layer is in direct contact with the germanium substrate on the rear side of the solar cell, instead of contacting the aluminum particle layer of the substrate, it is estimated that the conversion efficiency of the solar cell is reduced by 0.1% to 0.2% on an absolute basis. Therefore, it is highly desirable to cover the entire rear portion of the solar cell with a layer of aluminum particles, and still be able to connect the solar cells together using the marker tape. In the past, researchers have tried to print silver directly on top of the aluminum particle layer, but during firing in air at high temperatures, the aluminum and silver layers interdifulate and cause the surface of the layer to become oxidized and lost. Weldability. Some researchers have attempted to alter atmospheric conditions to reduce oxidation; however, the silver paste on the front side performs optimally in an oxidizing atmosphere, such as dry air, and the overall solar cell efficiency is reduced after treatment in an inert atmosphere. Other researchers have attempted to reduce the peak firing temperature of the wafer to reduce interdiffusion, but the silver paste on the front side requires a high peak firing temperature (ie, greater than 650 ° C) to sinter the niobium oxynitride for ohmic contact with the tantalum substrate. . Recently, researchers have used ultrasonic soldering of tin alloys directly on the top of aluminum to create a solderable surface. This technique has achieved sufficient peel strength (ie, 1-1.5 N/mm), but requires additional equipment and uses a large amount of tin, which adds cost. In addition, the use of ultrasonic soldering on fragile materials such as aluminum and tantalum wafers can increase wafer breakage and reduce processing throughput.

具有發展可印刷漿料的需求,其可在燒製期間改良(modify)下層金屬粒子層的材料屬性。例如,包含漿料的貴金屬(precious metal),其可被直接印刷在鋁上且使用標準太陽能電池處理條件燒製,可改進太陽能電池效率。這些漿料可降低Ag/Al的相互擴散,從而保持可軟焊至標誌帶。需要漿料是可網版印刷的且作用為***式更換,其不會帶來額外的資本支出,且可立即整合至現有的生產線中。 There is a need to develop printable pastes that can modify the material properties of the underlying metal particle layer during firing. For example, a precious metal containing a slurry that can be printed directly on aluminum and fired using standard solar cell processing conditions can improve solar cell efficiency. These pastes reduce the interdiffusion of Ag/Al, thereby remaining solderable to the marking strip. The slurry is required to be screen printable and function as a plug-in replacement, which does not entail additional capital expenditures and can be immediately integrated into existing production lines.

本發明揭露了一種燒結多層堆疊(fired multilayer stack)。在本發明的一個實施方式中,該堆疊具有基板、在基板表面至少一部分上的金屬粒子層、在基板表面至少一部分上的改良金屬粒子層,以及直接在改良金屬粒子層的至少一部分上的改良插層。改良插層具有面對遠離基板的可軟焊表面。改良金屬粒子層包括與金屬粒子層相同的金屬粒子以及至少 一種來自改良插層的材料。改良插層包含貴金屬和從下列群組中選擇的材料,包含:銻、砷、鋇、鉍、硼、鎘、鈣、鈰、銫、鉻、鈷、鎵、鍺、銦、鐵、鑭、鉿、鉛、鋰、鎂、錳、鉬、鈮、磷、鉀、錸、硒、矽、鈉、鍶、硫、碲、錫、釩、鋅、鋯,其組合,及其合金、其氧化物、其合成物,及其其它組合。在一種配置中,改良插層包含貴金屬和從下列群組中選擇的材料,包含:鉍、硼、銦、鉛、矽、碲、錫、釩、鋅,其組合及其合金、其氧化物、其合成物,及其其它組合。 The present invention discloses a fired multilayer stack. In one embodiment of the invention, the stack has a substrate, a layer of metal particles on at least a portion of the surface of the substrate, a layer of modified metal particles on at least a portion of the surface of the substrate, and an improvement directly on at least a portion of the layer of modified metal particles. Intercalation. The improved intercalation has a solderable surface facing away from the substrate. The modified metal particle layer includes the same metal particles as the metal particle layer and at least one material from the modified intercalation layer. The modified intercalation layer contains precious metals and materials selected from the group consisting of ruthenium, arsenic, antimony, bismuth, boron, cadmium, calcium, strontium, barium, chromium, cobalt, gallium, antimony, indium, iron, antimony, antimony , lead, lithium, magnesium, manganese, molybdenum, niobium, phosphorus, potassium, antimony, selenium, tellurium, sodium, antimony, sulfur, antimony, tin, vanadium, zinc, zirconium, combinations thereof, and alloys thereof, oxides thereof, Its composition, and other combinations thereof. In one configuration, the modified intercalation layer comprises a noble metal and a material selected from the group consisting of bismuth, boron, indium, lead, antimony, bismuth, tin, vanadium, zinc, combinations thereof and alloys thereof, oxides thereof, Its composition, and other combinations thereof.

在本發明的一個實施方式中,改良插層具有兩個相(phase):貴金屬相(precious metal phase)和嵌入相(intercalation phase)。大於50%的改良插層的可軟焊表面可包含貴金屬相。改良金屬粒子層可包括上文討論的金屬粒子和來自嵌入相的至少一種材料。嵌入相包括從下列群組中選擇的材料,包含:銻、砷、鋇、鉍、硼、鎘、鈣、鈰、銫、鉻、鈷、鎵、鍺、銦、鐵、鑭、鉿、鉛、鋰、鎂、錳、鉬、鈮、磷、鉀、錸、硒、矽、鈉、鍶、硫、碲、錫、釩、鋅、鋯,其組合,及其合金、其氧化物、其合成物,及其其它組合。貴金屬相包括從下列群組中選擇的至少一種材料,包含:金、銀、鉑、鈀、銠,及合金、合成物,及其其它組合。 In one embodiment of the invention, the improved intercalation has two phases: a precious metal phase and an intercalation phase. A solderable surface of greater than 50% of the modified intercalation may comprise a precious metal phase. The modified metal particle layer can include the metal particles discussed above and at least one material from the embedded phase. The embedded phase includes materials selected from the group consisting of ruthenium, arsenic, antimony, bismuth, boron, cadmium, calcium, strontium, barium, chromium, cobalt, gallium, antimony, indium, iron, antimony, antimony, lead, Lithium, magnesium, manganese, molybdenum, niobium, phosphorus, potassium, antimony, selenium, tellurium, sodium, antimony, sulfur, antimony, tin, vanadium, zinc, zirconium, combinations thereof, and alloys thereof, oxides thereof, and composites thereof , and other combinations. The precious metal phase comprises at least one material selected from the group consisting of gold, silver, platinum, palladium, rhodium, and alloys, composites, and other combinations thereof.

在本發明的另一個實施方式中,改良插層具有兩個子層(sublayer):直接在改良金屬粒子層的至少一部分上的子插層(intercalation sublayer),以及直接在子插層的至少一部分上的貴金屬子層(precious metal sublayer)。改良插層的可軟焊表面包含貴金屬子層。改良金屬粒子層可包括上文討論的金屬粒子和來自子插層的至少一種材料。用於子插層的可能材料與上文描述的用於嵌入相的相同。用於貴金屬子層的可能材料與上文描 述的用於貴金屬相的相同。 In another embodiment of the invention, the modified intercalation layer has two sublayers: an intercalation sublayer directly on at least a portion of the modified metal particle layer, and at least a portion directly on the subintercalation layer Precious metal sublayer. The solderable surface of the modified intercalation layer comprises a precious metal sublayer. The modified metal particle layer can include the metal particles discussed above and at least one material from the sub-intercalation layer. Possible materials for the sub-intercalation are the same as described above for the embedded phase. Possible materials for the noble metal sublayer are the same as those described above for the noble metal phase.

在本發明的另一個實施方式中,燒結多層堆疊具有作為其改良金屬粒子層的改良鋁粒子層。它具有有兩個子層的改良插層:直接在改良鋁粒子層上的富鉍(bismuth-rich)子層;以及直接在富鉍子層上的富銀(silver-rich)子層。改良插層的可軟焊表面包含富銀子層。改良鋁粒子層包含鋁粒子,且還可包含從下列群組中選擇的至少一種材料,包括:鋁氧化物、鉍和鉍氧化物。 In another embodiment of the invention, the sintered multilayer stack has a modified aluminum particle layer as its modified metal particle layer. It has a modified intercalation with two sub-layers: a bismuth-rich sub-layer directly on the modified aluminum particle layer; and a silver-rich sub-layer directly on the hazelnut-rich layer. The solderable surface of the modified intercalation layer comprises a silver-rich sub-layer. The modified aluminum particle layer comprises aluminum particles and may further comprise at least one material selected from the group consisting of aluminum oxide, cerium and lanthanum oxide.

在一種配置中,至少一個介電層直接在基板表面的至少一部分上。介電層包括從下列群組中選擇的至少一種材料,包含:矽、鋁、鍺、鎵、鉿,及氧化物、氮化物、合成物及其組合。在另一種配置中,氧化鋁介電層直接在基板表面的至少一部分上,且氮化矽介電層直接在氧化鋁介電層上。 In one configuration, the at least one dielectric layer is directly on at least a portion of the surface of the substrate. The dielectric layer includes at least one material selected from the group consisting of germanium, aluminum, germanium, gallium, germanium, and oxides, nitrides, composites, and combinations thereof. In another configuration, the alumina dielectric layer is directly on at least a portion of the substrate surface and the tantalum nitride dielectric layer is directly on the aluminum oxide dielectric layer.

在一種配置中,有一固體(例如,共晶(eutectic))複合層(compound layer)直接位在基板表面上。固體複合層包括從下列群組中選擇的一種或多種金屬,包含:鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦,以及從下列群組中選擇的一種或多種材料,包含:矽、氧、碳、鍺、鎵、砷、氮、銦和磷。 In one configuration, a solid (e.g., eutectic) compound layer is positioned directly on the surface of the substrate. The solid composite layer comprises one or more metals selected from the group consisting of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, and one or more materials selected from the group consisting of: , oxygen, carbon, helium, gallium, arsenic, nitrogen, indium and phosphorus.

相鄰基板表面的基板一部分可摻雜有從下列群組中選擇的至少一種材料,包含:鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦、鋼及其組合。 A portion of the substrate adjacent the surface of the substrate may be doped with at least one material selected from the group consisting of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel, and combinations thereof.

在本發明的一個實施方式中,燒結多層堆疊的一部分具有可變厚度。燒結多層堆疊可具有大於12μm的平均峰谷(peak to valley)高度。 In one embodiment of the invention, a portion of the sintered multilayer stack has a variable thickness. The sintered multilayer stack can have an average peak to valley height greater than 12 [mu]m.

改良插層的可軟焊表面的至少70wt%(重量百分比)可包括從 下列群組中選擇的材料,包含:銀、金、鉑、鈀、銠,和合金、合成物及其其它組合。 At least 70 wt% (by weight) of the solderable surface of the modified intercalation layer can comprise materials selected from the group consisting of silver, gold, platinum, palladium, rhodium, and alloys, composites, and other combinations thereof.

基板可包括從下列群組中選擇的至少一種材料,包含:矽、二氧化矽、碳化矽、氧化鋁、藍寶石、鍺、砷化鎵、氮化鎵和磷化銦。替代地,基板可包括從下列群組中選擇的材料,包含:鋁、銅、鐵、鎳、鈦、鋼、鋅,和合金、合成物及其其它組合。金屬粒子層可包括從下列群組中選擇的材料,包含:鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦、鋼和合金、合成物及其其它組合。貴金屬可包括從下列群組中選擇的材料,包含:銀、金、鉑、鈀、銠,及合金、合成物,及其其它組合。 The substrate may include at least one material selected from the group consisting of ruthenium, ruthenium dioxide, ruthenium carbide, aluminum oxide, sapphire, ruthenium, gallium arsenide, gallium nitride, and indium phosphide. Alternatively, the substrate can comprise materials selected from the group consisting of aluminum, copper, iron, nickel, titanium, steel, zinc, and alloys, composites, and other combinations thereof. The metal particle layer can comprise materials selected from the group consisting of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel and alloys, composites, and other combinations thereof. The precious metal may comprise materials selected from the group consisting of silver, gold, platinum, palladium, rhodium, and alloys, composites, and other combinations thereof.

金屬粒子層可具有0.5μm至100μm之間的厚度和/或1至50%之間的孔隙率。改良插層可具有0.5μm至10μm之間的厚度。燒結多層堆疊可具有0至5mOhm之間的接觸電阻,如由輸電線路測量確定的。 The metal particle layer may have a thickness between 0.5 μm and 100 μm and/or a porosity between 1 and 50%. The modified intercalation layer may have a thickness of between 0.5 μm and 10 μm. The sintered multilayer stack can have a contact resistance between 0 and 5 mOhm as determined by transmission line measurements.

直接在改良插層的可軟焊表面的至少一部分上還可以設有標誌帶。在一種配置中,標誌帶和改良插層之間的剝離強度大於1N/mm。 A marker strip may also be provided directly on at least a portion of the solderable surface of the modified intercalation. In one configuration, the peel strength between the marker strip and the modified interposer is greater than 1 N/mm.

在本發明的另一個實施方式中,燒結多層堆疊具有基板、在基板至少一部分上的金屬粒子層、在基板至少一部分上的改良金屬粒子層,以及直接在改良金屬粒子層的至少一部分上的改良插層。改良插層具有兩個子層:直接在改良金屬粒子層的至少一部分上的子插層,以及直接在子插層的至少一部分上的貴金屬子層。改良金屬粒子層包括金屬粒子和來自子插層的至少一種材料。用於子插層的可能材料已經在上文描述。 In another embodiment of the invention, a sintered multilayer stack has a substrate, a layer of metal particles on at least a portion of the substrate, a layer of modified metal particles on at least a portion of the substrate, and an improvement directly on at least a portion of the layer of modified metal particles Intercalation. The modified intercalation layer has two sublayers: a sub-intercalation layer directly on at least a portion of the modified metal particle layer, and a noble metal sub-layer directly on at least a portion of the sub-intercalation layer. The modified metal particle layer includes metal particles and at least one material from the sub-intercalation layer. Possible materials for sub-intercalation have been described above.

在本發明的另一個實施方式中,燒結多層堆疊具有矽基板、在基板至少一部分上的鋁粒子層、在基板至少一部分上的改良鋁粒子層, 以及直接在改良鋁粒子層上的改良插層。改良插層具有兩個子層:直接在改良鋁粒子層上的富鉍子層,以及直接在富鉍子層上的富銀子層。改良鋁粒子層包括從下列群組中選擇的至少一種材料,包含:鋁、鋁氧化物、鉍和鉍氧化物。 In another embodiment of the invention, the sintered multilayer stack has a tantalum substrate, an aluminum particle layer on at least a portion of the substrate, a modified aluminum particle layer on at least a portion of the substrate, and an improved intercalation directly on the modified aluminum particle layer. . The modified intercalation has two sublayers: a eutectic layer directly on the modified aluminum particle layer, and a silver rich sublayer directly on the eutectic layer. The modified aluminum particle layer comprises at least one material selected from the group consisting of aluminum, aluminum oxide, cerium and lanthanum oxide.

在本發明的一個實施方式中,太陽能電池具有矽基板、直接在矽基板的前表面的至少一部分上的至少一個前介電層、在矽基板的前表面的一部分上的多個精細格線(fine grid line)、與多個精細格線的至少一個電性接觸的至少一個前匯流層(front busbar layer)、在矽基板的後表面的至少一部分上的鋁粒子層,以及在矽基板的後表面的一部分上的後標誌層(rear tabbing layer)。後標誌層包括,在矽基板的後表面的一部分上的改良鋁粒子層,以及直接在改良鋁粒子層的至少一部分上的改良插層。改良插層具有面對遠離矽基板的可軟焊表面。改良鋁粒子層包括鋁粒子和來自改良插層的至少一種材料。用於改良插層的可能材料已經在上文描述。鋁粒子層可具有1μm至50μm之間的厚度和/或3至20%之間的孔隙率。後標誌層可具有1μm至50μm之間的厚度。矽基板可以是單晶矽晶片,具有p型基底或n型基底。矽基板可以是多晶矽晶片,具有p型基底或n型基底。 In one embodiment of the invention, a solar cell has a germanium substrate, at least one front dielectric layer directly on at least a portion of the front surface of the germanium substrate, and a plurality of fine grid lines on a portion of the front surface of the germanium substrate ( Fine grid line), at least one front busbar layer in electrical contact with at least one of the plurality of fine ruled lines, an aluminum particle layer on at least a portion of the rear surface of the tantalum substrate, and behind the tantalum substrate A rear tabbing layer on a portion of the surface. The back marking layer includes a layer of modified aluminum particles on a portion of the back surface of the tantalum substrate, and an improved intercalation layer directly on at least a portion of the layer of modified aluminum particles. The improved intercalation has a solderable surface facing away from the crucible substrate. The modified aluminum particle layer includes aluminum particles and at least one material from the modified intercalation layer. Possible materials for improving the intercalation have been described above. The aluminum particle layer may have a thickness between 1 μm and 50 μm and/or a porosity between 3 and 20%. The back marking layer may have a thickness of between 1 μm and 50 μm. The germanium substrate may be a single crystal germanium wafer having a p-type substrate or an n-type substrate. The germanium substrate may be a polycrystalline silicon wafer having a p-type substrate or an n-type substrate.

在本發明的一個實施方式中,改良插層包括兩個相:貴金屬相和嵌入相。大於50%的可軟焊表面可由貴金屬相製得。改良鋁粒子層包括鋁粒子和來自嵌入相的至少一種材料。用於嵌入相的可能材料已經在上文描述。用於貴金屬相的可能材料已經在上文描述。 In one embodiment of the invention, the improved intercalation comprises two phases: a precious metal phase and an embedded phase. More than 50% of the solderable surface can be made from a precious metal phase. The modified aluminum particle layer includes aluminum particles and at least one material from the embedded phase. Possible materials for the embedded phase have been described above. Possible materials for the precious metal phase have been described above.

在本發明的另一個實施方式中,改良插層包括兩個子層:直接在改良金屬粒子層的至少一部分上的子插層,以及直接在子插層的至少 一部分上的貴金屬子層。可軟焊表面包含貴金屬子層。改良鋁粒子層包括鋁粒子和來自子插層的至少一種材料。用於子插層的可能材料已經在上文描述。用於貴金屬子層的可能材料已經在上文描述。 In another embodiment of the invention, the modified intercalation layer comprises two sublayers: a sub-intercalation layer directly on at least a portion of the modified metal particle layer, and a noble metal sub-layer directly on at least a portion of the sub-intercalation layer. The solderable surface contains a precious metal sublayer. The modified aluminum particle layer includes aluminum particles and at least one material derived from the sub-intercalation layer. Possible materials for sub-intercalation have been described above. Possible materials for the noble metal sublayer have been described above.

在本發明的另一個實施方式中,改良插層包括兩個子層:直接在改良鋁粒子層上的富鉍子層,以及直接在富鉍子層上的富銀子層。改良鋁粒子層進一步包括從下列群組中選擇的至少一種材料包含:鋁氧化物、鉍和鉍氧化物。在一種配置中,改良鋁粒子層進一步包括鉍和/或氧化鉍,且鉍與鉍加鋁的重量比(Bi:(Bi+Al))在改良鋁粒子層中至少比在鋁粒子層中高20%。富鉍子層可具有0.01μm至5μm之間或0.25μm至5μm之間的厚度。 In another embodiment of the invention, the modified intercalation layer comprises two sublayers: a germanium rich layer directly on the modified aluminum particle layer, and a silver rich sublayer directly on the germanium rich layer. The modified aluminum particle layer further comprises at least one material selected from the group consisting of aluminum oxide, cerium and lanthanum oxide. In one configuration, the modified aluminum particle layer further comprises niobium and/or niobium oxide, and the weight ratio of niobium to niobium plus aluminum (Bi:(Bi+Al)) is at least 20 higher in the modified aluminum particle layer than in the aluminum particle layer. %. The hazelnut-rich layer may have a thickness of between 0.01 μm and 5 μm or between 0.25 μm and 5 μm.

在一種配置中,至少一個後介電層直接在矽基板的後表面的至少一部分上。後介電層包括以下的一種或多種:矽、鋁、鍺、鉿、鎵,及氧化物、氮化物、合成物及其組合。後介電層可包含氮化矽。在另一種配置中,氧化鋁後介電層直接在矽基板後表面的至少一部分上,且氮化矽後介電層直接在氧化鋁後介電層上。在一種配置中,固體鋁-矽共晶層直接在矽基板上。在一種配置中,相鄰矽基板後表面的一部分矽基板進一步包括後表面場,且後表面場摻雜p型至每cm3有1017至1020原子(atoms)之間。 In one configuration, the at least one back dielectric layer is directly on at least a portion of the back surface of the germanium substrate. The back dielectric layer includes one or more of the following: bismuth, aluminum, bismuth, antimony, gallium, and oxides, nitrides, composites, and combinations thereof. The back dielectric layer can comprise tantalum nitride. In another configuration, the post-alumina dielectric layer is directly on at least a portion of the back surface of the tantalum substrate, and the tantalum nitride dielectric layer is directly on the post-alumina dielectric layer. In one configuration, the solid aluminum-germanium eutectic layer is directly on the germanium substrate. In one configuration, a portion of the tantalum substrate adjacent the back surface of the tantalum substrate further includes a back surface field, and the back surface field is doped p-type to between 1017 and 1020 atoms per cm3.

在本發明的一個實施方式中,後標誌層的一部分具有可變厚度且可具有大於12μm的平均峰谷高度。 In one embodiment of the invention, a portion of the back marking layer has a variable thickness and may have an average peak-to-valley height greater than 12 [mu]m.

直接在改良插層的可軟焊表面的至少一部分上可以有標誌帶。可軟焊表面可以是富銀的。可軟焊表面可包含至少75wt%的銀。軟焊至富銀的可軟焊表面的標誌帶可具有大於1N/mm的剝離強度。 A marker band may be present directly on at least a portion of the solderable surface of the modified intercalation. The solderable surface can be silver rich. The solderable surface can comprise at least 75 wt% silver. The marker tape that is soldered to the silver-rich solderable surface can have a peel strength greater than 1 N/mm.

改良鋁粒子層的一部分可具有可變厚度。改良鋁粒子層的一部分可具有大於12μm的平均峰谷高度。後標誌層和鋁粒子層之間的接觸電阻可在0至5mOhm之間,正如輸電線路測量確定的。 A portion of the modified aluminum particle layer can have a variable thickness. A portion of the modified aluminum particle layer may have an average peak-to-valley height greater than 12 [mu]m. The contact resistance between the back mark layer and the aluminum particle layer can be between 0 and 5 mOhm, as determined by transmission line measurements.

在本發明的另一個實施方式中,太陽能電池具有矽基板、直接在矽基板的前表面的至少一部分上的至少一個前介電層、在矽基板的前表面的一部分上的多個精細格線、與多個精細格線的至少一個電性接觸的至少一個前匯流層、在矽基板的後表面的至少一部分上的鋁粒子層,以及在矽基板的後表面的一部分上的後標誌層。後標誌層具有可軟焊表面。後標誌層包括,在矽基板後表面的至少一部分上的改良鋁粒子層,直接在改良鋁粒子層的至少一部分上的富鉍子層,以及直接在富鉍子層的至少一部分上的富銀子層。改良鋁粒子層包含鋁粒子以及從下列群組中選擇的至少一種材料,包括:鋁氧化物、鉍和鉍氧化物。 In another embodiment of the present invention, a solar cell has a germanium substrate, at least one front dielectric layer directly on at least a portion of a front surface of the germanium substrate, and a plurality of fine grid lines on a portion of a front surface of the germanium substrate At least one front busbar layer in electrical contact with at least one of the plurality of fine ruled lines, an aluminum particle layer on at least a portion of the back surface of the tantalum substrate, and a back mark layer on a portion of the back surface of the tantalum substrate. The rear marking layer has a solderable surface. The back marking layer includes a layer of modified aluminum particles on at least a portion of the back surface of the tantalum substrate, a germanium-rich layer directly on at least a portion of the modified aluminum particle layer, and a silver-rich layer directly on at least a portion of the rich germanium layer Floor. The modified aluminum particle layer comprises aluminum particles and at least one material selected from the group consisting of aluminum oxide, cerium and lanthanum oxide.

在本發明的另一個實施方式中,太陽能電池模組具有前板(front sheet)、前板後表面上的前封裝層(front encapsulant layer),以及前封裝層上的第一矽太陽能電池和第二矽太陽能電池。每個矽太陽能電池可以是在此描述的任何矽太陽能電池。太陽能電池模組還具有第一電池互連(first cell interconnect),其包括與第一矽太陽能電池的前匯流層和第二矽太陽能電池的後標誌層二者電性接觸的第一標誌帶、後板(rear sheet)、後板的後表面上的後封裝層(rear encapsulant layer)。後封裝層的第一部分與第一矽太陽能電池和第二矽太陽能電池接觸,並且後封裝層的第二部分與前封裝層接觸。 In another embodiment of the present invention, a solar cell module has a front sheet, a front encapsulant layer on a rear surface of the front panel, and a first tantalum solar cell and a first encapsulation layer Two solar cells. Each germanium solar cell can be any of the germanium solar cells described herein. The solar cell module further has a first cell interconnect including a first marker strip in electrical contact with both the front busbar layer of the first tantalum solar cell and the back flag layer of the second tantalum solar cell, A rear sheet, a rear encapsulant layer on the rear surface of the back sheet. A first portion of the back encapsulation layer is in contact with the first tantalum solar cell and the second tantalum solar cell, and a second portion of the back encapsulation layer is in contact with the front encapsulation layer.

第一電池互連還可包括與後板接觸的接線盒(junction box)。接線盒可包含至少一個旁通二極體(bypass diode)。還可以有連接至第一標誌帶的至少一個匯流帶。 The first battery interconnect may also include a junction box that is in contact with the back plate. The junction box can include at least one bypass diode. There may also be at least one bus bar connected to the first marker band.

在本發明的一個實施方式中,揭露了漿料(paste)。漿料包含10wt%至70wt%之間的貴金屬粒子、至少10wt%的嵌入粒子(intercalating particle)和有機載體(organic vehicle)。嵌入粒子包括從下列群組中選擇的一種或多種,包含低溫基底金屬粒子、晶體金屬氧化物粒子和玻璃熔粒(glass frit particle)。嵌入粒子與貴金屬粒子的重量比至少可以是1:5。 In one embodiment of the invention, a paste is disclosed. The slurry comprises between 10% and 70% by weight of precious metal particles, at least 10% by weight of intercalating particles and an organic vehicle. The embedded particles include one or more selected from the group consisting of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The weight ratio of the embedded particles to the noble metal particles may be at least 1:5.

貴金屬粒子可包括從下列群組中選擇的至少一種材料,包含:金、銀、鉑、鈀、銠,及合金、合成物,及其其它組合。貴金屬粒子可具有100nm至50μm之間的D50和0.4至7.0m2/g之間的比表面積。貴金屬粒子的一部分可具有例如球形、片狀和/或細長形的形狀。貴金屬粒子可具有單峰尺寸分佈或多峰尺寸分佈。在一個實施方式中,貴金屬粒子是銀且具有300nm至2.5μm之間的D50和1.0至3.0m2/g之間的比表面積。 The noble metal particles may comprise at least one material selected from the group consisting of gold, silver, platinum, palladium, rhodium, and alloys, composites, and other combinations thereof. The noble metal particles may have a D50 of between 100 nm and 50 μm and a specific surface area of between 0.4 and 7.0 m 2 /g. A portion of the noble metal particles may have a shape such as a sphere, a sheet, and/or an elongated shape. The noble metal particles may have a monomodal size distribution or a multimodal size distribution. In one embodiment, the noble metal particles are silver and have a D50 between 300 nm and 2.5 μm and a specific surface area between 1.0 and 3.0 m 2 /g.

嵌入粒子可具有100nm至50μm之間的D50和0.1至6.0m2/g之間的比表面積。嵌入粒子的一部分可具有例如球形、片狀和/或細長形的形狀。嵌入粒子可具有單峰尺寸分佈或多峰尺寸分佈。 The embedded particles may have a D50 of between 100 nm and 50 μm and a specific surface area of between 0.1 and 6.0 m 2 /g. A portion of the embedded particles may have a shape such as a sphere, a sheet, and/or an elongated shape. The embedded particles may have a monomodal size distribution or a multimodal size distribution.

低溫基底金屬粒子可包括從下列群組中選擇的材料,包含:鉍、錫、碲、銻、鉛,及合金、合成物,及其其它組合。在一個實施方式中,低溫基底金屬粒子包含鉍且具有1.5至4.0μm之間的D50和1.0至2.0m2/g之間的比表面積。 The low temperature base metal particles may comprise materials selected from the group consisting of: antimony, tin, antimony, bismuth, lead, and alloys, composites, and other combinations thereof. In one embodiment, the low temperature base metal particles comprise ruthenium and have a D50 between 1.5 and 4.0 μm and a specific surface area between 1.0 and 2.0 m 2 /g.

在本發明的一個實施方式中,至少一些低溫基底金屬粒子具有由單殼(singleshell)圍繞的鉍核心粒子,其包括從下列群組中選擇的材 料,包含:銀、鎳、鎳-硼、錫、碲、銻、鉛、鉬、鈦,及合金、合成物,及其其它組合。在本發明的另一個實施方式中,至少一些低溫基底金屬粒子具有由單殼圍繞的鉍核心粒子,其包括從下列群組中選擇的材料,包含:氧化矽、氧化鎂、氧化硼及其任意組合。 In one embodiment of the invention, at least some of the low temperature base metal particles have a ruthenium core particle surrounded by a single shell comprising materials selected from the group consisting of: silver, nickel, nickel-boron, tin , bismuth, antimony, lead, molybdenum, titanium, and alloys, composites, and other combinations thereof. In another embodiment of the present invention, at least some of the low temperature base metal particles have a ruthenium core particle surrounded by a single shell comprising materials selected from the group consisting of ruthenium oxide, magnesium oxide, boron oxide, and any combination.

晶體金屬氧化物粒子可包括氧和從下列群組中選擇的金屬,包含:鉍、錫、碲、銻、鉛、釩、鉻、鉬、硼、錳、鈷,及合金、合成物,及其其它組合。 The crystalline metal oxide particles may include oxygen and metals selected from the group consisting of: antimony, tin, antimony, bismuth, lead, vanadium, chromium, molybdenum, boron, manganese, cobalt, and alloys, composites, and Other combinations.

玻璃熔粒包括從下列群組中選擇的材料,包含:銻、砷、鋇、鉍、硼、鎘、鈣、鈰、銫、鉻、鈷、氟、鎵、鍺、銦、鉿、碘、鐵、鑭、鉛、鋰、鎂、錳、鉬、鈮、鉀、錸、硒、矽、鈉、鍶、碲、錫、釩、鋅、鋯,其合金、其氧化物、其合成物,及其其它組合。 The glass frit includes materials selected from the group consisting of bismuth, arsenic, antimony, bismuth, boron, cadmium, calcium, strontium, barium, chromium, cobalt, fluorine, gallium, antimony, indium, antimony, iodine, and iron. , bismuth, lead, lithium, magnesium, manganese, molybdenum, strontium, potassium, strontium, selenium, tellurium, sodium, strontium, barium, tin, vanadium, zinc, zirconium, alloys thereof, oxides thereof, composites thereof, and Other combinations.

漿料可具有30wt%至80wt%之間的固體裝載。嵌入粒子可組成漿料的至少15wt%。在一種配置中,漿料包括45wt%的Ag粒子、30wt%的鉍粒子和25wt%的有機載體。在另一種配置中,漿料包括30wt%的Ag粒子、20wt%的鉍粒子和50wt%的有機載體。漿料在25℃在4秒(sec)-1的剪切速度(sheer rate)下可具有10,000至200,000cP之間的黏度。 The slurry can have a solid loading between 30 wt% and 80 wt%. The embedded particles can constitute at least 15% by weight of the slurry. In one configuration, the slurry comprises 45 wt% Ag particles, 30 wt% rhodium particles, and 25 wt% organic vehicle. In another configuration, the slurry comprises 30 wt% Ag particles, 20 wt% rhodium particles, and 50 wt% organic vehicle. The slurry may have a viscosity between 10,000 and 200,000 cP at a shear rate of 4 seconds (sec)-1 at 25 °C.

在本發明的一個實施方式中,描述了形成燒結多層堆疊的聯合燒製(co-firing)方法。該方法包含步驟:a)在基板表面的至少一部分塗上濕金屬粒子層,b)乾燥濕金屬粒子層,以形成乾燥金屬粒子層,c)在乾燥金屬粒子層的至少一部分直接塗上濕插層,以形成多層堆疊,d)乾燥多層堆疊,以及e)聯合燒製多層堆疊,以形成燒結多層堆疊。 In one embodiment of the invention, a co-firing process for forming a sintered multilayer stack is described. The method comprises the steps of: a) coating at least a portion of the surface of the substrate with a layer of wet metal particles, b) drying the layer of wet metal particles to form a layer of dried metal particles, c) directly applying a wet insert to at least a portion of the layer of dried metal particles Layers to form a multilayer stack, d) dry the multilayer stack, and e) jointly fire the multilayer stack to form a sintered multilayer stack.

在本發明的另一個實施方式中,描述了形成燒結多層堆疊的 序列方法。該方法包含步驟:a)在基板表面的至少一部分塗上濕金屬粒子層,b)乾燥濕金屬粒子層,以形成乾燥金屬粒子層,c)燒製乾燥金屬粒子層,以形成金屬粒子層,d)在金屬粒子層的至少一部分直接塗上濕插層,以形成多層堆疊,e)乾燥多層堆疊,以及f)燒製多層堆疊,以形成燒結多層堆疊。 In another embodiment of the invention, a sequential method of forming a sintered multilayer stack is described. The method comprises the steps of: a) coating a layer of wet metal particles on at least a portion of the surface of the substrate, b) drying the layer of wet metal particles to form a layer of dried metal particles, c) firing a layer of dried metal particles to form a layer of metal particles, d) directly applying a wet intercalation layer to at least a portion of the metal particle layer to form a multilayer stack, e) drying the multilayer stack, and f) firing the multilayer stack to form a sintered multilayer stack.

在一種配置中,對於聯合燒製方法和序列方法兩者,濕插層具有10wt%至70wt%之間的貴金屬粒子、至少10wt%的嵌入粒子和有機載體。嵌入粒子可包括從下列群組中選擇的一種或多種,包含低溫基底金屬粒子、晶體金屬氧化物粒子和玻璃熔粒。濕金屬粒子層可包括從下列群組中選擇的金屬粒子,包含:鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦、鋼和合金、合成物及其其它組合。 In one configuration, the wet intercalation layer has between 10 wt% and 70 wt% of precious metal particles, at least 10 wt% of embedded particles, and an organic vehicle for both the co-firing method and the sequential method. The embedded particles may comprise one or more selected from the group consisting of low temperature base metal particles, crystalline metal oxide particles, and glass beads. The wet metal particle layer can include metal particles selected from the group consisting of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel and alloys, composites, and other combinations thereof.

在一種配置中,對於聯合燒製方法和序列方法兩者,在步驟a)前有附加的步驟。附加步驟包含,在基板表面的至少一部分上沉積至少一個介電層。在這一配置中,步驟a)包含,在介電層的至少一部分直接塗上濕金屬粒子層。 In one configuration, there are additional steps prior to step a) for both the combined firing method and the sequential method. An additional step includes depositing at least one dielectric layer on at least a portion of the surface of the substrate. In this configuration, step a) comprises applying a layer of wet metal particles directly to at least a portion of the dielectric layer.

對於聯合燒製方法和序列方法兩者,每個塗覆步驟可包含從下列群組中選擇的方法,包括:網版印刷、凹版印刷(gravure printing)、噴射沉積(spray deposition)、狹槽塗覆、3D列印和噴墨印刷。在一種配置中,步驟a)包含,通過有圖案的絲網進行網版印刷,以產生具有可變厚度的濕金屬粒子層。 For both the co-firing method and the sequential method, each coating step may comprise a method selected from the group consisting of: screen printing, gravure printing, spray deposition, slot coating Overlay, 3D printing and inkjet printing. In one configuration, step a) comprises screen printing through a patterned screen to produce a layer of wet metal particles having a variable thickness.

對於聯合燒製方法和序列方法兩者,步驟b)和d)可包含,在低於500℃的溫度下乾燥1秒至90分鐘之間,或者在150℃至300℃之間的溫度下乾燥1秒至60分鐘之間。步驟e)可包含,在空氣中迅速加熱至大於600 ℃的溫度持續0.5秒至60分鐘之間,或在空氣中迅速加熱至大於700℃的溫度持續0.5至3秒。 For both the co-firing method and the sequential method, steps b) and d) may comprise drying at a temperature below 500 ° C for between 1 second and 90 minutes, or drying at a temperature between 150 ° C and 300 ° C. Between 1 second and 60 minutes. Step e) may comprise rapid heating in air to a temperature greater than 600 ° C for between 0.5 seconds and 60 minutes, or rapid heating in air to a temperature greater than 700 ° C for 0.5 to 3 seconds.

在一種配置中,對於聯合燒製方法和序列方法兩者,在附加步驟f)包含,在燒結多層堆疊的一部分上軟焊標誌帶。 In one configuration, for both the co-firing method and the sequential method, in an additional step f), the marker strip is soldered over a portion of the sintered multilayer stack.

低溫基底金屬粒子、晶體金屬氧化物粒子、玻璃熔粒和金屬粒子層在上文詳細描述。 The low temperature base metal particles, the crystalline metal oxide particles, the glass frit and the metal particle layer are described in detail above.

在本發明的另一個實施方式中,製造太陽能電池的方法包含步驟:a)提供矽晶片,b)在矽晶片背面的至少一部分塗上濕鋁粒子層,c)乾燥濕鋁粒子層以形成鋁粒子層,d)在鋁粒子層的至少一部分直接塗上濕插層,以形成多層堆疊,e)乾燥多層堆疊,f)在矽晶片的前表面塗上多條精細格線和至少一個前匯流層,g)乾燥多條精細格線和至少一個前匯流層以形成結構,以及h)聯合燒製該結構以形成矽太陽能電池。 In another embodiment of the invention, a method of fabricating a solar cell includes the steps of: a) providing a germanium wafer, b) applying a layer of wet aluminum particles to at least a portion of the backside of the germanium wafer, c) drying the layer of wet aluminum particles to form aluminum a particle layer, d) directly applying a wet intercalation layer to at least a portion of the aluminum particle layer to form a multilayer stack, e) drying the multilayer stack, f) applying a plurality of fine grid lines and at least one front confluence to the front surface of the tantalum wafer The layer, g) dries a plurality of fine grid lines and at least one front bus layer to form a structure, and h) jointly fires the structure to form a tantalum solar cell.

濕插層已經在上文描述。 Wet intercalation has been described above.

在一種配置中,在步驟a)和步驟b)之間有附加步驟。附加步驟包含,在矽晶片的後表面的至少一部分上沉積至少一個介電層。在這以配置中,步驟b)包含,在介電層的至少一部分直接塗上濕鋁粒子層。 In one configuration, there are additional steps between step a) and step b). An additional step includes depositing at least one dielectric layer on at least a portion of the back surface of the germanium wafer. In this configuration, step b) comprises applying a layer of wet aluminum particles directly to at least a portion of the dielectric layer.

每個塗覆步驟可包含從下列群組中選擇的方法,包括:網版印刷、凹版印刷、噴射沉積、狹槽塗覆、3D列印和噴墨印刷。在一種配置中,步驟b)包含,通過有圖案的絲網進行網版印刷,以產生具有可變厚度的濕鋁粒子層。 Each coating step can include methods selected from the group consisting of: screen printing, gravure printing, spray deposition, slot coating, 3D printing, and inkjet printing. In one configuration, step b) comprises screen printing through a patterned screen to produce a layer of wet aluminum particles having a variable thickness.

對於聯合燒製方法和序列方法兩者,步驟e)和g)可包含,在低於500℃的溫度下乾燥1秒至90分鐘之間,或者在150℃至300℃之間的溫 度下乾燥1秒至60分鐘之間。步驟h)可包含,在空氣中迅速加熱至大於600℃的溫度持續0.5秒至60分鐘之間,或在空氣中迅速加熱至大於700℃的溫度持續0.5至3秒。 For both the co-firing method and the sequential method, steps e) and g) may comprise drying at a temperature below 500 ° C for between 1 second and 90 minutes, or at a temperature between 150 ° C and 300 ° C. Between 1 second and 60 minutes. Step h) may comprise rapid heating in air to a temperature greater than 600 ° C for between 0.5 seconds and 60 minutes, or rapid heating in air to a temperature greater than 700 ° C for 0.5 to 3 seconds.

低溫基底金屬、晶體金屬氧化物粒子和玻璃熔粒已經在上文詳細描述。 Low temperature base metals, crystalline metal oxide particles, and glass melt particles have been described in detail above.

100‧‧‧多層堆疊 100‧‧‧Multilayer stacking

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧乾燥金屬粒子層 120‧‧‧Dry metal particle layer

130‧‧‧插層 130‧‧‧Intercalation

200‧‧‧燒結多層堆疊 200‧‧‧Sintered multilayer stacking

1122‧‧‧改良鋁粒子層 1122‧‧‧Modified aluminum particle layer

1130‧‧‧改良插層 1130‧‧‧Modified Intercalation

1132‧‧‧鉍子插層 1132‧‧‧铋子插层

1134‧‧‧銀子層 1134‧‧‧ Silver layer

1199‧‧‧區域 1199‧‧‧Area

210‧‧‧基板 210‧‧‧Substrate

220‧‧‧金屬粒子層 220‧‧‧ metal particle layer

222‧‧‧改良金屬粒子層 222‧‧‧ Improved metal particle layer

230‧‧‧改良插層 230‧‧‧Modified Intercalation

230S‧‧‧可軟焊表面 230S‧‧‧ solderable surface

300‧‧‧基板 300‧‧‧Substrate

320‧‧‧金屬粒子層 320‧‧‧ metal particle layer

322‧‧‧改良金屬粒子層 322‧‧‧Modified metal particle layer

322I‧‧‧介面 322I‧‧ interface

330‧‧‧改良插層 330‧‧‧Modified Intercalation

333‧‧‧嵌入相 333‧‧‧ embedded phase

335‧‧‧貴金屬相 335‧‧‧ precious metal phase

335S‧‧‧可軟焊表面 335S‧‧‧ solderable surface

350‧‧‧多層堆疊區域 350‧‧‧Multilayer stacking area

390‧‧‧燒結多層堆疊 390‧‧‧Sintered multilayer stacking

392‧‧‧金屬粒子 392‧‧‧Metal particles

400‧‧‧燒結多層堆疊 400‧‧‧Sintered multilayer stacking

402‧‧‧金屬粒子 402‧‧‧Metal particles

403‧‧‧一些材料 403‧‧‧Some materials

410‧‧‧基板 410‧‧‧Substrate

420‧‧‧金屬粒子層 420‧‧‧metal particle layer

422‧‧‧改良金屬粒子層 422‧‧‧Modified metal particle layer

1410‧‧‧峰值 1410‧‧‧ peak

1420‧‧‧峰值 Peak of 1420‧‧

1450‧‧‧峰值 1450‧‧‧ peak

1460‧‧‧峰值 1460‧‧‧ peak

1500‧‧‧多層堆疊 1500‧‧‧Multilayer stacking

1510‧‧‧基板 1510‧‧‧Substrate

1513‧‧‧介電層 1513‧‧‧ dielectric layer

1520‧‧‧乾燥金屬粒子層 1520‧‧‧Dry metal particle layer

1530‧‧‧插層 1530‧‧‧Intercalation

1600‧‧‧燒結多層堆疊 1600‧‧‧Sintered multilayer stacking

1610‧‧‧基板 1610‧‧‧Substrate

1613‧‧‧介電層 1613‧‧‧Dielectric layer

1614‧‧‧新混合物 1614‧‧‧New mixture

1620‧‧‧金屬粒子區域 1620‧‧‧Metal particle region

1622‧‧‧改良金屬粒子層 1622‧‧‧Modified metal particle layer

1630‧‧‧改良插層 1630‧‧‧Modified Intercalation

1712‧‧‧峰值區域 1712‧‧‧ Peak area

1720‧‧‧金屬粒子層 1720‧‧‧ metal particle layer

1730‧‧‧改良插層 1730‧‧‧Modified Intercalation

1800‧‧‧絲網 1800‧‧‧Screen

1810‧‧‧開口網孔區域 1810‧‧‧Open mesh area

1820‧‧‧有圖案區域 1820‧‧‧patterned area

422I‧‧‧介面 422I‧‧ interface

430‧‧‧改良插層 430‧‧‧Modified Intercalation

432I‧‧‧EDX映射 432I‧‧‧EDX mapping

433‧‧‧子插層 433‧‧‧Sub-interlayer

435‧‧‧貴金屬子層 435‧‧‧ precious metal sublayer

435S‧‧‧可軟焊表面 435S‧‧‧ solderable surface

450‧‧‧多層堆疊區域 450‧‧‧Multilayer stacking area

501B‧‧‧非平坦介面 501B‧‧‧ non-flat interface

502‧‧‧線 502‧‧‧ line

504‧‧‧線 504‧‧‧ line

510‧‧‧基板 510‧‧‧Substrate

522‧‧‧改良金屬粒子層 522‧‧‧Modified metal particle layer

522A‧‧‧樣本區域 522A‧‧‧ sample area

522B‧‧‧非平坦介面 522B‧‧‧ non-flat interface

530‧‧‧改良插層 530‧‧‧Modified Intercalation

621‧‧‧鋁粒子 621‧‧‧Aluminum particles

622‧‧‧改良金屬粒子層 622‧‧‧Modified metal particle layer

623‧‧‧嵌入相材料 623‧‧‧Embedded phase materials

630‧‧‧改良插層 630‧‧‧Modified Intercalation

631‧‧‧介面區域 631‧‧‧Interface area

632‧‧‧富鉍子層 632‧‧‧ rich scorpion layer

634‧‧‧富銀子層 634‧‧‧ rich silver sublayer

1821‧‧‧封閉區域 1821‧‧‧closed area

1822‧‧‧開放區域 1822‧‧‧Open area

1910‧‧‧基板 1910‧‧‧Substrate

1920‧‧‧乾燥金屬粒子層 1920‧‧‧Dry metal particle layer

1922‧‧‧可變厚度乾燥金屬粒子層 1922‧‧‧Variable thickness dry metal particle layer

1925‧‧‧區域 1925‧‧‧Area

1930‧‧‧插層 1930‧‧‧Intercalation

2010‧‧‧基板 2010‧‧‧Substrate

2020‧‧‧金屬粒子層 2020‧‧‧metal particle layer

2022‧‧‧改良金屬粒子層 2022‧‧‧Modified metal particle layer

2025‧‧‧區域 2025‧‧‧Area

2030‧‧‧改良插層 2030‧‧‧Modified Intercalation

2120‧‧‧金屬粒子層 2120‧‧‧ metal particle layer

2121‧‧‧改良插層 2121‧‧‧Modified Intercalation

2210‧‧‧燒結多層堆疊 2210‧‧‧Sintered multilayer stacking

2211‧‧‧改良插層 2211‧‧‧Modified Intercalation

2212‧‧‧改良鋁粒子層 2212‧‧‧Modified aluminum particle layer

2213‧‧‧矽基板 2213‧‧‧矽 substrate

2216‧‧‧可軟焊表面 2216‧‧‧ solderable surface

2217‧‧‧介面 2217‧‧‧ interface

2218‧‧‧介面 2218‧‧‧ interface

2321‧‧‧平坦鋁粒子薄膜 2321‧‧‧flat aluminum particle film

721‧‧‧貴金屬相 721‧‧‧ precious metal phase

722‧‧‧改良鋁粒子層 722‧‧‧Modified aluminum particle layer

730‧‧‧鋁粒子 730‧‧‧Aluminum particles

740‧‧‧基於鉍的嵌入相 740‧‧‧铋-based embedded phase

750‧‧‧改良插層 750‧‧‧Modified Intercalation

750S‧‧‧表面 750S‧‧‧ surface

810‧‧‧矽基板 810‧‧‧矽 substrate

821‧‧‧鋁粒子 821‧‧‧Aluminum particles

822‧‧‧燒結鋁粒子層 822‧‧‧Sintered aluminum particle layer

840‧‧‧無機黏合劑 840‧‧‧Inorganic adhesive

898‧‧‧區域 898‧‧‧Area

910‧‧‧矽基板 910‧‧‧矽 substrate

921‧‧‧鋁粒子 921‧‧‧Aluminum particles

922‧‧‧鋁粒子層 922‧‧‧Aluminum particle layer

970‧‧‧背面電場區域 970‧‧‧Back electric field area

980‧‧‧固化鋁-矽共晶層 980‧‧‧ cured aluminum-bismuth eutectic layer

1000‧‧‧聯合燒結多層堆疊 1000‧‧‧Joint sintered multilayer stack

1010‧‧‧矽基板 1010‧‧‧矽 substrate

1022‧‧‧改良鋁粒子層 1022‧‧‧Modified aluminum particle layer

1030‧‧‧改良插層 1030‧‧‧Modified Intercalation

1070‧‧‧背面電場區域 1070‧‧‧Back electric field area

1080‧‧‧固化Al-Si共晶層 1080‧‧‧ Curing Al-Si eutectic layer

2322‧‧‧矽基板 2322‧‧‧矽 substrate

2600‧‧‧矽太陽能電池 2600‧‧‧矽 solar cell

2610‧‧‧矽晶片 2610‧‧‧矽 wafer

2620‧‧‧精細格線 2620‧‧‧Fine grid

2630‧‧‧前匯流線 2630‧‧‧ front bus line

2700‧‧‧矽太陽能電池 2700‧‧‧矽 solar cells

2710‧‧‧矽晶片 2710‧‧‧矽 wafer

2730‧‧‧鋁粒子層 2730‧‧‧Aluminum particle layer

2740‧‧‧後標誌層 2740‧‧‧Back logo layer

2810‧‧‧前板 2810‧‧‧ front board

2820‧‧‧前封裝層 2820‧‧‧ front encapsulation layer

2832‧‧‧第一標誌帶 2832‧‧‧First sign band

2834‧‧‧第二標誌帶 2834‧‧‧Second sign band

2840‧‧‧矽太陽能電池 2840‧‧‧矽 solar cell

2840B‧‧‧後側 2840B‧‧‧ Back side

2840F‧‧‧前側 2840F‧‧‧ front side

2850‧‧‧後封裝層 2850‧‧‧Back encapsulation layer

2860‧‧‧後板 2860‧‧‧Back board

2890‧‧‧陽光 2890‧‧‧Sunshine

2902‧‧‧燒結多層堆疊 2902‧‧‧Sintered multilayer stacking

2931‧‧‧焊料塗層 2931‧‧‧ Solder coating

2932‧‧‧金屬標誌帶 2932‧‧‧Metal sign band

1100‧‧‧聯合燒結多層堆疊 1100‧‧‧Joint sintered multilayer stack

1102‧‧‧鋁粒子 1102‧‧‧Aluminum particles

1103‧‧‧鉍嵌入材料 1103‧‧‧铋 embedded material

1110‧‧‧矽基板 1110‧‧‧矽 substrate

2941‧‧‧矽基板 2941‧‧‧矽 substrate

2944‧‧‧改良金屬粒子層 2944‧‧‧Improved metal particle layer

2945‧‧‧改良插層 2945‧‧‧Modified Intercalation

當結合附圖閱讀對示意實施方式下面的描述時,本領域技術人員將容易地意識到前述和其它方面。附圖並未依比例繪製。附圖僅是示意且並不意圖是詳盡的或限制本發明。 The foregoing and other aspects will be readily appreciated by those skilled in the art in the <RTIgt; The drawings are not to scale. The drawings are merely schematic and are not intended to be exhaustive or to limit the invention.

圖1是依照本發明的實施方式,在燒製之前的多層堆疊的示意性截面圖。 1 is a schematic cross-sectional view of a multilayer stack prior to firing, in accordance with an embodiment of the present invention.

圖2是依照本發明的實施方式,燒結多層堆疊的示意性截面圖。 2 is a schematic cross-sectional view of a sintered multilayer stack in accordance with an embodiment of the present invention.

圖3是燒結多層堆疊的示意性截面圖,其中插層(intercalation layer)具有分離相。 3 is a schematic cross-sectional view of a sintered multilayer stack in which an intercalation layer has a separate phase.

圖4是燒結多層堆疊的示意性截面圖,其中插層具有分為兩個子層的相。 4 is a schematic cross-sectional view of a sintered multilayer stack in which the intercalation layer has a phase divided into two sub-layers.

圖5是依照本發明的實施方式,圖2所示的燒結多層堆疊的一部分的示意性截面圖。 Figure 5 is a schematic cross-sectional view of a portion of the sintered multilayer stack shown in Figure 2, in accordance with an embodiment of the present invention.

圖6是依照本發明的實施方式,聯合燒結(co-fired)多層堆疊的掃描式電子顯微鏡(SEM)截面圖。 6 is a scanning electron microscope (SEM) cross-sectional view of a co-fired multilayer stack in accordance with an embodiment of the present invention.

圖7是具有銀-鉍熔塊層(frit layer)的聯合燒結多層堆疊的掃描式電子顯微鏡(SEM)截面圖。 7 is a scanning electron microscope (SEM) cross-sectional view of a co-fired multilayer stack having a silver-germanium frit layer.

圖8是矽基板上的鋁粒子層的掃描式電子顯微鏡(SEM)截面圖(在SE2模式)。 Figure 8 is a scanning electron microscope (SEM) cross-sectional view (in SE2 mode) of an aluminum particle layer on a tantalum substrate.

圖9是圖8所示的矽基板上的鋁粒子層的掃描式電子顯微鏡(SEM)截面圖(在InLens模式)。 9 is a scanning electron microscope (SEM) cross-sectional view (in InLens mode) of an aluminum particle layer on the tantalum substrate shown in FIG.

圖10是包含聯合燒結多層堆疊的矽太陽能電池的一部分的掃描式電子顯微鏡(SEM)截面圖(在InLens模式)。 Figure 10 is a scanning electron microscope (SEM) cross-sectional view (in InLens mode) of a portion of a tantalum solar cell comprising a co-fired multilayer stack.

圖11是圖10所示的包含聯合燒結多層堆疊的矽太陽能電池的該部分的掃描式電子顯微鏡(SEM)截面圖(在SE2模式)。 Figure 11 is a scanning electron microscope (SEM) cross-sectional view (in SE2 mode) of the portion of the tantalum solar cell of Figure 10 including a co-fired multilayer stack.

圖12示出了依照本發明的實施方式,從鋁粒子層以及從改良鋁粒子層的能量色散x-射線(EDX)光譜。 Figure 12 illustrates an energy dispersive x-ray (EDX) spectrum from a layer of aluminum particles and from a layer of modified aluminum particles in accordance with an embodiment of the present invention.

圖13是依照本發明的實施方式,包含鋁-鉍插層的後標誌層的表面的EDX光譜。 Figure 13 is an EDX spectrum of the surface of a back mark layer comprising an aluminum-ruthenium intercalation layer, in accordance with an embodiment of the present invention.

圖14示出了來自堆疊在矽太陽能電池的後標誌層上的聯合燒結多層薄膜的x-射線散射圖樣。 Figure 14 shows an x-ray scattering pattern from a co-fired multilayer film stacked on a back mark layer of a tantalum solar cell.

圖15是依照本發明的實施方式,包含介電層(dielectric layer)的多層薄膜堆疊在燒製之前的示意性截面圖。 15 is a schematic cross-sectional view of a multilayer film stack including a dielectric layer prior to firing, in accordance with an embodiment of the present invention.

圖16是依照本發明的實施方式,包含介電層的燒結多層薄膜堆疊的示意性截面圖。 16 is a schematic cross-sectional view of a sintered multilayer film stack including a dielectric layer, in accordance with an embodiment of the present invention.

圖17是已經發生了彎曲的聯合燒結多層薄膜堆疊的平面視圖光學顯微照片。 Figure 17 is a plan view optical micrograph of a joint sintered multilayer film stack in which bending has occurred.

圖18是依照本發明的實施方式,可被用於濕金屬粒子層的沉積期間的絲網設計(未成比例繪製)。 Figure 18 is a screen design (not drawn to scale) that can be used during deposition of a layer of wet metal particles in accordance with an embodiment of the present invention.

圖19是依照本發明的實施方式,具有使用圖18所示絲網沉積的可變厚度的乾燥金屬粒子層的示意截面圖。 Figure 19 is a schematic cross-sectional view of a layer of dry metal particles of variable thickness deposited using the screen shown in Figure 18, in accordance with an embodiment of the present invention.

圖20是依照本發明的實施方式,具有使用圖18所示絲網沉積的可變厚度且隨即聯合燒結改良金屬粒子層的示意截面圖。 20 is a schematic cross-sectional view of a modified thickness metal particle layer having a variable thickness and then a joint sintering using the screen deposition shown in FIG. 18, in accordance with an embodiment of the present invention.

圖21是如圖20所示的聯合燒結多層堆疊的平面視圖光學顯微照片。 Figure 21 is a plan view optical micrograph of the co-fired multilayer stack as shown in Figure 20.

圖22是具有可變厚度的燒結多層堆疊的一部分的截面SEM圖像。 22 is a cross-sectional SEM image of a portion of a sintered multilayer stack having a variable thickness.

圖23是具有平坦厚度的矽基板上的鋁粒子薄膜的一部分的截面SEM圖像。 Figure 23 is a cross-sectional SEM image of a portion of a film of aluminum particles on a tantalum substrate having a flat thickness.

圖24是具有可變厚度的燒結多層堆疊的表面拓撲掃描。 Figure 24 is a surface topography scan of a sintered multilayer stack having a variable thickness.

圖25是燒結鋁粒子層的表面拓撲掃描。 Figure 25 is a surface topography scan of a layer of sintered aluminum particles.

圖26是示出了矽太陽能電池的前(或被照明)側的示意圖。 Figure 26 is a schematic diagram showing the front (or illuminated) side of a tantalum solar cell.

圖27是示出了矽太陽能電池的後側的示意圖。 Figure 27 is a schematic view showing the rear side of a tantalum solar cell.

圖28是依照本發明的實施方式,包括燒結多層堆疊的太陽能電池模組的示意性截面圖。 28 is a schematic cross-sectional view of a solar cell module including a sintered multilayer stack in accordance with an embodiment of the present invention.

圖29是依照本發明的實施方式,包括燒結多層堆疊和軟焊的標誌帶的太陽能電池的背側的掃描式電子顯微鏡(SEM)截面圖。 29 is a scanning electron microscope (SEM) cross-sectional view of the back side of a solar cell including a sintered multilayer stack and a soldered marker strip, in accordance with an embodiment of the present invention.

圖30是傳統的矽上的銀製後標誌層的輸電線路測量繪圖。 Figure 30 is a transmission line measurement plot of a silver post-marker layer on a conventional crucible.

圖31是可被用作矽上的後標誌層的鋁粒子層上的銀-鉍插層的輸電線路測量繪圖。 Figure 31 is a transmission line measurement plot of a silver-tantal intercalation layer on an aluminum particle layer that can be used as a back mark layer on the crucible.

在金屬粒子層上燒結嵌入漿料的背景中已經示出了優選實施方式。然而,本領域技術人員將容易意識到,在此揭露的材料和方法具有在多種背景下的應用,在此需要與半導體或導體材料進行良好電性接觸,特別是好的附著、高性能和低費用是重要的。 A preferred embodiment has been shown in the context of sintering an embedded slurry on a layer of metal particles. However, those skilled in the art will readily appreciate that the materials and methods disclosed herein have applications in a variety of contexts where good electrical contact with semiconductor or conductor materials is required, particularly good adhesion, high performance and low. The cost is important.

在此參考的全部出版物通過它們全部內容的參考而合併於 此,用於如同其已經在此完全闡述了的目的。 All publications referred to herein are hereby incorporated by reference in their entirety in their entirety for the purposes of the extent of the disclosure.

在此揭露了嵌入漿料的組成和用途,嵌入漿料包括貴金屬粒子和嵌入粒子,其可被印刷在金屬粒子層上,以在它們被燒結為燒結多層堆疊之後,改變金屬粒子層的屬性。在本發明的一個實施方式中,嵌入漿料用於在金屬粒子層上提供可軟焊表面,其不可通過它自身軟焊。嵌入漿料還可被用於改進燒製多層堆疊中的附著性或改變金屬粒子層與下基板的相互作用。嵌入漿料是可廣泛應用至很多應用的,包括電晶體(transistor)、發光二極體和積體電路;然而,下文揭露的示例將主要聚焦於光伏電池(photovoltaic cell)。 Disclosed herein is the composition and use of an intercalation paste comprising noble metal particles and embedded particles that can be printed on a layer of metal particles to modify the properties of the metal particle layer after they are sintered into a sintered multilayer stack. In one embodiment of the invention, the embedded slurry is used to provide a solderable surface on the layer of metal particles that is not solderable by itself. The intercalation paste can also be used to improve adhesion in firing multilayer stacks or to alter the interaction of the metal particle layer with the lower substrate. Embedded pastes are widely used in many applications, including transistors, light-emitting diodes, and integrated circuits; however, the examples disclosed below will focus primarily on photovoltaic cells.

定義和方法Definition and method

在此使用的掃描式電子顯微鏡(SEM)和x射線能量色散譜(EDX)(共同稱為SEM/EDX)使用Zeiss Gemini Ultra-55解析場發射掃描式電子顯微鏡、配備有Bruker XFlash® 6|60探測器來執行。關於操作條件的細節被描述於每個分析。燒結多層堆疊的截面SEM圖像通過離子研磨(ion milling)而準備。薄環氧樹脂層被塗在燒結多層堆疊的頂部且乾燥至少30分鐘。該樣本隨後傳送至JEOL IB-03010CP離子研磨機,在5kV和120uA操作8小時,以從樣本邊緣除去80微米。研磨過的樣本在SEM/EDX之前被儲存在氮氣套箱中。 The scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (EDX) (collectively referred to as SEM/EDX) used herein were performed using a Zeiss Gemini Ultra-55 analytical field emission scanning electron microscope equipped with a Bruker XFlash® 6|60 The detector is executed. Details regarding the operating conditions are described in each analysis. A cross-sectional SEM image of the sintered multilayer stack was prepared by ion milling. A thin layer of epoxy was applied to the top of the sintered multilayer stack and dried for at least 30 minutes. The sample was then transferred to a JEOL IB-03010 CP ion mill for 8 hours at 5 kV and 120 uA to remove 80 microns from the edge of the sample. The ground samples were stored in a nitrogen box prior to SEM/EDX.

術語「乾燥(drying)」描述了一種熱處理,在或低於500℃的溫度、或低於400℃、或低於300℃,持續1秒至90分鐘之間的時段或包含於其中的任何範圍。漿料典型地通過網版印刷或其它沉積方法塗至基板,以產生「濕」層。濕層可被乾燥以降低或除去揮發性有機物質,例如溶劑, 產生「乾燥」層。 The term "drying" describes a heat treatment at or below 500 ° C, or below 400 ° C, or below 300 ° C for a period of between 1 second and 90 minutes or any range contained therein. . The slurry is typically applied to the substrate by screen printing or other deposition methods to create a "wet" layer. The wet layer can be dried to reduce or remove volatile organic materials, such as solvents, to create a "dry" layer.

術語「燒製(firing)」描述了在高於500℃、高於600℃或高於700℃的溫度的加熱,持續1秒至60分鐘之間的時段或包含於其中的任何範圍。術語「燒結層(dried layer)」描述了已經被燒結的乾燥層。 The term "firing" describes heating at temperatures above 500 ° C, above 600 ° C or above 700 ° C for a period of between 1 second and 60 minutes or any range contained therein. The term "dried layer" describes a dried layer that has been sintered.

在此使用術語「多層堆疊(multilayer stack)」以描述基板,其上具有不同材料的兩層或多層。「燒結多層堆疊(fired multilayer stack)」是它的各層已經被乾燥和燒結的多層堆疊。有多種方法來燒製這一多層堆疊。術語「聯合燒結(co-firing)」用於描述對多層堆疊的僅有一次燒結的處理。例如,在矽太陽能電池製造期間,一層鋁粒子漿料的首先塗至基板且被乾燥。隨後,後標誌漿料層被塗在乾燥的鋁粒子層的一部分上,之後乾燥,帶來了乾燥的鋁粒子層和乾燥的後標誌層。在聯合燒製期間,兩個乾燥層在一個步驟中被同時燒結。術語「序列燒結(sequential firing)」用於描述對多層堆疊的多次燒結的處理。在連續處理期間,金屬粒子漿料被塗在基板上、乾燥且隨後燒結。嵌入漿料隨後塗在乾燥且燒結金屬粒子漿料(稱為金屬粒子層)的一部分上。隨後,整個多層堆疊被第二次乾燥和燒結。應注意到,描述聯合燒結多層堆疊或結構的本發明的實施方式還適用於已經被序列燒結的多層堆疊或結構。 The term "multilayer stack" is used herein to describe a substrate having two or more layers of different materials thereon. A "fired multilayer stack" is a multilayer stack in which the layers have been dried and sintered. There are several ways to fire this multi-layer stack. The term "co-firing" is used to describe a treatment that has only one sintering of a multilayer stack. For example, during the fabrication of a solar cell, a layer of aluminum particle slurry is first applied to the substrate and dried. Subsequently, the post-marker paste layer is applied to a portion of the dried aluminum particle layer which is then dried to bring a layer of dried aluminum particles and a dried post-marker layer. During the co-firing, the two dried layers are simultaneously sintered in one step. The term "sequential firing" is used to describe the treatment of multiple sintering of a multilayer stack. During the continuous treatment, the metal particle slurry is coated on the substrate, dried and then sintered. The intercalation slurry is then applied to a portion of the dried and sintered metal particle slurry (referred to as a metal particle layer). Subsequently, the entire multilayer stack is dried and sintered a second time. It should be noted that embodiments of the invention that describe a joint sintered multilayer stack or structure are also applicable to multilayer stacks or structures that have been sintered sequentially.

在此使用的術語「嵌入(intercalation)」用於描述多孔材料的滲透(penetration)。在在此描述的實施方式的上下文中,術語「嵌入」描述了來自插層(intercalation layer)中的嵌入粒子(intercalating particle)的材料在燒製製程期間滲透進入相鄰的多孔乾燥金屬粒子層,其導致金屬粒子的至少一部分上的嵌入粒子材料塗層(部分或全部)。在此使用的術語「改良金 屬粒子層(modified metal particle layer)」用於描述來自嵌入粒子的材料已經滲透的這一燒結金屬粒子層。 The term "intercalation" as used herein is used to describe the penetration of a porous material. In the context of the embodiments described herein, the term "embedded" describes that a material from an intercalating particle in an intercalation layer penetrates into an adjacent layer of porous dry metal particles during a firing process. It results in a coating (partial or total) of the embedded particulate material on at least a portion of the metal particles. The term "modified metal particle layer" as used herein is used to describe a layer of sintered metal particles from which material embedded in the particles has penetrated.

在描述相鄰層之間的關係中,在此使用的介詞「上」意味著各層可以或可以不彼此直接物理接觸。例如,一層在基板之上說的是,該層定位得直接相鄰基板或間接在基板上方或與之相鄰。特定層間接在基板上方或與之相鄰說的是,在特定層和基板之間可以有或可以沒有一個或多個附加層。在描述相鄰層之間的關係中,此使用的介詞「直接在之上」意味著各層彼此直接物理接觸。例如,一層之間在基板之上說的是,該層定位得直接相鄰基板。 In describing the relationship between adjacent layers, the phrase "upper" as used herein means that the layers may or may not be in direct physical contact with each other. For example, one layer above the substrate is such that the layer is positioned directly adjacent to or indirectly adjacent to or adjacent to the substrate. The indirect layering of a particular layer above or adjacent to the substrate means that there may or may not be one or more additional layers between the particular layer and the substrate. In describing the relationship between adjacent layers, the use of the phrase "directly above" means that the layers are in direct physical contact with each other. For example, what is said above the substrate between the layers is that the layer is positioned directly adjacent to the substrate.

當金屬粒子層主要包含金屬A粒子時,可稱為「金屬A粒子層」。例如,當金屬粒子層主要包含鋁粒子時,可稱為鋁粒子層。當改良金屬粒子層主要包含金屬A粒子時,可稱為「改良金屬A粒子層」。例如,當改良金屬粒子層主要包含鋁粒子時,可稱為改良鋁粒子層。 When the metal particle layer mainly contains the metal A particles, it may be referred to as a "metal A particle layer". For example, when the metal particle layer mainly contains aluminum particles, it may be referred to as an aluminum particle layer. When the modified metal particle layer mainly contains the metal A particles, it may be referred to as "modified metal A particle layer". For example, when the modified metal particle layer mainly contains aluminum particles, it may be referred to as a modified aluminum particle layer.

術語「可軟焊表面(solderable surface)」是本領域已知的。「可軟焊表面」表示可被軟焊至焊帶的表面。具有本領域普通技術的人員熟悉可軟焊表面的改變。產生可軟焊表面的材料示例包括但不限於,錫、鎘、金、銀、鈀、銠、銅、鋅、鉛、鎳,其合金、其組合、其合成物及其混合物。在一個實施方式中,當表面的至少70wt%包含例如銀、金、鉑、鈀、銠、及其合金、合成物和其它組合的材料時,表面是可軟焊的。 The term "solderable surface" is known in the art. "Soft solderable surface" means a surface that can be soldered to the solder ribbon. Those skilled in the art are familiar with the changes in the solderable surface. Examples of materials that produce a solderable surface include, but are not limited to, tin, cadmium, gold, silver, palladium, ruthenium, copper, zinc, lead, nickel, alloys thereof, combinations thereof, combinations thereof, and mixtures thereof. In one embodiment, the surface is solderable when at least 70% by weight of the surface comprises materials such as silver, gold, platinum, palladium, rhodium, and alloys, composites, and other combinations.

在此描述的粒子可呈現多種形狀、尺寸、比表面積和氧含量。粒子可以是球狀、針狀、角狀、樹枝狀、纖維狀、片狀,顆粒,不規則的和結節狀,如ISO 3252定義的。應被理解的是,在此使用的術語「球形 (spherical)」表示一般的球形形狀,且可包括球狀、粒狀、結節狀,且有時是不規則形狀。術語「薄片(flake)」表示薄片的,且有時是有角的、纖維狀的和不規則形狀。術語「細長的(elongated)」表示針狀的,且有時是有角的、樹枝狀的、纖維狀的和不規則形狀,如ISO 3252:1999定義的。粒子形狀、形態、尺寸和尺寸分佈通常取決於合成技術。一組粒子可包括不同形狀和尺寸的粒子的組合。 The particles described herein can take on a variety of shapes, sizes, specific surface areas, and oxygen levels. The particles may be spherical, acicular, angular, dendritic, fibrous, flaky, particulate, irregular and nodular, as defined by ISO 3252. It should be understood that the term "spherical" as used herein refers to a generally spherical shape and may include spherical, granular, nodular, and sometimes irregular shapes. The term "flake" means a sheet, and sometimes an angular, fibrous, and irregular shape. The term "elongated" means acicular, and sometimes angular, dendritic, fibrous, and irregular, as defined by ISO 3252:1999. Particle shape, morphology, size, and size distribution typically depend on the synthesis technique. A set of particles can include a combination of particles of different shapes and sizes.

球狀或細長的粒子典型地由它們的D50、比表面積和粒子尺寸分佈描述。D50值限定為一值,其一半數量的粒子具有低於該值的直徑且一半數量的粒子具有高於該值的直徑。測量粒子直徑分佈典型地使用鐳射衍射細微性分析儀、例如Horiba LA-950而執行。例如,球狀粒子分散在溶劑中,在其中它們很好地分離並且傳送光的散佈直接關聯從最小至最大直徑的尺寸分佈。共同方法以表示鐳射衍射結果是為報告基於體積分佈的D50值。粒子尺寸的統計分佈還可使用鐳射衍射細微性分析儀測量。常見的是,對於貴金屬粒子,可具有單峰或多峰粒子尺寸分佈。在單峰分佈中,粒子尺寸是單分散的,且D50在單一分佈的中心。多峰粒子尺寸分佈在粒子尺寸分佈中具有多於一個峰(或頂點)。多峰粒子尺寸分佈可增加粉末的振實密度(tap intensity),其典型地帶來了更高的綠膜密度(green film density)。 Spherical or elongated particles are typically described by their D50, specific surface area, and particle size distribution. The D50 value is defined as a value, with half of the particles having a diameter below this value and half of the particles having a diameter above this value. Measuring the particle diameter distribution is typically performed using a laser diffraction microanalyzer, such as Horiba LA-950. For example, spherical particles are dispersed in a solvent where they are well separated and the distribution of transmitted light is directly related to the size distribution from the smallest to the largest diameter. A common method to represent the laser diffraction results is to report a D50 value based on the volume distribution. The statistical distribution of particle sizes can also be measured using a laser diffraction fineness analyzer. It is common for noble metal particles to have a unimodal or multimodal particle size distribution. In a unimodal distribution, the particle size is monodisperse and D50 is at the center of a single distribution. The multimodal particle size distribution has more than one peak (or apex) in the particle size distribution. The multimodal particle size distribution increases the tap density of the powder, which typically results in a higher green film density.

在本發明的一些實施方式中,粒子可具有如上定義的薄片或細長形狀。薄片可具有1μm至100μm之間或1μm至15μm之間的直徑和100nm至500nm之間的厚度。細長形狀可具有200nm至100nm之間的直徑和大於1μm的長度。在本發明的另一個實施方式中,對粒子形狀沒有限制;可以使用任何粒子形狀,只要其最大直徑不大於50μm、5μm或1μm。 In some embodiments of the invention, the particles may have a sheet or elongated shape as defined above. The flakes may have a diameter between 1 μm and 100 μm or between 1 μm and 15 μm and a thickness between 100 nm and 500 nm. The elongated shape may have a diameter between 200 nm and 100 nm and a length greater than 1 μm. In another embodiment of the present invention, there is no limitation on the shape of the particles; any particle shape may be used as long as its maximum diameter is not more than 50 μm, 5 μm or 1 μm.

粒子的比表面積(specific surface area)可使用Brunauer-Emmett-Teller(BET)方法、依照DIN ISO 9277,2003-05測量。在此揭露的粒子、且特別是銀和鉍粒子的比表面積,通過下面的測試方法確定:使用TriStar 3000(來自Micromeritics儀器公司)執行BET測量,其基於物理吸附分析技術操作。樣本準備包括除氣,以除去吸收的分子。氮是分析氣體且氦用於確定樣本管的空隙容積。Micromeritics提供了矽鋁(silica alumina),用於用作參考材料,伴隨有準備程序和測試條件。測量開始於增加已知品質的參考材料至樣本管和在BET裝置歧管上安裝樣本管。熱穩定配料歧管、樣本管和用於測量飽和壓力(Po)的專用管被排空。當達到足夠的真空度時,歧管充有氦(非吸收氣體)且樣本埠被打開,以確定樣本在室溫下的溫暖自由空間。具有參考材料的樣本管浸沒在液氮中且冷卻至77K附近,並且再次執行自由空間分析。使用Po管測量吸附的飽和壓力,隨之氮配給至大氣壓力之上的歧管中。氮的壓力和溫度被記錄,並且隨後樣本埠打開,從而讓氮吸收在樣本上。在一些時間以後,埠關閉,從而允許吸收到達平衡。吸收的量是從歧管除去的氮量減去樣本管中的任何殘留氮。沿著吸收等溫線的測量點用於計算參考材料的以m2/g計的比面積;這一程序由任意感興趣的樣本、例如在此描述的粒子重複。 The specific surface area of the particles can be measured using the Brunauer-Emmett-Teller (BET) method according to DIN ISO 9277, 2003-05. The specific surface area of the particles disclosed herein, and in particular the silver and tantalum particles, was determined by the following test method: BET measurements were performed using a TriStar 3000 (from Micromeritics Instruments, Inc.), which was operated based on physical adsorption analysis techniques. Sample preparation includes degassing to remove absorbed molecules. Nitrogen is the analytical gas and helium is used to determine the void volume of the sample tube. Micromeritics offers silica alumina for use as a reference material with preparation procedures and test conditions. The measurement begins by adding a reference material of known quality to the sample tube and mounting the sample tube on the BET device manifold. The heat stable dosing manifold, sample tube, and dedicated tube for measuring saturation pressure (Po) are emptied. When sufficient vacuum is achieved, the manifold is filled with helium (non-absorbed gas) and the sample helium is opened to determine the warm free space of the sample at room temperature. The sample tube with the reference material was immersed in liquid nitrogen and cooled to around 77 K, and free space analysis was performed again. The Po tube is used to measure the saturation pressure of the adsorption, which is then fed to the manifold above atmospheric pressure. The pressure and temperature of the nitrogen are recorded, and then the sample is opened to allow nitrogen to be absorbed on the sample. After some time, 埠 is turned off, allowing absorption to reach equilibrium. The amount absorbed is the amount of nitrogen removed from the manifold minus any residual nitrogen in the sample tube. The measurement points along the absorption isotherm are used to calculate the specific area of the reference material in m2/g; this procedure is repeated by any sample of interest, such as the particles described herein.

在此描述的粒子具有顯著的熱屬性:熔點和/或軟化點,二者都取決於材料的結晶度。粒子的熔點可通過使用由TA儀器製造的DSC 2500示差掃描量熱計進行示差掃描量熱且使用在ASTM E794-06(2012)中描述的方法而確定。晶體材料的熔點還可使用加熱台和x射線衍射確定。由於晶體材料被加熱至其熔點之上,衍射峰值開始消失。軟化點是無定形或玻 璃質粒子開始軟化的溫度。玻璃粒子的軟化點可使用膨脹計(dilatometer)確定。軟化點還可通過在ASTM C338-57中描述的纖維延伸方法獲得。 The particles described herein have significant thermal properties: melting point and/or softening point, both depending on the crystallinity of the material. The melting point of the particles can be determined by differential scanning calorimetry using a DSC 2500 differential scanning calorimeter manufactured by TA Instruments and using the method described in ASTM E794-06 (2012). The melting point of the crystalline material can also be determined using a heating station and x-ray diffraction. As the crystalline material is heated above its melting point, the diffraction peak begins to disappear. The softening point is the temperature at which the amorphous or glassy particles begin to soften. The softening point of the glass particles can be determined using a dilatometer. The softening point can also be obtained by the fiber extension process described in ASTM C338-57.

用於製造燒結多層堆疊的材料Material used to make sintered multilayer stacks

在本發明的一個實施方式中,基板、金屬粒子漿料和嵌入漿料形成了燒結多層堆疊。基板可以是固體、平面或剛性材料。在一個實施方式中,基板包括從下列群組中選擇的至少一種材料,包含:矽、二氧化矽、碳化矽、氧化鋁、藍寶石、鍺、砷化鎵、氮化鎵和磷化銦。這種基板通常用於層的沉積,其組成電晶體、發光二極體、積體電路和光伏電池。基板還可以是導電的和/或柔性的。在另一個實施方式中,基板包括從下列群組中選擇的至少一種材料,包含:鋁、銅、鐵、鎳、鈦、鋼、鋅,和合金、合成物及其其它組合。 In one embodiment of the invention, the substrate, the metal particle slurry, and the embedded slurry form a sintered multilayer stack. The substrate can be a solid, planar or rigid material. In one embodiment, the substrate comprises at least one material selected from the group consisting of ruthenium, ruthenium dioxide, ruthenium carbide, aluminum oxide, sapphire, ruthenium, gallium arsenide, gallium nitride, and indium phosphide. Such substrates are commonly used for the deposition of layers that make up transistors, light-emitting diodes, integrated circuits, and photovoltaic cells. The substrate can also be electrically conductive and/or flexible. In another embodiment, the substrate comprises at least one material selected from the group consisting of aluminum, copper, iron, nickel, titanium, steel, zinc, and alloys, composites, and other combinations thereof.

在本發明的一個實施方式中,金屬粒子漿料包括金屬粒子和有機載體。在一種配置中,金屬粒子漿料還包括無機黏合劑(inorganic binder),例如玻璃料(glass frit)。在一種配置中,使用常用的、商業上可用的金屬粒子漿料。包含通常用在矽太陽能電池上的鋁的金屬漿料,由Ruxing Technology(例如RX8252H1)、Monocrystal(例如EFX-39)和GigaSolar Materials(例如M7)銷售。金屬粒子可包括鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦或其合金、合成物或其它組合的至少一者。在多種配置中,金屬粒子具有100nm至100μm之間、500nm至50μm之間、500nm至200μm之間或包含於其中的任何範圍中的D50。金屬粒子可具有球形、細長形或薄片形形狀,且可具有單峰或多峰尺寸分佈。玻璃料可少量包含於金屬粒子漿料中(即,小於5wt%)。在一個實施方式中,金屬粒子漿料包括70wt%至80wt%鋁粒子、小 於2wt%玻璃料和有機載體。 In one embodiment of the invention, the metal particle slurry comprises metal particles and an organic vehicle. In one configuration, the metal particle slurry also includes an inorganic binder, such as a glass frit. In one configuration, a commonly used, commercially available metal particle slurry is used. A metal paste comprising aluminum commonly used on tantalum solar cells, sold by Ruxing Technology (e.g., RX8252H1), Monocrystal (e.g., EFX-39), and GigaSolar Materials (e.g., M7). The metal particles may include at least one of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium or alloys thereof, composites, or other combinations. In various configurations, the metal particles have a D50 in the range of between 100 nm and 100 μm, between 500 nm and 50 μm, between 500 nm and 200 μm, or in any range contained therein. The metal particles may have a spherical, elongated or flake-shaped shape and may have a unimodal or multimodal size distribution. The glass frit may be contained in a small amount in the metal particle slurry (ie, less than 5 wt%). In one embodiment, the metal particle slurry comprises 70 wt% to 80 wt% aluminum particles, less than 2 wt% glass frit, and an organic vehicle.

在本發明的一個實施方式中,嵌入漿料包括貴金屬粒子、嵌入粒子和有機載體。術語「固體裝載(solids loading)」可與漿料聯合使用,以描述漿料中貴金屬和嵌入粒子固體的量和比例。在此描述的漿料還包括有機載體,儘管其並不經常被明確陳述。 In one embodiment of the invention, the intercalation paste comprises noble metal particles, embedded particles, and an organic vehicle. The term "solids loading" can be used in conjunction with a slurry to describe the amount and proportion of precious metal and embedded particulate solids in the slurry. The slurries described herein also include organic carriers, although they are not often stated.

嵌入漿料成分Embedded slurry component

在本發明的一個實施方式中,如在此描述的,貴金屬粒子包括從下列群組中選擇的至少一種材料,包含:金、銀、鉑、鈀和銠,及其合金、合成物或其它組合。在一個實施方式中,貴金屬粒子包括10wt%至70wt%之間的漿料。在多個實施方式中,貴金屬粒子具有大約100nm至50μm之間、300nm至10μm之間、300nm至5μm之間或包含於其中的任何範圍中的D50。在多個實施方式中,貴金屬粒子具有從大約0.4至7.0m2/g或從大約1至5m2/g的範圍或包含於其中的任何範圍中的比表面積。貴金屬可具有多達2wt%的氧含量;氧可遍及粒子均勻混合,或者氧可在氧化殼中發現,其具有高達500nm的厚度。貴金屬粒子可具有球形、細長形或薄片形形狀,且具有單峰或多峰尺寸分佈。銀粒子通常用於太陽能工業中的金屬化漿料。在一個典型實施方式中,至少一些貴金屬粒子是銀,具有300nm至2.5μm之間的D50和1至3m2/g之間的比表面積。 In one embodiment of the invention, as described herein, the noble metal particles comprise at least one material selected from the group consisting of gold, silver, platinum, palladium, and rhodium, and alloys, composites, or other combinations thereof. . In one embodiment, the precious metal particles comprise between 10% and 70% by weight of the slurry. In various embodiments, the noble metal particles have a D50 in between about 100 nm to 50 μιη, between 300 nm to 10 μιη, between 300 nm and 5 μιη, or in any range included therein. In various embodiments, the noble metal particles with from about 0.4 to 7.0m 2 / g or a specific surface area from any range from about 1 to 5m 2 / g or ranges contained therein in. The noble metal may have an oxygen content of up to 2% by weight; oxygen may be uniformly mixed throughout the particles, or oxygen may be found in the oxidized shell, which has a thickness of up to 500 nm. The noble metal particles may have a spherical, elongated or flake-shaped shape and have a unimodal or multimodal size distribution. Silver particles are commonly used in metallized slurries in the solar industry. In a typical embodiment, at least some of the precious metal particles are silver having a D50 between 300 nm and 2.5 μm and a specific surface area between 1 and 3 m 2 /g.

術語「嵌入粒子」用於描述當加熱時可變形的粒子,並且,當相鄰其它金屬粒子的多孔層定位時,可至少部分夾入多孔金屬粒子層,且基於加熱的影響從其它金屬粒子相分離。在多種配置中,嵌入粒子具有50nm至50μm之間、50nm至10μm之間、300nm至5μm之間或包含於其中的任 何範圍中的D50。在一個實施方式中,嵌入粒子具有300nm至3μm之間的D50。在多個實施方式中,嵌入粒子具有從大約0.1至6m2/g、大約0.5至3m2/g或0.5至4m2/g的範圍或包含於其中的任何範圍中的比表面積。依照一個實施方式,嵌入粒子是薄片形且具有大約1.0至3.0m2/g的比表面積。嵌入粒子可具有球形、細長形或薄片形形狀,且可具有單峰或多峰尺寸分佈。 The term "embedded particles" is used to describe particles that are deformable when heated, and when positioned adjacent to the porous layer of other metal particles, at least partially sandwich the layer of porous metal particles, and based on the influence of heating from other metal particle phases Separation. In various configurations, the embedded particles have a D50 in the range of 50 nm to 50 μm, between 50 nm to 10 μm, between 300 nm and 5 μm, or in any range contained therein. In one embodiment, the embedded particles have a D50 between 300 nm and 3 μm. In various embodiments, the particles have embedded from about 0.1 to 6m 2 / g, from about 0.5 to 3m 2 / g or 0.5 to 4m 2 / g of specific surface area in the range of or comprising any range therein. According to one embodiment, the embedded particles are flaky and have a specific surface area of from about 1.0 to 3.0 m2/g. The embedded particles may have a spherical, elongated or flaky shape and may have a unimodal or multimodal size distribution.

這裡有三組粒子,其可被用作嵌入粒子:低溫基底金屬粒子(low temperature base metal particle)(LTBM)、晶體金屬氧化物粒子(crystalline metal oxide particle)和玻璃熔粒(glass frit particle)。在一些配置中,嵌入粒子僅包括低溫基底金屬粒子、或晶體金屬氧化物粒子或玻璃熔粒。在其它配置中,嵌入粒子是來自這些組的兩種或多種粒子的混合。需要的是,嵌入粒子的元素具有低可溶性且不與相鄰金屬粒子層中的元素成為合金。 There are three sets of particles that can be used as embedded particles: low temperature base metal particles (LTBM), crystalline metal oxide particles, and glass frit particles. In some configurations, the embedded particles comprise only low temperature base metal particles, or crystalline metal oxide particles or glass fused particles. In other configurations, the embedded particles are a mixture of two or more particles from these groups. It is desirable that the elements embedded in the particles have low solubility and do not alloy with elements in adjacent metal particle layers.

在一個實施方式中,嵌入粒子是低溫基底金屬粒子。在此使用的術語「低溫基底粒子」(LTBM)是描述排除地或本質上包括任何基底金屬或金屬合金的粒子,其具有低溫熔點,即,低於450℃的熔點。在一些配置中,LTBM還包含多達2wt%的氧;氧可遍及粒子均勻混合,或者氧可在氧化殼中發現,其具有高達500nm的厚度,且塗覆或部分塗覆有該粒子。在一些配置中,LTMB的熔點更低,例如低於350℃或低於300℃。在本發明的一個實施方式中,LTBM排除地或實質上由鉍、錫、碲、銻、鉛、或其合金、合成物或其它組合製得。在一個實施方式中,嵌入粒子僅包含鉍且具有1.5至4μm之間的D50和1至2m2/g之間的比表面積。 In one embodiment, the embedded particles are low temperature base metal particles. The term "low temperature base particle" (LTBM) as used herein is a particle describing the exclusion or essentially including any base metal or metal alloy having a low temperature melting point, i.e., a melting point below 450 °C. In some configurations, the LTBM also contains up to 2 wt% oxygen; oxygen can be uniformly mixed throughout the particles, or oxygen can be found in the oxidation shell, having a thickness of up to 500 nm, and coated or partially coated with the particles. In some configurations, the melting point of the LTMB is lower, such as below 350 °C or below 300 °C. In one embodiment of the invention, the LTBM is made excluding or substantially made of ruthenium, tin, ruthenium, osmium, lead, or alloys, composites or other combinations thereof. In one embodiment, the embedded particles comprise only ruthenium and have a specific surface area between D50 of between 1.5 and 4 [mu]m and between 1 and 2 m<2> /g.

在另一實施方式中,LTBM嵌入粒子是由金屬或金屬氧化物殼圍繞的鉍核心粒子。在另一個實施方式中,LTBM嵌入粒子是鉍核心粒 子,由單殼圍繞,其由銀、鎳、鎳合金如鎳硼、錫、碲、銻、鉛、鉬、鈦、其合成物和/或其它組合製得。在另一個實施方式中,LTBM嵌入粒子是鉍核心粒子,由單殼圍繞,其是氧化矽、氧化鎂、氧化硼或其任何組合。任何這些殼可具有從0.5nm至1μm、或0.5nm至200nm範圍或包含於其內的任何範圍的厚度。 In another embodiment, the LTBM embedded particles are ruthenium core particles surrounded by a metal or metal oxide shell. In another embodiment, the LTBM embedded particles are ruthenium core particles surrounded by a single shell composed of silver, nickel, nickel alloys such as nickel boron, tin, antimony, bismuth, lead, molybdenum, titanium, composites thereof and/or Other combinations are made. In another embodiment, the LTBM embedded particles are ruthenium core particles surrounded by a single shell which is ruthenium oxide, magnesium oxide, boron oxide, or any combination thereof. Any of these shells may have a thickness ranging from 0.5 nm to 1 μm, or from 0.5 nm to 200 nm, or any range contained therein.

在另一個實施方式中,嵌入粒子是晶體金屬氧化物粒子。金屬氧化物是具有至少一個氧原子(陰離子的氧化態為-2)和至少一個金屬原子的化合物。很多金屬氧化物包含多個金屬原子,其可以都是相同的或可包括多種金屬。寬範圍的金屬與氧原子比是可能的,正如本領域技術人員將理解的。當金屬氧化物形成有序的週期結構時,它們是晶體的。這種晶體金屬氧化物可在它們的晶體結構的不同強度特性的峰值圖案中分散x射線輻射。在一個實施方式中,晶體金屬氧化物粒子僅由或本質上包含下述金屬的至少一者的氧化物:鉍、錫、碲、銻、鉛、釩、鉻、鉬、硼、錳、鈷,及其合金、合成物或其它組合。 In another embodiment, the embedded particles are crystalline metal oxide particles. The metal oxide is a compound having at least one oxygen atom (the oxidation state of the anion is -2) and at least one metal atom. Many metal oxides contain multiple metal atoms, which may all be the same or may include multiple metals. A wide range of metal to oxygen atomic ratios is possible, as will be understood by those skilled in the art. Metal oxides are crystalline when they form an ordered periodic structure. Such crystalline metal oxides can disperse x-ray radiation in peak patterns of different strength characteristics of their crystal structures. In one embodiment, the crystalline metal oxide particles comprise or consist essentially of at least one of the following metals: antimony, tin, antimony, bismuth, lead, vanadium, chromium, molybdenum, boron, manganese, cobalt, And alloys, composites or other combinations thereof.

對於在此揭露和在下文更詳細描述的結構,隨著晶體金屬氧化物粒子被加熱,如果在低於金屬粒子之間或不同合成物之間的結構內會發生顯著的相互擴散的溫度的低溫,它們開始熔化(即,到達它們的熔點(TM)),這是有用的。混合層中晶體材料的熔點可使用熱階和x射線衍射來確定;隨著樣本被加熱到其熔點之上,衍射峰值減小且隨後消失。在一些典型實施方式中,硼(III)氧化物(B2O3,TM=450℃)、釩(V)氧化物(V2O5,TM=690℃)、碲(IV)氧化物(TeO2,TM=733℃)和鉍(III)氧化物(Bi2O3,TM=817℃)可在燒製製程期間變形且嵌入相鄰的多孔金屬粒子層中,產生改良的金屬粒 子層。在一個典型實施方式中,嵌入粒子是晶體氧化鉍,具有50nm至2μm之間的D50和1至5m2/g之間的比表面積。在另一個實施方式中,晶體金屬氧化物粒子還包含少量(即,少於10wt%)的一種或多種附加元素,其可調整粒子的熔點。這種附加元素可包括但不限於:矽、鍺、鋰、鈉、鉀、鎂、鈣、鍶、銫、鋇、鋯、鉿、釩、鈮、鉻、鉬、錳、鐵、鈷、錸、鋅、鎘、鎵、銦、碳、氮、磷、砷、銻、硫、硒、氟、氯、溴、碘、鑭和鈰。 For the structures disclosed herein and described in more detail below, as the crystalline metal oxide particles are heated, if a temperature below the metal particles or between the different compositions occurs, a significant interdiffusion temperature will occur. It is useful that they begin to melt (ie, reach their melting point (T M )). The melting point of the crystalline material in the mixed layer can be determined using thermal order and x-ray diffraction; as the sample is heated above its melting point, the diffraction peak decreases and then disappears. In some typical embodiments, boron (III) oxide (B 2 O 3 , T M = 450 ° C), vanadium (V) oxide (V 2 O 5 , T M = 690 ° C), cerium (IV) oxidation (TeO 2 , T M = 733 ° C) and cerium (III) oxide (Bi 2 O 3 , T M = 817 ° C) can be deformed during the firing process and embedded in adjacent layers of porous metal particles, resulting in improved Layer of metal particles. In a typical embodiment, the intercalating particles are crystalline cerium oxide having a D50 between 50 nm and 2 μm and a specific surface area between 1 and 5 m 2 /g. In another embodiment, the crystalline metal oxide particles further comprise a minor amount (ie, less than 10% by weight) of one or more additional elements that modulate the melting point of the particles. Such additional elements may include, but are not limited to, ruthenium, osmium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, strontium, zirconium, hafnium, vanadium, niobium, chromium, molybdenum, manganese, iron, cobalt, antimony, Zinc, cadmium, gallium, indium, carbon, nitrogen, phosphorus, arsenic, antimony, sulfur, selenium, fluorine, chlorine, bromine, iodine, antimony and antimony.

在另一個實施方式中,嵌入粒子是玻璃熔粒。在一個實施方式中,玻璃熔粒僅由或實質上包括氧和下列元素的至少一種的組合:矽、硼、鍺、鋰、鈉、鉀、鎂、鈣、鍶、銫、鋇、鋯、鉿、釩、鈮、鉻、鉬、錳、鐵、鈷、錸、鋅、鎘、鎵、銦、錫、鉛、碳、氮、磷、砷、銻、鉍、硫、硒、碲、氟、氯、溴、碘、鑭、鈰、氧,及其合金、複合物和其它組合。如果玻璃熔粒具有低於900℃或低於800℃的軟化點,這是有用的,從而在燒製期間有效地變形。在一個典型實施方式中,嵌入粒子是矽酸鉍玻璃熔粒,具有50nm至2μm之間的D50和1至5m2/g之間的比表面積。 In another embodiment, the embedded particles are glass fused particles. In one embodiment, the glass frit consists solely or essentially of a combination of oxygen and at least one of the following elements: antimony, boron, antimony, lithium, sodium, potassium, magnesium, calcium, strontium, barium, strontium, zirconium, hafnium , vanadium, niobium, chromium, molybdenum, manganese, iron, cobalt, antimony, zinc, cadmium, gallium, indium, tin, lead, carbon, nitrogen, phosphorus, arsenic, antimony, antimony, sulfur, selenium, antimony, fluorine, chlorine , bromine, iodine, ruthenium, osmium, oxygen, and alloys, composites and other combinations thereof. It is useful if the glass frit has a softening point of less than 900 ° C or less than 800 ° C to be effectively deformed during firing. In a typical embodiment, the embedded particles are bismuth citrate glass frits having a D50 between 50 nm and 2 μm and a specific surface area between 1 and 5 m 2 /g.

術語「有機載體」描述了有機化學或化合物的混合物或溶液,其輔助溶解、分散和/或懸浮漿料中的固體成分。對於在此描述的嵌入漿料,可使用很多不同的有機載體混合物。這種有機載體可以或可以不包含觸變劑(thixotrope)、穩定劑、乳化劑、增稠劑、增塑劑、表面活性劑和/或其他常見的添加劑。 The term "organic carrier" describes an organic chemistry or mixture or solution of a compound that aids in dissolving, dispersing, and/or suspending solid components in the slurry. For the intercalation slurries described herein, many different organic vehicle mixtures can be used. Such organic vehicles may or may not contain thixotropes, stabilizers, emulsifiers, thickeners, plasticizers, surfactants, and/or other common additives.

有機載體的成分對本領域技術人員而言是熟知的。有機載體的主要構成包括一種或多種黏合劑和一種或多種溶劑。黏合劑可以是聚合或單體有機成分、或「樹脂」、或兩者的混合物。聚合黏合劑可具有多種 分子重量和多種多分散性指標。聚合黏合劑可包括兩種不同單體單元的組合,其已知為共聚物(copolymer),其中,單體單元可以是各自交替或是大塊的(塊狀共聚物)。多糖是通常使用的聚合黏合劑,且包括但不限於,烷基纖維素和烷基衍生物如甲基纖維素、乙基纖維素、丙基纖維素、丁基纖維素、乙基羥乙基纖維素、纖維素衍生物及其混合物。其它聚合黏合劑包括但不限於,聚酯,聚乙烯,聚丙烯,聚碳酸酯、聚氨酯、聚丙烯酸酯(包括聚甲基丙烯酸酯和聚甲基丙烯酸甲酯)、聚乙烯(包括聚氯乙烯、聚乙烯吡咯烷酮、聚乙烯醇縮丁醛、聚醋酸乙烯酯)、聚醯胺、聚二醇(包括聚乙二醇)、酚醛樹脂、聚萜烯、其衍生物及其組合。有機載體黏合劑可包括1至30wt%之間的黏合劑。 The ingredients of the organic vehicle are well known to those skilled in the art. The primary constituent of the organic vehicle includes one or more binders and one or more solvents. The binder may be a polymeric or monomeric organic component, or a "resin", or a mixture of the two. Polymeric binders can have a variety of molecular weights and a variety of polydispersity indicators. The polymeric binder may comprise a combination of two different monomer units, known as copolymers, wherein the monomer units may be alternate or bulk (block copolymer). Polysaccharides are commonly used polymeric binders and include, but are not limited to, alkyl celluloses and alkyl derivatives such as methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, ethyl hydroxyethyl Cellulose, cellulose derivatives and mixtures thereof. Other polymeric binders include, but are not limited to, polyester, polyethylene, polypropylene, polycarbonate, polyurethane, polyacrylate (including polymethacrylate and polymethyl methacrylate), polyethylene (including polyvinyl chloride) , polyvinylpyrrolidone, polyvinyl butyral, polyvinyl acetate), polyamine, polyglycol (including polyethylene glycol), phenolic resin, polydecene, derivatives thereof, and combinations thereof. The organic carrier binder may include between 1 and 30% by weight of the binder.

溶劑是有機種類,其通常在加工製程中通過熱方式、例如蒸發而從漿料中除去。總的來說,可用於在此描述的漿料中的溶劑包括但不限於,極性、非極性、質子、非質子、芳香族、非芳香族、氯化,和非氯化溶劑。可用於在此描述的漿料中的溶劑包括但不限於,醇,二元醇(包括乙二醇),多元醇(包括甘油)、單-和聚醚,單-和聚酯、醇醚、醇酯、單-和雙取代的己二酸酯,單-和聚乙酸酯、醚乙酸酯、乙二醇乙酸酯、乙二醇醚(包括乙二醇單丁醚、二乙二醇單丁醚、三乙二醇單丁醚),乙二醇***乙酸酯(包括乙二醇單丁醚乙酸酯),線性或支鏈飽和和不飽和烷基鏈(包括丁烷、戊烷、己烷、辛烷值、和癸烷)、萜類(包括α-,β-,γ-和4-松油醇),2,2,4-三甲基-1,3-戊二醇單異丁酸酯(也已知為texanolTM),2-(2-乙氧乙氧基)乙醇(也已知為carbitolTM)、衍生物、組合及其混合物。 Solvents are organic species that are typically removed from the slurry by thermal means, such as evaporation, during processing. In general, solvents useful in the slurries described herein include, but are not limited to, polar, non-polar, protic, aprotic, aromatic, non-aromatic, chlorinated, and non-chlorinated solvents. Solvents useful in the slurries described herein include, but are not limited to, alcohols, glycols (including ethylene glycol), polyols (including glycerin), mono- and polyethers, mono- and polyesters, alcohol ethers, Alcohol esters, mono- and disubstituted adipates, mono- and polyacetates, ether acetates, ethylene glycol acetates, glycol ethers (including ethylene glycol monobutyl ether, diethylene glycol) Alcohol monobutyl ether, triethylene glycol monobutyl ether), ethylene glycol ethyl ether acetate (including ethylene glycol monobutyl ether acetate), linear or branched saturated and unsaturated alkyl chains (including butane, Pentane, hexane, octane, and decane), hydrazines (including α- , β-, γ-, and 4-terpineol), 2,2,4-trimethyl-1,3-pentene monoisobutyrate (also known as texanol TM), 2- (2- ethoxyethoxy) ethanol (also known as carbitol TM), derivative, combinations and mixtures thereof.

在一種配置中,有機載體包括70-100wt%之間的溶劑。黏合 劑、溶劑和任何添加劑的比例和成分可被調整,以實現漿料粒子所需的散佈或懸浮、所需的碳含量和/或所需的流變屬性,正如本領域技術人員將理解的。例如,可通過添加觸變劑、例如ThixatrolMax®來改變漿料流變。在另一個示例中,可通過改變黏合劑和觸變劑且考慮將在退火期間發生的峰值燒製溫度、燒製曲線圖(firing profile)和氣流而增加或降低有機載體的碳含量。還可包括些微的添加劑。這種添加劑包括但不限於,觸變劑和表面活化劑。這種添加劑是本領域熟知的,且可通過常規實驗確定這種成分的有用量,以最大化裝置效率和可靠性。在一個實施方式中,金屬化漿料具有在25℃且在4秒-1的剪切速度下具有10,000至200,000cP之間的黏度,使用溫度受控的Brookfield RVDV-II+ Pro黏度計測量。 In one configuration, the organic vehicle comprises between 70 and 100 wt% solvent. The ratio and composition of the binder, solvent, and any additives can be adjusted to achieve the desired dispersion or suspension of the slurry particles, the desired carbon content, and/or the desired rheological properties, as will be understood by those skilled in the art. . For example, slurry rheology can be altered by the addition of a thixotropic agent such as ThixatrolMax®. In another example, the carbon content of the organic vehicle can be increased or decreased by varying the binder and thixotropic agent and considering the peak firing temperature, firing profile, and gas flow that will occur during annealing. Minor additives may also be included. Such additives include, but are not limited to, thixotropic agents and surfactants. Such additives are well known in the art and the amount of such ingredients can be determined by routine experimentation to maximize device efficiency and reliability. In one embodiment, the metallized slurry has a viscosity of between 10,000 and 200,000 cP at 25 ° C and at a shear rate of 4 sec -1 measured using a temperature controlled Brookfield RVDV-II + Pro viscometer.

嵌入漿料配方Embedded slurry formulation

表I中示出了依照本發明的一些實施方式,嵌入漿料的示例性成分範圍。在多個實施方式中,嵌入漿料具有30wt%至80wt%之間的固體裝載、嵌入漿料的10wt%至70wt%之間的貴金屬粒子組成、嵌入漿料的至少10wt%、15wt%、20wt%、25wt%、30wt%或40wt%的嵌入粒子組成,且嵌入粒子與貴金屬粒子的重量比至少是1:5。在一個示例性實施方式中,貴金屬粒子含量是50wt%,且嵌入粒子組成是嵌入漿料的至少10wt%。在多個實施方式中,嵌入漿料中嵌入粒子與貴金屬粒子的重量比是至少1:5、或2:5、或3:5或1:1或5:2。 An exemplary range of ingredients embedded in a slurry in accordance with some embodiments of the present invention is shown in Table I. In various embodiments, the intercalation slurry has a solids loading between 30 wt% and 80 wt%, a precious metal particle composition between 10 wt% and 70 wt% of the intercalation slurry, at least 10 wt%, 15 wt%, 20 wt% of the intercalation slurry %, 25 wt%, 30 wt% or 40 wt% of embedded particles, and the weight ratio of the embedded particles to the noble metal particles is at least 1:5. In an exemplary embodiment, the precious metal particle content is 50% by weight and the embedded particle composition is at least 10% by weight of the embedded slurry. In various embodiments, the weight ratio of embedded particles to precious metal particles in the embedded slurry is at least 1:5, or 2:5, or 3:5 or 1:1 or 5:2.

表I嵌入漿料配方,以重量百分比(wt%) Table I embedded slurry formulation in weight percent (wt%)

在本發明的一個實施方式中,對於太陽能電池應用,嵌入漿料包含20至50wt%之間的貴金屬粒子(即,表I中嵌入漿料範圍II)和10至35wt%之間的嵌入粒子,其可包括LTBM、晶體金屬氧化物、玻璃料或其組合。在一個實施方式中,嵌入粒子是金屬鉍粒子。嵌入漿料A(表I)可包含50wt%銀粒子、12.5wt%鉍粒子和37.5wt%有機載體,帶來了嵌入粒子與貴金屬粒子的1:4(重量)比。嵌入漿料C(表I)可包含45wt%銀粒子、30wt%鉍粒子和25wt%有機載體,帶來了嵌入粒子與貴金屬粒子的1:1.5(重量)比。當嵌入漿料包括銀和鉍粒子時,使用標記Ag:Bi。 In one embodiment of the invention, for solar cell applications, the intercalation paste comprises between 20 and 50 wt% of noble metal particles (ie, embedded in the slurry range II in Table I) and between 10 and 35 wt% of embedded particles, It may comprise LTBM, crystalline metal oxide, frit or a combination thereof. In one embodiment, the embedded particles are metal ruthenium particles. The intercalation slurry A (Table I) may comprise 50 wt% silver particles, 12.5 wt% rhodium particles, and 37.5 wt% organic vehicle, resulting in a 1:4 by weight ratio of embedded particles to precious metal particles. The intercalation slurry C (Table I) may comprise 45 wt% silver particles, 30 wt% rhodium particles, and 25 wt% organic vehicle, resulting in a 1:1.5 by weight ratio of embedded particles to precious metal particles. When the embedded paste includes silver and ruthenium particles, the mark Ag:Bi is used.

在另一個實施方式中,嵌入粒子是玻璃熔粒。嵌入漿料B(表I)可包含45wt%銀粒子、30wt%基於鉍的玻璃熔粒和25wt%有機載體,帶來了嵌入粒子與貴金屬粒子的1:1.5(重量)比。在另一個實施方式中,嵌入粒子是LTBM、晶體金屬氧化物粒子和玻璃熔粒的混合物。嵌入漿料D(表I)可包含30wt%銀粒子、15wt%金屬鉍粒子、5wt%高鉛含量玻璃熔粒和50wt%有機載體。嵌入漿料的配方可被調整,以實現用於特定金屬層的所需的體電阻、 接觸電阻、層厚度和/或剝離強度。 In another embodiment, the embedded particles are glass fused particles. The intercalation slurry B (Table I) may comprise 45 wt% silver particles, 30 wt% yttrium-based glass fused particles, and 25 wt% organic vehicle, resulting in a 1:1.5 by weight ratio of embedded particles to precious metal particles. In another embodiment, the embedded particles are a mixture of LTBM, crystalline metal oxide particles, and glass frit. The intercalation slurry D (Table I) may comprise 30 wt% silver particles, 15 wt% metal rhodium particles, 5 wt% high lead glass frit and 50 wt% organic vehicle. The formulation of the embedded slurry can be adjusted to achieve the desired bulk resistance, contact resistance, layer thickness, and/or peel strength for a particular metal layer.

在本發明的另一個實施方式中,形成嵌入漿料的方法包括步驟:提供貴金屬粒子、提供嵌入粒子,以及在有機載體中將貴金屬粒子和嵌入粒子混合在一起。在一種配置中,嵌入粒子被添加至有機載體且在行星式混合器(例如,Thinky AR-100)中混合,隨後貴金屬粒子(和附加有機載體,如果需要的話)被添加且在行星式混合器中混合。嵌入漿料可以或可以不隨後被研磨,例如,通過使用三滾筒研磨機(three roll mill)(例如,Exakt 50 I)。在一種配置中,嵌入漿料包含10至70wt%之間的貴金屬粒子和大於10wt%的嵌入粒子。 In another embodiment of the invention, the method of forming an intercalation slurry comprises the steps of providing a noble metal particle, providing an intercalating particle, and mixing the precious metal particle and the intercalating particle together in an organic vehicle. In one configuration, the embedded particles are added to an organic vehicle and mixed in a planetary mixer (eg, Thinky AR-100), followed by the addition of precious metal particles (and additional organic carriers, if desired) and in a planetary mixer Mixed in. The embedded slurry may or may not be subsequently ground, for example, by using a three roll mill (eg, Exakt 50 I). In one configuration, the intercalation slurry comprises between 10 and 70 wt% noble metal particles and greater than 10 wt% embedded particles.

形成燒結多層堆疊的方法Method of forming a sintered multilayer stack

在本發明的一個實施方式中,燒結的多層堆疊包括基板,其上有至少一個金屬粒子層和至少一個插層。在一個實施方式中,使用包含下述步驟的聯合燒製製程形成燒結多層堆疊:在基板表面塗上金屬粒子層,乾燥金屬粒子層,在乾燥金屬粒子層的一部分上直接塗上插層,乾燥插層,且隨後聯合燒製多層堆疊。在另一個實施方式中,使用包含下述步驟的順序燒製製程形成燒結多層堆疊:在基板表面塗上金屬粒子層,乾燥金屬粒子層,燒製金屬粒子層,在燒結金屬粒子層的一部分上直接塗上插層,乾燥插層且隨後燒製多層堆疊。在一個實施方式中,在燒製期間,插層的一部分滲透至金屬粒子層中,因而將金屬粒子層轉換為改良金屬粒子層。在一些實施方式中,每個塗覆步驟包括從下列群組中獨立選擇的方法,包括:網版印刷、凹版印刷、噴射沉積、狹槽塗覆、3D列印和噴墨印刷。在一個實施方式中,金屬粒子層通過網版印刷金屬粒子漿料被塗到基板的 一部分上,且插層在被乾燥之後,通過網版印刷嵌入漿料被直接塗到金屬粒子層的一部分上。在一個實施方式中,一部分基板表面被至少一個介電層覆蓋,且金屬粒子層被塗在介電層的一部分上。 In one embodiment of the invention, the sintered multilayer stack includes a substrate having at least one metal particle layer and at least one intercalation layer thereon. In one embodiment, a sintered multilayer stack is formed using a co-firing process comprising the steps of: coating a metal particle layer on the surface of the substrate, drying the metal particle layer, directly applying an intercalation layer on a portion of the dried metal particle layer, and drying Intercalation, and subsequent firing of the multilayer stack. In another embodiment, a sintered multilayer stack is formed using a sequential firing process comprising the steps of: coating a surface of a substrate with a layer of metal particles, drying a layer of metal particles, and firing a layer of metal particles on a portion of the layer of sintered metal particles. The intercalation is applied directly, the intercalation is dried and the multilayer stack is subsequently fired. In one embodiment, during firing, a portion of the intercalation penetrates into the layer of metal particles, thereby converting the layer of metal particles into a layer of modified metal particles. In some embodiments, each coating step includes methods selected independently from the group consisting of: screen printing, gravure printing, spray deposition, slot coating, 3D printing, and inkjet printing. In one embodiment, the metal particle layer is applied to a portion of the substrate by a screen printing metal particle slurry, and after the intercalation layer is dried, it is directly applied to a portion of the metal particle layer by a screen printing intercalation slurry. . In one embodiment, a portion of the substrate surface is covered by at least one dielectric layer and a layer of metal particles is applied over a portion of the dielectric layer.

乾燥的和燒結的多層堆疊形態Dry and sintered multilayer stack form

圖1是依照本發明的實施方式,示出了在聯合燒結之前的多層堆疊100的示意性截面圖。乾燥金屬粒子層120直接在基板110的一部分上。插層130,由嵌入粒子和貴金屬粒子組成,如上所述,直接在乾燥金屬粒子層120的一部分上。在本發明的多個實施方式中,插層130具有0.25μm至50μm之間、1μm至25μm之間、1μm至10μm之間或包含於其中的任何範圍中的平均厚度。在本發明的一個實施方式中,插層130包括貴金屬粒子、嵌入粒子和可選的有機黏合劑(其可在乾燥之後保留在插層130中)。在聯合燒製之前,貴金屬粒子和嵌入粒子可被均質地分佈在插層130中。在一種配置中,貴金屬粒子和嵌入粒子在乾燥之後(且在燒製之前)並不變形,保持它們的原始尺寸和形狀。 1 is a schematic cross-sectional view showing a multilayer stack 100 prior to joint sintering, in accordance with an embodiment of the present invention. The dried metal particle layer 120 is directly on a portion of the substrate 110. The intercalation layer 130 is composed of embedded particles and noble metal particles, as described above, directly on a portion of the dried metal particle layer 120. In various embodiments of the invention, the intercalation layer 130 has an average thickness in any range between 0.25 μm and 50 μm, between 1 μm and 25 μm, between 1 μm and 10 μm, or included therein. In one embodiment of the invention, the intercalation layer 130 comprises precious metal particles, embedded particles, and an optional organic binder (which may remain in the intercalation layer 130 after drying). The noble metal particles and the embedded particles may be homogeneously distributed in the intercalation layer 130 prior to the co-firing. In one configuration, the precious metal particles and the embedded particles do not deform after drying (and prior to firing), maintaining their original size and shape.

在本發明的一個實施方式中,乾燥金屬粒子層120是多孔的,且包括鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦和其合金、合成物或其它組合的至少一者。在一種配置中,在聯合燒製之前,乾燥金屬粒子層120包含金屬粒子,且可以或可以不包含有機黏合劑,且可以或可以不包含非金屬粒子,例如玻璃料。金屬粒子典型地在乾燥之後(且在燒製之前)並不變形,保持它們的原始尺寸和形狀。 In one embodiment of the invention, the dried metal particle layer 120 is porous and comprises at least one of aluminum, copper, iron, nickel, molybdenum, tungsten, niobium, titanium, and alloys, composites or other combinations thereof. In one configuration, the dried metal particle layer 120 comprises metal particles prior to co-firing, and may or may not comprise an organic binder, and may or may not comprise non-metallic particles, such as frit. Metal particles typically do not deform after drying (and prior to firing), maintaining their original size and shape.

在燒製期間,來自插層130的嵌入粒子嵌入相鄰(如圖1下方所示)插層130的乾燥金屬粒子層120的一部分中。對於本揭露的目的來說, 相鄰插層130且嵌入粒子材料滲透至其中的乾燥金屬粒子層120該部分被稱為「改良金屬粒子層」揭露。對於本揭露的目的來說,在燒製之後,乾燥金屬層粒子120的剩餘部分,其不相鄰插層且沒有或僅有痕量的插層金屬材料滲透進其中,被稱為「金屬粒子層」揭露。在一種配置中,在燒製期間,乾燥金屬粒子層120中的粒子可燒結或熔化,使得金屬粒子層具有不同的形態且比乾燥金屬粒子層120有更小的孔隙率。下文將更詳細地討論發生在燒製期間的改變和燒結的多層堆疊結構。 During firing, the embedded particles from the intercalation layer 130 are embedded in a portion of the dried metal particle layer 120 of the intercalation layer 130 adjacent (as shown in Figure 1 below). For the purposes of the present disclosure, the portion of the intercalation layer 130 and the intercalated dry metal particle layer 120 into which the particulate material is infiltrated is referred to as a "modified metal particle layer". For the purposes of the present disclosure, after firing, the remainder of the metal layer particles 120 are dried, with no adjacent intercalations and no or only traces of intercalated metal material penetrating therein, referred to as "metal particles" The layer is revealed. In one configuration, during firing, the particles in the dried metal particle layer 120 may be sintered or melted such that the metal particle layer has a different morphology and has a smaller porosity than the dried metal particle layer 120. The multilayer stack structure that undergoes changes and sintering during firing will be discussed in more detail below.

圖2是依照本發明的實施方式,示出了燒結多層堆疊200(圖1的結構100在其已經被燒結之後)的示意性截面圖。燒結多層堆疊200包括相鄰基板210的至少一部分的改良(由於燒製)金屬粒子層222,以及相鄰改良金屬粒子層222的改良(由於燒製)插層230。在燒製期間,插層(在燒製之前在圖1中示出為130)中的至少一部分貴金屬粒子和嵌入粒子形成了彼此相分離的相。貴金屬粒子可燒結或熔化,改變形態且降低改良插層230的孔隙率。至少一部分嵌入粒子熔化且流動或嵌入相鄰的改良金屬粒子層222,隨著至少一部分貴金屬粒子(其可燒結或熔化)移動朝向改良插層230的可軟焊表面230S。改良金屬粒子層222包括金屬粒子,其來自插層(在燒製之前,在圖1中示出為130)中的嵌入粒子的材料已經滲透其中,改變乾燥金屬粒子層(在燒製之前,在圖1中示出為120)的一部分的材料屬性,以形成改良金屬粒子層222。來自嵌入粒子的材料可鬆弛地連接改良金屬粒子層222中填充的金屬粒子,或其可塗覆在改良金屬粒子層222中已經彼此接觸的金屬粒子。 2 is a schematic cross-sectional view showing a sintered multilayer stack 200 (after the structure 100 of FIG. 1 has been sintered) in accordance with an embodiment of the present invention. The sintered multilayer stack 200 includes an improved (due to firing) metal particle layer 222 of at least a portion of an adjacent substrate 210, and an improved (due to firing) intercalation layer 230 of the adjacent modified metal particle layer 222. During firing, at least a portion of the noble metal particles and the embedded particles in the intercalation (shown as 130 in Figure 1 prior to firing) form phases that are separated from one another. The precious metal particles can be sintered or melted, changing morphology and reducing the porosity of the modified intercalation 230. At least a portion of the embedded particles melt and flow or embed adjacent modified metal particle layer 222 as the at least a portion of the precious metal particles (which can be sintered or melted) move toward the solderable surface 230S of the modified intercalation 230. The modified metal particle layer 222 includes metal particles from which the material of the embedded particles in the intercalation layer (shown as 130 in FIG. 1) has penetrated therein, changing the layer of dried metal particles (before firing, at The material properties of a portion of 120) are shown in FIG. 1 to form a modified metal particle layer 222. The material from the embedded particles may loosely join the metal particles filled in the modified metal particle layer 222, or it may be coated with metal particles that have been in contact with each other in the modified metal particle layer 222.

在一些配置中,還有金屬粒子層220,幾乎沒有或僅有痕量的嵌入粒子材料已經滲透至其中。在一種配置中,金屬粒子層220,其不與 改良插層230直接接觸,並不包含來自嵌入粒子的元素的增加濃度。在一些配置中,金屬粒子層220和改良金屬粒子層222在聯合燒製(未示出)期間形成了具有基板210或摻雜基板210的混合物。雖然圖2指示了金屬粒子層220和改良金屬粒子層222之間的鋒利邊界,但應被理解的是,邊界一般並不是鋒利的。在一些配置中,通過改良插層230材料在聯合燒製期間進入金屬粒子層220的側面散佈範圍而確定邊界。 In some configurations, there is also a layer of metal particles 220 into which little or no traces of embedded particulate material have penetrated. In one configuration, the metal particle layer 220, which is not in direct contact with the modified intercalation 230, does not contain an increased concentration of elements from the intercalated particles. In some configurations, metal particle layer 220 and modified metal particle layer 222 form a mixture having substrate 210 or doped substrate 210 during co-firing (not shown). Although FIG. 2 indicates a sharp boundary between the metal particle layer 220 and the modified metal particle layer 222, it should be understood that the boundary is generally not sharp. In some configurations, the boundary is determined by modifying the side-spreading range of the intercalation 230 material into the metal particle layer 220 during co-firing.

在本發明的一些實施方式中,圖2中的改良插層230中的材料是被包含來自嵌入粒子的材料的相和包含貴金屬的相的分開的相。圖3是示出了燒結多層堆疊390(相當於圖2的結構200)的示意性截面圖,且其中改良插層330具有分離相。燒結多層堆疊390(僅在多層堆疊區域350中)包括在基板300的一部分和(燒製期間)改良插層330之間的多層堆疊區域350中的改良(在燒製期間)金屬粒子層322。包含金屬粒子392的金屬粒子層320在相鄰多層堆疊區域350的基板300上。 In some embodiments of the invention, the material in the modified intercalation 230 of Figure 2 is a separate phase comprising a phase from a material that is embedded in the particle and a phase comprising a noble metal. 3 is a schematic cross-sectional view showing a sintered multilayer stack 390 (corresponding to structure 200 of FIG. 2), and wherein the modified intercalation layer 330 has a separate phase. The sintered multilayer stack 390 (only in the multilayer stack region 350) includes an improved (during firing) metal particle layer 322 in a portion of the substrate 300 and during the firing of the improved intercalation layer 330 between the regions of the substrate 300. A metal particle layer 320 comprising metal particles 392 is on the substrate 300 of the adjacent multilayer stack region 350.

改良插層330包含兩個相:貴金屬相335和嵌入相333,且具有可軟焊表面335S。大部分(至少大於50%)的可軟焊表面由貴金屬相335組成。在一些配置中,貴金屬相335和嵌入相333在燒製期間並不完全相分離,使得在可軟焊表面335S還有一些嵌入相333。改良金屬粒子層322包含金屬粒子392和來自嵌入相333的一部分材料。在改良插層330和改良金屬粒子層322中的相鄰金屬粒子392之間有介面322I。介面322I可以不是光滑的且取決於金屬粒子392的尺寸和形狀以及燒製條件。在可選的玻璃料在燒製之前已經被包含在乾燥金屬粒子層(圖1中的120)中的實施方式中,改良金屬粒子層322和金屬粒子層320還可包含少量玻璃料(未示出),其組成該層的小於 3wt%。。 The modified interposer 330 comprises two phases: a precious metal phase 335 and an embedded phase 333, and has a solderable surface 335S. Most (at least greater than 50%) of the solderable surface consists of a precious metal phase 335. In some configurations, the noble metal phase 335 and the embedded phase 333 are not completely phase separated during firing such that there are some embedded phases 333 in the solderable surface 335S. The modified metal particle layer 322 includes metal particles 392 and a portion of the material from the embedded phase 333. There is an interface 322I between the modified intercalation layer 330 and the adjacent metal particles 392 in the modified metal particle layer 322. Interface 322I may not be smooth and depends on the size and shape of metal particles 392 and firing conditions. In embodiments in which the optional frit has been included in the dried metal particle layer (120 in Figure 1) prior to firing, the modified metal particle layer 322 and metal particle layer 320 may also contain a small amount of frit (not shown) Out), which constitutes less than 3% by weight of the layer. .

在其它實施方式中,圖2中改良插層230中的材料相分離以形成分層結構。圖4是示出了燒結多層堆疊400(相當於圖2的結構200)包括具有兩個子層的插層的示意性截面圖。燒結多層堆疊400(僅在多層堆疊區域450中)包括在基板410的一部分和改良(在燒製期間)插層430之間的多層堆疊區域450中的改良(在燒製期間)金屬粒子層422。包含金屬粒子402的金屬粒子層420在相鄰多層堆疊區域450的基板410上。 In other embodiments, the materials in the modified intercalation layer 230 of Figure 2 are phase separated to form a layered structure. 4 is a schematic cross-sectional view showing an intercalation layer having a sintered sub-layer stack 400 (corresponding to structure 200 of FIG. 2) including two sub-layers. The sintered multilayer stack 400 (only in the multilayer stack region 450) includes an improved (during firing) metal particle layer 422 in a multi-layer stack region 450 between a portion of the substrate 410 and a modified (during firing) intercalation layer 430. . A metal particle layer 420 comprising metal particles 402 is on the substrate 410 of the adjacent multilayer stack region 450.

改良插層430包含兩個子層:直接在改良金屬粒子層422上的子插層433,以及直接在子插層433上的貴金屬子層435。貴金屬子層435具有可軟焊表面435S。改良金屬粒子層422包含金屬粒子402和來自子插層433的一些材料403。在改良插層430(或子插層433)和改良金屬粒子層422中的最頂部金屬粒子402之間有介面422I。在可選的玻璃料在燒製之前已經被包含在乾燥金屬粒子層(圖1中的120)中的實施方式中,改良金屬粒子層422和金屬粒子層420還可包含少量玻璃料(未示出),其組成該層的小於3wt%。 The modified intercalation layer 430 includes two sub-layers: a sub-intercalation layer 433 directly on the modified metal particle layer 422, and a noble metal sub-layer 435 directly on the sub-intercalation layer 433. The precious metal sub-layer 435 has a solderable surface 435S. The modified metal particle layer 422 comprises metal particles 402 and some material 403 from the sub-intercal layer 433. There is an interface 422I between the modified intercalation layer 430 (or sub-intercalation layer 433) and the topmost metal particle 402 in the modified metal particle layer 422. In embodiments in which the optional frit has been included in the dried metal particle layer (120 in Figure 1) prior to firing, the modified metal particle layer 422 and the metal particle layer 420 may also contain a small amount of frit (not shown) Out), which constitutes less than 3% by weight of the layer.

截面SEM圖像用於識別各層且測量多層堆疊中的層厚度。多層堆疊中的各層的平均層厚度通過平均至少十個厚度測量值而獲得,穿過截面圖像,每份為至少10μm分隔。在本發明的多個實施方式中,金屬粒子層(例如圖2中的220)具有0.5μm至100μm之間、1μm至50μm之間、2μm至40μm之間、20μm至30μm之間或包含於其中的任何範圍的平均厚度。基板上的這一金屬粒子層典型地是光滑的,在1x1mm面積上具有平均金屬粒子層厚度的20%之內的最小和最大層厚度。除了截面SEM,在描述面積上的層厚度和變化可使用Olympus LEXT OLS4000 3D鐳射測量顯微鏡和/或表面光 度計(profilometer)、例如Veeco Dektak 150精確測量。 A cross-sectional SEM image was used to identify the layers and measure the layer thickness in the multilayer stack. The average layer thickness of each layer in the multilayer stack is obtained by averaging at least ten thickness measurements, passing through a cross-sectional image, each separated by at least 10 [mu]m. In various embodiments of the present invention, the metal particle layer (eg, 220 in FIG. 2) has between 0.5 μm and 100 μm, between 1 μm and 50 μm, between 2 μm and 40 μm, between 20 μm and 30 μm, or is included therein. The average thickness of any range. This layer of metal particles on the substrate is typically smooth with a minimum and maximum layer thickness within 20% of the average metal particle layer thickness over an area of 1 x 1 mm. In addition to the cross-sectional SEM, the layer thickness and variation in the described area can be accurately measured using an Olympus LEXT OLS4000 3D laser measuring microscope and/or a profilometer, such as Veeco Dektak 150.

在一個典型實施方式中,金屬粒子層(例如圖2中的220)由可燒結鋁粒子製得且具有25μm的平均厚度。金屬粒子層的孔隙率可使用水銀孔率計、例如CE儀器Pascal 140(低壓)或Pascal 440(高壓)、在0.01kPa至2Mpa之間的範圍中測量。燒結金屬粒子層可具有1%至50之間、2%至30%之間、3%至20%之間或其中包含的任意範圍中的孔隙率。由鋁粒子製得且用於太陽能應用中的燒結金屬粒子層可具有10%至18%之間的孔隙率。 In a typical embodiment, a layer of metal particles (e.g., 220 in Figure 2) is made from sinterable aluminum particles and has an average thickness of 25 μm. The porosity of the metal particle layer can be measured using a mercury porosimeter such as a CE instrument Pascal 140 (low pressure) or Pascal 440 (high pressure) in a range between 0.01 kPa and 2 MPa. The layer of sintered metal particles may have a porosity in the range of between 1% and 50, between 2% and 30%, between 3% and 20% or in any range contained therein. The layer of sintered metal particles produced from aluminum particles and used in solar applications may have a porosity between 10% and 18%.

子插層和貴金屬子層的厚度,例如在圖4中分別示意性地示出為433和435,使用截面SEM/EDX在實際多層堆疊中測量。各子層在SEM中由於嵌入和貴金屬相之間的對比差異而區分。EDX映射(mapping)用於識別介面位置,在圖4中示出為432I。在多個實施方式中,貴金屬子層具有0.5μm至10μm之間、0.5μm至5μm之間、1μm至4μm之間或包含於其中的任何範圍中的厚度。在多個實施方式中,子插層具有0.01μm至5μm之間、0.25μm至5μm之間、0.5μm至2μm之間或包含於其中的任何範圍中的厚度。 The thickness of the sub-intercalation and noble metal sub-layers, for example, are schematically shown as 433 and 435, respectively, in Figure 4, measured in a real multi-layer stack using cross-section SEM/EDX. Each sublayer is distinguished in the SEM by the contrast difference between the embedded and precious metal phases. The EDX mapping is used to identify the interface location, shown as 432I in FIG. In various embodiments, the noble metal sublayer has a thickness between 0.5 μm and 10 μm, between 0.5 μm and 5 μm, between 1 μm and 4 μm, or in any range included therein. In various embodiments, the sub-intercalation layer has a thickness between 0.01 μm and 5 μm, between 0.25 μm and 5 μm, between 0.5 μm and 2 μm, or in any range included therein.

在本發明的一個實施方式中,改良插層包含兩個相:貴金屬相和嵌入相。這一結構在圖4中詳細示出。典型地,嵌入相是不可軟焊的,所以,如果可軟焊表面230S大部分包含貴金屬相,它是有用的來確保可軟焊性。在多種配置中,可軟焊表面包含大於50%、大於60%或大於70%的貴金屬相。在一種配置中,改良插層的可軟焊表面大部分包含(多種)貴金屬。平視圖EDX用於確定改良插層表面上的元素的濃度。SEM/EDX使用上文揭露的設備執行,且在10kV的加速電壓,具有7mm樣本工作距離和500倍放大。在多個實施方式中,改良插層230的可軟焊表面230S的至少70wt%、至 少80wt%、至少90wt%、至少95wt%或至少98wt%包含金、銀、鉑、鈀、銠、及其合金、合成物及其它組合的一種或多種。燒製條件、嵌入粒子和貴金屬粒子類型和尺寸都反映了改良插層形態中的相分離度。 In one embodiment of the invention, the modified intercalation layer comprises two phases: a precious metal phase and an embedded phase. This structure is shown in detail in FIG. Typically, the embedded phase is not solderable, so if the solderable surface 230S contains mostly a precious metal phase, it is useful to ensure solderability. In various configurations, the solderable surface comprises greater than 50%, greater than 60%, or greater than 70% of the precious metal phase. In one configuration, the solderable surface of the modified intercalation mostly contains precious metal(s). The flat view EDX is used to determine the concentration of elements on the modified intercalation surface. SEM/EDX was performed using the apparatus disclosed above, and with an accelerating voltage of 10 kV, with a 7 mm sample working distance and 500 times magnification. In various embodiments, at least 70 wt%, at least 80 wt%, at least 90 wt%, at least 95 wt%, or at least 98 wt% of the solderable surface 230S of the modified intercalation layer 230 comprises gold, silver, platinum, palladium, rhodium, and One or more of alloys, composites, and other combinations. The firing conditions, embedded particles, and precious metal particle types and sizes all reflect the degree of phase separation in the improved intercalation morphology.

改良金屬粒子層(圖2中示出為222)比金屬粒子層(圖2中示出為220)包含更高濃度的嵌入粒子材料。從改良金屬粒子層的截面和實際多層堆疊中的金屬粒子層得到的EDX光譜的比較,可被用於確定已經嵌入改良金屬粒子層的來自改良插層的材料濃度。上文描述的SEM/EDX設備,操作在20kV,具有7mm工作距離,用於測量在改良金屬粒子層的截面樣本中,來自嵌入粒子的金屬(例如,鉍)與總金屬(例如,鉍加鋁)的比值。重量比(嵌入金屬與總金屬比)稱為IM:M比。基線EDX分析在金屬粒子層的區域中執行,其至少遠離改良金屬粒子層500μm以確保可重現的測量。第二EDX光譜從改良金屬粒子層得到,並且比較光譜。在IM:M比的確定中,僅考慮金屬元素的峰值(即,來自碳、硫和氧的峰值被忽略)。當分析比值時,貴金屬和來自基板的任何金屬元素被排除,從而防止不可靠的結果。在一個實施方式中,當乾燥金屬粒子層(圖1中示出為120)包含鋁粒子且插層130包含鉍和銀粒子時,金屬粒子層(即,在燒製之後)包含近似1wt%的鉍和大於98wt%的鋁,具有1:99的Bi:(Al+Bi)(IM:M)比。其它嵌入金屬組成小於0.25wt%的改良金屬粒子層,且在計算IM:M比是不考慮。在多個其它實施方式中,IM:M比是1:106、1:1000、1:100、1:50、1:25或1:10。 The modified metal particle layer (shown as 222 in Figure 2) contains a higher concentration of embedded particle material than the metal particle layer (shown as 220 in Figure 2). A comparison of the EDX spectra obtained from the cross section of the modified metal particle layer with the metal particle layer in the actual multilayer stack can be used to determine the concentration of material from the modified intercalation layer that has been embedded in the modified metal particle layer. The SEM/EDX device described above, operating at 20 kV, has a working distance of 7 mm for measuring metal (eg, ruthenium) and total metal (eg, ruthenium aluminum) from embedded particles in a cross-sectional sample of a modified metal particle layer. The ratio of ). The weight ratio (embedded metal to total metal ratio) is called the IM:M ratio. Baseline EDX analysis was performed in the region of the metal particle layer, which was at least 500 [mu]m away from the modified metal particle layer to ensure reproducible measurements. The second EDX spectrum was obtained from the modified metal particle layer and the spectra were compared. In the determination of the IM:M ratio, only the peak of the metal element is considered (ie, the peaks from carbon, sulfur, and oxygen are ignored). When analyzing the ratio, the precious metal and any metal elements from the substrate are excluded, thereby preventing unreliable results. In one embodiment, when the dried metal particle layer (shown as 120 in FIG. 1) comprises aluminum particles and the intercalation layer 130 comprises niobium and silver particles, the metal particle layer (ie, after firing) comprises approximately 1 wt% Tantalum and greater than 98% by weight of aluminum having a Bi:(Al+Bi)(IM:M) ratio of 1:99. Other layers of modified metal particles having an intercalation metal composition of less than 0.25 wt%, and are not considered in calculating the IM:M ratio. In various other embodiments, the IM:M ratio is 1:10 6 , 1:1000, 1:100, 1:50, 1:25, or 1:10.

應注意到,基板可有些表面粗糙,其會導致與它們的介面也是粗糙的。圖5是依照本發明的實施方式,示出了這一基板510、改良金屬粒子層522和改良插層530的一部分的示意性截面圖。在基板510和改良金屬 粒子層522之間有非平坦介面501B。在改良金屬粒子層520和改良插層530之間有非平坦介面522B。線502指示了基板510進入改良金屬粒子層522的最深侵入。線504指示了改良插層530進入改良金屬粒子層522的最深侵入。線502和線504之間的改良金屬粒子層522的區域可被稱為樣本區域522A。在改良金屬粒子層522中確定IM:M比中,限制這一分析至樣本區域522A是有用的,從而避免由於介面粗糙導致的假性結果。 It should be noted that the substrate may have some surface roughness which may result in a rough interface with their interface. FIG. 5 is a schematic cross-sectional view showing a portion of this substrate 510, modified metal particle layer 522, and modified intercalation layer 530, in accordance with an embodiment of the present invention. There is a non-flat interface 501B between the substrate 510 and the modified metal particle layer 522. There is a non-flat interface 522B between the modified metal particle layer 520 and the modified interposer 530. Line 502 indicates the deepest intrusion of substrate 510 into modified metal particle layer 522. Line 504 indicates the deepest intrusion of the modified intercalation layer 530 into the modified metal particle layer 522. The area of the modified metal particle layer 522 between line 502 and line 504 may be referred to as sample area 522A. In determining the IM:M ratio in the modified metal particle layer 522, it is useful to limit this analysis to the sample region 522A, thereby avoiding false results due to interface roughness.

在示意性實施方式中,改良金屬粒子層中的IM:M比金屬粒子層中(在遠離改良金屬粒子層至少500μm的區域中)的高20%、高50%、高100%、高200%、高500%或高1000%。在一個示意性實施方式中,包含鉍粒子的插層在鋁粒子層上,且改良金屬粒子層(如在樣本區域中分析的,例如圖5中示出為522A)包含4wt%的鉍和96wt%的鋁,具有1:25的Bi:(Al+Bi)(或IM:M)比。改良金屬粒子層中的Bi:(Al+Bi)比比金屬粒子層中高400%。 In an exemplary embodiment, the IM:M in the modified metal particle layer is 20% higher, 50% higher, 100% higher, and 200% higher than in the metal particle layer (in a region at least 500 μm away from the modified metal particle layer) , 500% higher or 1000% higher. In an exemplary embodiment, the intercalation layer comprising cerium particles is on the aluminum particle layer, and the modified metal particle layer (as analyzed in the sample region, such as 522A shown in Figure 5) comprises 4 wt% bismuth and 96 wt. % aluminum with a 1:25 Bi:(Al+Bi) (or IM:M) ratio. The Bi:(Al+Bi) ratio in the modified metal particle layer is 400% higher than that in the metal particle layer.

當插層包含晶體金屬氧化物和/或玻璃料、其包含多於一種金屬時,嵌入金屬成分由EDX定量且相加來確定IM:M比。例如,如果玻璃料包含鉍和鉛兩種,隨後該比定義為(Bi+Pb):(Bi+Pb+Al)。 When the intercalation layer comprises a crystalline metal oxide and/or glass frit comprising more than one metal, the intercalated metal component is quantified by EDX and summed to determine the IM:M ratio. For example, if the frit contains both bismuth and lead, then the ratio is defined as (Bi+Pb): (Bi+Pb+Al).

在多個實施方式中,燒結多層堆疊還包括由乾燥金屬粒子層和基板中的金屬粒子之間在燒製期間的相互作用形成的固體混合層。固體混合層可包括但不限於,合金、共晶、合成物、混合物或其組合。在一種配置中,改良金屬粒子層和基板在它們的介面形成了固體混合(多)區域。固體混合(多)區域可包含一種或多種合金。固體混合(多)區域可以是連續的(一層)或半連續的。取決於基板和金屬粒子層的合成物,(多)合金或形成的其它混合物可包括鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦、矽、氧、碳、鍺、鎵、 砷、銦和磷的一種或多種。例如,鋁和矽可在660℃以上形成共晶,其基於冷卻,在矽介面處帶來了固體鋁-矽(Al-Si)共晶層。在一個示意性實施方式中,固體混合物層是形成在矽基板一部分上的固體Al-Si共晶層。固體Al-Si共晶層的形成和形態在矽太陽能電池中是熟知的。在另一個實施方式中,基板摻雜有鋁、銅、鐵、鎳、鉬、鎢、鉭、鈦和其合金、合成物和其它組合的至少一者。在一個示例中,鋁是矽中的p型摻雜物,且在燒製期間,來自相鄰基板的鋁粒子層中的鋁,提供了更多的鋁摻雜物以在矽基板中形成高度p型摻雜區域,其已知為背面電場。 In various embodiments, the sintered multilayer stack further includes a solid mixed layer formed by the interaction between the dried metal particle layer and the metal particles in the substrate during firing. The solid mixed layer can include, but is not limited to, an alloy, a eutectic, a composition, a mixture, or a combination thereof. In one configuration, the modified metal particle layer and substrate form a solid mixed (multiple) region at their interface. The solid mixed (multiple) region may comprise one or more alloys. The solid mixed (multiple) regions can be continuous (one layer) or semi-continuous. Depending on the composition of the substrate and the metal particle layer, the (poly) alloy or other mixture formed may include aluminum, copper, iron, nickel, molybdenum, tungsten, niobium, titanium, tantalum, oxygen, carbon, lanthanum, gallium, arsenic, One or more of indium and phosphorus. For example, aluminum and tantalum can form a eutectic above 660 ° C, which, based on cooling, brings a solid aluminum-germanium (Al-Si) eutectic layer at the tantalum interface. In an exemplary embodiment, the solid mixture layer is a solid Al-Si eutectic layer formed on a portion of the tantalum substrate. The formation and morphology of the solid Al-Si eutectic layer is well known in tantalum solar cells. In another embodiment, the substrate is doped with at least one of aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, and alloys thereof, composites, and other combinations. In one example, aluminum is a p-type dopant in germanium, and during firing, aluminum from the aluminum particle layer of an adjacent substrate provides more aluminum dopant to form a height in the germanium substrate. A p-type doped region, which is known as a back surface electric field.

取決於大氣條件,嵌入粒子隨著它們熔化和嵌入燒結多層堆疊中的改良金屬粒子層中,會經歷多重相改變。取決於改良金屬粒子層和基板中的材料,嵌入粒子隨著它們嵌入改良金屬粒子層中還形成了晶體混合物。這一晶體混合物可改進改良金屬粒子層中的金屬粒子之間的內聚力,防止特定元素的相互擴散,和/或降低燒結多層堆疊中的金屬層之間的電性接觸電阻。在一個實施方式中,改良插層和改良金屬粒子層包含晶體,由鉍和氧、矽和銀及其合金、合成物和其它組合的至少一者組成。 Depending on atmospheric conditions, the embedded particles undergo multiple phase changes as they melt and embed in the modified metal particle layer in the sintered multilayer stack. Depending on the layer of modified metal particles and the material in the substrate, the embedded particles form a crystal mixture as they are embedded in the layer of modified metal particles. This crystal mixture can improve the cohesion between the metal particles in the improved metal particle layer, prevent interdiffusion of specific elements, and/or reduce the electrical contact resistance between the metal layers in the sintered multilayer stack. In one embodiment, the modified intercalated and modified metal particle layer comprises crystals comprised of at least one of niobium and oxygen, niobium and silver and alloys thereof, composites, and other combinations.

在一個實施方式中,貴金屬相包括從下列群組中選擇的至少一種材料,包含:金、銀、鉑、鈀、銠,及其合金、其合成物及其其它組合。在一種配置中,貴金屬相本質上包含一種或多種這些材料。當這些材料的一種組成貴金屬相的主體(majority),貴金屬相被描述為富有這種材料。例如,如果貴金屬相、貴金屬層或貴金屬子層大部分包含銀,其可被分別稱為富銀區域、富銀層或富銀子層。 In one embodiment, the precious metal phase comprises at least one material selected from the group consisting of gold, silver, platinum, palladium, rhodium, alloys thereof, composites thereof, and other combinations thereof. In one configuration, the precious metal phase essentially comprises one or more of these materials. When one of these materials constitutes the majority of the precious metal phase, the precious metal phase is described as being rich in such a material. For example, if the precious metal phase, the precious metal layer, or the noble metal sublayer mostly contains silver, it may be referred to as a silver-rich region, a silver-rich layer, or a silver-rich sub-layer, respectively.

嵌入相包含來自嵌入粒子的元素,且還可包含來自外界環境 的元素(例如,氧)和少量來自相鄰金屬粒子層和在燒製期間已經合成一體的附近基板的貴金屬粒子的元素。可在嵌入相中的元素的廣泛排列取決於,低溫基底金屬、晶體金屬氧化物和/或玻璃料是否被用作嵌入粒子。在一個實施方式中(當嵌入粒子僅是低溫基底金屬時),嵌入相包含從下列群組中選擇的至少一種材料,包含:鉍、硼、錫、碲、銻、鉛、氧,及其合金、合成物和其它組合。在另一個實施方式中(當嵌入粒子僅是晶體金屬氧化物時),嵌入相包含從下列群組中選擇的至少一種材料,包含:鉍氧化物、錫、碲、銻、鉛、釩鉻、鉬、硼、錳、鈷及其合金、合成物和其它組合。在另一個實施方式中(當嵌入粒子僅是玻璃料時),嵌入相包含氧和下述元素的至少一者:矽、硼、鍺、鋰、鈉、鉀、鎂、鈣、鍶、銫、鋇、鋯、鉿、釩、鈮、鉻、鉬、錳、鐵、鈷、錸、鋅、鎘、鎵、銦、錫、鉛、碳、氮、磷、砷、銻、鉍、硫、硒、碲、氟、氯、溴、碘、鑭、鈰,及其合金、複合物和其它組合。當這些材料的一種組成嵌入區域的主體時,嵌入區域被描述為富有這種材料。例如,如果嵌入區域、插層或子插層大部分包含鉍,其可被分別稱為富鉍區域、富鉍層或富鉍子層。 The embedded phase contains elements from the embedded particles and may also contain elements from the external environment (e.g., oxygen) and a small amount of elements from adjacent metal particle layers and precious metal particles of nearby substrates that have been integrated during firing. The broad arrangement of elements that can be in the embedded phase depends on whether the low temperature base metal, crystalline metal oxide and/or frit are used as the embedded particles. In one embodiment (when the embedded particles are only low temperature base metals), the embedded phase comprises at least one material selected from the group consisting of: bismuth, boron, tin, antimony, bismuth, lead, oxygen, and alloys thereof , compositions and other combinations. In another embodiment (when the embedded particles are only crystalline metal oxides), the embedded phase comprises at least one material selected from the group consisting of cerium oxide, tin, antimony, bismuth, lead, vanadium chromium, Molybdenum, boron, manganese, cobalt and their alloys, composites and other combinations. In another embodiment (when the embedded particles are only glass frits), the embedded phase comprises at least one of oxygen and the following elements: bismuth, boron, antimony, lithium, sodium, potassium, magnesium, calcium, strontium, barium, Bismuth, zirconium, hafnium, vanadium, niobium, chromium, molybdenum, manganese, iron, cobalt, antimony, zinc, cadmium, gallium, indium, tin, lead, carbon, nitrogen, phosphorus, arsenic, antimony, antimony, sulfur, selenium, Niobium, fluorine, chlorine, bromine, iodine, ruthenium, osmium, and alloys, composites and other combinations thereof. When one of these materials constitutes the body of the embedded region, the embedded region is described as being rich in such material. For example, if the embedded region, intercalation, or sub-intercalation mostly contains germanium, it may be referred to as a rich region, a rich layer, or a rich germanium layer, respectively.

燒結多層堆疊的示例和應用Examples and applications of sintered multilayer stacking

大部分包含鋁、銅、鐵、鎳、鉬、鎢、鉭和鈦的金屬粒子在燒製之後不能使用溫和活性(mildly activated)(RMA)焊劑(fluxes)和基於錫的焊料而軟焊。然而,在太陽能電池和其它裝置中,高度需要軟焊帶,以與金屬粒子層、例如鋁粒子層電性接觸。如在此揭露的,發明的包含貴金屬、例如銀和金的嵌入漿料可被用在金屬粒子層上且在空氣中燒結,以產生高度可軟焊的表面。這與其它嘗試對比,通過添加貴金屬增加了金屬粒子層 的可焊性,由於貴金屬基於多層堆疊的燒製而通常與金屬粒子層(例如,鋁)互相擴散,帶來了包含非常少的貴金屬的可軟焊表面,從而可以很好的軟焊。例如,在鋁粒子層上燒製商業上可用的包含小於10wt%的玻璃料的銀製後標誌漿料,不會帶來可軟焊表面。這些層在燒製步驟期間經歷了顯著的銀-鋁相互擴散,且帶來了不可軟焊的銀鋁表面。 Most of the metal particles comprising aluminum, copper, iron, nickel, molybdenum, tungsten, niobium and titanium cannot be soldered after the firing using mildly activated (RMA) fluxes and tin-based solder. However, in solar cells and other devices, a solder ribbon is highly desirable to be in electrical contact with a layer of metal particles, such as a layer of aluminum particles. As disclosed herein, the inventive embedded paste comprising precious metals, such as silver and gold, can be used on a layer of metal particles and sintered in air to produce a highly solderable surface. This is in contrast to other attempts to increase the solderability of the metal particle layer by the addition of a noble metal, which typically diffuses with the metal particle layer (eg, aluminum) due to the firing of the multilayer stack, resulting in a very small precious metal. The surface can be soldered so that it can be soldered very well. For example, firing a commercially available post-silver marking paste containing less than 10% by weight of glass frit on the aluminum particle layer does not result in a solderable surface. These layers experienced significant silver-aluminum interdiffusion during the firing step and resulted in a silver-aluminum surface that was not solderable.

如在此揭露的,插層可被用於改良金屬粒子層的材料屬性,從而,1)阻擋貴金屬的擴散且提供可軟焊表面,2)機械加強金屬粒子層,以及3)輔助蝕刻金屬粒子層下方的各層。在本發明的一個實施方式中,使用嵌入漿料形成多層堆疊,其包括銀製的貴金屬粒子和鉍金屬或基於鉍的玻璃料製得的嵌入粒子,以及包含鋁粒子的相鄰金屬粒子層。燒結多層堆疊的形成是通過:在裸露矽晶片上網版印刷鋁漿料(通常用於太陽能電池應用),在250℃乾燥樣本30秒,在乾燥鋁粒子層上的一部分上網版印刷嵌入漿料,在250℃乾燥樣本30秒,以及聯合燒製樣本,使用具有700℃至820℃之間的峰值溫度的尖峰點火曲線(spike fire profile)以及大於10℃/sec斜坡上升和冷卻速度。全部乾燥和燒製步驟使用Despatch CDF 7210熔爐執行,其通常用於矽太陽能製造中。 As disclosed herein, the intercalation layer can be used to modify the material properties of the metal particle layer, thereby 1) blocking the diffusion of the precious metal and providing a solderable surface, 2) mechanically strengthening the metal particle layer, and 3) assisting in etching the metal particle. The layers below the layer. In one embodiment of the invention, an intercalation paste is used to form a multilayer stack comprising noble metal particles made of silver and embedded particles made of base metal or bismuth-based glass frit, and adjacent metal particle layers comprising aluminum particles. The sintered multilayer stack is formed by: printing a bare aluminum paste on a bare enamel wafer (usually used in solar cell applications), drying the sample at 250 ° C for 30 seconds, and printing a portion of the deposited paste onto the dried aluminum particle layer. The sample was dried at 250 ° C for 30 seconds, and the samples were fired in combination, using a spike fire profile with a peak temperature between 700 ° C and 820 ° C and a ramp up and cooling rate greater than 10 ° C/sec. All drying and firing steps were performed using a Despatch CDF 7210 furnace, which is typically used in tantalum solar manufacturing.

SEM/EDS分析用於確定磨光的截面的燒製多層堆疊中的多個區域的元素成分,以及研究嵌入製程。SEM/EDX使用先前描述的設備使用兩種不同操作模式來執行。SEM顯微照片是以Zeiss Gemini Ultra-55分析場發射SEM使用稱為SE2和Inlens的兩種模式拍攝而成的。SE2模式操作在5-10kV和5-7mm的工作距離,使用SE2第二電子探測器和10秒的掃描迴圈時間。亮度和對比度分別在0至50%之間和在0至60%之間改變,為了最大化嵌 入區域和Al粒子之間的對比。Inlens模式操作在1-3kV和3-7mm的工作距離,使用InLens第二電子探測器和10秒的掃描迴圈時間。為了在Inlens模式中拍攝BSF,亮度設為0%且對比度設為40%左右。 SEM/EDS analysis was used to determine the elemental composition of the multiple regions in the fired multilayer stack and to study the embedding process. SEM/EDX is performed using two different modes of operation using the previously described device. The SEM micrographs were taken using the Zeiss Gemini Ultra-55 Analytical Field Emission SEM using two modes called SE2 and Inlens. The SE2 mode operates at 5-10 kV and 5-7 mm working distance, using the SE2 second electron detector and a 10 second scan loop time. The brightness and contrast are varied between 0 and 50% and between 0 and 60%, respectively, in order to maximize the contrast between the embedded region and the Al particles. The Inlens mode operates at 1-3kV and 3-7mm working distances, using the InLens second electron detector and 10 seconds of scan loop time. In order to capture BSF in Inlens mode, the brightness is set to 0% and the contrast is set to about 40%.

在本發明的一個實施方式中,包括10-15wt%的嵌入粒子的嵌入漿料阻擋貴金屬(即,銀)和金屬粒子(即,鋁)之間的相互擴散。嵌入漿料A(表I中示出)包含12.5wt%鉍粒子和50wt%Ag,帶來了嵌入粒子與貴金屬粒子的1:4重量比。燒結多層堆疊如上文所述的製得。燒結多層堆疊的SEM在SE2模式中執行,使用上文所述的設備,在5kV的加速電壓、7mm的工作距離和4000倍放大率。 In one embodiment of the invention, an intercalation paste comprising 10-15 wt% of embedded particles blocks interdiffusion between the noble metal (ie, silver) and the metal particles (ie, aluminum). The intercalation slurry A (shown in Table I) contained 12.5 wt% bismuth particles and 50 wt% Ag, giving a 1:4 weight ratio of embedded particles to precious metal particles. Sintered multilayer stacks were prepared as described above. The SEM of the sintered multilayer stack was performed in the SE2 mode using the device described above at an accelerating voltage of 5 kV, a working distance of 7 mm and a magnification of 4000 times.

圖6是聯合燒結多層堆疊的掃描式電子顯微鏡截面圖。改良插層630直接在改良金屬粒子層622上。改良插層630包括富鉍子層632(嵌入相),其包括氧化鉍,以及富銀子層634(貴金屬相)。改良金屬粒子層622包含鋁粒子621和嵌入相材料623,其已經從富鉍子層632擴散處。富鉍子層632直接在鋁粒子621上,至少在介面區域631附近。富鉍子層632似乎是防止在聯合燒製製程期間銀從改良插層630和鋁從改良金屬粒子層622的相互擴散。圖6是上文在圖4中描述的分層結構的一個示例。富銀子層634提供了高度可軟焊的表面(遠離改良金屬粒子層622)。嵌入相材料623並不遠的滲透至改良金屬粒子層622中。改良金屬粒子層622大部分包含鋁粒子,其在聯合燒製之後微弱地燒結在一起且具有貧弱的機械強度。這裡沒有足夠可用的鉍來深入滲透至改良金屬粒子層622中,並且富鉍子層632可向改良金屬粒子層622施加壓力,其可機械地微弱聯合燒結的多層堆疊。這一聯合燒結的多層堆疊的剝離強度低於0.4N/mm(牛頓每毫米),具有Al粒子之間的主要 失效機制。現有太陽能工業標準中,需要大於1N/mm的剝離強度,以被視為商業上是可行的。 Figure 6 is a cross-sectional view of a scanning electron microscope of a combined sintered multilayer stack. The modified intercalation layer 630 is directly on the modified metal particle layer 622. The modified intercalation layer 630 includes a germanium-rich sub-layer 632 (embedded phase) comprising yttrium oxide and a silver-rich sub-layer 634 (precious metal phase). The modified metal particle layer 622 includes aluminum particles 621 and an intercalation phase material 623 that has diffused from the hazelnut-rich layer 632. The eutectic layer 632 is directly on the aluminum particles 621, at least in the vicinity of the interface region 631. The rich scorpion layer 632 appears to prevent interdiffusion of silver from the modified intercalation layer 630 and aluminum from the modified metal particle layer 622 during the co-firing process. FIG. 6 is an example of the layered structure described above in FIG. The silver rich sub-layer 634 provides a highly solderable surface (away from the modified metal particle layer 622). The embedded phase material 623 penetrates into the modified metal particle layer 622 not far. The modified metal particle layer 622 mostly contains aluminum particles which are weakly sintered together after co-firing and have weak mechanical strength. There are not enough enthalpy available to penetrate deep into the modified metal particle layer 622, and the eutectic layer 632 can apply pressure to the modified metal particle layer 622, which can be mechanically weakly combined with the sintered multilayer stack. This joint sintered multilayer stack has a peel strength of less than 0.4 N/mm (Newtons per mm) and has a major failure mechanism between the Al particles. In the current solar industry standard, a peel strength greater than 1 N/mm is required to be considered commercially viable.

嵌入漿料B(表I中示出)使用玻璃料作為嵌入粒子以實現可軟焊表面。嵌入漿料B包含30wt%基於鉍的玻璃熔(嵌入)粒子和45wt%的Ag,帶來了嵌入粒子與貴金屬粒子的1:1.5重量比。玻璃料主要包含鉍且具有387℃的玻璃轉變溫度和419℃的軟化點。燒結多層堆疊的SEM在SE2模式中執行,使用上文所述的設備,在5kV的加速電壓、7mm的工作距離和4000倍放大率。圖7是依照本發明的實施方式,這一聯合燒結多層堆疊的掃描式電子顯微鏡截面圖。改良鋁粒子層722是一包含鋁粒子730的改良金屬粒子層。在聯合燒製期間,基於鉍的玻璃料並不與Ag粒子完全相分離,帶來了具有兩個相的改良插層750:貴金屬相721和基於鉍的嵌入相740,類似於上文圖3中所示的。改良插層750上的表面750S包含多於50%的貴金屬相721。表面750S可使用通常用於太陽能電池工業中的焊劑(例如,Kester 952S、Kester 951和Alpha NR205)軟焊。燒結多層堆疊的整體剝離強度低於0.5N/mm,其可能是由於基於鉍的嵌入相740進入改良鋁粒子層722的低滲透。通常,改良插層的形態可通過改變插層中的嵌入粒子成分和裝載而改良。 The embedded paste B (shown in Table I) uses a frit as the embedded particles to achieve a solderable surface. The intercalation slurry B contained 30 wt% of cerium-based glass melt (embedded) particles and 45 wt% of Ag, bringing a 1:1.5 weight ratio of the embedded particles to the noble metal particles. The glass frit mainly contains niobium and has a glass transition temperature of 387 ° C and a softening point of 419 ° C. The SEM of the sintered multilayer stack was performed in the SE2 mode using the device described above at an accelerating voltage of 5 kV, a working distance of 7 mm and a magnification of 4000 times. Figure 7 is a cross-sectional view of a scanning electron microscope of this co-fired multilayer stack in accordance with an embodiment of the present invention. The modified aluminum particle layer 722 is a layer of modified metal particles comprising aluminum particles 730. During the co-firing, the niobium-based frit is not completely phase separated from the Ag particles, resulting in an improved intercalation 750 having two phases: a noble metal phase 721 and a niobium-based intercalation phase 740, similar to Figure 3 above. Shown in . The surface 750S on the modified intercalation 750 contains more than 50% of the precious metal phase 721. Surface 750S can be soldered using fluxes commonly used in the solar cell industry (eg, Kester 952S, Kester 951, and Alpha NR205). The overall peel strength of the sintered multilayer stack is less than 0.5 N/mm, which may be due to the low penetration of the germanium-based embedded phase 740 into the modified aluminum particle layer 722. In general, improved morphology of the intercalation can be improved by altering the embedded particle composition and loading in the intercalation.

嵌入漿料阻擋元素相互擴散和強化下層金屬粒子層Intercalation of slurry barrier elements to mutually diffuse and strengthen the underlying metal particle layer

上面的示例示出了兩種漿料配方,設計來阻擋貴金屬(即,銀)和金屬粒子(即,鋁)之間的相互擴散,但是它們的燒結層當被軟焊時缺乏足夠的機械強度。嵌入漿料C(表I中示出)包含30wt%鉍粒子和45wt%銀粒子(即,Ag:Bi嵌入漿料),帶來了嵌入粒子與貴金屬粒子的1:1.5重量比。漿 料中增加的嵌入粒子含量在改良金屬粒子層中產生更高濃度的嵌入材料,且帶來機械上更強的燒結多層堆疊。嵌入漿料C被用作,在BSF、多晶體、p型太陽能電池的製造期間,商業銀製後標誌漿料的***式更換。嵌入漿料C還可被稱為鋁上銀(Ag-on-Al)、後標誌、浮動後標誌或標誌嵌入漿料。一組特性化工具用在取得的燒結多層堆疊上,從而評定IM:M(嵌入金屬:金屬)比、貴金屬表面覆蓋範圍,且確定嵌入區域中是否形成了晶體。 The above example shows two slurry formulations designed to block interdiffusion between precious metals (ie, silver) and metal particles (ie, aluminum), but their sintered layers lack sufficient mechanical strength when soldered. . The intercalation slurry C (shown in Table I) contained 30 wt% bismuth particles and 45 wt% silver particles (i.e., Ag:Bi intercalation slurry), resulting in a 1:1.5 weight ratio of embedded particles to precious metal particles. The increased amount of embedded particles in the slurry produces a higher concentration of embedded material in the modified metal particle layer and results in a mechanically stronger sintered multilayer stack. The intercalation paste C was used as a plug-in replacement of the commercial silver post-marking paste during the manufacture of BSF, polycrystalline, p-type solar cells. The embedded paste C may also be referred to as an Ag-on-Al, post-mark, post-floating mark or mark embedded slurry. A set of characterization tools were used on the resulting sintered multilayer stack to evaluate IM:M (embedded metal:metal) ratio, precious metal surface coverage, and to determine if crystals were formed in the embedded region.

通過首先示意沒有插層的矽基板上的燒結鋁粒子層的形態,插層在金屬粒子層上的影響被最佳地展示。圖8是矽基板810上的這一燒結鋁粒子層822在SE2模式中的掃描式電子顯微鏡(SEM)截面圖,沿著不包含插層的矽太陽能電池的區域。燒結鋁粒子層822大約20μm厚,且包含鋁粒子821和小量無機黏合劑(即,玻璃料)840。相同鋁粒子層的InLens模式掃描式電子顯微鏡在圖9中示出。在InLens模式中,鋁粒子層922、鋁粒子921和矽基板910清晰可見,除此之外還有背面電場區域970和固化鋁-矽(Al-Si)共晶層980。 The effect of the intercalation on the metal particle layer is best demonstrated by first indicating the morphology of the sintered aluminum particle layer on the tantalum substrate without intercalation. Figure 8 is a scanning electron microscope (SEM) cross-sectional view of this sintered aluminum particle layer 822 on the ruthenium substrate 810 in the SE2 mode along a region of the tantalum solar cell that does not contain intercalation. The sintered aluminum particle layer 822 is approximately 20 μm thick and contains aluminum particles 821 and a small amount of inorganic binder (ie, frit) 840. An InLens mode scanning electron microscope of the same aluminum particle layer is shown in FIG. In the InLens mode, the aluminum particle layer 922, the aluminum particles 921, and the tantalum substrate 910 are clearly visible, in addition to the back surface electric field region 970 and the cured aluminum-germanium (Al-Si) eutectic layer 980.

在聯合燒製之後,插層在產生改良金屬粒子層上的影響可參考圖10而理解。圖10是用於圖8所示圖像中的相同矽太陽能電池的InLens SEM介面圖,但是沿著包含使用嵌入漿料C(表I中示出)製得的聯合燒結多層堆疊的區域。聯合燒結多層堆疊1000包含改良插層1030、改良鋁粒子層1022、固化Al-Si共晶層1080、摻雜鋁的背面電場(BSF)區域1070和矽基板1010。在一個示意性實施方式中,矽基板中的BSF摻雜p型至1017至1020每cm3之間。 The effect of intercalation on the layer of improved metal particles after co-firing can be understood with reference to Figure 10. Figure 10 is an InLens SEM interface for the same tantalum solar cell in the image shown in Figure 8, but along a region containing a joint sintered multilayer stack made using embedded paste C (shown in Table I). The joint sintered multilayer stack 1000 includes a modified intercalation layer 1030, a modified aluminum particle layer 1022, a cured Al-Si eutectic layer 1080, an aluminum doped back electric field (BSF) region 1070, and a germanium substrate 1010. In one exemplary embodiment, the silicon substrate is doped p-type BSF to between 1017 to 1020 per cm 3.

圖10的聯合燒結多層堆疊的SE2模式掃描式電子顯微鏡在 圖11中示出。雖然InLens模式清晰地示出了BSF區域,SE2模式是優選模式來反映改良鋁粒子層中的鉍(嵌入相)。聯合燒結多層堆疊1100包含改良插層1130、改良鋁粒子層1122和矽基板1110。還可看到改良插層1130中的銀子層1134和鉍子插層1132。在這一圖像中不能清楚看到BSF區域和固化Al-Si共晶層。改良鋁粒子層112包含大量的鉍嵌入材料1103,其在聯合燒製期間圍繞鋁粒子1102嵌入。在一些例子中,鉍和銀之間的對比度不會強到足夠能清晰地識別子層和鉍嵌入鋁粒子層中的程度。在這些例子截面圖的元素映射可使用SEM/EDX得到,從而完全確定聯合燒製多層堆疊中的銀和鉍位置。 The SE2 mode scanning electron microscope of the joint sintered multilayer stack of Fig. 10 is shown in Fig. 11. Although the InLens mode clearly shows the BSF region, the SE2 mode is the preferred mode to reflect the enthalpy (embedded phase) in the modified aluminum particle layer. The joint sintered multilayer stack 1100 includes a modified intercalation layer 1130, a modified aluminum particle layer 1122, and a tantalum substrate 1110. Silver sub-layer 1134 and hazel intercalation 1132 in improved intercalation 1130 can also be seen. The BSF region and the cured Al-Si eutectic layer are not clearly visible in this image. The modified aluminum particle layer 112 comprises a plurality of tantalum embedded materials 1103 that are embedded around the aluminum particles 1102 during co-firing. In some instances, the contrast between tantalum and silver is not strong enough to clearly identify the extent to which the sub-layer and tantalum are embedded in the aluminum particle layer. Element mapping in the cross-sectional views of these examples can be obtained using SEM/EDX to fully determine the silver and tantalum locations in the cofired multilayer stack.

改良鋁粒子層中由於嵌入的嵌入金屬(即,鉍)量可通過比較EDX光譜確定,從相同截面樣本中的改良鋁粒子層區域和鋁粒子層區域進行。如果區域間彼此間隔大於1μm,這是最有用的。進行這一比較的方式已在上文描述為IM:M或Bi:(Bi+Al)比。這一分析在確定嵌入漿料是否用於太陽能電池的製造中是有用的。太陽能電池中的金屬化層包含有限子組的金屬,例如包括鋁、銀、鉍、鉛和鋅。在商用太陽能電池中,鋁粒子層幾乎完全只包含鋁。 The amount of embedded metal (ie, germanium) embedded in the modified aluminum particle layer can be determined by comparing the EDX spectra from the modified aluminum particle layer region and the aluminum particle layer region in the same cross-sectional sample. This is most useful if the zones are spaced apart from each other by more than 1 μm. The manner in which this comparison is made has been described above as the IM:M or Bi:(Bi+Al) ratio. This analysis is useful in determining whether embedded paste is used in the manufacture of solar cells. The metallization layer in a solar cell contains a limited subset of metals including, for example, aluminum, silver, ruthenium, lead, and zinc. In commercial solar cells, the aluminum particle layer contains almost exclusively aluminum.

在一個示例中,嵌入漿料C中的嵌入粒子僅包含鉍,且金屬粒子層中的金屬粒子大部分是鋁。比較鋁粒子層(即,其與嵌入漿料沒有相互作用)中鉍與鉍加鋁的比Bi:(Bi+Al)和改良鋁粒子層,在確定嵌入漿料是否組合至太陽能電池中是有用的度量標準。用於這兩層的EDX光譜被測量約三分鐘,使用上述設備,在20kV的加速電壓和7mm的工作距離下。用於圖8中的燒結鋁粒子層822的EDX光譜從區域898收集。用於圖11中的改良鋁粒子層1122的EDX光譜從區域1199收集。元素定量在這些光譜上執行,使用 Bruker Quantax Esprit 2.0軟體用於自動元素識別、背景減法和峰值擬合。EDX光譜在圖12中示出。鋁和鉍金屬峰值面積被定量且從圖12中的EDX光譜計算用於兩層的wt%,並且在下面的表II中概括。沒有顯著數量的任何其它金屬可在EDX光譜中識別。圖12A中示出的鋁粒子層EDX光譜產生1:244的Bi:(Bi+Al)wt%比,且圖12B中示出的改良鋁粒子層光譜產生1:4的Bi:(Bi+Al)wt%比,如在表II中所示。改良鋁粒子層1122中的Bi:(Bi+Al)wt%比大約比不與Ag:Bi插層接觸的燒結鋁粒子層822的高62倍。在多個實施方式中,燒結多層堆疊中的Bi:(Bi+Al)比在改良鋁粒子層中是燒結鋁粒子層中的至少20%、或至少50%、或高至少2x、或至少5x或至少10x或至少50x。 In one example, the embedded particles embedded in the slurry C contain only ruthenium, and the metal particles in the metal particle layer are mostly aluminum. Comparing the ratio of Bi:(Bi+Al) and modified aluminum particles in the aluminum particle layer (ie, it does not interact with the embedded paste), it is useful in determining whether the embedded paste is combined into the solar cell. Metrics. The EDX spectra for the two layers were measured for approximately three minutes using the above equipment at an acceleration voltage of 20 kV and a working distance of 7 mm. The EDX spectrum for the sintered aluminum particle layer 822 of Figure 8 was collected from region 898. The EDX spectrum for the modified aluminum particle layer 1122 in Figure 11 was collected from region 1199. Element quantification was performed on these spectra using Bruker Quantax Esprit 2.0 software for automatic element recognition, background subtraction, and peak fitting. The EDX spectrum is shown in FIG. The aluminum and base metal peak areas were quantified and calculated from the EDX spectra in Figure 12 for the wt% of the two layers and are summarized in Table II below. No significant amount of any other metal can be identified in the EDX spectrum. The EDX spectrum of the aluminum particle layer shown in Fig. 12A produces a Bi:(Bi+Al) wt% ratio of 1:244, and the modified aluminum particle layer spectrum shown in Fig. 12B produces a 1:4 Bi:(Bi+Al) ) wt% ratio, as shown in Table II. The Bi:(Bi+Al) wt% ratio in the modified aluminum particle layer 1122 is approximately 62 times higher than that of the sintered aluminum particle layer 822 not in contact with the Ag:Bi intercalation layer. In various embodiments, the Bi:(Bi+Al) ratio in the sintered multilayer stack is at least 20%, or at least 50%, or at least 2x, or at least 5x in the layer of sintered aluminum particles in the modified aluminum particle layer. Or at least 10x or at least 50x.

平視圖EDX可被用於確定矽太陽能電池中後標誌層的表面上的元素濃度。在平視圖中,EDX探針區域表面至大約4μm或更小的深度,使得這是有用的技術,用於識別聯合堆疊多層堆疊中的相互擴散度:更高的貴金屬濃度意味著這裡有較少的相互擴散,且更低的貴金屬濃度意味著這裡有更多的相互擴散。圖13是依照本發明的實施方式,從包含Ag:Bi插層的後標誌層的表面進行的平視圖EDX光譜。使用SEM收集EDX光譜,操作在10kV的加速電壓、7mm工作距離和500倍放大率。3.5和4keV之間的主 峰和0.3keV的較小峰值全部識別為銀。光譜中剩下的小峰值如下識別:碳在0.3keV(旋繞有小的銀峰值);氧在0.52keV;鋁在1.48keV;且鉍在2.4keV。元素定量使用Bruker Quantax Esprit 2.0軟體自動執行,以減去背景,識別元素峰值,且隨後適合x射線能量的峰值強度。每種元素的標準重量百分比在下文的表III中示出。後標誌層的表面上的總體銀覆蓋是96.3重量百分比(wt%)。 The flat view EDX can be used to determine the concentration of elements on the surface of the back mark layer in the tantalum solar cell. In a plan view, the surface of the EDX probe area is to a depth of about 4 μm or less, making this a useful technique for identifying the degree of interdiffusion in a joint stacked multilayer stack: higher precious metal concentrations mean less here The interdiffusion, and lower precious metal concentrations mean more interdiffusion here. Figure 13 is a plan view EDX spectrum from the surface of a back mark layer comprising an Ag:Bi intercalation, in accordance with an embodiment of the present invention. The EDX spectrum was collected using SEM, operating at an acceleration voltage of 10 kV, a working distance of 7 mm, and a magnification of 500 times. The main peak between 3.5 and 4 keV and the smaller peak of 0.3 keV are all identified as silver. The remaining small peaks in the spectrum are identified as follows: carbon at 0.3 keV (with small silver peaks); oxygen at 0.52 keV; aluminum at 1.48 keV; and enthalpy at 2.4 keV. Element quantification is performed automatically using the Bruker Quantax Esprit 2.0 software to subtract the background, identify element peaks, and then fit the peak intensity of the x-ray energy. The standard weight percentages for each element are shown in Table III below. The overall silver coverage on the surface of the back marking layer was 96.3 weight percent (wt%).

包含銀和鉍的插層當燒結在乾燥的基於鋁的金屬粒子層上時,可形成多個單晶相。XRD可被用於,在插層中使用鉍粒子的燒結多層堆疊和使用傳統基於銀的標誌帶、具有小於10wt%玻璃料作為無機黏合劑的燒結多層堆疊之間進行區分。使用配備有VANTEC-500面積探測器和操作於35kV和40mA的鈷x射線源的Bruker ZXS D8 Discover GADDS x射線衍射儀執行XRD。圖14中示出了矽太陽能電池的後標誌帶上的燒結多層堆疊XRD 圖案(pattern)。使用鈷Kα波長在組合用於2Θ中25-80°的總窗的兩個25°框架中測量衍射圖。每個框架在x射線照射下測量30分鐘。在圖14的兩個衍射圖案上沒有執行背景減去。圖案被標準化以符合最大峰值,且0.01背景被增加至資料,從而以log(強度)繪圖。 The intercalation layer containing silver and antimony may form a plurality of single crystal phases when sintered on the dried aluminum-based metal particle layer. XRD can be used to distinguish between sintered multi-layer stacks using tantalum particles in intercalation and sintered multi-layer stacks using conventional silver-based label strips with less than 10 wt% glass frit as inorganic binder. XRD was performed using a Bruker ZXS D8 Discover GADDS x-ray diffractometer equipped with a VANTEC-500 area detector and a cobalt x-ray source operating at 35 kV and 40 mA. A sintered multilayer stack XRD pattern on the back marker strip of a tantalum solar cell is shown in FIG. Diffraction patterns were measured in two 25[deg.] frames using a cobalt K[alpha] wavelength in combination for a total window of 25-80[deg.] in 2[deg.]. Each frame was measured for 30 minutes under x-ray illumination. No background subtraction is performed on the two diffraction patterns of FIG. The pattern is normalized to match the maximum peak and the 0.01 background is added to the data to plot in log (strength).

XRD衍射圖案示出了,使用Ag:Bi插層形成的燒結金屬堆疊、或太陽能電池中的後標誌層,比起沒有鉍形成的一者具有不同圖案。XRD圖案A來自矽太陽能電池的後標誌層上的聯合燒結多層堆疊。聯合燒結多層堆疊包括改良插層,使用嵌入漿料形成,其包含近似45wt%的銀、30wt%的Bi和25wt%的有機載體(如上文用於表I中的漿料C)。峰值1410識別為銀且峰值1420是鉍氧化物(Bi2O3)晶體。XRD圖案B來自矽太陽能電池的後標誌層上的聯合燒結多層堆疊,使用商業上可用的後標誌漿料形成,其包含小於10wt%的玻璃料,正如鋁粒子層上的插層。聯合燒結多層堆疊是深色的,指示了顯著的銀-鋁相互擴散。峰值1450識別為矽-鋁共晶相。峰值1460識別為銀-鋁合金相(即Ag2Al)。銀的峰值1410在圖案A中觀察到,伴隨有鉍氧化物混合物,且在圖案B中沒有,在此僅觀察到銀作為銀-鋁合金的部分。這進一步證明了,鉍防止了燒結多層堆疊中的相互擴撒。在一個實施方式中,矽太陽能電池中的後標誌層包含鉍和至少一種其它元素的晶體,例如矽、銀、其氧化物、其合金、其合成物或其其它組合。在另一個實施方式中,後標誌層包含鉍氧化物晶體。在另一個實施方式中,嵌入區域在燒製期間經歷了多個相轉變。 The XRD diffraction pattern shows that a sintered metal stack formed using an Ag:Bi intercalation, or a back mark layer in a solar cell, has a different pattern than one without germanium formation. The XRD pattern A is from a joint sintered multilayer stack on the back mark layer of the tantalum solar cell. The joint sintered multilayer stack includes a modified intercalation layer formed using an intercalation paste comprising approximately 45 wt% silver, 30 wt% Bi, and 25 wt% organic vehicle (as used above for Slurry C in Table I). Peak 1410 is identified as silver and peak 1420 is a bismuth oxide (Bi 2 O 3 ) crystal. The XRD pattern B is from a co-fired multilayer stack on the back mark layer of a tantalum solar cell, formed using a commercially available post mark paste comprising less than 10 wt% frit, just as an intercalation layer on the aluminum particle layer. The joint sintered multilayer stack is dark, indicating significant silver-aluminum interdiffusion. Peak 1450 is identified as a yttrium-aluminum eutectic phase. Peak 1460 is identified as a silver-aluminum phase (ie, Ag 2 Al). The peak 1410 of silver was observed in pattern A, accompanied by a cerium oxide mixture, and not in pattern B, where only silver was observed as part of the silver-aluminum alloy. This further demonstrates that 铋 prevents mutual spreading in the sintered multilayer stack. In one embodiment, the back mark layer in the tantalum solar cell comprises germanium and at least one other elemental crystal, such as germanium, silver, oxides thereof, alloys thereof, composites thereof, or other combinations thereof. In another embodiment, the back mark layer comprises a cerium oxide crystal. In another embodiment, the embedded region undergoes a plurality of phase transitions during firing.

插層在燒製期間可蝕刻經過介電層The intercalation layer can be etched through the dielectric layer during firing

在一些裝置應用中,介電層在金屬層沉積之前沉積在基板表 面上,從而鈍化基板表面且改進電子屬性。介電層還可防止基板和相鄰金屬粒子(多)層之間的物質相互擴散。在一些情形中,會高度需要蝕刻經過介電層,從而形成基板和金屬粒子層之間的混合物,以改進基板和金屬粒子層之間的電傳導。包含鉍和鉛的玻璃料是已知的,以在矽太陽能電池的聯合燒製期間蝕刻經過多種介電層(例如,氮化矽)。在一個示意性實施方式中,嵌入漿料D(來自上文的表I)包含大約30wt%銀、20wt%嵌入粒子(15wt%金屬鉍粒子、5wt%高鉛含量玻璃料)和50wt%有機載體。如果需要蝕刻經過介電層,這一嵌入漿料是特別有用的。 In some device applications, a dielectric layer is deposited on the surface of the substrate prior to deposition of the metal layer, thereby passivating the surface of the substrate and improving electronic properties. The dielectric layer also prevents material from interdifing between the substrate and the (multiple) layers of adjacent metal particles. In some cases, it may be highly desirable to etch through the dielectric layer to form a mixture between the substrate and the metal particle layer to improve electrical conduction between the substrate and the metal particle layer. Glass frits comprising bismuth and lead are known to etch through a variety of dielectric layers (e.g., tantalum nitride) during co-firing of tantalum solar cells. In an exemplary embodiment, the intercalation slurry D (from Table I above) comprises about 30 wt% silver, 20 wt% embedded particles (15 wt% metal rhodium particles, 5 wt% high lead glass frit) and 50 wt% organic vehicle . This embedded paste is particularly useful if etching through the dielectric layer is required.

圖15示出了依照本發明的實施方式,在燒製之前,包括塗覆有至少一個介電層1513的基板1510的多層堆疊1500的示意性截面圖。乾燥金屬粒子層1520在介電層1513的一部分上。插層1530,由嵌入粒子和貴金屬粒子組成,如上所述,直接在乾燥金屬粒子層1520的一部分上。在燒製之前,貴金屬粒子和嵌入粒子可被均質地分佈在插層1530中。介電層包括矽、鋁、鍺、鎵、鉿,及其氧化物、其氮化物、其合成物及其組合的至少一種。在一種配置中,介電層1513是75nm厚的氮化矽層。在另一個實施方式中,在介電層1513和基板1510之間有第二介電層(未示出)。在一種配置中,第二介電層是直接在基板1510上的10nm厚的氧化鋁層,,且介電層1513是直接在氧化鋁層上的75nm厚的氮化矽層。乾燥金屬粒子層1520通過在介電層1513上沉積金屬粒子漿料且隨即乾燥而形成。在一種配置中,乾燥金屬粒子層1520是20μm厚且包含鋁粒子。插層1530包含嵌入粒子,例如玻璃料,其包含鉛或鉍,沉積在乾燥金屬粒子層1520上,覆蓋乾燥金屬粒子層1520的至少一部分,且隨後乾燥。 Figure 15 shows a schematic cross-sectional view of a multilayer stack 1500 comprising a substrate 1510 coated with at least one dielectric layer 1513 prior to firing, in accordance with an embodiment of the present invention. The dried metal particle layer 1520 is on a portion of the dielectric layer 1513. The intercalation layer 1530 is composed of embedded particles and noble metal particles, as described above, directly on a portion of the dried metal particle layer 1520. The noble metal particles and the embedded particles may be homogeneously distributed in the intercalation layer 1530 prior to firing. The dielectric layer includes at least one of bismuth, aluminum, bismuth, gallium, antimony, and oxides thereof, nitrides thereof, composites thereof, and combinations thereof. In one configuration, the dielectric layer 1513 is a 75 nm thick tantalum nitride layer. In another embodiment, a second dielectric layer (not shown) is between the dielectric layer 1513 and the substrate 1510. In one configuration, the second dielectric layer is a 10 nm thick layer of aluminum oxide directly on the substrate 1510, and the dielectric layer 1513 is a 75 nm thick layer of tantalum nitride directly over the aluminum oxide layer. The dry metal particle layer 1520 is formed by depositing a metal particle slurry on the dielectric layer 1513 and then drying. In one configuration, the dried metal particle layer 1520 is 20 [mu]m thick and contains aluminum particles. The intercalation layer 1530 comprises embedded particles, such as a frit, comprising lead or antimony deposited on the dried metal particle layer 1520, covering at least a portion of the dried metal particle layer 1520, and subsequently dried.

圖16是依照本發明的實施方式,示出了燒結多層堆疊1600(圖15的結構1500在其已經被燒結之後)的示意性截面圖。一部分基板1610塗覆有至少一個介電層1613。在聯合燒製期間,改良插層1630中的至少一些嵌入粒子(其包括參考圖15描述的玻璃料)熔化且開始流動,嵌入至改良金屬粒子層1622中。在一種配置中,來自改良插層1630中的玻璃熔粒的材料滲透至且經過改良金屬粒子層1622中的金屬粒子且蝕刻進入介電層1613(燒製前是1513),允許來自改良金屬粒子層1622的一些金屬與基板1610化學地且電力地相互作用,形成一種或多種新混合物1614。來自改良插層1630的其它嵌入粒子(例如,鉍粒子)還可嵌入改良金屬粒子層1622中且可提供結構支撐。在一種配置中,如上文參考圖2更詳細描述的,改良插層1630中的至少一部分貴金屬粒子和嵌入粒子形成了彼此相分離的相。在一些配置中,還有金屬粒子區域1620(介電層1613上),幾乎沒有或僅有痕量的嵌入粒子材料滲透至其中。在一個示意性實施方式中,嵌入粒子是鉍粒子和玻璃熔粒,金屬粒子是鋁。 16 is a schematic cross-sectional view showing a sintered multilayer stack 1600 (after the structure 1500 of FIG. 15 has been sintered), in accordance with an embodiment of the present invention. A portion of the substrate 1610 is coated with at least one dielectric layer 1613. During the co-firing, at least some of the embedded particles in the modified intercalation 1630 (which includes the frit described with reference to Figure 15) melt and begin to flow into the modified metal particle layer 1622. In one configuration, the material from the glass frit in the modified intercalation 1630 penetrates into and passes through the metal particles in the modified metal particle layer 1622 and etches into the dielectric layer 1613 (1513 before firing), allowing for improved metal particles. Some of the metal of layer 1622 chemically and electrically interacts with substrate 1610 to form one or more new mixtures 1614. Other embedded particles (e.g., germanium particles) from the modified intercalation layer 1630 can also be embedded in the modified metal particle layer 1622 and can provide structural support. In one configuration, as described in more detail above with respect to FIG. 2, at least a portion of the noble metal particles and the embedded particles in the modified intercalation layer 1630 form phases that are separated from one another. In some configurations, there is also a metal particle region 1620 (on dielectric layer 1613) into which little or no trace of embedded particulate material penetrates. In an exemplary embodiment, the embedded particles are cerium particles and glass fused particles, and the metal particles are aluminum.

引入金屬粒子層的厚度改變以降低彎曲Introducing a thickness change of the metal particle layer to reduce bending

插層在燒製期間會導致下面的改良金屬粒子層中的壓力,其會導致彎曲或起皺和因此的貧弱的層強度和層之間的電性連通。例如,插層可具有與相鄰的改良金屬粒子層不同的熱膨脹係數,導致在燒製期間各層不同的膨脹或收縮。相鄰的改良金屬粒子層中的另一個壓力源可以是金屬粒子之間的熔化的嵌入粒子材料的嵌入。這些壓力會導致改良的金屬粒子層和/或改良的插層彎曲或起皺。彎曲或起皺會被描述為層厚度中的大的、週期的或非週期的偏差。通常,這導致了層之間的分層。例如,在乾 燥金屬粒子層上的插層被燒結之前,包含插層和乾燥金屬粒子層的堆疊的初始厚度在各處是近似相同的。在聯合燒製之後,包含改良的插層和改良的金屬粒子層的燒結多層堆疊的厚度在一些區域中會高達初始厚度的三倍。 The intercalation during firing can result in pressure in the underlying modified metal particle layer which can result in bending or wrinkling and thus weak layer strength and electrical communication between the layers. For example, the intercalation layer can have a different coefficient of thermal expansion than the adjacent layer of modified metal particles, resulting in different expansion or contraction of the layers during firing. Another source of pressure in the adjacent layer of modified metal particles may be the embedding of the molten embedded particulate material between the metal particles. These pressures can result in improved metal particle layers and/or improved intercalation bending or wrinkling. Bending or wrinkling can be described as a large, periodic or aperiodic deviation in layer thickness. Usually this leads to delamination between the layers. For example, the initial thickness of the stack comprising the intercalated layer and the dried metal particle layer is approximately the same everywhere before the intercalation layer on the dried metal particle layer is sintered. After co-firing, the thickness of the sintered multilayer stack comprising the modified intercalation and modified metal particle layers may be up to three times the initial thickness in some regions.

圖17是其中已經發生了彎曲的聯合燒結多層堆疊的平面視圖光學顯微照片。改良插層1730是可見的。改良插層1730已經彎曲;一些峰值區域1712在圖17中被指出。相鄰金屬粒子層1720沒有彎曲且保持光滑或近似平坦。即使改良插層1730已經變形,聯合燒結的多層堆疊的機械完整性通過大於1N/mm的剝離強度而保持堅強。然而,彎曲會使得在改良插層1730和標誌帶(未示出)之間製造好的、堅固的接觸相當困難,當它們被軟焊在一起時。改良插層1730的彎曲表面會導致改良插層1730的範圍中不完全的焊料濕潤,其會降低剝離強度和焊料結合可靠性。降低或消除聯合燒製多層堆疊中的彎曲可能是有用的,以確保成功地軟焊至標誌帶。 Figure 17 is a plan view optical micrograph of a joint sintered multilayer stack in which bending has occurred. The modified intercalation 1730 is visible. The modified intercalation 1730 has been curved; some peak regions 1712 are indicated in FIG. Adjacent metal particle layer 1720 is not curved and remains smooth or nearly flat. Even though the modified intercalation 1730 has been deformed, the mechanical integrity of the co-fired multilayer stack remains strong with a peel strength greater than 1 N/mm. However, the bending makes it relatively difficult to make good, strong contact between the modified intercalation 1730 and the marker strip (not shown) when they are soldered together. Improving the curved surface of the intercalation 1730 results in incomplete solder wetting in the range of improved intercalation 1730, which can reduce peel strength and solder bond reliability. It may be useful to reduce or eliminate bending in the co-fired multilayer stack to ensure successful soldering to the marker strip.

可變厚度可被組合至燒結多層堆疊,以顯著降低各層的彎曲和/或起皺。當一個或多個層具有可變厚度時,這些層之間會帶來不平坦介面。可變厚度的一個指示是燒結多層薄膜堆疊之間的非平坦介面。通過形成第一層的一部分的圖案且隨即直接在第一層的有圖案部分上印刷第二層產生可變厚度,從而產生兩層之間的非平坦介面。在一種配置中,具有可變厚度的層作為已經使用有圖案絲網而印刷的結果。在燒製之後,各層的厚度可被降低,但是燒製並不導致具有可變厚度的層變成具有均勻厚度的層。一層中的可變厚度可使用截面SEM和表面拓撲技術在燒製之前和之後測量和定量。在多個實施方式中,當在1x1mm面積中測量它具有至少20% 大於或至少20%小於該層的平均厚度的厚度變化時,一層可被描述為具有可變厚度。 Variable thicknesses can be combined into the sintered multilayer stack to significantly reduce bending and/or wrinkling of the layers. When one or more layers have a variable thickness, an uneven interface is created between the layers. One indication of variable thickness is the non-flat interface between the sintered multilayer film stacks. The variable thickness is created by forming a pattern of a portion of the first layer and then directly printing the second layer on the patterned portion of the first layer, thereby creating a non-flat interface between the two layers. In one configuration, a layer having a variable thickness is the result of printing already using a patterned screen. After firing, the thickness of each layer can be lowered, but firing does not result in a layer having a variable thickness becoming a layer having a uniform thickness. The variable thickness in one layer can be measured and quantified before and after firing using cross-sectional SEM and surface topography techniques. In various embodiments, a layer can be described as having a variable thickness when measured in an area of 1 x 1 mm which has a thickness variation of at least 20% greater than or at least 20% less than the average thickness of the layer.

圖18是依照本發明的實施方式,可被用於金屬粒子漿料的沉積期間以實現乾燥金屬粒子層的可變厚度的絲網。絲網1800具有開放網孔區域1810,和有圖案區域1820。有圖案區域1820包含封閉區域1821和開放區域1822。當絲網用於濕金屬粒子層的印刷期間時,漿料流經開放區域1822和開放網孔區域1810且被封閉區域1821阻擋,其導致沉積的濕金屬粒子層具有可變厚度。在一個實施方式中,濕金屬粒子層隨即乾燥以形成可變厚度乾燥金屬粒子層,並且嵌入漿料直接沉積在可變厚度乾燥金屬粒子層上。 18 is a screen of a variable thickness that can be used during deposition of a metal particle slurry to achieve a dry metal particle layer in accordance with an embodiment of the present invention. The screen 1800 has an open mesh area 1810 and a patterned area 1820. The patterned area 1820 includes a closed area 1821 and an open area 1822. When the screen is used for printing of the wet metal particle layer, the slurry flows through the open region 1822 and the open mesh region 1810 and is blocked by the enclosed region 1821, which results in the deposited wet metal particle layer having a variable thickness. In one embodiment, the wet metal particle layer is then dried to form a variable thickness dry metal particle layer, and the embedded slurry is deposited directly onto the variable thickness dry metal particle layer.

有多個因素會影響乾燥金屬粒子層中的可變厚度,例如網孔數、線直徑和形狀、相對框架的線角度、乳劑(emulsion)厚度和絲網設計。網孔尺寸和線直徑確定了可被印刷的最小圖案形狀和開口。乾燥金屬粒子層中的厚度變化還受到金屬粒子漿料的流動的影響,其影響了層滑動。漿料可被設計有高黏度和觸變性,以精確控制它們沉積在基板上的位置。還可能的是,通過調整絲網的乳劑厚度,改變金屬粒子層中的厚度變化的大小。絲網可被設計為確保基板表面上連續的乾燥金屬粒子層,具有整體或僅在特定區域中的可變層厚度。在一個示意性實施方式中,金屬粒子漿料使用具有5μm的乳劑厚度的230網孔網版印刷。在一種配置中,有圖案區域1820具有由3mm開放區域1822的100μm相鄰由3mm封閉區域1821的100μm的系列。圖案類型、週期(或缺乏它)或尺寸方面沒有限制。很多圖案會帶來可變厚度,並且圖案可被調整用於多種印刷條件和漿料配方。 There are a number of factors that can affect the variable thickness in the layer of dried metal particles, such as mesh number, wire diameter and shape, line angle relative to the frame, emulsion thickness, and screen design. The mesh size and wire diameter define the smallest pattern shape and opening that can be printed. The thickness variation in the layer of dried metal particles is also affected by the flow of the metal particle slurry, which affects layer slip. The pastes can be designed with high viscosity and thixotropic properties to precisely control where they are deposited on the substrate. It is also possible to change the thickness variation in the metal particle layer by adjusting the emulsion thickness of the screen. The screen can be designed to ensure a continuous layer of dry metal particles on the surface of the substrate with a variable layer thickness, either overall or only in a particular area. In an exemplary embodiment, the metal particle slurry is printed using a 230 mesh screen having an emulsion thickness of 5 [mu]m. In one configuration, the patterned region 1820 has a series of 100 μm adjacent to the 3 mm closed region 1821 from the 3 mm open region 1822. There is no limit to the pattern type, period (or lack thereof) or size. Many patterns bring variable thickness and the pattern can be adjusted for a variety of printing conditions and slurry formulations.

圖19是依照本發明的實施方式,使用圖18所示絲網1800沉積 在基板1910上的具有可變厚度的乾燥金屬粒子層的示意截面圖。乾燥金屬粒子層1920外側區域1925由經過絲網1800的開口網孔區域1810沉積金屬粒子漿料、且隨即乾燥金屬粒子漿料而形成。區域1925中的可變厚度乾燥金屬粒子層1922經過絲網1800的隱蔽有圖案區域1820沉積且具有可變厚度。嵌入漿料隨即直接印刷在區域1925中的可變厚度乾燥金屬粒子層1922上且被乾燥以形成插層1930。 Figure 19 is a schematic cross-sectional view of a layer of dried metal particles having a variable thickness deposited on a substrate 1910 using the screen 1800 of Figure 18, in accordance with an embodiment of the present invention. The outer region 1925 of the dried metal particle layer 1920 is formed by depositing a metal particle slurry through the open mesh region 1810 of the screen 1800 and then drying the metal particle slurry. The variable thickness dry metal particle layer 1922 in region 1925 is deposited through the concealed patterned region 1820 of screen 1800 and has a variable thickness. The embedded paste is then printed directly onto the variable thickness dry metal particle layer 1922 in region 1925 and dried to form intercalation 1930.

圖20是依照本發明的實施方式,使用圖18(圖19的結構)所示絲網1800沉積在基板2010上的圖19的結構在其已經被聯合燒結之後的具有可變厚度的乾燥金屬粒子層的示意性截面圖。在區域2025外有金屬粒子層2020(從圖19的乾燥金屬粒子層1920形成)。如上所述,聯合燒製導致來自插層1930(圖19)的材料嵌入至下面的可變厚度乾燥金屬粒子層1922(圖19)中,轉換可變厚度乾燥金屬粒子層1922為可變厚度的改良金屬粒子層2022以及轉換插層1930為改良插層2030。在一種配置中,改良金屬粒子層2022具有有圖案的厚度變化,包括但不限於,週期***、脊、邊緣和其它特色形狀。應注意到,改良插層2030的厚度通常是均勻的,並且改良插層和改良金屬粒子層之間的非平坦介面(由於其可變厚度)可通過測量多層堆疊的總層厚度中的改變而推斷。 20 is a dry metal particle having a variable thickness after the structure of FIG. 19 deposited on the substrate 2010 using the screen 1800 shown in FIG. 18 (the structure of FIG. 19) has been jointly sintered, in accordance with an embodiment of the present invention. A schematic cross-sectional view of the layer. Outside the region 2025 is a metal particle layer 2020 (formed from the dried metal particle layer 1920 of Figure 19). As described above, the co-firing causes the material from the intercalation layer 1930 (Fig. 19) to be embedded in the underlying variable thickness dry metal particle layer 1922 (Fig. 19), converting the variable thickness dry metal particle layer 1922 to a variable thickness. The modified metal particle layer 2022 and the conversion intercalation layer 1930 are modified intercalations 2030. In one configuration, the modified metal particle layer 2022 has a patterned thickness variation including, but not limited to, periodic ridges, ridges, edges, and other distinctive shapes. It should be noted that the thickness of the modified intercalation layer 2030 is generally uniform, and that the improved non-planar interface between the intercalated layer and the modified metal particle layer (due to its variable thickness) can be measured by measuring the change in the total layer thickness of the multilayer stack. infer.

圖21是聯合燒結多層堆疊的平視圖光學顯微照片,其中金屬粒子漿料使用如圖18中所示的絲網以可變的厚度(在一些區域中)印刷。插層直接印刷在金屬粒子層的可變厚度區域上,並且多層堆疊聯合燒結以在頂部表面上形成改良插層2121,在每側上接鄰近似平坦的金屬粒子層2120。金屬粒子層2120具有平坦的頂部表面。改良插層2121的表面是不平坦的, 具有反映在下面的改良金屬粒子層中的厚度變化的圖案。改良插層2121的表面並不顯示彎曲或起皺的符號,正如在圖17中的改良插層1730中清晰可見的。在本發明的一個實施方式中,聯合燒結多層堆疊的一部分具有可變厚度。 21 is a plan view optical micrograph of a joint sintered multilayer stack in which a metal particle paste is printed with a variable thickness (in some regions) using a screen as shown in FIG. The intercalation layer is printed directly on the variable thickness region of the metal particle layer, and the multilayer stack is sintered in combination to form a modified intercalation layer 2121 on the top surface, adjacent to the flattened metal particle layer 2120 on each side. The metal particle layer 2120 has a flat top surface. The surface of the modified intercalation layer 2121 is not flat, and has a pattern reflecting the thickness variation in the underlying modified metal particle layer. The surface of the modified intercalation layer 2121 does not show signs of bending or wrinkling, as is clearly visible in the modified intercalation layer 1730 of FIG. In one embodiment of the invention, a portion of the joint sintered multilayer stack has a variable thickness.

一種用以描述可變厚度的有用的度量單位,是將峰值厚度和谷值厚度與平均層厚比較。在任意層中,可以有一些非有意的厚度變化,但是這些變化典型地小於平均層厚20%。如果一層的厚度改變小於平均層厚的20%,則該層可被看作是平坦的(具有均勻厚度)。通過仔細設計用於印刷金屬粒子漿料的絲網,可能的是產生具有可變厚度的層,其具有在1x1mm面積中測量、至少20%大於或至少20%小於該層的平均厚度的厚度變化。 One useful unit of measure for describing variable thickness is to compare peak thickness and valley thickness to average layer thickness. There may be some unintended thickness variations in any of the layers, but these variations are typically less than 20% of the average layer thickness. If the thickness of a layer changes by less than 20% of the average layer thickness, the layer can be considered to be flat (having a uniform thickness). By carefully designing the screen for printing the metal particle slurry, it is possible to produce a layer having a variable thickness having a thickness variation measured in an area of 1 x 1 mm, at least 20% greater than or at least 20% less than the average thickness of the layer. .

燒結多層堆疊中的可變厚度可從磨光的截面樣本的SEM圖像測量。圖22是依照本發明的實施方式,具有可變厚度的燒結多層堆疊2210的一部分的截面SEM圖像。截面樣本使用上述方法準備和繪製。燒結多層堆疊2210包含改良插層2211、改良鋁粒子層2212和矽基板2213。改良鋁粒子層2212的每側上的兩個介面在圖像中識別:矽基板2213和改良鋁粒子層2212之間的介面2218,以及改良鋁粒子層2212和改良插層2211之間的介面2217。也示出可軟焊表面2216。用於比較,圖23示出了矽基板2322,其具有並不具有可變厚度的平坦鋁粒子薄膜2321。 The variable thickness in the sintered multilayer stack can be measured from the SEM image of the polished cross-sectional sample. 22 is a cross-sectional SEM image of a portion of a sintered multilayer stack 2210 having a variable thickness, in accordance with an embodiment of the present invention. Section samples were prepared and drawn using the methods described above. The sintered multilayer stack 2210 includes a modified interposer 2211, a modified aluminum particle layer 2212, and a tantalum substrate 2213. The two interfaces on each side of the modified aluminum particle layer 2212 are identified in the image: an interface 2218 between the germanium substrate 2213 and the modified aluminum particle layer 2212, and an interface 2217 between the modified aluminum particle layer 2212 and the modified intercalation layer 2211. . A solderable surface 2216 is also shown. For comparison, FIG. 23 shows a ruthenium substrate 2322 having a flat aluminum particle film 2321 that does not have a variable thickness.

圖22中的改良鋁粒子層2212的平均厚度通過平均厚度測量值而計算。圖22中兩個介面2217和2218之間的厚度在整個樣本以規律間隔(例如,10微米)被測量。還在局部最大值和局部最小值處測量厚度。軟體,例如ImageJ 1.50a,可被用於獲得平均厚度以及最小和最大厚度。在單一橫 截樣本中看到的峰和谷可並不代表整個燒結多層堆疊。因此,在多個橫截樣本上進行這一測量可能是有用的,從而確保量測到很多峰和谷。這些方法是本領域技術人員知曉的。 The average thickness of the modified aluminum particle layer 2212 in Figure 22 is calculated from the average thickness measurement. The thickness between the two interfaces 2217 and 2218 in Figure 22 is measured at regular intervals (e.g., 10 microns) throughout the sample. The thickness is also measured at the local maximum and the local minimum. Software, such as ImageJ 1.50a, can be used to achieve average thickness as well as minimum and maximum thickness. The peaks and valleys seen in a single cross-sectional sample may not represent the entire sintered multilayer stack. Therefore, it may be useful to make this measurement on multiple cross-sectional samples to ensure that many peaks and valleys are measured. These methods are known to those skilled in the art.

對於圖22中示出的樣本,改良鋁粒子層2212具有11.3μm的平均厚度、18.4μm的峰值厚度以及5.2μm的谷值厚度。峰值厚度比平均厚度大64%且谷值比平均厚度小54%。在多個實施方式中,具有可變厚度的層具有比平均層厚大至少20%、至少30%、至少40%或至少50%的峰值厚度。在多個實施方式中,具有可變厚度的層具有比平均層厚小至少20%、至少30%、至少40%或至少50%的谷值厚度。 For the sample shown in FIG. 22, the modified aluminum particle layer 2212 has an average thickness of 11.3 μm, a peak thickness of 18.4 μm, and a valley thickness of 5.2 μm. The peak thickness is 64% greater than the average thickness and the valley value is 54% less than the average thickness. In various embodiments, the layer having a variable thickness has a peak thickness that is at least 20%, at least 30%, at least 40%, or at least 50% greater than the average layer thickness. In various embodiments, the layer having a variable thickness has a valley thickness that is at least 20%, at least 30%, at least 40%, or at least 50% less than the average layer thickness.

當改良插層2211是連續的且厚度近似一致時,改良插層2211的可軟焊表面2216近似平行於介面2217。在本發明的一個實施方式中,所述的用於改良鋁粒子層2212的全部測量,可進行用於改良鋁粒子層2212以及可軟焊表面2216和介面2217之間的改良插層2211的組合厚度。對於單獨對改良鋁粒子層2212的厚度測量的比較,用於兩個組合層的厚度測量的比較是好的近似。對於圖22中的組合層,峰值厚度比13.2μm的平均整體厚度大44%,且谷值比平均整體厚度小43%。這一替代方法可系統地在下方測量燒結堆疊多層中的厚度變化。 The improved solderable surface 2216 of the modified interposer 2211 is approximately parallel to the interface 2217 when the modified interposer 2211 is continuous and approximately uniform in thickness. In one embodiment of the invention, the overall measurement of the improved aluminum particle layer 2212 can be combined to improve the aluminum particle layer 2212 and the improved intercalation layer 2211 between the solderable surface 2216 and the interface 2217. thickness. A comparison of the thickness measurements for the two combined layers is a good approximation for a comparison of the thickness measurements of the modified aluminum particle layer 2212 alone. For the combined layer in Figure 22, the peak thickness is 44% greater than the average overall thickness of 13.2 [mu]m and the valley value is 43% less than the average overall thickness. This alternative method can systematically measure the thickness variation in the sintered stack of layers below.

對於一些應用,僅有一部分燒結多層堆疊需要具有可變厚度。例如,矽太陽能電池背側上的鋁粒子層典型地是平坦的。在這一電池的背側上的後標誌層部分(其包括改良插層)中引入可變厚度可能是有用的。比較後標誌層一部分中的厚度變化與周圍鋁粒子層一部分中的厚度變化可被用於確定具有可變厚度的層是否用在太陽能電池的背側上。 For some applications, only a portion of the sintered multilayer stack needs to have a variable thickness. For example, the layer of aluminum particles on the back side of the tantalum solar cell is typically flat. It may be useful to introduce a variable thickness in the posterior marker layer portion of the back side of the cell that includes the modified intercalation layer. The variation in thickness in a portion of the post-comparison marking layer and the thickness variation in a portion of the surrounding aluminum particle layer can be used to determine if a layer having a variable thickness is used on the back side of the solar cell.

確定燒結多層薄膜堆疊中的可變厚度的另一個有用度量單位是平均峰谷(peak to valley)高度,其是局部最大值的平均和局部最小值的平均之間的差。在截面SEM圖像中,不保證局部最大值和局部最小值在圖像中,所以表面拓撲度量方法,例如,表面光度儀、相干掃描干涉儀和變焦顯微鏡是更有用的。表面光度計的一個示例是Bruker或Veeco Dektak 150或等價物。相干掃描干涉儀可使用Olympus LEXT OLS4000 3D測量顯微鏡執行。這些方法所附的軟體可自動計算平均峰谷的差。 Another useful unit of measure for determining the variable thickness in a sintered multilayer film stack is the average peak to valley height, which is the difference between the average of the local maximum and the average of the local minimum. In cross-sectional SEM images, local maxima and local minima are not guaranteed to be in the image, so surface topography methods such as profilometers, coherent scan interferometers, and zoom microscopes are more useful. An example of a surface photometer is Bruker or Veeco Dektak 150 or equivalent. A coherent scanning interferometer can be performed using an Olympus LEXT OLS4000 3D measuring microscope. The software attached to these methods automatically calculates the difference between the average peaks and valleys.

在一個示例實施方式中,表面光度儀用於在相同樣本中確定平均峰谷高度,用於具有可變厚度的燒結多層堆疊和用於具有均勻厚度的鋁粒子層二者。Veeco Dektak 150用於使用12.5mm半徑探針來測量1x1mm面積中的表面,以產生3D拓撲表面地圖。圖24是具有可變厚度的燒結多層堆疊的3D表面拓撲地圖,且圖25是具有均勻厚度的(相鄰)鋁粒子層的3D表面拓撲地圖。圖中的最亮區域指示了局部最大值且最暗區域指示了局部最小值。圖24示出了厚度變化(從-20.2μm至15.9μm),其將被預期用於包括可變厚度改良金屬粒子層的燒結多層堆疊。圖25示出了厚度變化(從-4.9μm至5.5μm),其將被預期用於具有均勻厚度的鋁粒子層。平均峰谷高度使用程式Veeco Vision v4.20計算,其自動識別和平均局部最大值和最小值,且隨後減去差值。平均峰谷高度對於圖24的燒結多層堆疊是35.54μm且對於圖25的鋁層是9.51μm。在多個實施方式中,當平均峰谷高度大於10μm、大於12μm或大於15μm時,層均有可變厚度,且當平均峰谷高度小於10μm、小於12μm或小於15μm時,層具有均勻厚度。 In an exemplary embodiment, a profilometer is used to determine an average peak-to-valley height in the same sample for both a sintered multilayer stack having a variable thickness and an aluminum particle layer having a uniform thickness. The Veeco Dektak 150 was used to measure the surface in a 1x1 mm area using a 12.5 mm radius probe to create a 3D topological surface map. 24 is a 3D surface topology map of a sintered multilayer stack having a variable thickness, and FIG. 25 is a 3D surface topology map of a (adjacent) aluminum particle layer having a uniform thickness. The brightest area in the figure indicates the local maximum and the darkest area indicates the local minimum. Figure 24 shows the thickness variation (from -20.2 μm to 15.9 μm) which would be expected for a sintered multilayer stack comprising a variable thickness modified metal particle layer. Figure 25 shows the thickness variation (from -4.9 μm to 5.5 μm) which would be expected for a layer of aluminum particles having a uniform thickness. The average peak-to-valley height is calculated using the program Veeco Vision v4.20, which automatically identifies and averages the local maximum and minimum values, and then subtracts the difference. The average peak-to-valley height was 35.54 μm for the sintered multilayer stack of Figure 24 and 9.51 μm for the aluminum layer of Figure 25. In various embodiments, the layer has a variable thickness when the average peak-to-valley height is greater than 10 μm, greater than 12 μm, or greater than 15 μm, and the layer has a uniform thickness when the average peak-to-valley height is less than 10 μm, less than 12 μm, or less than 15 μm.

在本發明的一個實施方式中,當聯合燒結的可變厚度多層堆 疊改良插層、如圖20示出的一者被軟焊至標誌帶時,其剝離強度是不具有可變厚度的燒結多層堆疊的剝離強度的兩倍。在一種配置中,這一可變厚度燒結多層堆疊的表面上的改良插層被軟焊至基於錫的標誌帶,並且它們具有大於1.5N/mm、或大於2N/mm、或大於3N/mm的剝離強度。厚度變化可被最佳化,以在用於矽太陽能電池的基板上提供連續金屬粒子層和背面電場。厚度變化可被最佳化,使得這一聯合燒結的可變厚度多層堆疊的接觸電阻等於或低於近似平坦的聯合燒結多層堆疊的接觸電阻。在一個示意性實施方式中,當使用嵌入漿料以蝕刻經過介電層時,改造和改良金屬粒子層中的厚度變化包括低於20μm、10μm、5μm或2μm厚度的區域。 In one embodiment of the present invention, when the joint sintered variable thickness multilayer stack modified intercalation, one of which is shown in FIG. 20, is soldered to the marker tape, the peel strength is a sintered multilayer having no variable thickness The stripping strength of the stack is twice. In one configuration, the modified intercalations on the surface of this variable thickness sintered multilayer stack are soldered to tin based marking strips and they have greater than 1.5 N/mm, or greater than 2 N/mm, or greater than 3 N/mm Peel strength. The thickness variation can be optimized to provide a continuous layer of metal particles and a back surface electric field on the substrate for the tantalum solar cell. The thickness variation can be optimized such that the contact resistance of this co-fired variable thickness multilayer stack is equal to or lower than the contact resistance of an approximately flat joint sintered multilayer stack. In an exemplary embodiment, when the embedded paste is used to etch through the dielectric layer, the thickness variations in the modified and modified metal particle layer include regions of less than 20 μm, 10 μm, 5 μm, or 2 μm thickness.

上文描述的可變厚度(多)層,可被用作在此描述的任何燒結多層堆疊中的(多)組成。可變厚度(多)層,例如可變厚度乾燥和改良金屬粒子層,可被用在任何矽太陽能電池上,以降低後標誌層的彎曲。 The variable thickness (multiple) layers described above can be used as the (multiple) composition in any of the sintered multilayer stacks described herein. Variable thickness (multiple) layers, such as variable thickness dry and modified metal particle layers, can be used on any tantalum solar cell to reduce bending of the back marking layer.

嵌入漿料作為矽太陽能電池中的***式更換Embedded paste as plug-in replacement in tantalum solar cells

在一個實施方式中,包含45wt%的貴金屬粒子、30wt%的嵌入粒子和25wt%的有機載體(上文表I中的漿料C)的嵌入漿料可被用作***式更換(drop in replacement),以形成矽太陽能電池中的後標誌層。p-n接面矽太陽能電池的製造是本領域中熟知的。Goodrich等人提供了完整的加工流程以製造背面電場矽太陽能電池,其被稱為「標準c-Si太陽能電池」。參見Goodrich等人的「基於晶片的單晶矽光伏發電道路地圖:使用已知的技術改進機會用於進一步降低製造費用」,太陽能材料和太陽能電池(2013),第110-135頁,其在此通過參考而合併。在一個實施方式中,用於製造太陽能電池電極的方法包括步驟:提供矽晶片,具有一部分前表面被覆蓋在至少 一個介電層中,在矽晶片的背面塗上鋁粒子層,乾燥鋁粒子層,在鋁粒子層的一部分上塗上嵌入漿料(後標誌)層,乾燥嵌入漿料層,在矽晶片前表面上的介電層上塗上多條精細格線和至少一個前匯流層,乾燥且聯合燒製矽晶片。例如網版印刷、凹版印刷、噴射沉積、狹槽塗覆、3D列印和/或噴墨列印的方法可被用於塗覆多個層。作為一個示例,Ekra或Baccini網版印刷機可被用於沉積鋁粒子層、嵌入漿料層和前側格線和匯流層。在另一個實施方式中,太陽能電池具有至少一個介電層,覆蓋矽晶片的後表面的至少一部分。對於PERC(射極鈍化及背電極(passivated emitter rear cell))架構,兩個介電層(即,氧化鋁和氮化矽)在鋁粒子層的應用之前被塗至矽太陽能電池的後側。乾燥多層可在帶式爐(belt furnace)中完成,在150℃至300℃之間的溫度持續30秒至15分鐘。在一種配置中,Despatch CDF 7210帶式爐用於乾燥和聯合燒製矽太陽能電池,其包含在此描述的燒結多層堆疊。在一種配置中,聯合燒製的完成使用迅速加熱技術和在空氣中加熱至大於760℃的溫度持續0.5至3秒之間,其是用於鋁背面電場矽太陽能電池的常用溫度曲線圖(temperature profile)。晶片的溫度曲線圖通常使用具有連接至裸露晶片的熱電偶的DataPaq®系統校準。 In one embodiment, an embedded slurry comprising 45 wt% of precious metal particles, 30 wt% of embedded particles, and 25 wt% of an organic vehicle (Slurry C in Table I above) can be used as a drop in replacement ) to form a back mark layer in the tantalum solar cell. The fabrication of p-n junction germanium solar cells is well known in the art. Goodrich et al. provide a complete processing flow to fabricate a backside electric field solar cell, which is referred to as a "standard c-Si solar cell." See Goodrich et al., "Watch-Based Single Crystal 矽 Photovoltaic Road Map: Using Known Technologies to Improve Opportunities for Further Reducing Manufacturing Costs," Solar Materials and Solar Cells (2013), pp. 110-135, here Merged by reference. In one embodiment, a method for fabricating a solar cell electrode includes the steps of: providing a germanium wafer having a portion of a front surface covered in at least one dielectric layer, a back side of the germanium wafer coated with a layer of aluminum particles, and a layer of dried aluminum particles Applying a layer of embedded slurry (post mark) on a portion of the aluminum particle layer, drying the embedded slurry layer, applying a plurality of fine grid lines and at least one front bus layer on the dielectric layer on the front surface of the tantalum wafer, drying and Joint firing of tantalum wafers. Methods such as screen printing, gravure printing, spray deposition, slot coating, 3D printing, and/or ink jet printing can be used to coat multiple layers. As an example, an Ekra or Baccini screen printer can be used to deposit an aluminum particle layer, an embedded slurry layer, and a front side grid and a bus layer. In another embodiment, the solar cell has at least one dielectric layer covering at least a portion of the back surface of the germanium wafer. For the PERC (passivated emitter rear cell) architecture, two dielectric layers (ie, aluminum oxide and tantalum nitride) were applied to the back side of the tantalum solar cell prior to application of the aluminum particle layer. The dried multi-layer can be completed in a belt furnace at a temperature between 150 ° C and 300 ° C for 30 seconds to 15 minutes. In one configuration, a Despatch CDF 7210 belt furnace is used to dry and co-fire a tantalum solar cell comprising the sintered multilayer stack described herein. In one configuration, the co-firing is completed using a rapid heating technique and heated in air to a temperature greater than 760 ° C for between 0.5 and 3 seconds, which is a common temperature profile for an aluminum back-field electric field solar cell (temperature) Profile). The wafer temperature profile is typically calibrated using a DataPaq® system with a thermocouple connected to the bare wafer.

圖26是示出了矽太陽能電池2600的前(或被照明)側的示意圖。矽太陽能電池26--具有矽晶片2610,具有至少一個介電層(未示出),其頂部上有精細格線2620和前匯流線2630。在一個實施方式中,矽晶片前側上的介電層包括從下列群組中選擇的至少一種材料,包含矽、氮、氧、鋁、鎵、鍺、鉿、合成物及其組合。在另一個實施方式中,矽晶片前側上的介電層是氮化矽且小於200nm厚。本領域中已知的商業上可用的前側銀金屬化 漿料可被用於形成精細格線2620和前匯流線2630。應注意到,前側銀層(即,由銀金屬化漿料製得的精細格線2620和前匯流線2630)可在聯合燒製期間蝕刻經過介電層且與矽晶片2610直接接觸。在一個實施方式中,矽晶片2610是單晶的且摻雜n型或p型。在另一個實施方式中,矽晶片2610是多晶的且摻雜n型或p型。在一個示意性實施方式中,基板是具有n型發射極的多晶p型矽晶片。 FIG. 26 is a schematic diagram showing the front (or illuminated) side of a tantalum solar cell 2600. The tantalum solar cell 26 has a tantalum wafer 2610 having at least one dielectric layer (not shown) with a fine grid 2620 and a front bus line 2630 on top. In one embodiment, the dielectric layer on the front side of the germanium wafer comprises at least one material selected from the group consisting of germanium, nitrogen, oxygen, aluminum, gallium, germanium, germanium, composites, and combinations thereof. In another embodiment, the dielectric layer on the front side of the germanium wafer is tantalum nitride and less than 200 nm thick. Commercially available front side silver metallization pastes known in the art can be used to form the fine grid lines 2620 and the front bus lines 2630. It should be noted that the front side silver layer (i.e., the fine grid line 2620 and the front bus line 2630 made from the silver metallization paste) may be etched through the dielectric layer and in direct contact with the tantalum wafer 2610 during the joint firing. In one embodiment, the germanium wafer 2610 is single crystalline and doped n-type or p-type. In another embodiment, the germanium wafer 2610 is polycrystalline and doped n-type or p-type. In one illustrative embodiment, the substrate is a polycrystalline p-type germanium wafer having an n-type emitter.

圖27是示出了矽太陽能電池2700的後側的示意圖。後側塗覆有鋁粒子層2730且具有後標誌層2740,分佈在矽晶片2710之上。在一個實施方式中,後側上的介電層包括從下列群組中選擇的至少一種材料,包含:在矽晶片前表面上的矽、氮、鋁、氧、鍺、鎵、鉿、合成物及其組合。在另一個示意性實施方式中,矽晶片前表面上的介電層是氮化矽且小於200nm厚。在一個實施方式中,在矽晶片的後側上沒有介電層。本領域中已知的商業上可用的鋁漿料可在燒製之前被印刷在矽晶片背面的總表面積的至少85%、或至少90%、或至少95%、或至少97%,其可被描述為整個Al覆蓋。鋁粒子層(在聯合燒製之後)2730具有20至30μm之間的平均厚度。在多個實施方式中,鋁粒子層2730具有3至20%之間、10至18%之間或包含於其中的任何範圍的孔隙率。對於傳統的BSF(背面電場(back surface field))太陽能電池架構,後標誌層直接塗至矽晶片。然而,為了改進太陽能電池的電力轉換效率,將後標誌層印在鋁粒子層上可能是有用的。在一個實施方式中,插層直接塗在乾燥鋁粒子層的一部分上以形成後標誌層2740。圖27示出了用於後標誌層2740的一種可能圖案。插層和下面的鋁粒子層被最後聯合燒結以形成如在此所述的燒結多層堆疊。在多個實施方式中,後標誌層(或改 良插層)2740具有1μm至20μm之間、或2μm至10μm之間、或2.5μm至8μm之間的厚度。 FIG. 27 is a schematic view showing the rear side of the tantalum solar cell 2700. The back side is coated with an aluminum particle layer 2730 and has a back marking layer 2740 distributed over the germanium wafer 2710. In one embodiment, the dielectric layer on the back side comprises at least one material selected from the group consisting of germanium, nitrogen, aluminum, oxygen, germanium, gallium, germanium, composites on the front surface of the germanium wafer. And their combinations. In another illustrative embodiment, the dielectric layer on the front surface of the germanium wafer is tantalum nitride and less than 200 nm thick. In one embodiment, there is no dielectric layer on the back side of the germanium wafer. Commercially available aluminum pastes known in the art can be printed at least 85%, or at least 90%, or at least 95%, or at least 97% of the total surface area of the backside of the tantalum wafer prior to firing, which can be Description is covered for the entire Al. The aluminum particle layer (after co-firing) 2730 has an average thickness of between 20 and 30 μm. In various embodiments, the aluminum particle layer 2730 has a porosity ranging between 3 and 20%, between 10 and 18%, or in any range contained therein. For a conventional BSF (back surface field) solar cell architecture, the back mark layer is applied directly to the germanium wafer. However, in order to improve the power conversion efficiency of the solar cell, it may be useful to print the back mark layer on the aluminum particle layer. In one embodiment, the intercalation layer is applied directly to a portion of the layer of dried aluminum particles to form the back mark layer 2740. FIG. 27 shows one possible pattern for the back mark layer 2740. The intercalation and underlying layers of aluminum particles are finally combined sintered to form a sintered multilayer stack as described herein. In various embodiments, the back mark layer (or improved intervening layer) 2740 has a thickness between 1 μm and 20 μm, or between 2 μm and 10 μm, or between 2.5 μm and 8 μm.

上文中先前描述的可變厚度金屬(鋁)粒子層,可被用在矽太陽能電池的背側上,以降低後標誌層的彎曲且改進附著和電力接觸。在本發明的一個實施方式中,後標誌層的一部分具有可變厚度。在本發明的另一個實施方式中,改良鋁粒子層的一部分具有可變厚度。在一種配置中,這一可變厚度改良鋁粒子層的表面上的後標誌層被軟焊至基於錫的標誌帶,帶來了大於0.7N/mm、大於1.5N/mm、大於2N/mm、或大於3N/mm的剝離強度。厚度變化可被最佳化,以在用於矽太陽能電池的基板上提供連續金屬粒子層和背面電場。在另一個實施方式中,在後標誌層區域中,那個區域中的組合層(改良鋁粒子層和後標誌層)的一部分具有比在1x1mm面積上測量的平均組合層厚度大至少20%、30%或40%的厚度。在另一個實施方式中,在後標誌層區域中,那個區域中的組合層(改良鋁粒子層和後標誌層)的一部分具有比在1x1mm面積上測量的平均組合層厚度小至少20%、30%或40%的厚度。 The variable thickness metal (aluminum) particle layer previously described above can be used on the back side of a tantalum solar cell to reduce bending of the back marking layer and improve adhesion and electrical contact. In one embodiment of the invention, a portion of the back marking layer has a variable thickness. In another embodiment of the invention, a portion of the modified aluminum particle layer has a variable thickness. In one configuration, the back mark layer on the surface of the variable thickness modified aluminum particle layer is soldered to a tin-based marker tape, bringing greater than 0.7 N/mm, greater than 1.5 N/mm, and greater than 2 N/mm. Or a peel strength greater than 3 N/mm. The thickness variation can be optimized to provide a continuous layer of metal particles and a back surface electric field on the substrate for the tantalum solar cell. In another embodiment, in the region of the back marking layer, a portion of the combined layer (modified aluminum particle layer and back marking layer) in that region has at least 20% greater than the average combined layer thickness measured over an area of 1 x 1 mm, 30 % or 40% thickness. In another embodiment, in the region of the back marking layer, a portion of the combined layer (modified aluminum particle layer and back marking layer) in that region has at least 20%, 30 less than the average combined layer thickness measured over an area of 1 x 1 mm. % or 40% thickness.

在本發明的一個實施方式中,包括在此討論的任何燒結多層堆疊的太陽能電池可被合併至太陽能模組中。這裡有很多可能的太陽能模組設計,其中使用了這種太陽能電池,正如本領域技術人員將知曉的。模組中太陽能電池的數量並不意圖被限制。典型地,60或72各太陽能電池被合併為商業上可用的模組,但是可能的是合併更多或更少的,這取決於應用(即,消費者電子、住宅、商業、公共設施,等等)。模組典型地包含旁通二極體(未示出)、接線盒(未示出)和不直接接觸太陽能電池的支撐框架(未示 出)。旁通二極體和接線盒還可以是電池互連的考慮部件。 In one embodiment of the invention, any of the sintered multi-layer stacked solar cells discussed herein can be incorporated into a solar module. There are many possible solar module designs in which such solar cells are used, as will be appreciated by those skilled in the art. The number of solar cells in the module is not intended to be limited. Typically, 60 or 72 solar cells are combined into commercially available modules, but it is possible to incorporate more or less, depending on the application (ie, consumer electronics, residential, commercial, utility, etc. Wait). The module typically includes a bypass diode (not shown), a junction box (not shown), and a support frame (not shown) that does not directly contact the solar cell. The bypass diode and junction box can also be considered components of the battery interconnection.

圖28是依照本發明的實施方式,示出了太陽能電池模組的一部分的示意性截面圖。太陽能電池模組包含至少一個矽太陽能電池2840。矽太陽能電池2840的前側2840F連接至第一標誌帶2832(其進入且離開頁面),其上有前封裝層2820和前板2810。矽太陽能電池2840的後側2840B連接至第二標誌帶2834,其上有後封裝層2850和後板2860。標誌帶2832、2834相鄰太陽能電池通過軟焊連接電力接觸至一個電池的前側(即,前側上的前匯流條(front busbar))和相鄰太陽能電池的背側(即,背側上的後標誌帶)。太陽能模組中大量的太陽能電池可使用標誌帶而電連接在一起作為電池互連。 28 is a schematic cross-sectional view showing a portion of a solar cell module in accordance with an embodiment of the present invention. The solar cell module includes at least one tantalum solar cell 2840. The front side 2840F of the neon solar cell 2840 is connected to a first marker strip 2832 (which enters and exits the page) with a front encapsulation layer 2820 and a front panel 2810 thereon. The back side 2840B of the tantalum solar cell 2840 is coupled to a second marker strip 2834 having a back encapsulation layer 2850 and a back panel 2860 thereon. The adjacent solar cells of the marker strips 2832, 2834 are electrically contacted to the front side of one battery by the solder connection (ie, the front busbar on the front side) and the back side of the adjacent solar cell (ie, the back side on the back side) Logo belt). A large number of solar cells in a solar module can be electrically connected together as a battery interconnect using a marker strip.

典型的電池互連包括軟焊至太陽能電池上的金屬標誌帶和連接標誌帶的金屬匯流排帶(metal bus ribbon)。在本發明的一個實施方式中,標誌帶是具有焊料塗層的金屬帶。這一塗覆焊料的標誌帶可具有20至1000μm、100至500μm、50至300μm範圍或包含於其內的任何範圍的厚度。塗覆焊料的標誌帶的寬度可在0.1至10mm之間、0.2至1.5mm之間或包含於其內的任何範圍。標誌帶的長度由應用、設計和基板尺寸確定。焊料塗層可具有0.5至100μm之間、10至50μm之間或包含於其中的任何範圍中的厚度。焊料塗層可包含錫,鉛,銀,鉍,銅,鋅,銻,錳,銦、或其合金、合成物或其它組合。金屬標誌帶可具有1μm至1000μm之間、50至500μm之間、75至200μm之間或包含於其中的任何範圍中的厚度。金屬標誌帶可包含銅、鋁、銀、金、碳、鎢、鋅、鐵、錫、或其合金、合成物或其它組合。金屬標誌帶的寬度可在0.1至10mm之間、0.2至1.5mm之間或包含於其內的任何範 圍。在一個實施方式中,標誌帶是銅帶,其200μm厚和1mm寬且在每側上塗有20μm厚的錫:鉛(60:40wt%)焊料塗層。 A typical battery interconnect includes a metal strip that is soldered to the solar cell and a metal bus ribbon that connects the strip. In one embodiment of the invention, the marker strip is a metal strip with a solder coating. This solder-coated marker tape can have a thickness in the range of 20 to 1000 μm, 100 to 500 μm, 50 to 300 μm or any range contained therein. The width of the solder-coated marker strip can be between 0.1 and 10 mm, between 0.2 and 1.5 mm, or any range contained therein. The length of the marker strip is determined by the application, design, and substrate size. The solder coating may have a thickness of between 0.5 and 100 μm, between 10 and 50 μm or in any range included therein. The solder coating may comprise tin, lead, silver, antimony, copper, zinc, antimony, manganese, indium, or alloys, composites or other combinations thereof. The metal sign tape may have a thickness between 1 μm and 1000 μm, between 50 and 500 μm, between 75 and 200 μm, or in any range included therein. The metal sign tape can comprise copper, aluminum, silver, gold, carbon, tungsten, zinc, iron, tin, or alloys, composites or other combinations thereof. The metal sign tape may have a width between 0.1 and 10 mm, between 0.2 and 1.5 mm, or any range contained therein. In one embodiment, the marker strip is a copper strip that is 200 [mu]m thick and 1 mm wide and is coated on each side with a 20 [mu]m thick tin:lead (60:40 wt%) solder coating.

圖28中的前板2810為模組提供了一些機械支撐且在矽太陽能電池2840設計為吸收的太陽能光譜的部分上具有好的光學傳輸屬性。太陽能模組定位得使得前板2810面對照明源,例如陽光2890。前板2810典型地由低鐵含量鈉鈣玻璃(soda-lime glass)製得。前封裝層2820和後封裝層2850保護矽太陽能電池2840在操作期間遠離電力、化學和物理刺激。封裝典型地以聚合片的形式。可用作封裝的材料示例包括但不限於,乙烯-乙酸乙烯酯(ethylene vinyl acetate)(EVA)、聚乙烯-共-甲基丙烯酸(poly-ethylene-co-methacrylic acid)(離聚物)、聚乙烯醇縮丁醛(polyvinyl butyral)(PVB)、熱塑性聚氨酯(thermoplastic urethane)(TPU)、聚α烯烴(poly-α-olefin)、聚二甲基矽氧烷(poly-dimethylsiloxan)(PDMS),其它聚矽氧烷(polysiloxanes)(即矽(silicone))及其組合。 The front panel 2810 of Figure 28 provides some mechanical support for the module and has good optical transmission properties on the portion of the solar spectrum that the solar cell 2840 is designed to absorb. The solar module is positioned such that the front panel 2810 faces an illumination source, such as sunlight 2890. The front plate 2810 is typically made from low iron content soda-lime glass. The front encapsulation layer 2820 and the post encapsulation layer 2850 protect the neon solar cell 2840 from electrical, chemical, and physical stimuli during operation. The package is typically in the form of a polymeric sheet. Examples of materials that can be used as the package include, but are not limited to, ethylene vinyl acetate (EVA), poly-ethylene-co-methacrylic acid (ionomer), polyvinyl butyral (polyvinyl butyral) (PVB), thermoplastic polyurethane (thermoplastic urethane) (TPU), poly [alpha] -olefin (poly-α-olefin), polydimethylsiloxane (poly-dimethylsiloxan) (PDMS) , other polysiloxanes (ie, silicone) and combinations thereof.

後板2860從後側為矽太陽能電池2840提供保護,且可以是或可以不是光學上透明的。太陽能模組定位得使得後板2860遠離面對照明源,例如陽光2890。後板2860可以是由三層聚合薄膜製得的多層結構。DuPontTM Tedlar®聚氟乙烯(polyvinyl fluoride)(PVF)薄膜典型地用於後板。含氟聚合物(fluoropolymer)和聚對苯二甲酸乙二醇酯(fluoropolymers and polyethylene terephthalate)(PET)也可用於後板中。玻璃片也可被用作後板,其可輔助提供對太陽能模組的結構支撐。支撐框架(未示出)還可被用於改進結構支撐;支撐框架典型地由鋁製得。 The back plate 2860 provides protection for the neon solar cell 2840 from the back side and may or may not be optically transparent. The solar module is positioned such that the rear panel 2860 is remote from the facing illumination source, such as sunlight 2890. The back plate 2860 may be a multilayer structure made of a three-layered polymeric film. DuPont TM Tedlar® PVF (polyvinyl fluoride) (PVF) films are typically used for the rear plate. Fluoropolymers and fluoropolymers and polyethylene terephthalate (PET) can also be used in the backsheet. The glass sheet can also be used as a back sheet that can assist in providing structural support to the solar module. A support frame (not shown) can also be used to improve the structural support; the support frame is typically made of aluminum.

在本發明的一個實施方式中,提供了用於形成太陽能電池模 組的方法。焊片人工地或通過使用自動標誌或拉絲機(automated tabbing or stringing machine)被應用至獨立太陽能電池(其包含在此描述的任意燒結多層堆疊)。隨後,獨立電池通過直接軟焊它們至標誌帶而串聯電連接。帶來的結構稱為「電池串(cell string)」。通常,多個電池串配置在已經應用至前板的前封裝層上。這些多個電池串使用匯流排帶彼此連接以產生電路。匯流排帶比用於電池串中的標誌帶更寬。當全部電池串之間的電路完成時,後封裝材料被應用至連接的電池串的背面且後板被放置在後封裝材料上。該元件隨即使用真空層壓工藝密封且加熱(典型地低於200℃)以聚合封裝材料。框架典型地接合在前板周圍以提供結構支撐。最後,接線盒被連接至電池互連且連接至太陽能模組。旁通二極體可以在接線盒內或可在電池互連製程期間在模組內部連接。 In one embodiment of the invention, a method for forming a solar cell module is provided. The solder tabs are applied to individual solar cells (which include any of the sintered multilayer stacks described herein) either manually or by using an automated tabbing or stringing machine. The individual cells are then electrically connected in series by directly soldering them to the marker strip. The resulting structure is called a "cell string." Typically, multiple battery strings are placed on the front encapsulation layer that has been applied to the front panel. These multiple battery strings are connected to each other using a bus bar to create an electrical circuit. The busbar strap is wider than the marker strip used in the battery string. When the circuit between all of the battery strings is completed, the back package material is applied to the back side of the connected battery string and the back plate is placed on the back package material. The component is then sealed and heated (typically below 200 °C) using a vacuum lamination process to polymerize the encapsulating material. The frame is typically joined around the front panel to provide structural support. Finally, the junction box is connected to the battery interconnect and to the solar module. The bypass diodes can be connected within the junction box or within the module during the battery interconnect process.

在本發明的一個實施方式中,提供了形成太陽能模組的方法,包括:a)提供至少一個太陽能電池,其具有前表面和後表面;其中,後表面包括燒結多層堆疊,b)在後標誌層和前匯流層的一部分上軟焊標誌帶的一部分,以產生電池串,c)可選地,軟焊標誌帶至匯流排帶以完成電路,d)在已經應用至前板的前封裝層上配置電池串,e)施加後封裝層至電池串且連接後板至後封裝層,以形成模組元件,f)層壓模組元件;g)電連接和物理接合接線盒。 In one embodiment of the invention, a method of forming a solar module is provided, comprising: a) providing at least one solar cell having a front surface and a back surface; wherein the back surface comprises a sintered multilayer stack, b) a back mark A portion of the layer and the front busbar layer is soldered to a portion of the tape to produce a battery string, c) optionally, a soldered tape is brought to the busbar strip to complete the circuit, and d) is applied to the front package layer of the front panel The battery string is configured, e) applying a post-package layer to the battery string and connecting the back plate to the back package layer to form a module component, f) a laminated module component; g) electrically connecting and physically bonding the junction box.

可能的是使用下面的步驟分解太陽能模組,以確定如上所述的多層堆疊是否已經被合併。拆除後板和後封裝以暴露太陽能電池的標誌的後表面。在太陽能電池的標誌帶和周圍後表面上施加快速固化環氧樹脂。在環氧樹脂已經固化之後從模組拆除電池且使用金剛石鋸以切除標誌 帶/太陽能電池的片段。使用先前描述的離子研磨機以打磨截面,且執行SEM/EDX來確定結構是否是如同在本發明的實施方式中描述的。圖29是太陽能電池的背(未照明)側的磨光的截面SEM圖像。樣本來自太陽能電池(其包括新穎的燒結多層堆疊),其已經合併至太陽能模組中且隨後如上所述地拆除。圖像示出了金屬標誌帶2932及其焊料塗層2931,其軟焊至燒結多層堆疊2902。燒結多層堆疊2902的構造層清晰可見。正好在焊料塗層2931下方的是改良插層2945、改良金屬粒子層2944和矽基板2941。圖中識別的層可使用EDX更容易地識別。 It is possible to use the following steps to decompose the solar module to determine if the multilayer stack as described above has been merged. The back and rear packages are removed to expose the back surface of the solar cell's logo. A fast curing epoxy is applied to the marking strip of the solar cell and the surrounding rear surface. The battery was removed from the module after the epoxy had cured and a diamond saw was used to cut off the segments of the marker/solar cell. The cross section was polished using the previously described ion mill and SEM/EDX was performed to determine if the structure was as described in the embodiments of the present invention. 29 is a polished cross-sectional SEM image of the back (unilluminated) side of a solar cell. The sample is from a solar cell (which includes a novel sintered multi-layer stack) that has been incorporated into the solar module and subsequently removed as described above. The image shows a metal marker strip 2932 and its solder coating 2931 that is soldered to the sintered multilayer stack 2902. The structural layers of the sintered multilayer stack 2902 are clearly visible. Just below the solder coating 2931 are a modified intercalation layer 2945, a modified metal particle layer 2944, and a germanium substrate 2941. The layers identified in the figure can be more easily identified using EDX.

其它PV電池架構Other PV battery architecture

嵌入漿料可被用於產生多種燒結多層堆疊,其可被用作很多不同太陽能電池架構的前側和背側上的金屬化層。如在此揭露的,嵌入漿料和燒結多層堆疊可被用於太陽能電池架構,其包括但不限於,BSF矽太陽能電池、射極鈍化及背電極(passivated emitter and rear contact)(PERC)太陽能電池,以及雙面指叉背接觸太陽能電池(bifacial and interdigitated back contact solar cell)。 The embedded paste can be used to create a variety of sintered multilayer stacks that can be used as metallization layers on the front and back sides of many different solar cell architectures. As disclosed herein, embedded paste and sintered multilayer stacks can be used in solar cell architectures including, but not limited to, BSF(R) solar cells, passivated emitter and rear contact (PERC) solar cells. And a bifacial and interdigitated back contact solar cell.

PERC太陽能電池架構基於BSF太陽能架構進行改進,通過使用矽基板和背接觸之間的介質柵(dielectric barrier)而降低後接觸表面複合。在PERC電池中,矽晶片的背側(即,未照明的)的一部分對至少一個介電層是鈍化的,以降低電流載流子複合。在此揭露的新穎的燒結多層堆疊可被用於PERC太陽能電池中。在一個實施方式中,矽晶片背側上的介電層包括矽、氮、鋁、氧、鍺、鉿、鎵、合成物及其組合的至少一種。在另一個實施方式中,矽晶片背側上的介電層包括矽表面上的10nm厚的氧化鋁層 以及氧化鋁層上的75nm厚的氮化矽層。通常使用的設計用於PERC電池的鋁漿料(例如,單晶體EFX-39,EFX-85)不能滲透經過介電層。為了使鋁粒子層進行化學反應且與矽進行歐姆接觸,介電層的少部分區域在鋁粒子層沉積之前通過鐳射消融而移除。 The PERC solar cell architecture is based on a BSF solar architecture that reduces post-contact surface recombination by using a dielectric barrier between the germanium substrate and the back contact. In a PERC cell, a portion of the back side (ie, unilluminated) of the germanium wafer is passivated to at least one dielectric layer to reduce current carrier recombination. The novel sintered multilayer stack disclosed herein can be used in PERC solar cells. In one embodiment, the dielectric layer on the back side of the germanium wafer comprises at least one of germanium, nitrogen, aluminum, oxygen, germanium, antimony, gallium, composites, and combinations thereof. In another embodiment, the dielectric layer on the back side of the germanium wafer comprises a 10 nm thick aluminum oxide layer on the tantalum surface and a 75 nm thick tantalum nitride layer on the aluminum oxide layer. Aluminum pastes commonly used for PERC batteries (eg, single crystal EFX-39, EFX-85) are not permeable to the dielectric layer. In order to chemically react the aluminum particle layer and make ohmic contact with the ruthenium, a small portion of the dielectric layer is removed by laser ablation prior to deposition of the aluminum particle layer.

PERL(射極鈍化背面局部擴散(passivated emitter with rear locally diffused))和PERT(射極鈍化,背面完全擴散(passivated emitter,rear totally diffused))是兩種PERC電池架構,其進一步改進了設備性能。這兩種類型依賴於摻雜矽基板的後部以進一步禁止後接觸的複合,其用作類似於BSF電池中的背面電場的角色。在PERL電池中,矽基板的背側圍繞與後鋁層進行接觸的介質中的開口而摻雜。摻雜通常通過使用硼混合物或來自組成後接觸的鋁粒子層鋁、經過介質開口來傳播摻雜物而實現,類似於BSF製造製程。PERT電池類似於PERL,但是除了相鄰接觸後接觸的介質開口的矽之外,與後介電層接觸的全部矽被摻雜。 PERL (passivated emitter with rear locally diffused) and PERT (passively diffused emitter, rear totally diffused) are two PERC battery architectures that further improve device performance. These two types rely on the back of the doped germanium substrate to further inhibit the recombination of the back contact, which acts as a back surface electric field similar to that in BSF cells. In a PERL cell, the back side of the germanium substrate is doped around an opening in the medium in contact with the back aluminum layer. Doping is typically achieved by using a mixture of boron or aluminum from a layer of aluminum particles that make up contact, through a dielectric opening to propagate dopants, similar to a BSF fabrication process. The PERT cell is similar to PERL, but all of the germanium in contact with the back dielectric layer is doped except for the germanium of the dielectric opening that is in contact with the adjacent contacts.

在一個實施方式中,嵌入漿料,其包含不蝕刻經過介電層的嵌入粒子,用作PERC、PERL或PERT電池上的後標誌層。「非蝕刻(non-etching)」嵌入漿料用於提供可軟焊銀表面和機械強化下層(改良)鋁粒子層。帶來的燒結多層堆疊包含矽晶片,其覆蓋有至少一個介電層、改良鋁粒子層和改良插層;對於PERL或PERT,矽分別僅在介質開口處摻雜或還穿過介質介面。使用非蝕刻嵌入漿料可進一步降低介電層的蝕刻和降低表面複合。例如,傳統地用於PERC電池中的後標誌層的匯流條漿料被直接印刷在介電層上且部分蝕刻經過介電層,其在聯合燒製期間增加了表面複合。 In one embodiment, a paste is embedded that includes embedded particles that are not etched through the dielectric layer for use as a back mark layer on a PERC, PERL or PERT cell. A "non-etching" embedded paste is used to provide a soft soldered silver surface and a mechanically strengthened lower (modified) aluminum particle layer. The resulting sintered multilayer stack comprises a tantalum wafer covered with at least one dielectric layer, a modified aluminum particle layer and an improved intercalation; for PERL or PERT, tantalum is only doped at the dielectric opening or also through the dielectric interface, respectively. The use of a non-etched embedded paste can further reduce the etching of the dielectric layer and reduce surface recombination. For example, bus bar paste conventionally used for the back mark layer in PERC cells is printed directly on the dielectric layer and partially etched through the dielectric layer, which adds surface recombination during co-firing.

對於使用後介電層的電池(即,PERC、PERL、PERT),依照 本發明的一個實施方式,嵌入漿料可被改良以蝕刻經過介電層且輔助介質開口處的矽區域的傳播摻雜。「蝕刻(etching)」嵌入漿料(例如,表I中的嵌入漿料D)用於提供可軟焊銀表面,機械強化下層(改良)鋁粒子層,且蝕刻經過介電層,將矽表面暴露至鋁粒子,其可導致鋁摻雜至暴露的矽。帶來的燒結多層堆疊包含矽晶片、改良鋁粒子層和改良插層。燒結多層堆疊可進一步包括矽表面附近摻雜Al的區域(類似於BSF電池中的背面電場),以及在矽晶片和改良鋁粒子層之間的介面處的固體矽-鋁共晶層。使用嵌入漿料以蝕刻經過(多)介電層具有多種優點。首先,它是對在過去證明是昂貴且不可靠的鐳射消融步驟的便宜的替代。第二,當晶片聯合燒結時,鐳射消融經常除去矽基板材料的數十至數百微米,且會帶來矽基板和鋁粒子層之間的大空隙的形成。燒結嵌入漿料在聯合燒結之前不會導致晶片表面的改變,它比起當使用鐳射消融時,帶來了更好的結合形成、減少的空隙形成和更好的可再現性。 For a battery using a post-dielectric layer (ie, PERC, PERL, PERT), in accordance with an embodiment of the present invention, the intercalation paste can be modified to etch the propagation doping of the germanium region through the dielectric layer and the auxiliary dielectric opening . An "etching" embedded paste (eg, embedded slurry D in Table I) is used to provide a solderable silver surface, mechanically strengthen the underlying (modified) aluminum particle layer, and etch through the dielectric layer to bond the germanium surface Exposure to aluminum particles can cause aluminum doping to the exposed germanium. The resulting sintered multilayer stack comprises a tantalum wafer, a modified aluminum particle layer, and an improved intercalation layer. The sintered multilayer stack can further include a region doped with Al near the surface of the crucible (similar to the back surface electric field in a BSF cell), and a solid germanium-aluminum eutectic layer at the interface between the tantalum wafer and the modified aluminum particle layer. The use of embedded paste to etch through the (multi) dielectric layer has several advantages. First, it is a cheap alternative to the laser ablation step that proved to be expensive and unreliable in the past. Second, when the wafer is sintered in combination, laser ablation often removes tens to hundreds of micrometers of the ruthenium substrate material and causes the formation of large voids between the ruthenium substrate and the aluminum particle layer. The sintered embedded paste does not cause a change in the surface of the wafer prior to joint sintering, which results in better bond formation, reduced void formation, and better reproducibility than when laser ablation is used.

依照本發明的一個實施方式,嵌入漿料可被用於提供電池構造的可軟焊表面,其取決於鋁粒子層以與p型矽進行歐姆接觸。這些構造的示例包括指叉背接觸太陽能電池、n型BSF電池架構和雙面太陽能電池。在一個實施方式中,嵌入漿料C(來自表I)被施加至至指叉背接觸太陽能架構、例如Zebra電池的Al層上。對於n型BSF架構,其已經獲得了用於Al全部覆蓋的電池的20%電力轉換效率,嵌入漿料可代替直接接觸矽的傳統的後標誌Ag漿料,因而降低太陽能電池的Voc。在多種基於n型晶片的太陽能電池架構中,嵌入漿料可被用在前側(即,照明側)上。嵌入漿料還可結合Al漿料使用,以降低雙面太陽能電池的費用。現有的雙面太陽能電池架構使用Ag漿 料,其包含少量的鋁(例如,小於5wt%的Al),以與p型矽層進行歐姆接觸。現有雙面架構使用BSF架構幾乎兩倍的銀量,這在費用上是禁止的。在雙面架構中使用純鋁漿料可能是有用的,但是Al是不可軟焊的。包含銀的嵌入漿料(例如,表I中的漿料C)在雙面設計中可被印刷在Al漿料上,且提供機械穩定性和可燒結表面,當降低Ag的使用量時。 In accordance with an embodiment of the present invention, the embedded paste can be used to provide a solderable surface of a battery construction that depends on the aluminum particle layer for ohmic contact with the p-type germanium. Examples of such configurations include a finger-back contact solar cell, an n-type BSF cell architecture, and a double-sided solar cell. In one embodiment, the intercalation paste C (from Table I) is applied to the Al layer of the back-to-back contact solar energy architecture, such as a Zebra cell. For the n-type BSF architecture, which has achieved 20% power conversion efficiency for cells that are fully covered by Al, the embedded paste can replace the conventional post-marker Ag paste that is in direct contact with the crucible, thus reducing the Voc of the solar cell. In a variety of n-type wafer based solar cell architectures, embedded paste can be used on the front side (ie, the illumination side). The embedded paste can also be used in combination with an Al paste to reduce the cost of a double-sided solar cell. Existing double-sided solar cell architectures use Ag paste containing a small amount of aluminum (e.g., less than 5 wt% Al) for ohmic contact with the p-type germanium layer. The existing double-sided architecture uses almost twice the amount of silver in the BSF architecture, which is prohibitive in terms of cost. It may be useful to use a pure aluminum paste in a two-sided architecture, but Al is not solderable. An intercalating paste comprising silver (eg, Slurry C in Table I) can be printed on the Al paste in a two-sided design and provides mechanical stability and a sinterable surface when reducing the amount of Ag used.

燒結多層堆疊的材料屬性和對矽太陽能電池的影響Material properties of sintered multilayer stacks and effects on tantalum solar cells

用於太陽能電池和其它電子設備的燒結多層堆疊中感興趣的材料屬性包括可軟焊性、剝離強度和接觸電阻。 Material properties of interest in sintered multilayer stacks for solar cells and other electronic devices include solderability, peel strength, and contact resistance.

可軟焊性是,在低於400℃的溫度下,通過在兩個金屬表面之間的熔化金屬焊料的流動,在兩個金屬層之間形成強硬物理結合的能力。燒結多層堆疊的改良插層上的軟焊可在空氣中加熱至650℃以上之後執行。軟焊包括使用熔劑,其是在熔化焊料回流之前清潔或蝕刻一個或兩個表面的化學試劑。典型地用於太陽能電池的焊料熔劑,標示為RMA(例如,Kester® 186)或R(Kester® 952),沉積在標誌帶上且在70℃乾燥。這些熔劑在蝕刻很多當在空氣中燒結時形成在鋁粒子上的金屬氧化物、例如氧化鋁(Al2O3)時,不是有效的。 Soft solderability is the ability to form a strong physical bond between two metal layers by the flow of molten metal solder between two metal surfaces at temperatures below 400 °C. The soldering on the modified intercalation of the sintered multilayer stack can be performed after heating to above 650 °C in air. Soldering involves the use of a flux, which is a chemical that cleans or etches one or both surfaces before the molten solder is reflowed. Solder fluxes typically used in solar cells, labeled RMA (eg, Kester® 186) or R (Kester® 952), are deposited on the marker tape and dried at 70 °C. These fluxes are not effective when etching a lot of metal oxides such as aluminum oxide (Al 2 O 3 ) formed on aluminum particles when sintered in air.

剝離強度是焊料結合強度的度量和用於積體電路、發光二極體和太陽能應用的可靠性的指示。塗覆有0.8至20mm寬和100-300um厚的金屬帶的焊料可被浸入焊劑且乾燥。它放置到改良插層上且在200℃至400℃之間的溫度使用烙鐵(solder iron)被軟焊。剝離強度是,與軟焊方向成180°角、通過軟焊帶的寬度分離、以給定的剝離速度,剝離軟焊帶所需的力。軟焊製程期間形成的軟焊點(solder joint)在1mm/sec下具有大於1N/mm(例 如,2mm標誌帶需要大於2N的剝離力以取下軟焊帶)的平均剝離強度。太陽能電池通過標誌帶電連接,其被軟焊至一個電池的前匯流條和相鄰電池的後標誌層。通常,對於在商業上可用的太陽能電池中的標誌帶的接觸,剝離強度在1.5至4N/mm之間。當使用燒結多層堆疊作為後標誌層時,主要失效模式會在Al-Si介面附近,其可使用平視圖SEM/EDX確定。在一個示意性實施方式中,當(改良插層的)富銀子層的層軟焊有基於錫的標誌帶時,剝離強度大於1N/mm。 Peel strength is a measure of solder bond strength and an indication of reliability for integrated circuits, light emitting diodes, and solar applications. Solder coated with a metal strip having a width of 0.8 to 20 mm and a thickness of 100-300 um can be immersed in flux and dried. It was placed on a modified intercalation and soldered using a solder iron at a temperature between 200 ° C and 400 ° C. The peel strength is the force required to peel off the solder ribbon at a given peeling speed by a 180° angle to the soldering direction, by the width of the solder ribbon. The solder joint formed during the soldering process has an average peel strength of greater than 1 N/mm at 1 mm/sec (e.g., a 2 mm mark tape requires a peel force greater than 2 N to remove the solder ribbon). The solar cells are electrically connected by a mark that is soldered to the front bus bar of one battery and the back mark layer of an adjacent battery. Typically, the peel strength is between 1.5 and 4 N/mm for contact of the marker tape in a commercially available solar cell. When a sintered multilayer stack is used as the back mark layer, the primary failure mode will be near the Al-Si interface, which can be determined using a flat view SEM/EDX. In an exemplary embodiment, when the layer of the (modified intercalated) silver-rich sub-layer is soldered with a tin-based marking strip, the peel strength is greater than 1 N/mm.

Meier等人描述了如何使用四點探針電測量來確定完整太陽能電池上的每個金屬化層的電阻。參見Meier等人的「從完成的電池上的測量確定串聯電阻的成分」,IEEE(2006),第2615頁,其通過參考包含於此。金屬化層的體電阻(bulk resistance)直接關於製得其的材料的體電阻。在本發明的一個實施方式中,純Ag的體電阻是1.5x10-8Ω-m;用在工業太陽能電池上的純Ag金屬化層具有高於純Ag體電阻1.5倍至5倍的體電阻。體電阻對於精細格線是重要的,其必須在相對長(即,大於1cm)的長度上傳輸電流。當電池被標誌在模組中時,前匯流條和後標誌層的電阻是較不重要的。 Meier et al. describe how to use four point probe electrical measurements to determine the electrical resistance of each metallization layer on a complete solar cell. See Meier et al., "Determining the Composition of Series Resistance from Measurements on Completed Batteries", IEEE (2006), p. 2615, which is incorporated herein by reference. The bulk resistance of the metallization layer is directly related to the bulk resistance of the material from which it is made. In one embodiment of the invention, the bulk resistance of pure Ag is 1.5 x 10 -8 Ω-m; the pure Ag metallization layer used on industrial solar cells has a bulk resistance that is 1.5 to 5 times higher than the pure Ag bulk resistance. . The bulk resistance is important for fine grid lines, which must carry current over a relatively long (i.e., greater than 1 cm) length. When the battery is marked in the module, the resistance of the front bus bar and the rear flag layer is less important.

在大部分積體電路、LED和太陽能電池架構中,來自金屬粒子層的電流流經改良金屬粒子層且進入改良插層。對於燒結多層堆疊,這三個層之間的接觸電阻在裝置性能中扮演重要角色。燒結多層堆疊中這些層之間的接觸電阻的測量可使用輸電線路測量(transmission line measurement)(TLM)(參考:Meier等人,「銅背側匯流帶:在晶體矽太陽能電池和模組中消除Ag且使全鋁覆蓋」,IEEE PVSC(2015),第1-6頁)。TLM繪圖為電極之間的電阻相對距離。TLM特別用於測量接觸電阻,1)在金屬粒 子層和改良金屬粒子層之間,和2)改良金屬粒子層和改良插層之間。燒結多層堆疊的接觸電阻是上述接觸電阻1)和2)之和。燒結多層堆疊的接觸電阻是電阻相對距離測量值的線性擬合的y截距值的一半。匯流條之間的電阻的測量使用以四點探針設置的Keithley 2410數位源表(Sourcemeter),源電流在-0.5A至+0.5A之間且測量電壓。在多個實施方式中,燒結多層堆疊的接觸電阻在0至5mOhm、0.25至3mOhm、0.3至1mOhm之間或包含於其中的任何範圍中。金屬粒子層的片電阻通過線斜度乘以電極長度來確定。接觸電阻和片電阻用於數位上確定傳輸長度和隨之的接觸電阻係數。串聯電阻中的改變通過接觸電阻係數除以改良插層的部分面積覆蓋來確定。在多個實施方式中,串聯電阻中的改變小於0.200Ω-cm2、小於0.100Ω-cm2、小於0.050Ω-cm2、小於0.010Ω-cm2或小於0.001Ω-cm2In most integrated circuit, LED and solar cell architectures, current from the metal particle layer flows through the modified metal particle layer and into the improved intercalation. For sintered multilayer stacks, the contact resistance between these three layers plays an important role in device performance. Measurement of contact resistance between these layers in a sintered multilayer stack can be performed using transmission line measurement (TLM) (Reference: Meier et al., "Copper Back Side Confluence Band: Eliminated in Crystal Tantalum Solar Cells and Modules Ag and covered with all aluminum", IEEE PVSC (2015), pp. 1-6). The TLM plot is the relative distance of the resistance between the electrodes. The TLM is particularly useful for measuring contact resistance, 1) between a metal particle layer and a modified metal particle layer, and 2) between a modified metal particle layer and an improved intercalation layer. The contact resistance of the sintered multilayer stack is the sum of the above contact resistances 1) and 2). The contact resistance of the sintered multilayer stack is half the value of the y-intercept of the linear fit of the resistance relative distance measurements. The resistance between the bus bars was measured using a Keithley 2410 digital source meter set with a four-point probe with a source current between -0.5 A and +0.5 A and the voltage measured. In various embodiments, the contact resistance of the sintered multilayer stack is between 0 to 5 mOhm, 0.25 to 3 mOhm, 0.3 to 1 mOhm, or any range contained therein. The sheet resistance of the metal particle layer is determined by multiplying the line slope by the length of the electrode. Contact resistance and sheet resistance are used to determine the transmission length and consequent contact resistance coefficient in digital form. The change in series resistance is determined by dividing the contact resistance factor by the partial area coverage of the modified intercalation layer. In various embodiments, the change in series resistance is smaller than 0.200Ω-cm 2, less than 0.100Ω-cm 2, less than 0.050Ω-cm 2, less than 0.010Ω-cm 2, or less than 0.001Ω-cm 2.

後標誌層和鋁粒子層之間的接觸電阻會影響串聯電阻和太陽能電池的電力轉換效率。這種接觸電阻可通過輸電線路測量來測量。具有300μm重疊鋁粒子層的矽上的傳統的銀後標誌層的輸電線路繪圖在圖30中示出。鋁粒子層上的改良插層、用作後標誌層的輸電線路繪圖,在圖31中示出。圖31中的y截距值是1.11mOhm,相比圖30中0.88的y截距值。後標誌(插)層和鋁粒子層之間的接觸電阻是0.56mOhm。用於傳統後標誌架構的接觸電阻是0.44mOhm。在多個實施方式中,後標誌(插)層和鋁粒子層之間的接觸電阻在0至5mOhm之間、在0.25至3mOhm之間、或者在0.3至1mOhm之間或包含於其中的任何範圍中。鋁層的片電阻通過線斜度乘以電極長度來確定,且在圖30和31中大約是9mOhm/平方(square)。 The contact resistance between the back mark layer and the aluminum particle layer affects the series resistance and the power conversion efficiency of the solar cell. This contact resistance can be measured by transmission line measurements. A transmission line drawing of a conventional silver post-marker layer on a crucible having a 300 μm overlapping aluminum particle layer is shown in FIG. The improved intercalation on the aluminum particle layer, the transmission line drawing used as the back mark layer, is shown in FIG. The y-intercept value in Fig. 31 is 1.11 mOhm, which is compared with the y-intercept value of 0.88 in Fig. 30. The contact resistance between the back mark (insertion) layer and the aluminum particle layer was 0.56 mOhm. The contact resistance for the conventional back mark architecture is 0.44 mOhm. In various embodiments, the contact resistance between the back mark (intercalation) layer and the aluminum particle layer is between 0 and 5 mOhm, between 0.25 and 3 mOhm, or between 0.3 and 1 mOhm or any range contained therein. in. The sheet resistance of the aluminum layer is determined by multiplying the line slope by the length of the electrode, and is about 9 mOhm/square in FIGS. 30 and 31.

儘管TLM是精確提取燒結多層堆疊(即,後標誌層和鋁粒子 層)接觸電阻的優選方法,可能的是,使用四點探針方法確定完整太陽內電池上的接觸電阻。該方法的使用通過,首先測量兩個後標誌層(RAg-to-Ag)之間的電阻,且隨後在Al粒子層(在後標誌層的1mm內)上移動探針以得到RAl-to-Al。接觸電阻通過RAl-to-Al減去RAg-to-Ag再除以2得到。這不像TLM測量那麼精確,但是當平均來自多個太陽能電池的測量值時,它可近似在0.50mOhm之中。 Although TLM is the preferred method for accurately extracting the contact resistance of a sintered multilayer stack (ie, a back mark layer and an aluminum particle layer), it is possible to determine the contact resistance on a complete solar cell using a four point probe method. The method is used by first measuring the electrical resistance between two back mark layers (R Ag-to-Ag ) and then moving the probe over the Al particle layer (within 1 mm of the back mark layer) to obtain R Al- to-Al . The contact resistance is obtained by subtracting R Ag-to-Ag from R Al-to-Al and dividing by 2. This is not as accurate as the TLM measurement, but when averaged from measurements of multiple solar cells, it can be approximately 0.50 mOhm.

電阻和片電阻用於數位上確定傳輸長度和隨之的接觸電阻係數。在圖31中,聯合燒結多層堆疊的傳輸長度是5mm且接觸電阻是2.2mΩ。串聯電阻中的改變通過這一數位除以改良插層的部分面積覆蓋來估計。在圖31中,串聯電阻中的估計改變是0.023Ω-cm2,其等於在圖30中測量的計算用於傳統後標誌層的0.020Ω-cm2的串聯電阻的改變。串聯電阻的改變可被直接測量,通過製造具有全Al覆蓋和無後標誌層的控制BSF(背面電場)矽太陽能電池以及製造具有全Al覆蓋和Ag:Bi插層的BSF矽太陽能電池。電池的串聯電阻可通過多種光強度下的電流-電壓曲線而獲得,並且串聯電阻的差值可歸結為後標誌層和燒結鋁粒子層之間增加的接觸電阻。在多個實施方式中,太陽能電池中的串聯電阻的改變小於0.200Ω-cm2、小於0.100Ω-cm2、小於0.050Ω-cm2、小於0.010Ω-cm2或小於0.001Ω-cm2Resistor and sheet resistance are used to digitally determine the transmission length and consequent contact resistivity. In Figure 31, the joint sintered multilayer stack has a transfer length of 5 mm and a contact resistance of 2.2 mΩ. The change in series resistance is estimated by dividing this digit by the partial area coverage of the modified intercalation. In Figure 31, the estimated change in series resistance is 0.023 Ω-cm 2 , which is equal to the change in series resistance of 0.020 Ω-cm 2 calculated for the conventional back mark layer measured in Figure 30. The change in series resistance can be measured directly by fabricating a controlled BSF (back surface electric field) tantalum solar cell with full Al coverage and no back mark layer and fabricating a BSF(R) solar cell with full Al coverage and Ag:Bi intercalation. The series resistance of the battery can be obtained by a current-voltage curve at various light intensities, and the difference in series resistance can be attributed to the increased contact resistance between the back mark layer and the sintered aluminum particle layer. In various embodiments, the change in series resistance of the solar cell is less than 0.200Ω-cm 2, less than 0.100Ω-cm 2, less than 0.050Ω-cm 2, less than 0.010Ω-cm 2, or less than 0.001Ω-cm 2.

在矽太陽能電池上使用插層的一個益處是,通過形成在矽晶片上的連續背面電場帶來了開路電壓(open-circuit voltage)(Voc)的改進。Voc增益可通過,比較傳統BSF太陽能電池與包含Ag:Bi嵌入漿料的BSF太陽能電池而直接測量,如在此描述的,當兩個裝置具有相同的後匯流表面積的時候。傳統的BSF矽太陽能電池使用基於銀的後標誌漿料直接印刷在矽晶片 上且由鋁粒子層圍繞來製造。插層(例如,使用嵌入漿料C製造)可被用作具有全Al表面覆蓋的矽太陽能電池上。兩種太陽能電池的Voc通過一種太陽光強度下的電流-電壓測試來測量。對於具有大於5cm2後標誌表面積的太陽能電池,當使用插層時,比起傳統的矽架構上的後標誌層,Voc可增加至少0.5mV、至少1mV、至少2mV或至少4mV。最後,當使用插層架構代替傳統後標誌設計時,短路電流密度(short-circuit current density)(Jsc)和填充因數(fill factor)也被改進。銀不與p型矽進行歐姆接觸。矽標誌層直接在p型矽上降低了電流採集,其可通過在完整或不完整的太陽能電池上執行電致發光或光致發光測量來估計。Jsc的增加還可通過測試具有嵌入構造的電池對比直接在矽上的後標誌層的電池來測量。另一個益處是填充因數的增加,其可取決於Voc的增加、接觸電阻的降低和/或太陽能電池後側上的複合動態的改變而正向改變。 One benefit of using an intercalation layer on a tantalum solar cell is that an open-circuit voltage ( Voc ) improvement is achieved by a continuous back surface electric field formed on the tantalum wafer. The V oc gain can be measured directly by comparing a conventional BSF solar cell to a BSF solar cell comprising an Ag:Bi intercalating paste, as described herein, when the two devices have the same rear confluent surface area. Conventional BSF(R) solar cells are fabricated by directly printing on a tantalum wafer using a silver-based post mark paste and surrounded by a layer of aluminum particles. The intercalation layer (for example, fabricated using embedded paste C) can be used as a tantalum solar cell with a full Al surface coverage. The V oc of the two solar cells is measured by a current-voltage test at the intensity of sunlight. For solar cells having a post-marker surface area greater than 5 cm2 , when intercalation is used, Voc can be increased by at least 0.5 mV, at least 1 mV, at least 2 mV, or at least 4 mV compared to the back mark layer on a conventional germanium architecture. Finally, the short-circuit current density (J sc ) and fill factor are also improved when using an intercalation architecture instead of a traditional post-marker design. Silver does not make ohmic contact with p-type germanium. The ruthenium flag layer reduces current collection directly on the p-type ,, which can be estimated by performing electroluminescence or photoluminescence measurements on a complete or incomplete solar cell. The increase in Jsc can also be measured by testing a battery with an embedded configuration versus a battery with a back marking layer directly on the crucible. Another benefit is an increase in the fill factor, which may change positively depending on an increase in Voc , a decrease in contact resistance, and/or a change in composite dynamics on the back side of the solar cell.

應被理解的是,在此描述的本發明可通過不同設備、材料和裝置來執行,並且對設備和操作過程二者的多種修改可被實現,而不偏離本發明本身的範圍。 It will be appreciated that the invention described herein may be carried out by various means, materials and devices, and various modifications of the device and the process can be practiced without departing from the scope of the invention.

Claims (13)

一種漿料,包括:10wt%至70wt%之間的貴金屬粒子;至少10wt%的嵌入粒子;以及有機載體;以及其中,該嵌入粒子包含從下列群組中選擇的一種或多種,包含低溫基底金屬粒子和晶體金屬氧化物粒子。  a slurry comprising: between 10% and 70% by weight of precious metal particles; at least 10% by weight of embedded particles; and an organic vehicle; and wherein the embedded particles comprise one or more selected from the group consisting of low temperature base metals Particles and crystalline metal oxide particles.   如請求項1所述的漿料,其中,該漿料包括至少12.5wt%的嵌入粒子。  The slurry of claim 1, wherein the slurry comprises at least 12.5% by weight of embedded particles.   如請求項1所述的漿料,其中,該漿料包括至少15wt%的嵌入粒子。  The slurry of claim 1, wherein the slurry comprises at least 15% by weight of embedded particles.   如請求項1所述的漿料,其中,該嵌入粒子與該貴金屬粒子的重量比為至少1:4。  The slurry of claim 1, wherein the weight ratio of the embedded particles to the precious metal particles is at least 1:4.   如請求項1所述的漿料,其中,該貴金屬粒子包括從下列群組中選擇的至少一種材料,包含:金、銀、鉑、鈀、銠,及合金、合成物,及其其它組合。  The slurry of claim 1, wherein the precious metal particles comprise at least one material selected from the group consisting of gold, silver, platinum, palladium, rhodium, and alloys, composites, and other combinations thereof.   如請求項1所述的漿料,其中,該貴金屬粒子的一部分具有從下列群組中選擇的形狀,包含球形、片狀和/或細長形的形狀。  The slurry according to claim 1, wherein a part of the noble metal particles has a shape selected from the group consisting of a spherical shape, a sheet shape, and/or an elongated shape.   如請求項1所述的漿料,其中,至少一些貴金屬粒子是銀且具有300nm至2.5μm之間的D50和1.0至3.0m2/g之間的比表面積。  The slurry according to claim 1, wherein at least some of the noble metal particles are silver and have a D50 of between 300 nm and 2.5 μm and a specific surface area of between 1.0 and 3.0 m 2 /g.   如請求項1所述的漿料,其中,該嵌入粒子的一部分具有從下列群組中選擇的形狀,包含球形、片狀和/或細長形的形狀。  The slurry of claim 1, wherein a portion of the embedded particles has a shape selected from the group consisting of a spherical shape, a sheet shape, and/or an elongated shape.   如請求項1所述的漿料,其中,該低溫基底金屬粒子包括從下列群組中選擇的材料,包含:鉍、錫、碲、銻、鉛,及合金、合成物,及其其它 組合。  The slurry of claim 1, wherein the low temperature base metal particles comprise materials selected from the group consisting of bismuth, tin, antimony, bismuth, lead, and alloys, composites, and other combinations thereof.   如請求項1所述的漿料,其中,該晶體金屬氧化物粒子包括氧和從下列群組中選擇的金屬:鉍、錫、碲、銻、鉛、釩、鉻、鉬、硼、錳、鈷,及合金、合成物,及其其它組合。  The slurry of claim 1, wherein the crystalline metal oxide particles comprise oxygen and a metal selected from the group consisting of ruthenium, tin, osmium, iridium, lead, vanadium, chromium, molybdenum, boron, manganese, Cobalt, and alloys, composites, and other combinations thereof.   如請求項1所述的漿料,其中,該漿料具有30wt%至80wt%之間的固體裝載。  The slurry of claim 1, wherein the slurry has a solid loading between 30 wt% and 80 wt%.   如請求項1所述的漿料,進一步包括玻璃熔粒。  The slurry of claim 1, further comprising glass fused particles.   如請求項12所述的漿料,其中,該玻璃熔粒包括從下列群組中選擇的材料,包含:銻、砷、鋇、鉍、硼、鎘、鈣、鈰、銫、鉻、鈷、氟、鎵、鍺、銦、鉿、碘、鐵、鑭、鉛、鋰、鎂、錳、鉬、鈮、鉀、錸、硒、矽、鈉、鍶、碲、錫、釩、鋅、鋯,其合金、其氧化物、其合成物,及其其它組合。  The slurry of claim 12, wherein the glass frit comprises a material selected from the group consisting of ruthenium, arsenic, antimony, bismuth, boron, cadmium, calcium, strontium, barium, chromium, cobalt, Fluorine, gallium, antimony, indium, antimony, iodine, iron, antimony, lead, lithium, magnesium, manganese, molybdenum, antimony, potassium, antimony, selenium, tellurium, sodium, antimony, antimony, tin, vanadium, zinc, zirconium, Its alloys, their oxides, their compositions, and other combinations thereof.  
TW107116394A 2015-11-24 2016-11-24 Print-on pastes for modifying material properties of metal particle layers TWI698888B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562259636P 2015-11-24 2015-11-24
US62/259,636 2015-11-24
US201662318566P 2016-04-05 2016-04-05
US62/318,566 2016-04-05
US201662371236P 2016-08-05 2016-08-05
US62/371,236 2016-08-05
US201662423020P 2016-11-16 2016-11-16
US62/423,020 2016-11-16

Publications (2)

Publication Number Publication Date
TW201832246A true TW201832246A (en) 2018-09-01
TWI698888B TWI698888B (en) 2020-07-11

Family

ID=58764377

Family Applications (8)

Application Number Title Priority Date Filing Date
TW105217946U TWM544120U (en) 2015-11-24 2016-11-24 Fired multilayer stacks in silicon solar cells
TW105138566A TWI627763B (en) 2015-11-24 2016-11-24 Methods of forming solar cells with fired multilayer film stacks
TW105138568A TWI621275B (en) 2015-11-24 2016-11-24 Solar cells and modules with fired multilayer stacks
TW105138567A TWI613267B (en) 2015-11-24 2016-11-24 Print-on pastes for modifying material properties of metal particle layers
TW105217947U TWM542251U (en) 2015-11-24 2016-11-24 Fired multilayer stacks with modified intercalation and metal particle layers
TW105138569A TWI645982B (en) 2015-11-24 2016-11-24 Fired multilayer stacks for use in integrated circuits and solar cells
TW107116394A TWI698888B (en) 2015-11-24 2016-11-24 Print-on pastes for modifying material properties of metal particle layers
TW105217945U TWM544118U (en) 2015-11-24 2016-11-24 Fired multilayer stacks in silicon solar cell modules

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW105217946U TWM544120U (en) 2015-11-24 2016-11-24 Fired multilayer stacks in silicon solar cells
TW105138566A TWI627763B (en) 2015-11-24 2016-11-24 Methods of forming solar cells with fired multilayer film stacks
TW105138568A TWI621275B (en) 2015-11-24 2016-11-24 Solar cells and modules with fired multilayer stacks
TW105138567A TWI613267B (en) 2015-11-24 2016-11-24 Print-on pastes for modifying material properties of metal particle layers
TW105217947U TWM542251U (en) 2015-11-24 2016-11-24 Fired multilayer stacks with modified intercalation and metal particle layers
TW105138569A TWI645982B (en) 2015-11-24 2016-11-24 Fired multilayer stacks for use in integrated circuits and solar cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105217945U TWM544118U (en) 2015-11-24 2016-11-24 Fired multilayer stacks in silicon solar cell modules

Country Status (7)

Country Link
EP (1) EP3381047A4 (en)
JP (2) JP7006593B2 (en)
KR (1) KR20180087342A (en)
CN (7) CN207250530U (en)
SG (1) SG11201804392WA (en)
TW (8) TWM544120U (en)
WO (1) WO2017091782A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017091782A1 (en) * 2015-11-24 2017-06-01 Plant Pv, Inc Fired multilayer stacks for use in integrated circuits and solar cells
CN107454699B (en) * 2017-08-14 2020-11-20 湖南嘉业达电子有限公司 Electromagnetic induction heating film manufacturing method and electromagnetic induction heating film
CN107845694A (en) * 2017-11-03 2018-03-27 通威太阳能(安徽)有限公司 A kind of back surface field passivation technology solar battery sheet mixed slurry
CN108091709A (en) * 2017-12-20 2018-05-29 张汉钰 A kind of silicon zinc multidimensional photovoltaic material and preparation method thereof
JP7174049B2 (en) * 2018-02-09 2022-11-17 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. material set
CN108447780A (en) * 2018-02-11 2018-08-24 厦门市三安集成电路有限公司 A kind of ohmic contact structure of nitride compound semiconductor device and preparation method thereof
CN112384992A (en) * 2018-07-06 2021-02-19 昭和电工材料株式会社 Printing paste with metal-based additives for modifying the material properties of a metal particle layer
US11710580B2 (en) * 2018-07-06 2023-07-25 Senju Metal Industry Co., Ltd. Electrically conductive paste and sintered body
JP7108037B2 (en) 2018-08-06 2022-07-27 株式会社トクヤマ Method for recovering valuables from solar cell modules
KR20200021772A (en) * 2018-08-21 2020-03-02 엘지전자 주식회사 A compound semiconductor solar cell and method for manufacturing the same
CN109754905A (en) * 2019-02-27 2019-05-14 江苏正能电子科技有限公司 A kind of high thixotroping PERC crystal silicon solar energy battery back side silver paste and preparation method thereof
US11455521B2 (en) 2019-03-01 2022-09-27 International Business Machines Corporation Neuromorphic device driven by copper ion intercalation
CN110988728B (en) * 2019-11-25 2023-08-04 安徽绿沃循环能源科技有限公司 Method for rapidly diagnosing abnormal internal connection of lithium battery pack
JPWO2022181732A1 (en) * 2021-02-24 2022-09-01
WO2022181730A1 (en) * 2021-02-24 2022-09-01 昭和電工マテリアルズ株式会社 Solar cell element and solar cell
JPWO2022181731A1 (en) * 2021-02-24 2022-09-01
CN113087400B (en) * 2021-04-21 2023-07-07 贵州国锐鑫节能科技有限公司 Low-melting-point glass powder for improving conversion efficiency of solar cell and preparation method thereof
CN115000199B (en) * 2022-08-01 2022-10-25 一道新能源科技(衢州)有限公司 P type PERC single face battery structure

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930093A (en) * 1973-12-28 1975-12-30 Du Pont Bismuth-containing silver conductor compositions
US3876433A (en) * 1973-12-28 1975-04-08 Du Pont Bismuth-containing silver conductor compositions
US5320684A (en) * 1992-05-27 1994-06-14 Mobil Solar Energy Corporation Solar cell and method of making same
JPH06209115A (en) * 1993-01-12 1994-07-26 Sanyo Electric Co Ltd Solder part forming method of solar cell
US6084175A (en) * 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
JP4403654B2 (en) * 2000-11-16 2010-01-27 富士電機システムズ株式会社 Thin film solar cell
US7042035B2 (en) * 2002-08-02 2006-05-09 Unity Semiconductor Corporation Memory array with high temperature wiring
JP2004127987A (en) * 2002-09-30 2004-04-22 Sharp Corp Solar cell and method for manufacturing same
WO2005109524A1 (en) * 2004-05-07 2005-11-17 Mitsubishi Denki Kabushiki Kaisha Solar cell and manufacturing method thereof
US20060231802A1 (en) * 2005-04-14 2006-10-19 Takuya Konno Electroconductive thick film composition, electrode, and solar cell formed therefrom
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US7550319B2 (en) * 2005-09-01 2009-06-23 E. I. Du Pont De Nemours And Company Low temperature co-fired ceramic (LTCC) tape compositions, light emitting diode (LED) modules, lighting devices and method of forming thereof
US8063315B2 (en) * 2005-10-06 2011-11-22 Endicott Interconnect Technologies, Inc. Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
JP2007109809A (en) 2005-10-12 2007-04-26 Sharp Corp Method of manufacturing solar cell and flux for manufacturing solar cell
US8721931B2 (en) * 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
CN101236997A (en) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 Back contact layer of film silicon solar battery
CN101246923A (en) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 Back electrode of thin film silicon photovoltaic device
US7833439B2 (en) * 2007-07-24 2010-11-16 Ferro Corporation Ultra low-emissivity (ultra low E) silver coating
US8309844B2 (en) * 2007-08-29 2012-11-13 Ferro Corporation Thick film pastes for fire through applications in solar cells
WO2009044801A1 (en) * 2007-10-03 2009-04-09 Hitachi Chemical Company, Ltd. Adhesive composition, electronic component-mounted substrate using the adhesive composition, and semiconductor device
JP2009182290A (en) * 2008-02-01 2009-08-13 Mitsubishi Electric Corp Solar cell and method of manufacturing the same
CN101359564B (en) * 2008-09-16 2011-08-17 彩虹集团公司 Anti-Ag diffusion photosensitive and conductive pulp and method for preparing same
CN101931013B (en) * 2009-06-26 2012-06-20 比亚迪股份有限公司 Solar cell conductive paste and preparation method thereof
US20110048527A1 (en) * 2009-08-25 2011-03-03 E.I. Du Pont De Nemours And Company Silver thick film paste compositions and their use in conductors for photovoltaic cells
US8697476B2 (en) * 2010-04-30 2014-04-15 E I Du Pont De Nemours And Company Processes and compositions for forming photovoltaic devices with base metal buss bars
EP2579332B1 (en) * 2010-05-31 2021-02-17 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
JP2013531894A (en) * 2010-06-24 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming a silver back anode of a silicon solar cell
KR101665722B1 (en) * 2010-09-27 2016-10-24 엘지전자 주식회사 Solar cell and manufacturing method thereof
EP2448003A3 (en) * 2010-10-27 2012-08-08 Samsung Electronics Co., Ltd. Conductive paste comprising a conductive powder and a metallic glass for forming a solar cell electrode
JP5707885B2 (en) 2010-11-15 2015-04-30 三菱マテリアル株式会社 Power module substrate, power module substrate with cooler, power module, and method of manufacturing power module substrate
CN102122674B (en) * 2011-01-14 2013-01-09 中国科学院上海技术物理研究所 Crystalline silicon solar cell and preparation method thereof
US8858842B2 (en) * 2011-04-05 2014-10-14 E I Du Pont De Nemours And Company Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices
JP5806304B2 (en) * 2011-05-31 2015-11-10 京セラ株式会社 Solar cell and method for manufacturing the same
JP2013051112A (en) * 2011-08-31 2013-03-14 Sharp Corp Conductive paste, electrode for semiconductor device, semiconductor device, and method for producing semiconductor device
DE112012004085T5 (en) * 2011-09-29 2014-07-31 Noritake Co., Ltd. Lead-free conductive paste composition for solar cells
EP2816593B1 (en) * 2012-02-14 2020-01-15 Mitsubishi Materials Corporation Solder joint structure, power module, heat-sink-attached substrate for power module, method for producing said substrate, and paste for forming solder underlayer
WO2013123225A1 (en) * 2012-02-17 2013-08-22 Applied Materials, Inc. Passivation film stack for silicon-based solar cells
CN103426495B (en) * 2012-05-17 2016-03-30 比亚迪股份有限公司 The preparation technology of a kind of conductive paste for solar cell and preparation method thereof and solar battery sheet
CN102969039A (en) * 2012-10-31 2013-03-13 彩虹集团公司 Photosensitive conductive silver electrode slurry and preparation method thereof
EP2787511B1 (en) * 2013-04-02 2018-05-30 Heraeus Deutschland GmbH & Co. KG Particles comprising Al and Ag in electro-conductive pastes and solar cell preparation
JP6184731B2 (en) * 2013-04-25 2017-08-23 Dowaエレクトロニクス株式会社 Silver-bismuth powder, conductive paste and conductive film
US20150243812A1 (en) * 2013-06-20 2015-08-27 PLANT PV, Inc. Silver nanoparticle based composite solar metallization paste
US9536632B2 (en) * 2013-09-27 2017-01-03 Sunpower Corporation Mechanically deformed metal particles
US9761742B2 (en) * 2013-12-03 2017-09-12 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US20150194546A1 (en) * 2014-01-09 2015-07-09 Heraeus Precious Metals North America Conshohocken Llc Low-silver electroconductive paste
TWI652694B (en) * 2014-01-17 2019-03-01 日商納美仕有限公司 Conductive paste and method for manufacturing semiconductor device using the same
EP2913140B1 (en) * 2014-02-26 2018-01-03 Heraeus Precious Metals North America Conshohocken LLC Molybdenum-containing glass frit for electroconductive paste composition
JP6343993B2 (en) * 2014-03-25 2018-06-20 三菱マテリアル株式会社 Power module substrate and manufacturing method thereof
KR20150121603A (en) * 2014-04-21 2015-10-29 덕산하이메탈(주) Metal Particles
WO2017091782A1 (en) * 2015-11-24 2017-06-01 Plant Pv, Inc Fired multilayer stacks for use in integrated circuits and solar cells
CN206480631U (en) * 2015-11-24 2017-09-08 普兰特光伏有限公司 Sintered multilayer with improvement intercalation and metal particle layer is stacked

Also Published As

Publication number Publication date
CN107046067A (en) 2017-08-15
EP3381047A4 (en) 2019-07-03
TWM542251U (en) 2017-05-21
TWM544118U (en) 2017-06-21
TW201727930A (en) 2017-08-01
TWI621275B (en) 2018-04-11
CN107017311A (en) 2017-08-04
TWI698888B (en) 2020-07-11
TWI613267B (en) 2018-02-01
JP2021177558A (en) 2021-11-11
TW201726830A (en) 2017-08-01
TWM544120U (en) 2017-06-21
TW201727931A (en) 2017-08-01
TW201731681A (en) 2017-09-16
CN111816346A (en) 2020-10-23
TWI645982B (en) 2019-01-01
CN111276553A (en) 2020-06-12
WO2017091782A1 (en) 2017-06-01
SG11201804392WA (en) 2018-06-28
JP7006593B2 (en) 2022-01-24
JP2018535557A (en) 2018-11-29
CN106847368B (en) 2021-11-26
KR20180087342A (en) 2018-08-01
CN107017311B (en) 2019-08-02
CN207250530U (en) 2018-04-17
CN107039539A (en) 2017-08-11
EP3381047A1 (en) 2018-10-03
CN106847368A (en) 2017-06-13
TWI627763B (en) 2018-06-21
CN107046067B (en) 2018-08-17

Similar Documents

Publication Publication Date Title
TWI613267B (en) Print-on pastes for modifying material properties of metal particle layers
US10696851B2 (en) Print-on pastes for modifying material properties of metal particle layers
US20190019911A1 (en) Multi-layer metal film stacks for shingled silicon solar cell arrays
US20210292574A1 (en) Print-on pastes with metal-based additives for modifying material properties of metal particle layers
KR20200026189A (en) Multilayer Metal Film Stack for Shingle Silicon Solar Arrays
CN206480631U (en) Sintered multilayer with improvement intercalation and metal particle layer is stacked
TW201547043A (en) Electrode connection set, solar cell manufacturing method, solar cell and solar cell module
WO2015092900A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees