TW201806752A - Translucent film - Google Patents

Translucent film Download PDF

Info

Publication number
TW201806752A
TW201806752A TW106111001A TW106111001A TW201806752A TW 201806752 A TW201806752 A TW 201806752A TW 106111001 A TW106111001 A TW 106111001A TW 106111001 A TW106111001 A TW 106111001A TW 201806752 A TW201806752 A TW 201806752A
Authority
TW
Taiwan
Prior art keywords
layer
inorganic oxide
oxide layer
film
light
Prior art date
Application number
TW106111001A
Other languages
Chinese (zh)
Other versions
TWI724149B (en
Inventor
藤野望
梨木智剛
Original Assignee
日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工股份有限公司 filed Critical 日東電工股份有限公司
Publication of TW201806752A publication Critical patent/TW201806752A/en
Application granted granted Critical
Publication of TWI724149B publication Critical patent/TWI724149B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

A translucent film is provided with a transparent base material and a light transmissive conductive layer in sequence. The light transmissive conductive layer is provided with a first inorganic oxide layer, a metal layer, and a second inorganic oxide layer in sequence from the transparent base material. The first inorganic oxide layer does not contain crystal grains, and the second inorganic oxide layer does contain crystal grains.

Description

透光性膜Translucent film

本發明係關於一種透光性膜,詳細而言係關於一種較佳地用於光學用途之透光性膜。The present invention relates to a light-transmitting film, and in particular to a light-transmitting film that is preferably used for optical applications.

先前,已知有具備透明導電層之透明導電性膜等透光性膜被用於觸控面板等光學用途。 例如,提出有於玻璃基板上積層有依序形成有透明氧化物薄膜、銀系薄膜及透明氧化物薄膜之導電層的透明導電膜(例如參照專利文獻1)。於專利文獻1之透明導電膜中,兩層透明氧化導電膜均由含有氧化銦之混合氧化物所形成。 先前技術文獻 專利文獻 專利文獻1:日本專利特開平9-176837號公報Conventionally, it has been known that a light-transmitting film such as a transparent conductive film including a transparent conductive layer is used for optical applications such as a touch panel. For example, a transparent conductive film in which a conductive layer in which a transparent oxide film, a silver-based film, and a transparent oxide film are sequentially formed is laminated on a glass substrate has been proposed (for example, refer to Patent Document 1). In the transparent conductive film of Patent Document 1, both transparent transparent conductive films are formed of a mixed oxide containing indium oxide. Prior Art Literature Patent Literature Patent Literature 1: Japanese Patent Laid-Open No. 9-176837

[發明所欲解決之問題] 於專利文獻1中,由於在兩層透明氧化導電膜之間介置有銀系薄膜,故而低電阻優異。又,由於導電層為透明氧化物薄膜、銀系薄膜及透明氧化物薄膜之三層構造,故而於將導電層圖案化時,可抑制經圖案化之導電層(配線圖案)之視認。 然而,銀系薄膜對於濕熱之抵抗力較弱,即便銀系薄膜之上表面及下表面由透明氧化物薄膜被覆,銀系薄膜亦會腐蝕而變色。因此,透明導電膜之外觀變得不良。 本發明之目的在於提供一種低電阻及透明性優異並且濕熱耐久性優異之透光性膜。 [解決問題之技術手段] 本發明[1]包含一種透光性膜,其依序具備透明基材與透光性導電層,上述透光性導電層自上述透明基材起依序具備第1無機氧化物層、金屬層及第2無機氧化物層,且上述第1無機氧化物層不含結晶粒,上述第2無機氧化物層含有結晶粒。 本發明[2]包含如[1]所記載之透光性膜,其中上述金屬層為銀層或銀合金層。 本發明[3]包含如[1]或[2]所記載之透光性膜,其中上述第1無機氧化物層及上述第2無機氧化物層均含有氧化銦。 本發明[4]包含如[1]至[3]中任一項所記載之透光性膜,其中上述第1無機氧化物層及上述第2無機氧化物層均含有銦錫複合氧化物。 本發明[5]包含如[1]至[4]中任一項所記載之透光性膜,其中上述第2無機氧化物層係具有非晶質部及結晶質部之半結晶膜。 本發明[6]包含如[1]至[5]中任一項所記載之透光性膜,其中上述第2無機氧化物層含有於厚度方向上不貫通上述第2無機氧化物層之結晶粒。 本發明[7]包含如[1]至[6]中任一項所記載之透光性膜,其中上述透光性導電層具有圖案形狀。 本發明[8]包含如[7]所記載之透光性膜,其進而具備設置於上述透光性導電層之相對於上述透明基材為相反側之表面的黏著劑層。 [發明之效果] 根據本發明之透光性膜,低電阻及透明性優異,並且濕熱耐久性優異,因此可抑制因濕熱所致之外觀不良。[Problems to be Solved by the Invention] In Patent Document 1, since a silver-based thin film is interposed between two transparent oxide conductive films, it is excellent in low resistance. In addition, since the conductive layer has a three-layer structure of a transparent oxide film, a silver-based film, and a transparent oxide film, when the conductive layer is patterned, the visual recognition of the patterned conductive layer (wiring pattern) can be suppressed. However, the silver-based film is weak against moisture and heat, and even if the upper and lower surfaces of the silver-based film are covered with a transparent oxide film, the silver-based film will corrode and discolor. Therefore, the appearance of the transparent conductive film becomes poor. An object of the present invention is to provide a light-transmitting film excellent in low resistance and transparency, and excellent in wet heat durability. [Technical means for solving the problem] The present invention [1] includes a light-transmitting film, which includes a transparent substrate and a transparent conductive layer in this order, and the transparent conductive layer includes a first The inorganic oxide layer, the metal layer, and the second inorganic oxide layer. The first inorganic oxide layer does not contain crystal grains, and the second inorganic oxide layer contains crystal grains. The present invention [2] includes the light-transmitting film according to [1], wherein the metal layer is a silver layer or a silver alloy layer. The present invention [3] includes the translucent film according to [1] or [2], wherein the first inorganic oxide layer and the second inorganic oxide layer both contain indium oxide. [4] The present invention includes the light-transmitting film according to any one of [1] to [3], in which the first inorganic oxide layer and the second inorganic oxide layer both contain an indium tin composite oxide. The present invention [5] includes the translucent film according to any one of [1] to [4], wherein the second inorganic oxide layer is a semi-crystalline film having an amorphous portion and a crystalline portion. The present invention [6] includes the translucent film according to any one of [1] to [5], wherein the second inorganic oxide layer contains crystals that do not penetrate the second inorganic oxide layer in a thickness direction. grain. The present invention [7] includes the translucent film according to any one of [1] to [6], wherein the translucent conductive layer has a pattern shape. The present invention [8] includes the light-transmitting film according to [7], further including an adhesive layer provided on a surface of the light-transmitting conductive layer opposite to the transparent substrate. [Effects of the Invention] The light-transmitting film according to the present invention is excellent in low resistance and transparency, and is excellent in wet heat durability. Therefore, it is possible to suppress poor appearance due to wet heat.

[第1實施形態] 參照圖1,對本發明之第1實施形態之透光性膜1進行說明。 於圖1中,紙面上下方向為上下方向(厚度方向、第1方向),紙面上側為上側(厚度方向一側、第1方向一側),紙面下側為下側(厚度方向另一側、第1方向另一側)。於圖1中,紙面左右方向為左右方向(寬度方向、與第1方向正交之第2方向),紙面左側為左側(第2方向一側),紙面右側為右側(第2方向另一側)。於圖1中,紙厚方向為前後方向(與第1方向及第2方向正交之第3方向),紙面近前側為前側(第3方向一側),紙面裏側為後側(第3方向另一側)。具體而言,依據各圖之方向箭頭。 1.透光性膜 透光性膜1呈具有特定之厚度之膜形狀(包括片狀),沿與厚度方向正交之特定方向(前後方向及左右方向,即面方向)延伸,具有平坦之上表面及平坦之下表面(兩個主面)。透光性膜1係例如光學裝置(例如圖像顯示裝置、調光裝置)所具備之觸控面板用基材或紅外線反射用基材、調光面板等之一零件,即並非光學裝置。即,透光性膜1係用以製作光學裝置等之零件,且係不含LCD模組等圖像顯示元件或LED等光源,單獨流通,於產業上可利用之器件。又,透光性膜1係使可見光透過之膜,且包含透明導電性膜。 具體而言,如圖1所示,第1實施形態之透光性膜1係依序具備透明基材2、保護層3及透光性導電層4之透光性積層膜。即,透光性膜1具備透明基材2、配置於透明基材2之上側之保護層3、及配置於保護層3之上側之透光性導電層4。較佳為透光性膜1僅由透明基材2、保護層3及透光性導電層4所構成。以下,對各層進行詳細敍述。 2.透明基材 透明基材2係透光性膜1之最下層且係確保透光性膜1之機械強度之支持材。透明基材2係與保護層3一起支持透光性導電層4。 透明基材2包含例如高分子膜。 高分子膜具有透明性及可撓性。作為高分子膜之材料,可列舉:例如聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等聚酯樹脂;例如聚甲基丙烯酸酯等(甲基)丙烯酸系樹脂(丙烯酸系樹脂及/或甲基丙烯酸系樹脂);例如聚乙烯、聚丙烯、環烯烴聚合物等烯烴樹脂;例如聚碳酸酯樹脂、聚醚碸樹脂、聚芳酯樹脂、三聚氰胺樹脂、聚醯胺樹脂、聚醯亞胺樹脂、纖維素樹脂、聚苯乙烯樹脂、降𦯉烯等。該等高分子膜可單獨使用或併用兩種以上。就透明性、耐熱性、機械特性等觀點而言,較佳可列舉烯烴樹脂、聚酯樹脂等,更佳可列舉環烯烴聚合物、PET等。 透明基材2之厚度例如為2 μm以上,較佳為20 μm以上,又,例如為300 μm以下,較佳為200 μm以下,更佳為150 μm以下。 又,就保持第1無機氧化物層5之非晶質性之觀點而言,透明基材2較佳為含有微量之水。即,於透明基材2中,較佳為高分子膜含有水。 3.保護層 保護層3係用以使透光性導電層4之上表面不易產生擦傷(即獲得優異之耐擦傷性)之擦傷保護層。又,保護層3亦為如參照圖3般,於其後之步驟中以配線圖案等圖案形狀形成透光性導電層4後,以無法辨識非圖案部9與圖案部10之差異之方式(即,以抑制配線圖案之視認之方式),調整透光性膜1之光學物性之光學調整層。 保護層3具有膜形狀(包括片狀),以與透明基材2之上表面接觸之方式配置於透明基材2之整個上表面。 保護層3係由樹脂組合物形成。 樹脂組合物含有例如樹脂、粒子等。樹脂組合物較佳為含有樹脂,更佳為僅由樹脂構成。 作為樹脂,可列舉硬化性樹脂、熱塑性樹脂(例如聚烯烴樹脂)等,較佳可列舉硬化性樹脂。 作為硬化性樹脂,可列舉例如藉由活性能量射線(具體而言,紫外線、電子束等)之照射而硬化之活性能量射線硬化性樹脂、例如藉由加熱而硬化之熱硬化性樹脂等,較佳可列舉活性能量射線硬化性樹脂。 活性能量射線硬化性樹脂例如可列舉具有於分子中具有聚合性碳-碳雙鍵之官能基的聚合物。作為此種官能基,例如可列舉乙烯基、(甲基)丙烯醯基(甲基丙烯醯基及/或丙烯醯基)等。 作為活性能量射線硬化性樹脂,例如可列舉於側鏈含有官能基之(甲基)丙烯酸系樹脂(丙烯酸系樹脂及/或甲基丙烯酸系樹脂)等。 該等樹脂可單獨使用或併用兩種以上。 作為粒子,例如可列舉無機粒子、有機粒子等。作為無機粒子,可列舉例如二氧化矽粒子、例如包含氧化鋯、氧化鈦等之金屬氧化物粒子、例如碳酸鈣等碳酸鹽粒子等。作為有機粒子,例如可列舉交聯丙烯酸系樹脂粒子等。 保護層3之厚度例如為0.1 μm以上,較佳為1 μm以上,又,例如為10 μm以下,較佳為5 μm以下。保護層3之厚度例如藉由利用透過型電子顯微鏡(TEM)之剖面觀察而進行測定。 4.透光性導電層 透光性導電層4為導電層,係用以如參照圖3般於其後之步驟中以配線圖案形成而形成圖案部10之導電層。又,透光性導電層4亦為透明導電層。 如圖1所示,透光性導電層4係透光性膜1之最上層,且具有膜形狀(包括片狀),以與保護層3之上表面接觸之方式配置於保護層3之整個上表面。 透光性導電層4依序具備第1無機氧化物層5、金屬層6及第2無機氧化物層7。即,透光性導電層4具備配置於保護層3之上側之第1無機氧化物層5、配置於第1無機氧化物層5之上側之金屬層6、及配置於金屬層6之上側之第2無機氧化物層7。又,透光性導電層4較佳為僅由第1無機氧化物層5、金屬層6及第2無機氧化物層7所構成。 5.第1無機氧化物層 第1無機氧化物層5係防止源自透明基材2所含有之水之氫、或源自保護層3所含有之有機物之碳侵入金屬層6的阻隔層。進而,第1無機氧化物層5亦為用以與後述之第2無機氧化物層7一起抑制金屬層6之可見光反射率,提高透光性導電層4之可見光透過率的光學調整層。第1無機氧化物層5較佳為與後述之金屬層6一起對透光性導電層4賦予導電性之導電層,更佳為透明導電層。 第1無機氧化物層5係透光性導電層4之最下層,且具有膜形狀(包括片狀),以與保護層3之上表面接觸之方式配置於保護層3之整個上表面。 作為形成第1無機氧化物層5之無機氧化物,例如可列舉由選自由In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr所組成之群中之至少一種金屬所形成之金屬氧化物等。可於金屬氧化物中視需要進而摻雜上述群所示之金屬原子。 作為無機氧化物,就降低表面電阻值之觀點、及確保優異之透明性之觀點而言,較佳可列舉含有氧化銦之氧化物(含氧化銦之氧化物)。 含氧化銦之氧化物可僅含有銦(In)作為金屬元素,又,亦可含有銦(In)以外之(半)金屬元素。含氧化銦之氧化物較佳為主金屬元素為銦(In)。主金屬元素為銦之含氧化銦之氧化物具有優異之阻隔功能,易於較佳地抑制因水等之影響所致之金屬層6之腐蝕。 含氧化銦之氧化物藉由含有單數或複數種(半)金屬元素作為雜質元素,可使導電性、透明性、耐久性進一步提高。第1無機氧化物層5中之相對於主金屬元素In之原子數之雜質金屬元素之含有原子數比(雜質金屬元素之原子數/In之原子數)例如未達0.50,較佳為0.40以下,更佳為0.30以下,進而較佳為0.20以下,又,例如為0.01以上,較佳為0.05以上,更佳為0.10以上。藉此,可獲得透明性、濕熱耐久性優異之無機氧化物層。 作為含氧化銦之氧化物,具體而言,例如可列舉銦鋅複合氧化物(IZO)、銦鎵複合氧化物(IGO)、銦鎵鋅複合氧化物(IGZO)、銦錫複合氧化物(ITO),更佳可列舉銦錫複合氧化物(ITO)。本說明書中之所謂“ITO”,只要為至少含有銦(In)及錫(Sn)之複合氧化物即可,亦可含有該等以外之追加成分。作為追加成分,例如可列舉In、Sn以外之金屬元素,例如可列舉上述群所示之金屬元素、及該等之組合。追加成分之含量並無特別限制,例如為5質量%以下。 ITO所含有之氧化錫(SnO2 )之含量相對於氧化錫及氧化銦(In2 O3 )之合計量,例如為0.5質量%以上,較佳為3質量%以上,更佳為6質量%以上,進而較佳為8質量%以上,尤佳為10質量%以上,又,例如為35質量%以下,較佳為20質量%以下,更佳為15質量%以下,進而較佳為13質量%以下。氧化銦之含量(In2 O3 )為氧化錫(SnO2 )之含量之剩餘部分。藉由將ITO所含有之氧化錫(SnO2 )之含量設為上述範圍,可調整ITO膜之結晶化度。尤其藉由使ITO膜內之氧化錫之含量變多,可抑制因加熱所致之ITO膜之完全結晶化,獲得半結晶膜。 ITO所含有之Sn相對於In之原子數比Sn/In例如為0.004以上,較佳為0.02以上,更佳為0.03以上,進而較佳為0.04以上,尤佳為0.05以上,又,例如為0.4以下,較佳為0.3以下,更佳為0.2以下,進而較佳為0.10以下。Sn相對於In之原子數比可藉由X射線光電子光譜法(ESCA:Electron Spectroscopy for Chemical Analysis)而求出。藉由將In與Sn之原子數比設為上述範圍,容易獲得環境可靠性優異之膜質。 第1無機氧化物層5不含結晶粒。即,第1無機氧化物層5為非晶質。藉此,可提高第1無機氧化物層5表面之潤濕性,而於第1無機氧化物層5之上表面更確實地較薄且均勻地成膜後述之金屬層6。因此,可使透光性導電層4之膜質良好,提高濕熱耐久性。 於本發明中,所謂「不含結晶粒」係指於使用200,000倍下之剖面TEM圖像觀察第1無機氧化物層5之情形時,於與厚度方向正交之面方向(左右方向或前後方向)500 nm之範圍內未觀察到結晶粒。 第1無機氧化物層5之無機氧化物之含有比率例如為95質量%以上,較佳為98質量%以上,更佳為99質量%以上,又,例如為100質量%以下。 第1無機氧化物層5之厚度T1例如為5 nm以上,較佳為20 nm以上,更佳為30 nm以上,又,例如為100 nm以下,較佳為60 nm以下,更佳為50 nm以下。若第1無機氧化物層5之厚度T1為上述範圍,則容易將透光性導電層4之可見光透過率調整為較高之水準。第1無機氧化物層5之厚度T1例如藉由利用透過型電子顯微鏡(TEM)之剖面觀察而進行測定。 6.金屬層 金屬層6係與第1無機氧化物層5及第2無機氧化物層7一起對透光性導電層4賦予導電性之導電層。又,金屬層6亦為降低透光性導電層4之表面電阻值之低電阻化層。又,金屬層6較佳為亦為用以賦予較高之紅外線反射率(尤其近紅外線之平均反射率)之紅外線反射層。 金屬層6具有膜形狀(包括片狀),以與第1無機氧化物層5之上表面接觸之方式配置於第1無機氧化物層5之上表面。 形成金屬層6之金屬只要為表面電阻較小之金屬,則無限定,例如可列舉包含選自由Ti、Si、Nb、In、Zn、Sn、Au、Ag、Cu、Al、Co、Cr、Ni、Pb、Pd、Pt、Cu、Ge、Ru、Nd、Mg、Ca、Na、W、Zr、Ta及Hf所組成之群中之一種金屬、或含有其等之兩種以上之金屬之合金。 作為金屬,較佳可列舉銀(Ag)、銀合金,更佳可列舉銀合金。若金屬為銀或銀合金,則可減小透光性導電層4之電阻值,並且可獲得近紅外線區域(波長850~2500 nm)之平均反射率尤其高之透光性導電層4,亦可較佳地應用於在室外使用之畫質顯示裝置用途。 銀合金含有銀作為主成分,且含有其他金屬作為副成分。副成分之金屬元素並無限定。作為銀合金,例如可列舉:Ag-Cu合金、Ag-Pd合金、Ag-Pd-Cu合金、Ag-Pd-Cu-Ge合金、Ag-Cu-Au合金、Ag-Cu-In合金、Ag-Cu-Sn合金、Ag-Ru-Cu合金、Ag-Ru-Au合金、Ag-Nd合金、Ag-Mg合金、Ag-Ca合金、Ag-Na合金、Ag-Ni合金、Ag-Ti合金、Ag-In合金、Ag-Sn合金等。就濕熱耐久性之觀點而言,作為銀合金,較佳可列舉Ag-Cu合金、Ag-Cu-In合金、Ag-Cu-Sn合金、Ag-Pd合金、Ag-Pd-Cu合金等。 銀合金中之銀之含有比率例如為80質量%以上,較佳為90質量%以上,更佳為95質量%以上,又,例如為99.9質量%以下。銀合金中之其他金屬之含有比率為上述銀之含有比率之剩餘部分。 就提高透光性導電層4之透過率之觀點而言,金屬層6之厚度T3例如為1 nm以上,較佳為5 nm以上,又,例如為20 nm以下,較佳為10 nm以下。金屬層6之厚度T3例如藉由利用透過型電子顯微鏡(TEM)之剖面觀察而進行測定。 7.第2無機氧化物層 第2無機氧化物層7係防止外部之氧氣或水分等侵入金屬層6之阻隔層,尤其為抑制因濕熱所致之金屬層6之變色之阻隔層。又,第2無機氧化物層7亦為用以抑制金屬層6之可見光反射率,提高透光性導電層4之可見光透過率之光學調整層。第2無機氧化物層7較佳為與金屬層6一起對透光性導電層4賦予導電性之導電層,更佳為透明導電層。 第2無機氧化物層7係透光性導電層4之最上層,且具有膜形狀(包括片狀),以與金屬層6之上表面接觸之方式配置於金屬層6之整個上表面。 形成第2無機氧化物層7之無機氧化物可列舉第1無機氧化物層5中例示之無機氧化物,較佳可列舉含氧化銦之氧化物,更佳可列舉主金屬元素為銦(In)之含氧化銦之氧化物,進而較佳可列舉ITO。 形成第2無機氧化物層7之無機氧化物可與形成第1無機氧化物層5之無機氧化物相同或不同,就蝕刻性或濕熱耐久性之觀點而言,較佳為與第1無機氧化物層5相同之無機氧化物。 於第2無機氧化物層7包含含氧化銦之氧化物之情形時,第2無機氧化物層7中之相對於主金屬元素In之原子數之雜質金屬元素之含有原子數比(雜質金屬元素之原子數/In之原子數)與第1無機氧化物層5中之「雜質金屬元素之原子數/In之原子數」相同或為其以上(例如為0.001以上)。 於第2無機氧化物層7包含ITO之情形時,ITO所含有之氧化錫(SnO2 )之含量及Sn相對於In之原子數比與第1無機氧化物層5相同。 於第1無機氧化物層5及第2無機氧化物層7均包含ITO之情形時,第2無機氧化物層7所含有之氧化錫(SnO2 )之含量較佳為與第1無機氧化物層5所含有之氧化錫(SnO2 )之含量相同或為其以上(例如為0.1質量%以上)。又,第2無機氧化物層7所含有之Sn相對於In之原子數比Sn/In較佳為與第1無機氧化物層5所含有之Sn相對於In之原子數比相同或為其以上(具體而言為0.001以上)。第2無機氧化物層7與大氣接觸而容易氧化,較第1無機氧化物層5而容易結晶化,因此藉由將第2無機氧化物層7中之氧化錫(SnO2 )之含量、或Sn相對於In之原子數比設為與第1無機氧化物層5之其等相同或為其以上,容易控制第2無機氧化物層7之結晶化度。 第2無機氧化物層7中之無機氧化物之含有比率例如為95質量%以上,較佳為98質量%以上,更佳為99質量%以上,又,例如為100質量%以下。 第2無機氧化物層7含有結晶粒11(參照圖2A或圖2B)。藉此,結晶粒11之膜構造穩定,不易使水透過,因此可抑制來自外部之水通過第2無機氧化物層7侵入金屬層6。因此,可使透光性導電層4之濕熱耐久性變得良好。 具體而言,第2無機氧化物層7為結晶膜。作為結晶膜,例如,可為如圖2A所示般於側剖視圖(尤其剖面TEM圖像)中於面方向整體上連續地含有結晶粒11之完全結晶膜,又,亦可為如圖2B所示般含有非晶質部12(未結晶化之部分)及結晶質部13(即包含結晶粒11之部分)之半結晶膜。就可含有後述之第2結晶粒11b,濕熱耐久性更優異之觀點而言,較佳可列舉半結晶膜。 於本發明中,所謂「含有結晶粒」,係指於使用200,000倍下之剖面TEM圖像觀察第2無機氧化物層7之情形時,於面方向500 nm之範圍內具有至少1個以上之結晶粒11。於上述範圍內,結晶粒11之數量較佳為2以上,更佳為3以上,進而較佳為5以上,又,具有之結晶粒11較佳為50以下,更佳為40以下,進而較佳為30以下。 又,於藉由100,000倍下之平面TEM圖像觀察第2無機氧化物層7之上表面之情形時,結晶粒11所占之面積比率例如為5%以上,較佳為10%以上,更佳為20%以上,又,例如為100%以下,較佳為90%以下,更佳為80%以下,進而較佳為70%以下,尤佳為60%以下。 再者,藉由平面TEM圖像算出結晶粒所占之面積比率時,於上述記載之條件下確認第1無機氧化物層5之剖面TEM圖像,確認於第1無機氧化物層5內不存在結晶粒後,觀察平面TEM圖像。有僅藉由平面TEM圖像而難以判斷為存在於第1無機氧化物層5及第2無機氧化物層7中之哪一層之結晶粒的情況。因此,於本發明中,於藉由剖面TEM圖像確認於第1無機氧化物層5不存在結晶粒後,觀察平面TEM圖像,藉此判斷為可觀察到第2無機氧化物層7之結晶粒11。 第2無機氧化物層7中所含之結晶粒11之大小例如為3 nm以上,較佳為5 nm以上,更佳為10 nm以上,且例如為200 nm以下,較佳為100 nm以下,更佳為80 nm以下,進而較佳為50 nm以下。於第2無機氧化物層7之觀察面積內,可含有上述範圍以外之結晶粒,但其面積比率較佳為30%以下,更佳為20%以下。更佳為第2無機氧化物層7中所含之結晶粒11均包含上述範圍之大小之結晶粒。結晶粒11之大小於使用200,000倍下之剖面TEM圖像觀察第2無機氧化物層7之情形時為各結晶粒11可取得之長度之最大值。 第2無機氧化物層7中所含之結晶粒11中最大之結晶粒11(最大結晶粒)之大小例如為10 nm以上,較佳為20 nm以上,又,例如為200 nm以下,較佳為100 nm以下。 結晶粒之形狀並無限定,例如可列舉剖視大致三角形狀、剖視大致矩形狀等。 作為結晶粒11,可列舉於厚度方向上貫通第2無機氧化物層7之第1結晶粒11a、及於厚度方向上不貫通第2無機氧化物層7之第2結晶粒11b。 第1結晶粒11a係以其上端自第2無機氧化物層7之上表面露出且其下端自第2無機氧化物層7之下表面露出之方式成長之結晶粒。第1結晶粒11a之厚度方向長度與第2無機氧化物層7之厚度相同。 第2結晶粒11b係以其上端及下端之至少一端不自第2無機氧化物層7之表面(上表面或下表面)露出之方式成長之結晶粒。第2結晶粒11b較佳為以其上端自第2無機氧化物層7之上表面露出且其下端不自第2無機氧化物層7之下表面露出之方式形成。 第2結晶粒11b之厚度方向長度之平均值較第2無機氧化物層7之厚度(T2)短,例如相對於第2無機氧化物層7之厚度100%,例如為98%以下,較佳為90%以下,更佳為80%以下,又,例如為5%以上,較佳為10%以上,更佳為20%以上。 第2無機氧化物層7較佳為具有第2結晶粒11b。藉此,由於結晶粒11之晶界未於厚度方向上貫通,故而可抑制水沿著晶界而於厚度方向上通過第2無機氧化物層7。 第1結晶粒11a之數量例如為0以上,較佳為1以上,又,例如為30以下,較佳為10以下。 第2結晶粒11b之數量較佳為多於第1結晶粒11a之數量,具體而言,較佳為1以上,更佳為2以上,進而較佳為3以上,又,較佳為50以下,更佳為40以下,進而較佳為30以下。 第2無機氧化物層7之厚度T2例如為5 nm以上,較佳為20 nm以上,進而較佳為30 nm以上,又,例如為100 nm以下,較佳為60 nm以下,更佳為50 nm以下。若第2無機氧化物層7之厚度T2為上述範圍,則容易將透光性導電層4之可見光透過率調整為較高之水準。第2無機氧化物層7之厚度T2例如藉由利用透過型電子顯微鏡(TEM)之剖面觀察而進行測定。 第2無機氧化物層7之厚度T2相對於第1無機氧化物層5之厚度T1之比(T2/T1)例如為0.5以上,較佳為0.75以上,又,例如為1.5以下,較佳為1.25以下。若比(T2/T1)為上述下限以上,且為上述上限以下,則即便為濕熱環境下,亦可進一步抑制金屬層6之劣化。 第2無機氧化物層7之厚度T2相對於金屬層6之厚度T3之比(T2/T3)例如為2.0以上,較佳為3.0以上,又,例如為10以下,較佳為8.0以下。 而且,透光性導電層4之厚度、即第1無機氧化物層5、金屬層6及第2無機氧化物層7之總厚度例如為20 nm以上,較佳為40 nm以上,更佳為60 nm以上,進而較佳為80 nm以上,又,例如為150 nm以下,較佳為120 nm以下,更佳為100 nm以下。 又,透光性導電層4可如圖3所示般被圖案化。即,透光性導電層4可具有配線圖案等圖案形狀。 圖案形狀具有非圖案部9及圖案部10。圖案部10形成為條紋形狀等,例如於前後方向上延伸,於左右方向上相互隔開間隔(非圖案部9)而整齊排列配置有複數個。非圖案部9係由鄰接之圖案部10之側面及保護層3之上表面劃分。各圖案部10之寬度L例如為1 μm以上且3000 μm以下。鄰接之圖案部10之間隔S(即非圖案部9之寬度)例如為1 μm以上且3000 μm以下。 8.透光性膜之製造方法 其次,對製造透光性膜1之方法進行說明。 製造透光性膜1時,例如於透明基材2上將保護層3、第1無機氧化物層5、金屬層6及第2無機氧化物層7按照上述順序配置(積層)。 於該方法中,如參照圖1般,首先準備透明基材2。 所要準備之透明基材2(高分子膜)中之水分量並無限定,例如為10 μg/cm2 以上,較佳為15 μg/cm2 以上,又,例如為200 μg/cm2 以下,較佳為170 μg/cm2 以下。若水分量為上述下限以上,則對第1無機氧化物層5賦予氫原子等,而抑制因後述之加熱而導致第1無機氧化物層5結晶化,易於維持第1無機氧化物層5之非晶質性。又,若水分量為上述上限以下,則可藉由加熱步驟等而確實地獲得含有結晶粒11之第2無機氧化物層7。透明基材2中之水分量係依據JIS K 7251(2002年)B法-水分汽化法而進行測定。 又,透明基材2(高分子膜)中所含有之水之相對於透明基材2之含量例如為0.05質量%以上,較佳為0.1質量%以上,又,例如為1.5質量%以下,較佳為1.0質量%以下,更佳為0.5質量%以下。 再者,上述水之一部分或全部於其後所說明之脫氣處理中釋出至外部。 繼而,於透明基材2之上表面,藉由例如濕式方式而配置樹脂組合物。 具體而言,首先,將樹脂組合物塗佈於透明基材2之上表面。其後,於樹脂組合物含有活性能量射線硬化性樹脂之情形時照射活性能量射線。 藉此,可將膜形狀之保護層3形成於透明基材2之整個上表面。即,獲得具備透明基材2及保護層3之附保護層之透明基材14。 其後,視需要對附保護層之透明基材14進行脫氣處理。 對附保護層之透明基材14進行脫氣處理時,將附保護層之透明基材14放置於例如1×10-1 Pa以下,較佳為1×10-2 Pa以下,又,例如為1×10-6 Pa以上之減壓氛圍下。脫氣處理係使用例如乾式裝置所具備之排氣裝置(具體而言,渦輪分子泵等)而實施。 藉由該脫氣處理,透明基材2所含有之水之一部分或保護層3所含有之有機物之一部分釋出至外部。 繼而,藉由例如乾式方式而將透光性導電層4配置於保護層3之上表面。 具體而言,將第1無機氧化物層5、金屬層6及第2無機氧化物層7之各者依序藉由乾式方式而進行配置。 作為乾式方式,例如可列舉真空蒸鍍法、濺鍍法、離子鍍覆法等。較佳為可列舉濺鍍法。具體而言,可列舉磁控濺鍍法。 作為濺鍍法所使用之氣體,例如可列舉Ar等惰性氣體。又,可視需要併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體之流量比並無特別限定,以反應性氣體之流量相對於惰性氣體之流量之比計,例如為0.1/100以上,較佳為1/100以上,又,例如為5/100以下。 具體而言,於形成第1無機氧化物層5時,作為氣體,較佳為併用惰性氣體及反應性氣體。於形成金屬層6時,作為氣體,較佳為單獨使用惰性氣體。於形成第2無機氧化物層7時,作為氣體,較佳為併用惰性氣體及反應性氣體。 於第1無機氧化物層5或第2無機氧化物層7含有氧化銦之情形時,各層之電阻行為依存於反應性氣體之導入量而變化,於反應性氣體導入量(x軸)-表面電阻值(y軸)之曲線圖中,描繪向下凸起之拋物線。此時,第1無機氧化物層5或第2無機氧化物層7所含有之反應性氣體之量較佳為電阻值成為最小值(即拋物線之反曲點)附近之導入量,具體而言,較佳為電阻值成為最小值之導入量±20%之導入量。 於採用濺鍍法之情形時,作為靶材,可列舉構成各層之上述無機氧化物或金屬。 濺鍍法所使用之電源並無限定,例如可列舉DC電源、MF/AC電源及RF電源之單獨使用或併用,較佳可列舉DC電源。 又,較佳為於藉由濺鍍法形成第1無機氧化物層5時對透明基材2(及保護層3)進行冷卻。具體而言,使透明基材2之下表面與冷卻裝置(例如冷卻輥)等接觸而將透明基材2(及保護層3)冷卻。藉此,於形成第1無機氧化物層5時,可抑制藉由濺鍍產生之蒸鍍熱等使透明基材2所含有之水、及保護層3所含有之有機物大量地釋出從而使第1無機氧化物層5中過量地含有水。冷卻溫度例如為-30℃以上,較佳為-10℃以上,又,例如為60℃以下,較佳為40℃以下,更佳為30℃以下,進而較佳為20℃以下,尤佳為未達0℃。又,較佳為第1無機氧化物層5、金屬層6及第2無機氧化物層7均一面於上述溫度範圍內進行冷卻一面進行濺鍍形成。藉此,可抑制金屬層6之凝聚或第2無機氧化物層7之過度氧化。 藉此,可將依序形成有第1無機氧化物層5、金屬層6及第2無機氧化物層7之透光性導電層4形成於保護層3上而獲得透光性導電層積層體。此時,剛成膜後(例如透光性導電層積層體形成後24小時以內)之第1無機氧化物層5及第2無機氧化物層7均不含結晶粒11。 繼而,實施使第2無機氧化物層7產生結晶粒11之結晶化步驟。結晶化步驟只要可形成結晶粒11,則無限定,例如可列舉加熱步驟。即,對透光性導電層積層體進行加熱。 再者,加熱步驟亦可不僅為以使上述結晶粒11產生為目的之加熱,而且為伴隨著透光性導電層積層體之捲曲去除、或銀漿配線之乾燥形成等而附隨性地實施之加熱。 加熱溫度可適當設定,例如為30℃以上,較佳為40℃以上,更佳為80℃以上,又,例如為180℃以下,較佳為150℃以下。 加熱時間並無限定,根據加熱溫度而設定,例如為1分鐘以上,較佳為10分鐘以上,更佳為30分鐘以上,又,例如為4000小時以下,較佳為100小時以下。 加熱可於大氣氛圍下、惰性氛圍下、真空下中之任一者實施,就容易結晶化之觀點而言,較佳為於大氣氛圍下實施。 藉由該加熱步驟,第2無機氧化物層7結晶化,於第2無機氧化物層7內存在結晶粒11。尤其,關於第2無機氧化物層7,介置於透明基材2與第2無機氧化物層7之間之金屬層6會阻隔阻礙結晶化之來自透明基材2之水或來自保護層3之有機物,且藉由於加熱步驟時露出而容易吸收結晶化所需要之氧,因此第2無機氧化物層7可容易地結晶化。再者,第1無機氧化物層5受水或有機物之影響較大,又,不易吸收氧,因此阻礙結晶粒11之成長,維持非晶質性。 藉此,如圖1所示,可獲得依序具備透明基材2、保護層3、及透光性導電層4(第1無機氧化物層5、金屬層6及第2無機氧化物層7),且僅第2無機氧化物層7含有結晶粒11的透光性膜1。 透光性導電層4之表面電阻值例如為40 Ω/□以下,較佳為30 Ω/□以下,更佳為20 Ω/□以下,進而較佳為15 Ω/□以下,又,例如為0.1 Ω/□以上,較佳為1 Ω/□以上,更佳為5 Ω/□以上。 透光性導電層4之比電阻例如為2.5×10-4 Ω・cm以下,較佳為2.0×10-4 Ω・cm以下,更佳為1.1×10-4 Ω・cm以下,又,例如為0.01×10-4 Ω・cm以上,較佳為0.1×10-4 Ω・cm以上,更佳為0.5×10-4 Ω・cm以上。 透光性導電層4之比電阻係使用透光性導電層4之厚度(第1無機氧化物層、金屬層6、第2無機氧化物層7之總厚度)與透光性導電層4之表面電阻值而算出。 又,透光性導電層4較佳為近紅外線(波長850~2500 nm)之平均反射率較高,例如具備近紅外線區域之反射率較高之金屬層6(例如含有銀或銀合金之金屬層6)。透光性導電層4與例如包含導電性氧化物(例如ITO等)之透明無機氧化物相比,近紅外線之平均反射率較高,可有效率地遮斷太陽光等熱線。因此,亦可較佳地應用於在面板溫度容易上升之環境(例如室外等)下使用之圖像顯示裝置。透光性導電層4之近紅外線(波長850~2500 nm)之平均反射率例如為10%以上,較佳為20%以上,更佳為50%以上,又,例如為95%以下,較佳為90%以下。 透光性膜1具備於金屬層6之上表面及下表面具備光學調整層(第1無機氧化物層5及第2無機氧化物層7)之透光性導電層4,因此即便透光性導電層4包含可見光反射率一般較高之金屬層6(具體而言,例如波長550 nm之反射率為15%以上、進而為30%以上之金屬層6),亦可實現較高之可見光透過率。透光性膜1之可見光透過率例如為60%以上,較佳為80%以上,更佳為85%以上,又,例如為95%以下。 透光性膜1之總厚度例如為2 μm以上,較佳為20 μm以上,又,例如為300 μm以下,較佳為200 μm以下,更佳為150 μm以下。 繼而,於使透光性導電層4形成圖案形狀之情形時,藉由蝕刻將透光性導電層4圖案化。 具體而言,首先,將感光性膜配置於第2無機氧化物層7之整個上表面,繼而,隔著具有與非圖案部9及圖案部10對應之圖案之光罩進行曝光,其後進行顯影,藉此將與非圖案部9對應之感光性膜去除。藉此,於成為圖案部10之透光性導電層4之上表面形成具有與圖案部相同之圖案之抗蝕塗層。其後,使用蝕刻液對自抗蝕塗層露出之透光性導電層4進行蝕刻。作為蝕刻液,例如可列舉鹽酸、硫酸、硝酸、乙酸、草酸、磷酸及該等之混酸等酸。 其後,藉由例如剝離等而將抗蝕塗層自第2無機氧化物層7之上表面去除。 藉此,如圖3所示,可獲得依序具備透明基材2、保護層3及具有圖案形狀之透光性導電層4之透光性膜1(圖案化透光性膜)。 再者,可藉由捲對捲方式實施上述製造方法。又,亦可藉由批次方式實施一部分或全部。 其後,透光性膜1設於例如光學裝置。作為光學裝置,例如可列舉圖像顯示裝置、調光裝置等。 於將透光性膜1設於圖像顯示裝置(具體而言,具有LCD模組等圖像顯示元件之圖像顯示裝置)之情形時,透光性膜1例如用作觸控面板用基材。作為觸控面板之形式,可列舉光學方式、超音波方式、靜電電容方式、電阻膜方式等各種方式,尤其較佳地用於靜電電容方式之觸控面板。 又,可將透光性膜1用作例如近紅外線反射用基材。例如藉由將波長850~2500 nm之近紅外線之平均反射率較高(例如10%以上)之透光性膜1設於圖像顯示裝置,可較佳地用於面向室外使用之畫質顯示裝置。透光性膜1例如亦可作為經由黏著層或接著層貼合偏光膜或偏光板等偏光元件而成之透光性導電層積層偏光膜而設於圖像顯示裝置。 又,於將透光性膜1設於調光裝置(具體而言,具有LED等光源之調光裝置)之情形時,透光性膜1例如作為調光膜而設置。 9.作用效果 根據第1實施形態之透光性膜1,透光性導電層4依序具備不含結晶粒11之第1無機氧化物層5、金屬層6及含有結晶粒11之第2無機氧化物層7。因此,可抑制大氣中之水於厚度方向上通過第2無機氧化物層7而侵入金屬層6。又,第1無機氧化物層5之潤濕性良好,可於第1無機氧化物層5之上表面較薄且均勻地成膜金屬層6及第2無機氧化物層7,因此透光性導電層4之膜質良好。因此,濕熱耐久性優異。即,可抑制金屬層6之腐蝕或變色,可抑制因濕熱所致之外觀不良。 又,透光性導電層4於第1無機氧化物層5與第2無機氧化物層7之間介置有金屬層6,因此可降低表面電阻值。 進而,透光性導電層4為第1無機氧化物層5、金屬層6及第2無機氧化物層7之三層構造,因此透明性優異。其結果為,於將透光性導電層4圖案化時可抑制配線圖案之視認。 又,於透光性膜1中,若金屬層6為銀層或銀合金層,則可變得更低電阻,又,近紅外線之平均反射率較高,可有效率地遮斷太陽光等熱線。 又,於透光性膜1中,若第1無機氧化物層5及第2無機氧化物層7均含有銦錫複合氧化物,則濕熱耐久性更優異。又,透明性優異,可有效地抑制配線圖案之視認。 又,於透光性膜1中,若第2無機氧化物層7為具有非晶質部12及結晶質部13之半結晶膜,則濕熱耐久性更優異。 又,於透光性膜1中,若第2無機氧化物層7含有於厚度方向上不貫通第2無機氧化物層7之第2結晶粒11b,則可進一步抑制水沿著晶界而於厚度方向上通過第2無機氧化物層7而侵入金屬層6。因此,濕熱耐久性更優異。 尤其,於在第1無機氧化物層5與第2無機氧化物層7之間含有金屬層6之三層構造之情形時,相對較容易產生金屬層6之凝聚或腐蝕(變色),有導致外觀不良或電阻不良之虞。由此,於第2無機氧化物層7中,有第1結晶粒11a越多,則水越容易侵入金屬層6,濕熱耐久性越難以提高之虞。另一方面,於第2無機氧化物層7中,第2結晶粒11b越多,則可越有效地防止水向金屬層6附近之侵入,可進一步提高濕熱耐久性。 另一方面,例如於如先前技術般透光性導電層4為未介置金屬層6之第1無機氧化物層5及第2無機氧化物層7之雙層構造之情形時,無機氧化物層彼此接觸,因此不可能產生如上所述之伴隨著金屬層6之凝聚之外觀不良等。因此,於此種情形時,第2無機氧化物層7亦可大量地具有在厚度方向上貫通之第1結晶粒11a,就使結晶化之特性(低電阻等)為最大限度之觀點而言,第2無機氧化物層7較佳為完全結晶膜。 又,於透光性膜1中,透光性導電層4只要具有圖案形狀,則可較佳地用作例如觸控面板用基材、近紅外線反射用基材。尤其,於圖案形狀之透光性導電層4(配線圖案)中,對於沿厚度方向侵入之水而言濕熱耐久性亦優異,因此可確實地抑制金屬層6之上表面之腐蝕或變色。 [第2實施形態] 參照圖4,對第2實施形態之透光性膜1進行說明。再者,於第2實施形態中,對與上述第1實施形態相同之構件及步驟標註相同之參照符號,省略其詳細之說明。 具體而言,如圖4所示,第2實施形態之透光性膜1係依序具備透明基材2、保護層3、透光性導電層4及黏著劑層15之透光性積層膜。即,透光性膜1具備透明基材2、配置於透明基材2之上側之保護層3、配置於保護層3之上側之透光性導電層4、及設於透光性導電層4之上側之黏著劑層15。較佳為透光性膜1僅由透明基材2、保護層3、透光性導電層4及黏著劑層15所構成。 透光性導電層4具有圖案形狀。即,透光性導電層4具備非圖案部9及圖案部10。 黏著劑層15係於透光性膜1之透光性導電層4側配置透明保護層而製作光學裝置時用以將透明保護層與透光性膜1固定之接著層。又,黏著劑層15亦為用以防止透光性導電層4直接暴露於大氣中之保護層。 黏著劑層15具有膜形狀(包括片狀),配置於透光性導電層4之上側(相對於透明基材2為相反側)。具體而言,黏著劑層15係以被覆透光性導電層4之上表面及側面、以及自透光性導電層4露出之保護層3之上表面之方式配置於保護層3及透光性導電層4之上側。 黏著劑層15係由黏著劑組合物製備。 黏著劑組合物含有例如黏著性樹脂。 作為黏著性樹脂,例如可列舉:丙烯酸系樹脂、橡膠(丁基橡膠等)、聚矽氧樹脂、聚酯樹脂、聚胺基甲酸酯、聚醯胺、環氧樹脂、乙烯基烷基醚樹脂、氟樹脂等,較佳為就接著性之觀點而言,可列舉丙烯酸系樹脂。 黏著劑組合物較佳為含有苯并***系化合物。藉由黏著劑層15含有苯并***系化合物,可使圖案形狀之透光性導電層4之側面之濕熱耐久性進一步提高。 作為苯并***系化合物,例如可列舉日本專利特開2014-177612號公報所記載之苯并***系化合物。較佳可列舉:1,2,3-苯并***、5-甲基苯并***、1-[N,N-雙(2-乙基己基)胺基甲基]苯并***、1-[N,N-雙(2-乙基己基)胺基甲基]甲基苯并***等。 黏著劑組合物例如亦可以適當之比率含有填充劑、抗氧化劑、軟化劑、觸變劑、潤滑劑、顏料、防焦化劑、穩定劑、紫外線吸收劑、著色劑、防黴劑、阻燃劑等添加劑。 黏著劑層15之厚度T4例如為2 μm以上,較佳為5 μm以上,更佳為10 μm以上,又,例如為200 μm以下,較佳為100 μm以下,更佳為70 μm以下。 黏著劑層15係藉由例如濕式方式而將黏著劑組合物配置於透光性導電層4之上表面。 具體而言,首先,將黏著劑組合物塗佈於經圖案化之透光性導電層4之上表面及非圖案部9之保護層3之上表面。其後,藉由加熱對黏著劑組合物進行乾燥、或藉由活性能量射線照射而使黏著劑組合物硬化。 再者,配置黏著劑層15時,亦可首先於脫模基材配置黏著劑層15而製作附黏著劑層之基材,繼而使用附黏著劑層之基材將黏著劑層15轉印於透光性導電層4。 藉此,如圖4所示,可獲得依序具備透明基材2、保護層3、具有圖案形狀之透光性導電層4及黏著劑層15之透光性膜1。 第2實施形態之透光性膜1亦發揮與第1實施形態之透光性膜1相同之作用效果。 又,透光性膜1進而具備設置於透光性導電層4之上側之表面的黏著劑層15,因此會減少可能侵入透光性導電層4之水之量,濕熱耐久性優異。又,於圖案形狀之透光性導電層4(配線圖案等)中,可保護圖案之側面,側面之濕熱耐久性優異。具體而言,可確實地抑制金屬層6之側面之腐蝕或變色,可更確實地維持配線圖案之性能(導電性等)。 [變化例] 於變化例中,對與上述第1實施形態及第2實施形態相同之構件及步驟標註相同之參照符號,省略其詳細說明。 於上述實施形態中,例如如圖1及圖4所示,於透明基材2上設置有透光性導電層4,雖未圖示,但亦可於透明基材2之下進而設置透光性導電層4。即,透光性膜1可於透明基材2之上下兩側分別依序具備保護層3與透光性導電層4。 於上述實施形態中,例如如圖1及圖4所示,使保護層3介置於透明基材2與第1無機氧化物層5之間。然而,例如亦可如圖5所示般將第1無機氧化物層5直接配置於透明基材2之上表面。即,透光性膜1依序具備透明基材2、第1無機氧化物層5、金屬層6及第2無機氧化物層7。另一方面,該透光性膜1不具備保護層3。 於上述實施形態中,例如如圖1及圖4所示,將第1無機氧化物層5直接配置於保護層3之上表面。然而,例如亦可如圖6所示般使光學調整層16介置於保護層3與第1無機氧化物層5之間。 光學調整層16係以與保護層3一起抑制透光性導電層4之配線圖案之視認之方式調整透光性膜1之光學物性之光學調整層(第2光學調整層)。光學調整層16具有膜形狀(包括片狀),以與保護層3之上表面接觸之方式配置於保護層3之整個上表面。光學調整層16具有特定之光學物性,例如由氧化物、氟化物等無機物、或丙烯酸系樹脂、三聚氰胺樹脂等樹脂組合物製備。光學調整層16可為單層,又,亦可為組成不同之複層。光學調整層16之厚度為1 nm以上,較佳為5 nm以上,更佳為10 nm以上,又,例如為500 nm以下,較佳為200 nm以下,更佳為50 nm以下,進而較佳為25 nm以下。 於上述實施形態中,如圖1所示,透光性導電層4僅具備第1無機氧化物層5、金屬層6及第2無機氧化物層7。然而,例如雖未圖示,但亦可於第2無機氧化物層7之上表面進而依序配置第2金屬層與第3無機氧化物層,進而亦可於第3無機氧化物層之上表面配置第3金屬層與第4無機氧化物層。 又,雖未圖示,但亦可於第1透明基材2之上表面及/或下表面配置例如防污層、密接、撥水層、抗反射層、低聚物防止層等功能層。功能層較佳為含有上述樹脂組合物。此種功能層根據所需要之功能而適當選擇。 於透光性膜1之製造方法中,於加熱步驟後圖案化,例如亦可於圖案化後實施加熱步驟。又,藉由加熱步驟而使第2無機氧化物層7結晶化,例如亦可藉由於大氣氛圍下暴露數個月以上而使第2無機氧化物層7結晶化。 實施例 以下例示實施例及比較例,進一步具體地說明本發明。再者,本發明並不受任何實施例及比較例限定。又,以下之記載中所使用之調配比率(含有比率)、物性值、參數等具體數值可替代為上述「實施方式」中所記載之與其等對應之調配比率(含有比率)、物性值、參數等相應記載之上限值(定義為「以下」、「未達」之數值)或下限值(定義為「以上」、「超過」之數值)。 實施例1 (膜基材之準備及保護層之形成) 首先,準備包含長條狀聚對苯二甲酸乙二酯(PET)膜且厚度為50 μm之透明基材。再者,所準備之透明基材中之水分量為19 μg/cm2 ,又,水相對於透明基材之含量亦為0.27質量%。 繼而,於透明基材之上表面塗佈包含丙烯酸系樹脂之紫外線硬化性樹脂,藉由紫外線照射使其硬化,形成包含硬化樹脂層且厚度為2 μm之保護層。藉此,獲得具備透明基材與保護層之附保護層之透明基材輥。 (第1無機氧化物層之形成) 繼而,將附保護層之透明基材輥設置於真空濺鍍裝置,進行真空排氣,直至未搬送時之氣壓成為2×10-3 Pa為止(脫氣處理)。此時,於未導入濺鍍氣體(Ar及O2 )之狀態下,搬送附保護層之透明基材之一部分,確認氣壓上升至1×10-2 Pa。藉此,確認於附保護層之透明基材輥殘存有充分量之氣體。 繼而,一面陸續送出附保護層之透明基材輥,一面藉由濺鍍而於硬化樹脂層之上表面形成包含銦錫氧化物層且厚度為40 nm之第1無機氧化物層。 具體而言,於導入有Ar及O2 之氣壓0.2 Pa之真空氛圍下(流量比為Ar:O2 =100:3.8),使用直流(DC)電源,濺鍍包含12質量%之氧化錫與88質量%之氧化銦之燒結體之ITO靶。 再者,於藉由濺鍍形成第1無機氧化物層時,使附保護層之透明基材輥之下表面(具體而言,透明基材之下表面)與-5℃之冷卻輥接觸,而將附保護層之透明基材輥冷卻。 (金屬層之形成) 藉由濺鍍而於第1無機氧化物層之上表面形成包含Ag合金且厚度為8 nm之金屬層。 具體而言,於導入有Ar之氣壓0.4 Pa之真空氛圍下,使用直流(DC)電源作為電源,濺鍍Ag合金靶(Mitsubishi Materials公司製造,產品編號「No.317」)。 (第2無機氧化物層之形成) 藉由濺鍍而於金屬層之上表面形成包含ITO且厚度為38 nm之第2無機氧化物層。 具體而言,於導入有Ar及O2 之氣壓0.2 Pa之真空氛圍下(流量比為Ar:O2 =100:4.0)。使用直流(DC)電源,濺鍍包含12質量%之氧化錫與88質量%之氧化銦之燒結體的ITO靶。 其後,於大氣氛圍下以80℃、12小時之條件實施加熱步驟。藉此,使第2無機氧化物層結晶化。 藉此,獲得於透明基材上依序形成有保護層、第1無機氧化物層、金屬層及第2無機氧化物層之透光性膜。 實施例2 藉由將Ar及O2 之流量比設為Ar:O2 =100:3.1,濺鍍包含3質量%之氧化錫與97質量%之氧化銦之燒結體的ITO靶,而形成第2無機氧化物層,除此以外,以與實施例1相同之方式獲得透光性膜。 比較例1 將各層之厚度變更為表1所記載之厚度,且於第2無機氧化物層之形成中不實施加熱步驟,除此以外,以與實施例1相同之方式獲得透光性膜。 比較例2 將濺鍍時之Ar及O2 之流量比設為Ar:O2 =100:1.0,將各層之厚度變更為表1所記載之厚度,且不形成金屬層而形成透光性導電層,其後,於大氣氛圍下實施140℃、1小時之加熱步驟,除此以外,以與實施例1相同之方式獲得透光性膜。 (測定) (1)厚度 藉由使用透過型電子顯微鏡(日立公司製造,「HF-2000」)之剖面觀察測定保護層、第1無機氧化物層、金屬層及第2無機氧化物之厚度。又,使用膜厚計(Peacock公司製造 數位度盤規DG-205)測定基材之厚度。將其結果示於表1。 (2)利用剖面TEM進行之結晶粒之觀察 使用透過型電子顯微鏡(日立公司製造,「HF-2000」,倍率200,000倍),觀察第1無機氧化物層及第2無機氧化物層之剖面。對此時之剖視圖之面方向距離每500 nm之結晶粒之數量進行計數。又,測定於無機氧化物層產生之結晶粒之最大結晶粒之長度。將其結果示於表1。 (3)利用平面TEM進行之結晶粒之觀察 於藉由剖面TEM確認到結晶粒之各實施例及比較例之透光性膜中,使用透過型電子顯微鏡(日立公司製造,「H-7650」),觀察第2無機氧化物層之上表面,獲得倍率:100,000倍之平面圖像。其次,測定結晶粒(結晶化之部位)之面積相對於第2無機氧化物層整體之面積之比率。將其結果示於表1。再者,於實施例1中,第2結晶粒之數量多於第1結晶粒之數量。 (4)濕熱耐久性 將各實施例及各比較例之透光性膜切出10 cm×10 cm之尺寸,於透光性導電層上形成黏著層(日東電工公司製造,「CS9904U」),貼合於玻璃基板後,於60℃、95%RH之條件下放置240小時。其後,目視觀察中央8 cm×8 cm部分之透光性導電層之上表面。 此時,基於以下之基準實施外觀評價。 ◎:未觀察到白色之點狀缺陷(凝聚、腐蝕部位)(0個)。 ○:白色之點狀缺陷超過0個且為5個以下。 ×:白色之點狀缺陷超過5個。 (5)透光性導電層之表面電阻 依據JIS K7194(1994年)之四探針法,測定透光性導電層之表面電阻值。將其結果示於表1。 (6)可見光透過率 使用測霧計(Suga Test Instruments公司製造,裝置名「HGM-2DP),測定全光線透過率,作為可見光透過率。將其結果示於表1。 (7)近紅外線反射特性 針對實施例1~2之透光性膜測定近紅外線(波長850~2500 nm)之平均反射率,結果為58%。由此可知,實施例之透光性膜具有良好之近紅外線反射特性。 [表1] 再者,上述發明係作為本發明例示之實施形態而提供,但其僅為例示,並非限定性地解釋。藉由該技術領域之業者而明確之本發明之變化例包含於後述申請專利範圍內。 [產業上之可利用性] 本發明之透光性膜可應用於各種工業製品,例如可較佳地用於圖像顯示裝置、調光裝置等光學裝置。[First Embodiment] A light-transmitting film 1 according to a first embodiment of the present invention will be described with reference to Fig. 1. In FIG. 1, the upper and lower directions on the paper surface are the up and down directions (thickness direction, first direction), the upper side of the paper surface is the upper side (thickness side, first direction side), and the lower side of the paper surface is the lower side (the other side in the thickness direction, 1st direction on the other side). In FIG. 1, the left and right directions of the paper surface are left and right (width direction, second direction orthogonal to the first direction), the left side of the paper surface is left side (second direction side), and the right side of the paper surface is right side (the other side of the second direction) ). In FIG. 1, the paper thickness direction is the front-back direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper surface is the front side (the third direction side), and the back side of the paper surface is the rear side (the third direction). The other side). Specifically, according to the direction arrow of each figure. 1. Translucent film The translucent film 1 has a film shape (including a sheet shape) having a specific thickness, and extends in a specific direction (front-rear direction and left-right direction, that is, a plane direction) orthogonal to the thickness direction, and has a flat surface. Upper surface and flat lower surface (two main surfaces). The translucent film 1 is, for example, a component of a substrate for a touch panel, a substrate for infrared reflection, or a light-adjusting panel included in an optical device (for example, an image display device or a light-adjusting device), and is not an optical device. That is, the light-transmitting film 1 is a component used for making optical devices and the like, and does not include an image display element such as an LCD module or a light source such as an LED. The translucent film 1 is a film that transmits visible light, and includes a transparent conductive film. Specifically, as shown in FIG. 1, the translucent film 1 of the first embodiment is a translucent build-up film having a transparent substrate 2, a protective layer 3, and a translucent conductive layer 4 in this order. That is, the translucent film 1 includes a transparent substrate 2, a protective layer 3 disposed on the upper side of the transparent substrate 2, and a transparent conductive layer 4 disposed on the upper side of the protective layer 3. Preferably, the translucent film 1 is composed of only a transparent substrate 2, a protective layer 3, and a translucent conductive layer 4. Hereinafter, each layer will be described in detail. 2. Transparent substrate The transparent substrate 2 is the lowermost layer of the light-transmitting film 1 and is a supporting material for ensuring the mechanical strength of the light-transmitting film 1. The transparent substrate 2 supports the light-transmitting conductive layer 4 together with the protective layer 3. The transparent substrate 2 includes, for example, a polymer film. The polymer film has transparency and flexibility. Examples of the material of the polymer film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; for example, polymethacrylate (Meth) acrylic resins (acrylic resins and / or methacrylic resins); olefin resins such as polyethylene, polypropylene, and cycloolefin polymers; such as polycarbonate resins, polyether resins, and polyaromatic resins Ester resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, and 𦯉 ene. These polymer films can be used alone or in combination of two or more. From the viewpoints of transparency, heat resistance, and mechanical properties, preferred examples include olefin resins and polyester resins, and more preferred examples include cyclic olefin polymers and PET. The thickness of the transparent substrate 2 is, for example, 2 μm or more, preferably 20 μm or more, and, for example, 300 μm or less, preferably 200 μm or less, and more preferably 150 μm or less. From the viewpoint of maintaining the amorphous nature of the first inorganic oxide layer 5, the transparent substrate 2 preferably contains a small amount of water. That is, in the transparent substrate 2, it is preferable that the polymer film contains water. 3. Protective layer The protective layer 3 is an abrasion protective layer for preventing the upper surface of the light-transmitting conductive layer 4 from being easily scratched (that is, to obtain excellent scratch resistance). In addition, as shown in FIG. 3, the protective layer 3 is formed in a subsequent step after forming the transparent conductive layer 4 in a pattern shape such as a wiring pattern, so that the difference between the non-patterned portion 9 and the patterned portion 10 cannot be discriminated ( That is, an optical adjustment layer that adjusts the optical physical properties of the light-transmitting film 1 so as to suppress the visual recognition of the wiring pattern). The protective layer 3 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2. The protective layer 3 is formed of a resin composition. The resin composition contains, for example, resin, particles, and the like. The resin composition preferably contains a resin, and more preferably consists of only a resin. Examples of the resin include a curable resin, a thermoplastic resin (for example, a polyolefin resin), and the like, preferably a curable resin. Examples of the curable resin include active energy ray-curable resins which are cured by irradiation with active energy rays (specifically, ultraviolet rays, electron beams, etc.), and thermosetting resins which are cured by heating, for example. Preferred examples include active energy ray-curable resins. Examples of the active energy ray-curable resin include polymers having a functional group having a polymerizable carbon-carbon double bond in a molecule. Examples of such a functional group include vinyl, (meth) acrylfluorenyl (methacrylfluorenyl and / or acrylfluorenyl), and the like. Examples of the active energy ray-curable resin include a (meth) acrylic resin (acrylic resin and / or methacrylic resin) having a functional group in a side chain. These resins can be used alone or in combination of two or more. Examples of the particles include inorganic particles and organic particles. Examples of the inorganic particles include silicon dioxide particles, metal oxide particles including zirconia, titanium oxide, and the like, and carbonate particles such as calcium carbonate. Examples of the organic particles include crosslinked acrylic resin particles and the like. The thickness of the protective layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and, for example, 10 μm or less, and preferably 5 μm or less. The thickness of the protective layer 3 is measured by, for example, cross-sectional observation using a transmission electron microscope (TEM). 4. Light-transmitting conductive layer The light-transmitting conductive layer 4 is a conductive layer, and is used to form the conductive layer of the pattern portion 10 by forming a wiring pattern in the subsequent steps as shown in FIG. 3. The translucent conductive layer 4 is also a transparent conductive layer. As shown in FIG. 1, the light-transmitting conductive layer 4 is the uppermost layer of the light-transmitting film 1 and has a film shape (including a sheet shape). On the surface. The translucent conductive layer 4 includes a first inorganic oxide layer 5, a metal layer 6, and a second inorganic oxide layer 7 in this order. That is, the light-transmitting conductive layer 4 includes a first inorganic oxide layer 5 arranged on the upper side of the protective layer 3, a metal layer 6 arranged on the upper side of the first inorganic oxide layer 5, and a metal layer 6 arranged on the upper side of the metal layer 6. The second inorganic oxide layer 7. The light-transmitting conductive layer 4 is preferably composed of only the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7. 5. First Inorganic Oxide Layer The first inorganic oxide layer 5 is a barrier layer that prevents hydrogen derived from water contained in the transparent substrate 2 or carbon derived from organic substances contained in the protective layer 3 from entering the metal layer 6. Furthermore, the first inorganic oxide layer 5 is an optical adjustment layer for suppressing the visible light reflectance of the metal layer 6 and increasing the visible light transmittance of the light-transmitting conductive layer 4 together with the second inorganic oxide layer 7 described later. The first inorganic oxide layer 5 is preferably a conductive layer that imparts conductivity to the light-transmitting conductive layer 4 together with a metal layer 6 described later, and more preferably a transparent conductive layer. The first inorganic oxide layer 5 is the lowermost layer of the light-transmitting conductive layer 4 and has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to contact the upper surface of the protective layer 3. Examples of the inorganic oxide that forms the first inorganic oxide layer 5 include those selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, A metal oxide formed by at least one metal in a group consisting of Fe, Pb, Ni, Nb, and Cr. The metal oxide shown in the above group may be further doped in the metal oxide if necessary. As the inorganic oxide, from the viewpoint of reducing the surface resistance value and the viewpoint of ensuring excellent transparency, an oxide containing indium oxide (an oxide containing indium oxide) is preferred. The indium oxide-containing oxide may contain only indium (In) as a metal element, and may also contain (semi) metal elements other than indium (In). The indium oxide-containing oxide is preferably indium (In) as a main metal element. The indium oxide-containing oxide whose main metal element is indium has excellent barrier function, and it is easy to better suppress the corrosion of the metal layer 6 caused by the influence of water and the like. By including an singular or plural (semi) metal element as an impurity element, the indium oxide-containing oxide can further improve conductivity, transparency, and durability. The atomic ratio of the impurity metal element in the first inorganic oxide layer 5 with respect to the number of atoms of the main metal element In (the number of atoms of the impurity metal element / the number of atoms in In) is, for example, less than 0.50, preferably 0.40 or less Is more preferably 0.30 or less, even more preferably 0.20 or less, and is, for example, 0.01 or more, preferably 0.05 or more, and more preferably 0.10 or more. Thereby, an inorganic oxide layer excellent in transparency and wet heat durability can be obtained. Specific examples of the indium oxide-containing oxide include indium zinc composite oxide (IZO), indium gallium composite oxide (IGO), indium gallium zinc composite oxide (IGZO), and indium tin composite oxide (ITO). ), More preferably indium tin composite oxide (ITO). The "ITO" in this specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and examples thereof include metal elements shown in the above groups and combinations thereof. The content of the additional component is not particularly limited, and is, for example, 5 mass% or less. Tin oxide contained in ITO (SnO 2 ) Content relative to tin oxide and indium oxide (In 2 O 3 ) Is, for example, 0.5 mass% or more, preferably 3 mass% or more, more preferably 6 mass% or more, still more preferably 8 mass% or more, particularly preferably 10 mass% or more, and for example, 35 It is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 13% by mass or less. The content of indium oxide (In 2 O 3 ) Is tin oxide (SnO 2 ) Content. By tin oxide (SnO) 2 The content of) is set to the above range, and the degree of crystallization of the ITO film can be adjusted. In particular, by increasing the content of tin oxide in the ITO film, complete crystallization of the ITO film due to heating can be suppressed, and a semi-crystalline film can be obtained. The atomic ratio Sn / In of ITO contained in ITO is, for example, 0.004 or more, preferably 0.02 or more, more preferably 0.03 or more, still more preferably 0.04 or more, particularly preferably 0.05 or more, and for example 0.4 Hereinafter, it is preferably 0.3 or less, more preferably 0.2 or less, and still more preferably 0.10 or less. The atomic ratio of Sn to In can be determined by X-ray photoelectron spectroscopy (ESCA: Electron Spectroscopy for Chemical Analysis). By setting the atomic ratio of In to Sn in the above range, it is easy to obtain a film having excellent environmental reliability. The first inorganic oxide layer 5 does not contain crystal grains. That is, the first inorganic oxide layer 5 is amorphous. Thereby, the wettability of the surface of the first inorganic oxide layer 5 can be improved, and the metal layer 6 to be described later can be formed thinner and more uniformly on the surface of the first inorganic oxide layer 5. Therefore, the film quality of the translucent conductive layer 4 can be made good, and the wet heat durability can be improved. In the present invention, the term "without crystal grains" means that when the first inorganic oxide layer 5 is observed using a cross-section TEM image at 200,000 times, the surface direction (left-right direction or front-back direction) orthogonal to the thickness direction (Direction) No crystal grains were observed in the range of 500 nm. The content ratio of the inorganic oxide in the first inorganic oxide layer 5 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and, for example, 100% by mass or less. The thickness T1 of the first inorganic oxide layer 5 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and, for example, 100 nm or less, preferably 60 nm or less, and more preferably 50 nm. the following. If the thickness T1 of the first inorganic oxide layer 5 is within the above range, it is easy to adjust the visible light transmittance of the transparent conductive layer 4 to a higher level. The thickness T1 of the first inorganic oxide layer 5 is measured by, for example, cross-sectional observation using a transmission electron microscope (TEM). 6. Metal layer The metal layer 6 is a conductive layer that imparts conductivity to the light-transmitting conductive layer 4 together with the first inorganic oxide layer 5 and the second inorganic oxide layer 7. The metal layer 6 is also a low-resistance layer that reduces the surface resistance of the transparent conductive layer 4. In addition, the metal layer 6 is preferably an infrared reflecting layer that is also used to impart a high infrared reflectance (especially the average reflectance of near infrared rays). The metal layer 6 has a film shape (including a sheet shape), and is disposed on the upper surface of the first inorganic oxide layer 5 so as to be in contact with the upper surface of the first inorganic oxide layer 5. The metal forming the metal layer 6 is not limited as long as it is a metal having a low surface resistance, and examples include metals selected from the group consisting of Ti, Si, Nb, In, Zn, Sn, Au, Ag, Cu, Al, Co, Cr, and Ni. , Pb, Pd, Pt, Cu, Ge, Ru, Nd, Mg, Ca, Na, W, Zr, Ta, and Hf, or an alloy containing two or more of these metals. Examples of the metal include silver (Ag) and a silver alloy, and more preferably, a silver alloy. If the metal is silver or a silver alloy, the resistance value of the light-transmitting conductive layer 4 can be reduced, and a light-transmitting conductive layer 4 having a particularly high average reflectance in the near infrared region (wavelength 850 to 2500 nm) can also be obtained. It can be preferably applied to the application of an image quality display device used outdoors. The silver alloy contains silver as a main component and other metals as sub-components. The metal element of the auxiliary component is not limited. Examples of the silver alloy include Ag-Cu alloy, Ag-Pd alloy, Ag-Pd-Cu alloy, Ag-Pd-Cu-Ge alloy, Ag-Cu-Au alloy, Ag-Cu-In alloy, and Ag- Cu-Sn alloy, Ag-Ru-Cu alloy, Ag-Ru-Au alloy, Ag-Nd alloy, Ag-Mg alloy, Ag-Ca alloy, Ag-Na alloy, Ag-Ni alloy, Ag-Ti alloy, Ag -In alloy, Ag-Sn alloy, etc. From the viewpoint of wet heat durability, as the silver alloy, Ag-Cu alloy, Ag-Cu-In alloy, Ag-Cu-Sn alloy, Ag-Pd alloy, Ag-Pd-Cu alloy, and the like are preferably cited. The content ratio of silver in the silver alloy is, for example, 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and, for example, 99.9% by mass or less. The content ratio of other metals in the silver alloy is the remainder of the above-mentioned content ratio of silver. From the viewpoint of improving the transmittance of the light-transmitting conductive layer 4, the thickness T3 of the metal layer 6 is, for example, 1 nm or more, preferably 5 nm or more, and, for example, 20 nm or less, and preferably 10 nm or less. The thickness T3 of the metal layer 6 is measured by, for example, cross-sectional observation using a transmission electron microscope (TEM). 7. Second inorganic oxide layer The second inorganic oxide layer 7 is a barrier layer that prevents outside oxygen or moisture from entering the metal layer 6, especially a barrier layer that suppresses discoloration of the metal layer 6 due to moisture and heat. The second inorganic oxide layer 7 is also an optical adjustment layer for suppressing the visible light reflectance of the metal layer 6 and improving the visible light transmittance of the light-transmitting conductive layer 4. The second inorganic oxide layer 7 is preferably a conductive layer that imparts conductivity to the light-transmitting conductive layer 4 together with the metal layer 6, and more preferably a transparent conductive layer. The second inorganic oxide layer 7 is the uppermost layer of the light-transmitting conductive layer 4 and has a film shape (including a sheet shape), and is disposed on the entire upper surface of the metal layer 6 so as to be in contact with the upper surface of the metal layer 6. Examples of the inorganic oxide that forms the second inorganic oxide layer 7 include the inorganic oxides exemplified in the first inorganic oxide layer 5. A preferred example is an oxide containing indium oxide. A more preferred example is an indium (In Indium oxide-containing oxides, and more preferably ITO. The inorganic oxide forming the second inorganic oxide layer 7 may be the same as or different from the inorganic oxide forming the first inorganic oxide layer 5. From the viewpoint of etching properties and wet heat durability, it is preferably the same as the first inorganic oxide. The same inorganic oxide as the material layer 5. When the second inorganic oxide layer 7 contains an indium oxide-containing oxide, the atomic ratio (impurity metal element) of the impurity metal element in the second inorganic oxide layer 7 with respect to the atomic number of the main metal element In The number of atoms / the number of atoms in In) is the same as or more than (the number of atoms in the impurity metal element / the number of atoms in In) in the first inorganic oxide layer 5 (for example, 0.001 or more). When the second inorganic oxide layer 7 includes ITO, tin oxide (SnO) contained in the ITO 2 ) And the atomic ratio of Sn to In are the same as those of the first inorganic oxide layer 5. When both the first inorganic oxide layer 5 and the second inorganic oxide layer 7 include ITO, the tin oxide (SnO) contained in the second inorganic oxide layer 7 2 ) Is preferably the same as the tin oxide (SnO) contained in the first inorganic oxide layer 5. 2 ) Is the same or more (for example, 0.1% by mass or more). The atomic ratio Sn / In of Sn contained in the second inorganic oxide layer 7 is preferably the same as or greater than the atomic ratio of Sn contained in the first inorganic oxide layer 5. (Specifically 0.001 or more). The second inorganic oxide layer 7 is easily oxidized in contact with the atmosphere and is easier to crystallize than the first inorganic oxide layer 5. Therefore, the tin oxide (SnO) in the second inorganic oxide layer 7 2 ) Or the atomic ratio of Sn to In is the same as or more than that of the first inorganic oxide layer 5, and it is easy to control the degree of crystallization of the second inorganic oxide layer 7. The content ratio of the inorganic oxide in the second inorganic oxide layer 7 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and, for example, 100% by mass or less. The second inorganic oxide layer 7 includes crystal particles 11 (see FIG. 2A or FIG. 2B). Thereby, the film structure of the crystal grains 11 is stable, and it is difficult for water to permeate. Therefore, it is possible to prevent water from the outside from entering the metal layer 6 through the second inorganic oxide layer 7. Therefore, the wet heat durability of the translucent conductive layer 4 can be made good. Specifically, the second inorganic oxide layer 7 is a crystalline film. The crystalline film may be, for example, a completely crystalline film including the crystal grains 11 continuously in the entire surface direction in a side cross-sectional view (especially a cross-sectional TEM image) as shown in FIG. 2A, or may be a crystalline film as shown in FIG. 2B. A semi-crystalline film including an amorphous portion 12 (a portion that is not crystallized) and a crystalline portion 13 (that is, a portion including crystal grains 11) is shown. From the viewpoint that the second crystal particles 11b described later can be contained, and the wet heat durability is more excellent, a semi-crystalline film is preferred. In the present invention, "containing crystal grains" means that when the second inorganic oxide layer 7 is observed using a cross-sectional TEM image at 200,000 times, there is at least one晶粒 11。 Crystal particles 11. Within the above range, the number of crystal grains 11 is preferably 2 or more, more preferably 3 or more, even more preferably 5 or more, and the number of crystal grains 11 preferably is 50 or less, more preferably 40 or less, and more Preferably it is 30 or less. When the upper surface of the second inorganic oxide layer 7 is observed by a planar TEM image at 100,000 times, the area ratio occupied by the crystal particles 11 is, for example, 5% or more, preferably 10% or more, and more It is preferably 20% or more, and, for example, 100% or less, preferably 90% or less, more preferably 80% or less, still more preferably 70% or less, and even more preferably 60% or less. When the area ratio of the crystal grains was calculated from the planar TEM image, the cross-sectional TEM image of the first inorganic oxide layer 5 was confirmed under the conditions described above, and it was confirmed that no After the presence of crystal grains, a planar TEM image was observed. In some cases, it is difficult to determine which of the first inorganic oxide layer 5 and the second inorganic oxide layer 7 has crystal grains only by the planar TEM image. Therefore, in the present invention, after confirming that no crystal grains are present in the first inorganic oxide layer 5 by the cross-sectional TEM image, the planar TEM image is observed, thereby determining that the second inorganic oxide layer 7 can be observed.晶粒 11。 Crystal particles 11. The size of the crystal grains 11 contained in the second inorganic oxide layer 7 is, for example, 3 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and, for example, 200 nm or less, and preferably 100 nm or less, It is more preferably 80 nm or less, and still more preferably 50 nm or less. The observation area of the second inorganic oxide layer 7 may contain crystal grains outside the above range, but its area ratio is preferably 30% or less, and more preferably 20% or less. More preferably, all the crystal grains 11 included in the second inorganic oxide layer 7 include crystal grains having a size within the above range. The size of the crystal grains 11 is the maximum value that can be obtained by each crystal grain 11 when the second inorganic oxide layer 7 is observed using a cross-section TEM image at 200,000 times. The size of the largest crystal grain 11 (the largest crystal grain) among the crystal grains 11 contained in the second inorganic oxide layer 7 is, for example, 10 nm or more, preferably 20 nm or more, and, for example, 200 nm or less, preferably 100 nm or less. The shape of the crystal grains is not limited, and examples thereof include a substantially triangular shape in cross section and a substantially rectangular shape in cross section. Examples of the crystal grains 11 include first crystal grains 11 a that penetrate the second inorganic oxide layer 7 in the thickness direction, and second crystal grains 11 b that do not penetrate the second inorganic oxide layer 7 in the thickness direction. The first crystal grains 11 a are crystal grains grown such that the upper end thereof is exposed from the upper surface of the second inorganic oxide layer 7 and the lower end thereof is exposed from the lower surface of the second inorganic oxide layer 7. The thickness direction length of the first crystal grains 11 a is the same as the thickness of the second inorganic oxide layer 7. The second crystal grains 11b are crystal grains grown in such a manner that at least one of the upper end and the lower end is not exposed from the surface (upper or lower surface) of the second inorganic oxide layer 7. The second crystal particles 11 b are preferably formed such that the upper end thereof is exposed from the upper surface of the second inorganic oxide layer 7 and the lower end thereof is not exposed from the lower surface of the second inorganic oxide layer 7. The average value of the thickness direction length of the second crystal grains 11b is shorter than the thickness (T2) of the second inorganic oxide layer 7. For example, it is preferably 98% or less with respect to the thickness of the second inorganic oxide layer 7. For example, it is preferably 98% or less. It is 90% or less, more preferably 80% or less, and, for example, 5% or more, preferably 10% or more, and more preferably 20% or more. The second inorganic oxide layer 7 preferably has second crystal grains 11b. Accordingly, since the grain boundaries of the crystal grains 11 do not penetrate in the thickness direction, water can be prevented from passing through the second inorganic oxide layer 7 along the grain boundaries in the thickness direction. The number of the first crystal particles 11a is, for example, 0 or more, preferably 1 or more, and, for example, 30 or less, and preferably 10 or less. The number of the second crystal grains 11b is preferably more than the number of the first crystal grains 11a. Specifically, it is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, and more preferably 50 or less. , More preferably 40 or less, and even more preferably 30 or less. The thickness T2 of the second inorganic oxide layer 7 is, for example, 5 nm or more, preferably 20 nm or more, and further preferably 30 nm or more. For example, it is 100 nm or less, preferably 60 nm or less, and more preferably 50 nm. nm or less. When the thickness T2 of the second inorganic oxide layer 7 is within the above range, it is easy to adjust the visible light transmittance of the transparent conductive layer 4 to a higher level. The thickness T2 of the second inorganic oxide layer 7 is measured by, for example, cross-sectional observation using a transmission electron microscope (TEM). The ratio (T2 / T1) of the thickness T2 of the second inorganic oxide layer 7 to the thickness T1 of the first inorganic oxide layer 5 is, for example, 0.5 or more, preferably 0.75 or more, and, for example, 1.5 or less, preferably Below 1.25. If the ratio (T2 / T1) is greater than or equal to the above lower limit and less than or equal to the above upper limit, the deterioration of the metal layer 6 can be further suppressed even in a hot and humid environment. The ratio (T2 / T3) of the thickness T2 of the second inorganic oxide layer 7 to the thickness T3 of the metal layer 6 is, for example, 2.0 or more, preferably 3.0 or more, and, for example, 10 or less, and preferably 8.0 or less. The thickness of the translucent conductive layer 4, that is, the total thickness of the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7 is, for example, 20 nm or more, preferably 40 nm or more, and more preferably 60 nm or more, more preferably 80 nm or more, and, for example, 150 nm or less, preferably 120 nm or less, and more preferably 100 nm or less. The light-transmitting conductive layer 4 can be patterned as shown in FIG. 3. That is, the transparent conductive layer 4 may have a pattern shape such as a wiring pattern. The pattern shape includes a non-pattern portion 9 and a pattern portion 10. The pattern portion 10 is formed in a stripe shape or the like, for example, it extends in the front-rear direction, and a plurality of the pattern portions 10 are aligned and arranged at intervals (non-pattern portions 9) in the left-right direction. The non-patterned portion 9 is divided by the side surface of the adjacent patterned portion 10 and the upper surface of the protective layer 3. The width L of each pattern portion 10 is, for example, 1 μm or more and 3000 μm or less. The interval S (that is, the width of the non-patterned portion 9) of the adjacent pattern portions 10 is, for example, 1 μm or more and 3000 μm or less. 8. Method for Manufacturing Translucent Film Next, a method for manufacturing the translucent film 1 will be described. When manufacturing the translucent film 1, for example, the protective layer 3, the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7 are arranged (laminated) in the above-mentioned order on the transparent substrate 2. In this method, as shown in FIG. 1, a transparent substrate 2 is first prepared. The amount of water in the transparent substrate 2 (polymer film) to be prepared is not limited, for example, 10 μg / cm 2 Above, preferably 15 μg / cm 2 Above, for example, 200 μg / cm 2 Below, preferably 170 μg / cm 2 the following. If the moisture content is above the lower limit described above, hydrogen atoms and the like are given to the first inorganic oxide layer 5 to prevent the first inorganic oxide layer 5 from crystallizing due to the heating described later, and it is easy to maintain the non-inorganic oxide layer 5 Crystalline. If the water content is equal to or less than the above upper limit, the second inorganic oxide layer 7 containing the crystal grains 11 can be reliably obtained by a heating step or the like. The moisture content in the transparent substrate 2 is measured in accordance with JIS K 7251 (2002) Method B-Moisture Evaporation Method. The content of water contained in the transparent substrate 2 (polymer film) with respect to the transparent substrate 2 is, for example, 0.05% by mass or more, preferably 0.1% by mass or more, and, for example, 1.5% by mass or less. It is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. In addition, part or all of the water is released to the outside in the degassing treatment described later. Then, a resin composition is arrange | positioned on the upper surface of the transparent base material 2 by a wet method, for example. Specifically, first, a resin composition is applied on the upper surface of the transparent substrate 2. Thereafter, when the resin composition contains an active energy ray-curable resin, the active energy ray is irradiated. Thereby, the film-shaped protective layer 3 can be formed on the entire upper surface of the transparent substrate 2. That is, the transparent base material 14 with a protective layer provided with the transparent base material 2 and the protective layer 3 was obtained. Thereafter, if necessary, the transparent substrate 14 with a protective layer is subjected to a degassing treatment. When degassing the transparent substrate 14 with a protective layer, the transparent substrate 14 with a protective layer is placed at, for example, 1 × 10 -1 Pa or less, preferably 1 × 10 -2 Pa or less, for example, 1 × 10 -6 In a decompressed atmosphere above Pa. The degassing treatment is performed using, for example, an exhaust device (specifically, a turbo molecular pump, etc.) included in a dry device. By this degassing treatment, part of the water contained in the transparent substrate 2 or part of the organic matter contained in the protective layer 3 is released to the outside. Then, the transparent conductive layer 4 is arranged on the upper surface of the protective layer 3 by, for example, a dry method. Specifically, each of the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7 is sequentially arranged by a dry method. Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method. Preferably, a sputtering method is mentioned. Specific examples include a magnetron sputtering method. Examples of the gas used in the sputtering method include an inert gas such as Ar. If necessary, a reactive gas such as oxygen may be used in combination. When a reactive gas is used in combination, the flow rate ratio of the reactive gas is not particularly limited. The ratio of the flow rate of the reactive gas to the flow rate of the inert gas is, for example, 0.1 / 100 or more, preferably 1/100 or more , And, for example, 5/100 or less. Specifically, when the first inorganic oxide layer 5 is formed, it is preferable to use an inert gas and a reactive gas together as a gas. When the metal layer 6 is formed, it is preferable to use an inert gas alone as a gas. When the second inorganic oxide layer 7 is formed, it is preferable to use an inert gas and a reactive gas together as a gas. When the first inorganic oxide layer 5 or the second inorganic oxide layer 7 contains indium oxide, the resistance behavior of each layer changes depending on the amount of reactive gas introduced, and the amount of reactive gas introduced (x-axis)-surface The graph of the resistance value (y-axis) depicts a parabola protruding downward. At this time, the amount of the reactive gas contained in the first inorganic oxide layer 5 or the second inorganic oxide layer 7 is preferably the amount of introduction near the resistance value to the minimum value (that is, the inflection point of the parabola), specifically, , It is preferable that the resistance value is a minimum value of an introduction amount of ± 20%. When a sputtering method is used, examples of the target include the above-mentioned inorganic oxide or metal constituting each layer. The power source used in the sputtering method is not limited. For example, a DC power source, an MF / AC power source, and an RF power source may be used alone or in combination. Preferably, a DC power source is used. Moreover, it is preferable to cool the transparent base material 2 (and the protective layer 3) when the first inorganic oxide layer 5 is formed by a sputtering method. Specifically, the lower surface of the transparent base material 2 is brought into contact with a cooling device (for example, a cooling roller) or the like to cool the transparent base material 2 (and the protective layer 3). Thereby, when the first inorganic oxide layer 5 is formed, it is possible to prevent the water contained in the transparent substrate 2 and the organic matter contained in the protective layer 3 from being released in a large amount by evaporation heat or the like generated by sputtering, so that The first inorganic oxide layer 5 contains excessive water. The cooling temperature is, for example, -30 ° C or higher, preferably -10 ° C or higher, and, for example, 60 ° C or lower, preferably 40 ° C or lower, more preferably 30 ° C or lower, even more preferably 20 ° C or lower, particularly preferably Less than 0 ° C. Further, it is preferable that the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7 are all formed by sputtering while cooling in the above-mentioned temperature range. Thereby, aggregation of the metal layer 6 or excessive oxidation of the second inorganic oxide layer 7 can be suppressed. Thereby, the transparent conductive layer 4 in which the first inorganic oxide layer 5, the metal layer 6 and the second inorganic oxide layer 7 are sequentially formed can be formed on the protective layer 3 to obtain a transparent conductive laminate. . At this time, the first inorganic oxide layer 5 and the second inorganic oxide layer 7 immediately after the film formation (for example, within 24 hours after the formation of the transparent conductive laminated body) do not include the crystal grains 11. Then, a crystallization step of generating crystal grains 11 in the second inorganic oxide layer 7 is performed. The crystallization step is not limited as long as the crystal particles 11 can be formed, and examples thereof include a heating step. That is, the translucent conductive laminated body is heated. In addition, the heating step may be performed not only for heating for the purpose of generating the crystal grains 11 described above, but also for curling removal of the transparent conductive laminate, drying formation of silver paste wiring, and the like. Of heating. The heating temperature can be appropriately set, and is, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 80 ° C or higher, and, for example, 180 ° C or lower, and preferably 150 ° C or lower. The heating time is not limited, and is set according to the heating temperature, and is, for example, 1 minute or more, preferably 10 minutes or more, more preferably 30 minutes or more, and, for example, 4000 hours or less, and preferably 100 hours or less. The heating can be performed in any one of an atmospheric atmosphere, an inert atmosphere, and a vacuum. From the viewpoint of easy crystallization, the heating is preferably performed in an atmospheric atmosphere. By this heating step, the second inorganic oxide layer 7 is crystallized, and crystal grains 11 are present in the second inorganic oxide layer 7. In particular, regarding the second inorganic oxide layer 7, the metal layer 6 interposed between the transparent substrate 2 and the second inorganic oxide layer 7 may block water from the transparent substrate 2 or the protective layer 3 from blocking crystallization. It is an organic substance, and it is easy to absorb oxygen required for crystallization by being exposed during the heating step, so that the second inorganic oxide layer 7 can be easily crystallized. In addition, the first inorganic oxide layer 5 is greatly affected by water or organic matter, and it is difficult to absorb oxygen, so it hinders the growth of the crystal grains 11 and maintains the amorphous nature. As a result, as shown in FIG. 1, a transparent substrate 2, a protective layer 3, and a light-transmitting conductive layer 4 (the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7 can be obtained in this order. ), And only the second inorganic oxide layer 7 contains the light-transmitting film 1 of the crystal particles 11. The surface resistance value of the transparent conductive layer 4 is, for example, 40 Ω / □ or less, preferably 30 Ω / □ or less, more preferably 20 Ω / □ or less, and further preferably 15 Ω / □ or less. 0.1 Ω / □ or more, preferably 1 Ω / □ or more, and more preferably 5 Ω / □ or more. The specific resistance of the transparent conductive layer 4 is, for example, 2.5 × 10 -4 Ω · cm or less, preferably 2.0 × 10 -4 Ω ・ cm or less, more preferably 1.1 × 10 -4 Ω ・ cm or less, for example, 0.01 × 10 -4 Ω · cm or more, preferably 0.1 × 10 -4 Ω ・ cm or more, more preferably 0.5 × 10 -4 Ω ・ cm or more. The specific resistance of the transparent conductive layer 4 uses the thickness of the transparent conductive layer 4 (the total thickness of the first inorganic oxide layer, the metal layer 6, and the second inorganic oxide layer 7) and the thickness of the transparent conductive layer 4. Calculate the surface resistance value. The light-transmitting conductive layer 4 preferably has a high average reflectance in the near infrared (wavelength 850 to 2500 nm), for example, a metal layer 6 (for example, a metal containing silver or a silver alloy) having a high reflectance in the near infrared region. Layer 6). The light-transmitting conductive layer 4 has a higher average reflectance of near-infrared rays than a transparent inorganic oxide containing, for example, a conductive oxide (such as ITO), and can effectively block hot rays such as sunlight. Therefore, it can be preferably applied to an image display device used in an environment where the panel temperature is likely to rise (for example, outdoors). The average reflectance of the near-infrared (wavelength 850 to 2500 nm) of the transparent conductive layer 4 is, for example, 10% or more, preferably 20% or more, more preferably 50% or more, and 95% or less, for example. 90% or less. The translucent film 1 includes a translucent conductive layer 4 provided with an optical adjustment layer (a first inorganic oxide layer 5 and a second inorganic oxide layer 7) on the upper and lower surfaces of the metal layer 6. The conductive layer 4 includes a metal layer 6 that generally has high visible light reflectance (specifically, for example, a metal layer 6 with a reflectance of 550 nm of 15% or more and further 30% or more), and can also achieve high visible light transmission. rate. The visible light transmittance of the translucent film 1 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and, for example, 95% or less. The total thickness of the translucent film 1 is, for example, 2 μm or more, preferably 20 μm or more, and, for example, 300 μm or less, preferably 200 μm or less, and more preferably 150 μm or less. Then, when the light-transmitting conductive layer 4 is formed into a pattern shape, the light-transmitting conductive layer 4 is patterned by etching. Specifically, first, a photosensitive film is disposed on the entire upper surface of the second inorganic oxide layer 7, and then exposed through a mask having a pattern corresponding to the non-patterned portion 9 and the patterned portion 10, and thereafter By developing, the photosensitive film corresponding to the non-pattern part 9 is removed. Thereby, a resist coating layer having the same pattern as the pattern portion is formed on the upper surface of the light-transmitting conductive layer 4 that becomes the pattern portion 10. Thereafter, the transparent conductive layer 4 exposed from the resist coating layer is etched using an etchant. Examples of the etching solution include acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, phosphoric acid, and mixed acids thereof. Thereafter, the resist coating layer is removed from the upper surface of the second inorganic oxide layer 7 by, for example, peeling. Thereby, as shown in FIG. 3, a light-transmitting film 1 (patterned light-transmitting film) having a transparent substrate 2, a protective layer 3, and a light-transmitting conductive layer 4 having a pattern shape in this order can be obtained. Furthermore, the above-mentioned manufacturing method can be implemented by a roll-to-roll method. It is also possible to implement a part or all of them by a batch method. Thereafter, the translucent film 1 is provided on, for example, an optical device. Examples of the optical device include an image display device and a dimming device. When the translucent film 1 is provided in an image display device (specifically, an image display device having an image display element such as an LCD module), the translucent film 1 is used as a substrate for a touch panel, for example. material. As the form of the touch panel, various methods such as an optical method, an ultrasonic method, an electrostatic capacitance method, and a resistive film method can be listed, and it is particularly preferably used for a touch panel of the electrostatic capacitance method. The translucent film 1 can be used as, for example, a base material for near-infrared reflection. For example, a light-transmitting film 1 having a high average reflectance (for example, more than 10%) of near-infrared rays having a wavelength of 850 to 2500 nm is provided in an image display device, which can be preferably used for outdoor-oriented image quality display. Device. The translucent film 1 can also be provided in an image display device as a translucent conductive laminated polarizing film formed by laminating polarizing elements such as a polarizing film or a polarizing plate via an adhesive layer or an adhesive layer. When the translucent film 1 is provided in a dimming device (specifically, a dimming device having a light source such as an LED), the translucent film 1 is provided as a dimming film, for example. 9. Effect According to the light-transmitting film 1 of the first embodiment, the light-transmitting conductive layer 4 includes a first inorganic oxide layer 5 that does not contain crystal grains 11, a metal layer 6, and a second that includes crystal grains 11. Inorganic oxide layer 7. Therefore, intrusion of water in the atmosphere through the second inorganic oxide layer 7 into the metal layer 6 in the thickness direction can be suppressed. In addition, the first inorganic oxide layer 5 has good wettability, and the metal layer 6 and the second inorganic oxide layer 7 can be formed thinly and uniformly on the upper surface of the first inorganic oxide layer 5, so it has light transmittance. The film quality of the conductive layer 4 is good. Therefore, it is excellent in wet heat durability. That is, it is possible to suppress corrosion or discoloration of the metal layer 6 and to suppress appearance defects due to moist heat. In addition, since the metal layer 6 is interposed between the first inorganic oxide layer 5 and the second inorganic oxide layer 7 in the translucent conductive layer 4, the surface resistance value can be reduced. Furthermore, since the translucent conductive layer 4 has a three-layer structure of the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7, it is excellent in transparency. As a result, when the light-transmitting conductive layer 4 is patterned, the visibility of the wiring pattern can be suppressed. Moreover, in the translucent film 1, if the metal layer 6 is a silver layer or a silver alloy layer, the resistance can be lowered, and the average reflectance of near-infrared rays is high, which can effectively block sunlight and the like. hotline. Moreover, in the translucent film 1, if both the first inorganic oxide layer 5 and the second inorganic oxide layer 7 contain an indium tin composite oxide, the wet heat durability is more excellent. Moreover, it is excellent in transparency, and can effectively suppress the visibility of a wiring pattern. Moreover, in the translucent film 1, if the second inorganic oxide layer 7 is a semi-crystalline film having an amorphous portion 12 and a crystalline portion 13, the wet heat durability will be more excellent. Further, in the translucent film 1, if the second inorganic oxide layer 7 contains the second crystal grains 11b that do not penetrate the second inorganic oxide layer 7 in the thickness direction, it is possible to further suppress water from flowing along the grain boundaries. The second inorganic oxide layer 7 penetrates the metal layer 6 in the thickness direction. Therefore, the wet heat durability is more excellent. In particular, when the three-layer structure including the metal layer 6 is included between the first inorganic oxide layer 5 and the second inorganic oxide layer 7, it is relatively easy to cause aggregation or corrosion (discoloration) of the metal layer 6, which may result in Poor appearance or resistance. Therefore, in the second inorganic oxide layer 7, the more the first crystal particles 11 a are, the easier it is for water to enter the metal layer 6, and the more difficult it is to improve the wet heat durability. On the other hand, in the second inorganic oxide layer 7, the more the second crystal particles 11b are, the more effectively water can be prevented from penetrating into the vicinity of the metal layer 6, and the wet heat durability can be further improved. On the other hand, for example, when the light-transmitting conductive layer 4 has a double-layered structure of the first inorganic oxide layer 5 and the second inorganic oxide layer 7 without the metal layer 6 interposed, as in the prior art, the inorganic oxide Since the layers are in contact with each other, it is impossible to cause the appearance defects and the like associated with the aggregation of the metal layer 6 as described above. Therefore, in this case, the second inorganic oxide layer 7 may also have a large number of first crystal grains 11a penetrating in the thickness direction. From the viewpoint of maximizing the characteristics of crystallization (low resistance, etc.) to the maximum The second inorganic oxide layer 7 is preferably a completely crystalline film. Moreover, in the translucent film 1, if the translucent conductive layer 4 has a pattern shape, it can be used suitably as a base material for touch panels, and a base material for near-infrared reflection, for example. In particular, in the pattern-shaped light-transmitting conductive layer 4 (wiring pattern), the wet-heat durability is also excellent with respect to water intruding in the thickness direction, and therefore, corrosion or discoloration on the upper surface of the metal layer 6 can be reliably suppressed. [Second Embodiment] A light-transmitting film 1 according to a second embodiment will be described with reference to Fig. 4. In the second embodiment, the same components and steps as those in the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted. Specifically, as shown in FIG. 4, the light-transmitting film 1 of the second embodiment is a light-transmitting laminated film having a transparent substrate 2, a protective layer 3, a light-transmitting conductive layer 4, and an adhesive layer 15 in this order. . That is, the translucent film 1 includes a transparent substrate 2, a protective layer 3 disposed on the upper side of the transparent substrate 2, a transparent conductive layer 4 disposed on the upper side of the protective layer 3, and a transparent conductive layer 4. Upper side of the adhesive layer 15. Preferably, the light-transmitting film 1 is composed of only a transparent substrate 2, a protective layer 3, a light-transmitting conductive layer 4, and an adhesive layer 15. The translucent conductive layer 4 has a pattern shape. That is, the translucent conductive layer 4 includes a non-patterned portion 9 and a patterned portion 10. The adhesive layer 15 is an adhesive layer used to fix the transparent protective layer and the light-transmitting film 1 when a transparent protective layer is disposed on the light-transmitting conductive layer 4 side of the light-transmitting film 1 to manufacture an optical device. The adhesive layer 15 is also a protective layer for preventing the transparent conductive layer 4 from being directly exposed to the atmosphere. The adhesive layer 15 has a film shape (including a sheet shape), and is arranged on the upper side of the light-transmitting conductive layer 4 (the opposite side with respect to the transparent substrate 2). Specifically, the adhesive layer 15 is disposed on the protective layer 3 and the light transmitting layer so as to cover the upper surface and side surfaces of the transparent conductive layer 4 and the upper surface of the protective layer 3 exposed from the transparent conductive layer 4. The upper side of the conductive layer 4. The adhesive layer 15 is prepared from an adhesive composition. The adhesive composition contains, for example, an adhesive resin. Examples of the adhesive resin include acrylic resins, rubbers (such as butyl rubber), silicone resins, polyester resins, polyurethanes, polyamides, epoxy resins, and vinyl alkyl ethers. The resin, fluororesin, and the like are preferably acrylic resins from the viewpoint of adhesiveness. The adhesive composition preferably contains a benzotriazole-based compound. When the adhesive layer 15 contains a benzotriazole-based compound, the moist heat durability of the side surface of the light-transmitting conductive layer 4 having a pattern shape can be further improved. Examples of the benzotriazole-based compound include a benzotriazole-based compound described in Japanese Patent Laid-Open No. 2014-177612. Preferred examples include: 1,2,3-benzotriazole, 5-methylbenzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] methylbenzotriazole and the like. The adhesive composition may contain, for example, a filler, an antioxidant, a softener, a thixotropic agent, a lubricant, a pigment, an anti-scorch agent, a stabilizer, an ultraviolet absorber, a colorant, a mold inhibitor, and a flame retardant in an appropriate ratio. And other additives. The thickness T4 of the adhesive layer 15 is, for example, 2 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and, for example, 200 μm or less, preferably 100 μm or less, and more preferably 70 μm or less. The adhesive layer 15 is, for example, a wet method in which the adhesive composition is arranged on the upper surface of the light-transmitting conductive layer 4. Specifically, first, the adhesive composition is coated on the upper surface of the patterned transparent conductive layer 4 and the upper surface of the protective layer 3 of the non-patterned portion 9. Thereafter, the adhesive composition is dried by heating or irradiated with active energy rays to harden the adhesive composition. Furthermore, when the adhesive layer 15 is disposed, the adhesive layer 15 may be first disposed on the release substrate to prepare a substrate with an adhesive layer, and then the substrate with the adhesive layer may be used to transfer the adhesive layer 15 to the substrate. Light-transmitting conductive layer 4. Thereby, as shown in FIG. 4, a light-transmitting film 1 having a transparent substrate 2, a protective layer 3, a light-transmitting conductive layer 4 having a pattern shape, and an adhesive layer 15 in this order can be obtained. The translucent film 1 of the second embodiment also exhibits the same function and effect as the translucent film 1 of the first embodiment. Moreover, since the translucent film 1 further includes the adhesive layer 15 provided on the surface on the upper side of the translucent conductive layer 4, the amount of water that can penetrate the translucent conductive layer 4 is reduced, and the wet heat durability is excellent. The pattern-shaped light-transmitting conductive layer 4 (wiring pattern, etc.) can protect the side surface of the pattern, and has excellent wet heat durability on the side surface. Specifically, corrosion or discoloration of the side surface of the metal layer 6 can be reliably suppressed, and the performance (electric conductivity, etc.) of the wiring pattern can be more reliably maintained. [Modification] In the modification, the same reference numerals are given to the same components and steps as those in the first embodiment and the second embodiment described above, and detailed descriptions thereof are omitted. In the above embodiment, for example, as shown in FIG. 1 and FIG. 4, a transparent conductive layer 4 is provided on the transparent substrate 2. Although not shown, a light transmitting layer may be provided under the transparent substrate 2. Sexually conductive layer 4. That is, the translucent film 1 may be provided with a protective layer 3 and a translucent conductive layer 4 in this order on the upper and lower sides of the transparent base material 2, respectively. In the embodiment described above, for example, as shown in FIGS. 1 and 4, the protective layer 3 is interposed between the transparent substrate 2 and the first inorganic oxide layer 5. However, for example, as shown in FIG. 5, the first inorganic oxide layer 5 may be directly disposed on the upper surface of the transparent substrate 2. That is, the translucent film 1 includes a transparent substrate 2, a first inorganic oxide layer 5, a metal layer 6, and a second inorganic oxide layer 7 in this order. On the other hand, this translucent film 1 does not include the protective layer 3. In the above embodiment, for example, as shown in FIGS. 1 and 4, the first inorganic oxide layer 5 is directly disposed on the upper surface of the protective layer 3. However, for example, as shown in FIG. 6, the optical adjustment layer 16 may be interposed between the protective layer 3 and the first inorganic oxide layer 5. The optical adjustment layer 16 is an optical adjustment layer (a second optical adjustment layer) that adjusts the optical properties of the light-transmitting film 1 so as to suppress the visibility of the wiring pattern of the light-transmitting conductive layer 4 together with the protective layer 3. The optical adjustment layer 16 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to be in contact with the upper surface of the protective layer 3. The optical adjustment layer 16 has specific optical physical properties, and is prepared from, for example, an inorganic substance such as an oxide or a fluoride, or a resin composition such as an acrylic resin or a melamine resin. The optical adjustment layer 16 may be a single layer or a multi-layer having different compositions. The thickness of the optical adjustment layer 16 is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and, for example, 500 nm or less, preferably 200 nm or less, more preferably 50 nm or less, and further preferably 25 nm or less. In the above embodiment, as shown in FIG. 1, the light-transmitting conductive layer 4 includes only the first inorganic oxide layer 5, the metal layer 6, and the second inorganic oxide layer 7. However, although it is not shown, for example, the second metal layer and the third inorganic oxide layer may be sequentially disposed on the upper surface of the second inorganic oxide layer 7, and may also be disposed on the third inorganic oxide layer. A third metal layer and a fourth inorganic oxide layer are arranged on the surface. Although not shown, functional layers such as an antifouling layer, an adhesion layer, a water-repellent layer, an anti-reflection layer, and an oligomer preventive layer may be disposed on the upper surface and / or the lower surface of the first transparent substrate 2. The functional layer preferably contains the resin composition. Such a functional layer is appropriately selected according to a required function. In the manufacturing method of the translucent film 1, patterning is performed after a heating step, and for example, a heating step may be performed after patterning. Furthermore, the second inorganic oxide layer 7 can be crystallized by the heating step, and the second inorganic oxide layer 7 can also be crystallized by being exposed to the atmosphere for several months or more, for example. Examples The following examples and comparative examples illustrate the present invention more specifically. The present invention is not limited to any Examples and Comparative Examples. In addition, specific numerical values such as the blending ratio (containing ratio), physical property values, and parameters used in the following description may be substituted with the corresponding blending ratio (containing ratio), physical property values, and parameters described in the above-mentioned "Embodiment". Such as the corresponding record of the upper limit (defined as "below", "not reached" value) or the lower limit (defined as "above", "exceeded" value). Example 1 (Preparation of film substrate and formation of protective layer) First, a transparent substrate including a long polyethylene terephthalate (PET) film and having a thickness of 50 μm was prepared. Moreover, the moisture content in the prepared transparent substrate was 19 μg / cm 2 Also, the content of water relative to the transparent substrate was 0.27 mass%. Then, an ultraviolet curable resin containing an acrylic resin was coated on the surface of the transparent substrate, and then cured by ultraviolet irradiation to form a protective layer including a cured resin layer and having a thickness of 2 μm. Thereby, a transparent substrate roll provided with a transparent substrate and a protective layer with a protective layer was obtained. (Formation of the first inorganic oxide layer) Next, a transparent substrate roll with a protective layer was set in a vacuum sputtering device, and vacuum exhaust was performed until the air pressure when it was not transported became 2 × 10 -3 Pa (degassing). At this time, the sputtering gas (Ar and O 2 ), Transport a part of the transparent substrate with a protective layer, and check that the air pressure rises to 1 × 10 -2 Pa. Thereby, it was confirmed that a sufficient amount of gas remained in the transparent substrate roll with the protective layer. Then, a transparent substrate roll with a protective layer was successively sent out, and a first inorganic oxide layer including an indium tin oxide layer and having a thickness of 40 nm was formed on the upper surface of the hardened resin layer by sputtering. Specifically, Ar and O are introduced. 2 Under a vacuum atmosphere of 0.2 Pa (flow ratio is Ar: O 2 = 100: 3.8), using a direct current (DC) power source, sputtering an ITO target containing 12 mass% tin oxide and 88 mass% indium oxide sintered body. Furthermore, when the first inorganic oxide layer is formed by sputtering, the lower surface of the transparent substrate roll with a protective layer (specifically, the lower surface of the transparent substrate) is brought into contact with a cooling roll of -5 ° C. The transparent substrate roll with the protective layer is cooled. (Formation of metal layer) A metal layer containing an Ag alloy and having a thickness of 8 nm was formed on the upper surface of the first inorganic oxide layer by sputtering. Specifically, an Ag alloy target (manufactured by Mitsubishi Materials Co., Ltd., product number "No. 317") was sputtered using a direct current (DC) power source as a power source in a vacuum atmosphere in which an atmospheric pressure of 0.4 Pa was introduced. (Formation of second inorganic oxide layer) A second inorganic oxide layer containing ITO and having a thickness of 38 nm was formed on the upper surface of the metal layer by sputtering. Specifically, Ar and O are introduced. 2 Under a vacuum atmosphere of 0.2 Pa (flow ratio is Ar: O 2 = 100: 4.0). Using a direct current (DC) power source, an ITO target containing sintered bodies of 12% by mass of tin oxide and 88% by mass of indium oxide was sputtered. Thereafter, a heating step was performed under the conditions of 80 ° C. and 12 hours in an atmospheric atmosphere. Thereby, the second inorganic oxide layer is crystallized. Thereby, a light-transmitting film in which a protective layer, a first inorganic oxide layer, a metal layer, and a second inorganic oxide layer are sequentially formed on a transparent substrate is obtained. Example 2 By combining Ar and O 2 The flow ratio is set to Ar: O 2 = 100: 3.1. An ITO target containing 3% by mass of tin oxide and 97% by mass of indium oxide sintered body was sputtered to form a second inorganic oxide layer, except that a second inorganic oxide layer was obtained. Translucent film. Comparative Example 1 A light-transmitting film was obtained in the same manner as in Example 1 except that the thickness of each layer was changed to the thickness described in Table 1, and a heating step was not performed during the formation of the second inorganic oxide layer. Comparative Example 2 Ar and O during sputtering 2 The flow ratio is set to Ar: O 2 = 100: 1.0, change the thickness of each layer to the thickness described in Table 1, and form a light-transmitting conductive layer without forming a metal layer, and then perform a heating step at 140 ° C for 1 hour in the atmosphere, except that Other than that, a translucent film was obtained in the same manner as in Example 1. (Measurement) (1) Thickness The thickness of the protective layer, the first inorganic oxide layer, the metal layer, and the second inorganic oxide was measured by cross-sectional observation using a transmission electron microscope ("HF-2000" manufactured by Hitachi, Ltd.). The thickness of the substrate was measured using a film thickness meter (digital dial gauge DG-205 manufactured by Peacock). The results are shown in Table 1. (2) Observation of crystal grains by cross-section TEM The cross-sections of the first inorganic oxide layer and the second inorganic oxide layer were observed using a transmission electron microscope ("HF-2000" manufactured by Hitachi, magnification: 200,000 times). The number of crystal grains per 500 nm in the plane direction distance of the cross-sectional view at this time was counted. The length of the largest crystal grains of the crystal grains generated in the inorganic oxide layer was measured. The results are shown in Table 1. (3) Observation of Crystal Particles by Plane TEM In transmission films of Examples and Comparative Examples in which crystal particles were confirmed by cross-section TEM, a transmission electron microscope (manufactured by Hitachi, "H-7650") was used. ), Observing the upper surface of the second inorganic oxide layer, and obtaining a planar image at a magnification of 100,000 times. Next, the ratio of the area of crystal grains (crystallized parts) to the area of the entire second inorganic oxide layer was measured. The results are shown in Table 1. Furthermore, in Example 1, the number of the second crystal grains was more than the number of the first crystal grains. (4) Damp heat durability Cut out the transparent film of each example and comparative example to a size of 10 cm × 10 cm to form an adhesive layer on the transparent conductive layer (manufactured by Nitto Denko Corporation, “CS9904U”), After bonding to a glass substrate, it was left for 240 hours under the conditions of 60 ° C and 95% RH. Thereafter, the upper surface of the translucent conductive layer in the central 8 cm × 8 cm portion was visually observed. At this time, appearance evaluation was performed based on the following criteria. :: No white point-like defects (aggregation or corrosion) were observed (0). :: There are more than 0 white point defects and 5 or less. ×: There are more than 5 white point defects. (5) Surface resistance of the light-transmitting conductive layer The surface resistance value of the light-transmitting conductive layer was measured according to the four-probe method of JIS K7194 (1994). The results are shown in Table 1. (6) Visible light transmittance Using a haze meter (manufactured by Suga Test Instruments, device name "HGM-2DP), the total light transmittance was measured as the visible light transmittance. The results are shown in Table 1. (7) Near-infrared reflection Characteristics The average reflectance of near infrared rays (wavelength 850 to 2500 nm) was measured for the light-transmitting films of Examples 1 to 2 and the result was 58%. From this, it can be seen that the light-transmitting films of Examples have good near-infrared reflection characteristics . [Table 1] The above invention is provided as an exemplary embodiment of the present invention, but it is only an example and is not to be construed in a limiting sense. Variations of the present invention, which will be apparent to those skilled in the art, are included in the scope of patent application described later. [Industrial Applicability] The translucent film of the present invention can be applied to various industrial products, for example, it can be preferably used in optical devices such as image display devices and dimming devices.

1‧‧‧透光性膜
2‧‧‧透明基材
3‧‧‧保護層
4‧‧‧透光性導電層
5‧‧‧第1無機氧化物層
6‧‧‧金屬層
7‧‧‧第2無機氧化物層
9‧‧‧非圖案部
10‧‧‧圖案部
11‧‧‧結晶粒
11a‧‧‧第1結晶粒
11b‧‧‧第2結晶粒
12‧‧‧非晶質部
13‧‧‧結晶質部
14‧‧‧透明基材
15‧‧‧黏著劑層
16‧‧‧光學調整層
L‧‧‧寬度
S‧‧‧間隔
T1‧‧‧厚度
T2‧‧‧厚度
T3‧‧‧厚度
T4‧‧‧厚度
1‧‧‧Translucent film
2‧‧‧ transparent substrate
3‧‧‧ protective layer
4‧‧‧ transparent conductive layer
5‧‧‧ the first inorganic oxide layer
6‧‧‧ metal layer
7‧‧‧Second inorganic oxide layer
9‧‧‧ non-patterned department
10‧‧‧ Pattern Department
11‧‧‧ crystal grain
11a‧‧‧The first crystal grain
11b‧‧‧Second crystal grain
12‧‧‧Amorphous
13‧‧‧ Crystalline Department
14‧‧‧ transparent substrate
15‧‧‧Adhesive layer
16‧‧‧Optical adjustment layer
L‧‧‧Width
S‧‧‧ interval
T1‧‧‧thickness
T2‧‧‧thickness
T3‧‧‧thickness
T4‧‧‧thickness

圖1表示第1實施形態之透光性膜之剖視圖。 圖2A~B表示圖1所示之透光性膜之局部放大圖,圖2A表示第2無機氧化物層為完全結晶膜之情形時之模式圖,圖2B表示第2無機氧化物層為半結晶膜之情形時之模式圖。 圖3表示於圖1所示之透光性膜中透光性導電層具有圖案形狀之情形時之剖視圖。 圖4表示第2實施形態之透光性膜之剖視圖。 圖5係第1實施形態之透光性膜之變化例,且表示於透明基材之上表面直接配置有第1無機氧化物層之透光性膜之剖視圖。 圖6係第1實施形態之透光性膜之變化例,且表示於保護層與第1無機氧化物層之間介置有光學調整層之透光性膜之剖視圖。Fig. 1 shows a cross-sectional view of a light-transmitting film according to a first embodiment. FIGS. 2A to 2B are partial enlarged views of the translucent film shown in FIG. 1, FIG. 2A is a schematic view when the second inorganic oxide layer is a completely crystalline film, and FIG. 2B is a half diagram of the second inorganic oxide layer. A schematic diagram of the case of a crystalline film. FIG. 3 is a cross-sectional view when the transparent conductive layer has a pattern shape in the transparent film shown in FIG. 1. Fig. 4 is a sectional view of a light-transmitting film according to a second embodiment. FIG. 5 is a cross-sectional view of a light-transmitting film according to the first embodiment, and shows a light-transmitting film in which a first inorganic oxide layer is directly arranged on the upper surface of a transparent substrate. 6 is a cross-sectional view of a light-transmitting film according to a first embodiment, showing a light-transmitting film having an optical adjustment layer interposed between a protective layer and a first inorganic oxide layer.

1‧‧‧透光性膜 1‧‧‧Translucent film

2‧‧‧透明基材 2‧‧‧ transparent substrate

3‧‧‧保護層 3‧‧‧ protective layer

4‧‧‧透光性導電層 4‧‧‧ transparent conductive layer

5‧‧‧第1無機氧化物層 5‧‧‧ the first inorganic oxide layer

6‧‧‧金屬層 6‧‧‧ metal layer

7‧‧‧第2無機氧化物層 7‧‧‧Second inorganic oxide layer

14‧‧‧透明基材 14‧‧‧ transparent substrate

T1‧‧‧厚度 T1‧‧‧thickness

T2‧‧‧厚度 T2‧‧‧thickness

T3‧‧‧厚度 T3‧‧‧thickness

Claims (8)

一種透光性膜,其特徵在於依序具備透明基材與透光性導電層, 上述透光性導電層自上述透明基材起依序具備第1無機氧化物層、金屬層及第2無機氧化物層,且 上述第1無機氧化物層不含結晶粒, 上述第2無機氧化物層含有結晶粒。A light-transmitting film characterized by sequentially including a transparent substrate and a light-transmitting conductive layer. The light-transmitting conductive layer includes a first inorganic oxide layer, a metal layer, and a second inorganic layer in this order from the transparent substrate. An oxide layer, and the first inorganic oxide layer does not contain crystal grains, and the second inorganic oxide layer contains crystal grains. 如請求項1之透光性膜,其中上述金屬層為銀層或銀合金層。The translucent film according to claim 1, wherein the metal layer is a silver layer or a silver alloy layer. 如請求項1之透光性膜,其中上述第1無機氧化物層及上述第2無機氧化物層均含有氧化銦。The translucent film according to claim 1, wherein both the first inorganic oxide layer and the second inorganic oxide layer contain indium oxide. 如請求項1之透光性膜,其中上述第1無機氧化物層及上述第2無機氧化物層均含有銦錫複合氧化物。The translucent film according to claim 1, wherein each of the first inorganic oxide layer and the second inorganic oxide layer contains an indium tin composite oxide. 如請求項1之透光性膜,其中上述第2無機氧化物層係具有非晶質部及結晶質部之半結晶膜。The translucent film according to claim 1, wherein the second inorganic oxide layer is a semi-crystalline film having an amorphous portion and a crystalline portion. 如請求項1之透光性膜,其中上述第2無機氧化物層含有於厚度方向上不貫通上述第2無機氧化物層之結晶粒。The translucent film according to claim 1, wherein the second inorganic oxide layer contains crystal grains that do not penetrate the second inorganic oxide layer in a thickness direction. 如請求項1之透光性膜,其中上述透光性導電層具有圖案形狀。The translucent film according to claim 1, wherein the translucent conductive layer has a pattern shape. 如請求項7之透光性膜,其進而具備設置於上述透光性導電層之相對於上述透明基材為相反側之表面的黏著劑層。The translucent film according to claim 7, further comprising an adhesive layer provided on a surface of the translucent conductive layer opposite to the transparent substrate.
TW106111001A 2016-04-01 2017-03-31 Translucent film TWI724149B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016074471 2016-04-01
JP??2016-074471 2016-04-01
JP2017063684A JP6934308B2 (en) 2016-04-01 2017-03-28 Light transmissive film
JP??2017-063684 2017-03-28

Publications (2)

Publication Number Publication Date
TW201806752A true TW201806752A (en) 2018-03-01
TWI724149B TWI724149B (en) 2021-04-11

Family

ID=60044147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111001A TWI724149B (en) 2016-04-01 2017-03-31 Translucent film

Country Status (3)

Country Link
JP (1) JP6934308B2 (en)
CN (1) CN109074906B (en)
TW (1) TWI724149B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790539B (en) * 2020-02-03 2023-01-21 日商日東電工股份有限公司 Laminated body, touch sensor, dimming element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shielding member, and image display device
US11586312B1 (en) 2021-11-10 2023-02-21 Tpk Advanced Solutions Inc. Touch module and method of manufacturing the same
TWI798888B (en) * 2021-10-21 2023-04-11 大陸商宸美(廈門)光電有限公司 Touch module and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409872B2 (en) * 2018-11-13 2024-01-09 日東電工株式会社 Light-transparent laminates, touch sensors and image display devices
JP7114446B2 (en) * 2018-11-28 2022-08-08 日東電工株式会社 Conductive film and patterning method thereof
JP7452143B2 (en) * 2020-03-19 2024-03-19 セイコーエプソン株式会社 Multi-lens array, light source device and projector
CN112908517B (en) * 2021-01-19 2022-08-05 大正(江苏)微纳科技有限公司 Transparent conductive film and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883515A (en) * 1994-09-13 1996-03-26 Fujimori Kogyo Kk Transparent conductive sheet
JP3257913B2 (en) * 1994-12-21 2002-02-18 住友ベークライト株式会社 Transparent electrode
JP3031224B2 (en) * 1995-12-21 2000-04-10 凸版印刷株式会社 Transparent conductive film
JPH10278159A (en) * 1997-04-08 1998-10-20 Mitsui Chem Inc Production of transparent conductive membrane laminate
JP2002014364A (en) * 2000-06-29 2002-01-18 Minolta Co Ltd Liquid crystal display element and method for manufacturing the same
JP3928970B2 (en) * 2004-09-27 2007-06-13 株式会社アルバック Method for producing laminated transparent conductive film
JP2011161893A (en) * 2010-02-15 2011-08-25 Gunze Ltd Gas-barrier film with transparent conductive film
KR101407877B1 (en) * 2011-12-28 2014-06-17 (주)엘지하우시스 Transparent conductivity film with excellent electric property and touch panel using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790539B (en) * 2020-02-03 2023-01-21 日商日東電工股份有限公司 Laminated body, touch sensor, dimming element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shielding member, and image display device
TWI798888B (en) * 2021-10-21 2023-04-11 大陸商宸美(廈門)光電有限公司 Touch module and method of manufacturing the same
US11586312B1 (en) 2021-11-10 2023-02-21 Tpk Advanced Solutions Inc. Touch module and method of manufacturing the same

Also Published As

Publication number Publication date
JP6934308B2 (en) 2021-09-15
CN109074906B (en) 2020-12-22
CN109074906A (en) 2018-12-21
TWI724149B (en) 2021-04-11
JP2017188447A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
TWI724149B (en) Translucent film
TWI716379B (en) Translucent film
JP6601199B2 (en) Transparent conductor
TWI755384B (en) Liquid crystal light-adjusting member, light-transmitting conductive film, and liquid crystal light-adjusting element
TW201800820A (en) Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element
KR20180012730A (en) Transparent conductive film
KR102367519B1 (en) light transmissive film
JP7046497B2 (en) Liquid crystal dimming member, light transmissive conductive film, and liquid crystal dimming element
KR102328764B1 (en) A liquid crystal light control member, a light transmissive conductive film, and a liquid crystal light control element
JP2024032742A (en) Light-transparent conductive layer and light-transparent conductive film
JP7341821B2 (en) Transparent conductive film and its manufacturing method
TWI726932B (en) Translucent conductive film, its manufacturing method, dimming film and its manufacturing method
JP7372995B2 (en) Method for producing a light-transparent conductive layer laminate and light-transparent conductive layer laminate
TWI770080B (en) Polarizing film, protective plate for image display device, and retardation film
TWI788464B (en) Light-transmitting conductive film, manufacturing method thereof, light-adjusting film, and light-adjusting member
JP7409872B2 (en) Light-transparent laminates, touch sensors and image display devices
TW202145259A (en) Production method for transparent conductive film
CN115298761A (en) Transparent conductive film and method for producing transparent conductive film
WO2017073597A1 (en) Light-transmitting conductive film, method for producing same, light modulation film and method for producing light modulation film
KR20200098500A (en) Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees