TW201733954A - 超薄非易碎的玻璃及製造方法 - Google Patents

超薄非易碎的玻璃及製造方法 Download PDF

Info

Publication number
TW201733954A
TW201733954A TW106101173A TW106101173A TW201733954A TW 201733954 A TW201733954 A TW 201733954A TW 106101173 A TW106101173 A TW 106101173A TW 106101173 A TW106101173 A TW 106101173A TW 201733954 A TW201733954 A TW 201733954A
Authority
TW
Taiwan
Prior art keywords
mpa
glass
glass article
mole
depth
Prior art date
Application number
TW106101173A
Other languages
English (en)
Other versions
TWI731917B (zh
Inventor
帕斯卡爾 奧朗
羅斯提斯拉夫費契夫 路瑟夫
維特馬利諾 施耐德
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201733954A publication Critical patent/TW201733954A/zh
Application granted granted Critical
Publication of TWI731917B publication Critical patent/TWI731917B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

具約0.1毫米至小於0.4毫米厚度t的玻璃當化學強化時為非易碎,並且具有物理中心張力CT(在此亦稱作「物理CT」),其中CT>|-1.956×10-16×t6+ 1.24274×10-12×t5- 3.09196×10-9×t4+ 3.80391×10-6×t3- 2.35207×10-3×t2+ 5.96241×10-1×t+ 36.5994|,其中t以微米表示。

Description

超薄非易碎的玻璃及製造方法
本申請案根據專利法法規主張西元2016年1月13日申請的美國臨時專利申請案第62/278,125號的優先權權益,本申請案依賴該臨時申請案全文內容且該臨時申請案全文內容以引用方式併入本文中。
本發明係關於可離子交換玻璃。更特別地,本發明係關於厚度小於0.4毫米的可離子交換玻璃。再更特別地,本發明係關於離子交換時不易碎的玻璃。
在離子交換過程中,較大陽離子(例如K+ )往玻璃擴散係由古典互補誤差函數引導。離子交換產生的應力輪廓形狀和數值先前以物理中心張力極限決定,此為拉伸應力或物理中心張力值,預期高於該值時,當玻璃遭到撞擊或損傷,便會發生不當行為,諸如易碎性。
本發明提供具約0.1毫米(mm)至小於0.4 mm厚度t 的玻璃,當化學強化時,玻璃為非易碎,並且具有物理中心張力CT(在此亦稱作「物理CT」),物理CT超過易碎性極限;即CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
故本發明的一態樣提供具厚度t 的玻璃物件,其中0.1 mm£t <0.4 mm,壓縮層從玻璃物件的表面延伸到壓縮深度DOC,拉伸區域從壓縮深度延伸到玻璃物件的中心區域。拉伸區域受到物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示,其中玻璃為非易碎。
本發明的另一態樣提供具厚度t 的玻璃物件,其中0.1 mm£t <0.4 mm,且包含:壓縮層從玻璃物件的表面延伸到壓縮深度DOC,及拉伸區域從壓縮深度延伸到玻璃物件的中心區域,拉伸區域受到物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。壓縮層具有應力輪廓(stress profile),包含:第一區域從至少一第一深度D1延伸到壓縮深度DOC,其中至少一部分的第一區域呈線性並具有斜率m1 ,其中20兆帕/微米(MPa/μm)≥|m1 |≥1.2 MPa/μm,其中9 μm≤D1≤17 μm;及第二區域從表面延伸到至多第一深度D1的深度,第二區域具有線性部分從表面延伸到至多約5 μm或以下的深度並具有斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm;其中玻璃物件為非易碎。
本發明的又一態樣提供離子交換玻璃物件的方法,玻璃物件具有厚度t ,其中0.1 mm£t <0.4 mm。方法包含:在約300℃至約500℃的溫度下,在第一離子交換浴中離子交換玻璃物件,第一離子交換浴包含約25重量%至約100重量%的KNO3 和至多約75重量%的NaNO3 ;形成壓縮層,壓縮層從玻璃物件的表面延伸到壓縮深度DOC,其中0.05t £DOC£0.22t ;及於玻璃物件的中心部分形成拉伸區域,拉伸區域從壓縮深度DOC延伸到玻璃物件的中心區域,拉伸區域具有物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示,其中玻璃為非易碎。
根據本發明的態樣1,提供玻璃物件。玻璃物件具有厚度t ,其中0.1 mm£t <0.4 mm,壓縮層從玻璃物件的表面延伸到壓縮深度DOC,拉伸區域從壓縮深度延伸到玻璃物件的中心區域,拉伸區域受到物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
根據本發明的態樣2,提供態樣1的玻璃物件,其中0.05t £DOC£0.22t
根據本發明的態樣3,提供態樣1或2的玻璃物件,其中壓縮層於表面具有壓縮應力CS1,其中200 MPa£CS1£950 MPa。
根據本發明的態樣4,提供態樣1至3中任一態樣的玻璃物件,其中玻璃物件經離子交換。
根據本發明的態樣5,提供態樣1至4中任一態樣的玻璃物件,其中壓縮層具有應力輪廓,其中至少一部分的應力輪廓呈線性並具有斜率m1 ,其中200 MPa/μm≥|m1 |≥1 MPa/μm。
根據本發明的態樣6,提供態樣5的玻璃物件,其中20 MPa/μm≥|m1 |≥1.2 MPa/μm。
根據本發明的態樣7,提供態樣6的玻璃物件,其中1.5 MPa/μm£|m1 |£15 MPa/μm。
根據本發明的態樣8,提供態樣6的玻璃物件,其中應力輪廓進一步包含第二區域從表面延伸一深度而達深度D1,其中9 μm≤D1≤17 μm,第二區域具有線性部分從表面延伸到至多約5 μm的深度並具有斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm。
根據本發明的態樣9,提供態樣8的玻璃物件,其中160 MPa/μm≥|m2 |≥40 MPa/μm。
根據本發明的態樣10,提供態樣9的玻璃物件,其中120 MPa/μm≥|m2 |≥45 MPa/μm。
根據本發明的態樣11,提供態樣1至10中任一態樣的玻璃物件,其中玻璃物件包含鹼鋁矽酸鹽玻璃。
根據本發明的態樣12,提供態樣11的玻璃物件,其中鹼鋁矽酸鹽玻璃包含至多約10莫耳%的Li2 O。
根據本發明的態樣13,提供態樣11的玻璃物件,其中鹼鋁矽酸鹽玻璃不含鋰。
根據本發明的態樣14,提供態樣11的玻璃物件,其中鹼鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 和0莫耳%至約5莫耳%的B2 O3 ,其中1.3<[(P2 O5 +R2 O)/M2 O3 ]≤2.3,其中M2 O3 =Al2 O3 +B2 O3 ,R2 O係存於鹼鋁矽酸鹽玻璃的單價陽離子氧化物總和。
根據本發明的態樣15,提供態樣14的玻璃物件,其中11莫耳%≤M2 O3 ≤30莫耳%。
根據本發明的態樣16,提供態樣14的玻璃物件,其中鹼鋁矽酸鹽玻璃包含約40莫耳%至約70莫耳%的SiO2 、約11莫耳%至約25莫耳%的Al2 O3 、0莫耳%至約5莫耳%的B2 O3 、約4莫耳%至約15莫耳%的P2 O5 、約13莫耳%至約25莫耳%的Na2 O和0莫耳%至約1莫耳%的K2 O。
根據本發明的態樣17,提供態樣14的玻璃物件,其中Rx O係存於玻璃的鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物的總和,其中13莫耳%≤Rx O≤30莫耳%。
根據本發明的態樣18,提供態樣1至16中任一態樣的玻璃物件,其中物理中心張力CT為小於或等於約200 MPa。
根據本發明的態樣19,提供態樣18的玻璃物件,其中中心張力CT為小於或等於約135 MPa。
根據本發明的態樣20,提供態樣19的玻璃物件,其中中心張力CT為小於或等於約98 MPa。
根據本發明的態樣21,提供態樣1至20中任一態樣的玻璃物件,其中DOC>0.15t ,其中CT(MPa)£(85/√t (mm))。
根據本發明的態樣22,提供態樣21的玻璃物件,其中0.18t <DOC<0.22t ,其中CT(MPa)£(79/√t (mm))。
根據本發明的態樣23,提供態樣22的玻璃物件,其中0.16t <DOC<0.19t ,其中CT(MPa)£(73/√t (mm))。
根據本發明的態樣24,提供態樣1至23中任一態樣的玻璃物件,其中玻璃物件為非易碎。
根據本發明的態樣25,提供消費性電子產品。消費性電子產品包含:外殼,具有正面、背面和側面;電子部件,至少部分置於外殼內,電子部件包括至少一控制器、記憶體和顯示器,顯示器設於或鄰接外殼的正面;及如態樣1至24中任一態樣之玻璃物件,置於顯示器上面。
根據本發明的態樣26,提供玻璃物件。玻璃物件具有厚度t ,其中0.1 mm£t <0.4 mm,且包含:壓縮層從玻璃物件的表面延伸到壓縮深度DOC,壓縮層具有應力輪廓。應力輪廓包含:第一區域從至少一第一深度D1延伸到壓縮深度DOC,其中至少一部分的第一區域呈線性並具有斜率m1 ,其中20兆帕/微米(MPa/μm)≥|m1 |≥1.2 MPa/μm,其中9 μm≤D1≤17 μm;及第二區域從表面延伸到至多第一深度D1的深度,第二區域具有線性部分從表面延伸到至多約5 μm或以下的深度並具有斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm;及拉伸區域從壓縮深度延伸到玻璃物件的中心區域,拉伸區域受到物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
根據本發明的態樣27,提供態樣26的玻璃物件,其中0.08t £DOC£0.22t
根據本發明的態樣28,提供態樣27的玻璃物件,其中0.1t £DOC£0.20t
根據本發明的態樣29,提供態樣26至28中任一態樣的玻璃物件,其中壓縮層於表面具有壓縮應力CS,其中200 MPa£CS£950 MPa。
根據本發明的態樣30,提供態樣26至29中任一態樣的玻璃物件,其中玻璃物件經離子交換。
根據本發明的態樣31,提供態樣26至30中任一態樣的玻璃物件,其中玻璃物件包含鹼鋁矽酸鹽玻璃。
根據本發明的態樣32,提供態樣31的玻璃物件,其中鹼鋁矽酸鹽玻璃包含至多約10莫耳%的Li2 O。
根據本發明的態樣33,提供態樣31的玻璃物件,其中玻璃不含鋰。
根據本發明的態樣34,提供態樣31的玻璃物件,其中鹼鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 和0莫耳%至約5莫耳%的B2 O3 ,其中1.3<[(P2 O5 +R2 O)/M2 O3 ]≤2.3,其中M2 O3 =Al2 O3 +B2 O3 ,R2 O係存於鹼鋁矽酸鹽玻璃的單價陽離子氧化物總和。
根據本發明的態樣35,提供態樣31的玻璃物件,其中鹼鋁矽酸鹽玻璃包含約40莫耳%至約70莫耳%的SiO2 、約11莫耳%至約25莫耳%的Al2 O3 、0莫耳%至約5莫耳%的B2 O3 、約4莫耳%至約15莫耳%的P2 O5 、約13莫耳%至約25莫耳%的Na2 O和0莫耳%至約1莫耳%的K2 O。
根據本發明的態樣36,提供態樣31的玻璃物件,其中11莫耳%≤M2 O3 ≤30莫耳%。
根據本發明的態樣37,提供態樣31的玻璃物件,其中Rx O係存於玻璃的鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物的總和,其中13莫耳%≤Rx O≤30莫耳%。
根據本發明的態樣38,提供態樣26至37中任一態樣的玻璃物件,其中中心張力CT為小於或等於約200 MPa。
根據本發明的態樣39,提供態樣26至38中任一態樣的玻璃物件,其中中心張力CT為小於或等於約135 MPa。
根據本發明的態樣40,提供態樣26至39中任一態樣的玻璃物件,其中中心張力CT為小於或等於約98 MPa。
根據本發明的態樣41,提供態樣26至40中任一態樣的玻璃物件,其中DOC>0.15t ,其中CT(MPa)£(85/√t (mm))。
根據本發明的態樣42,提供態樣41的玻璃物件,其中0.18t <DOC<0.22t ,其中CT(MPa)£(79/√t (mm))。
根據本發明的態樣43,提供態樣42的玻璃物件,其中0.16t <DOC<0.19t ,其中CT(MPa)£(73/√t (mm))。
根據本發明的態樣44,提供態樣26至43中任一態樣的玻璃物件,其中玻璃物件為非易碎。
根據本發明的態樣45,提供消費性電子產品。消費性電子產品包含:外殼,具有正面、背面和側面;電子部件,至少部分置於外殼內,電子部件包括至少一控制器、記憶體和顯示器,顯示器設於或鄰接外殼的正面;及如態樣26至44中任一態樣之玻璃物件,置於顯示器上面。
根據本發明的態樣46,提供離子交換玻璃物件的方法,玻璃物件具有厚度t ,其中0.1 mm£t <0.4 mm。方法包含:在約300℃至約500℃的溫度下,在第一離子交換浴中離子交換玻璃物件,第一離子交換浴包含約25重量%至約100重量%的KNO3 和至多約75重量%的NaNO3 ;形成壓縮層,壓縮層從玻璃物件的表面延伸到壓縮深度DOC,其中0.05t £DOC£0.22t ;及於玻璃物件的中心部分形成拉伸區域,拉伸區域從壓縮深度DOC延伸到玻璃物件的中心區域,拉伸區域具有物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
根據本發明的態樣47,提供態樣46的方法,其中形成壓縮層包含形成應力輪廓,其中至少一部分的應力輪廓呈線性並具有斜率m1 ,其中200兆帕/微米(MPa/μm)≥|m1 |≥1.2 MPa/μm。
根據本發明的態樣48,提供態樣46的方法,其中20 MPa/μm≥|m1 |≥1.2 MPa/μm。
根據本發明的態樣49,提供態樣46的方法,其中15 MPa/μm≥|m1 |≥1.5 MPa/μm。
根據本發明的態樣50,提供態樣46至49中任一態樣的方法,進一步包含:在第一離子交換浴中離子交換玻璃物件後,在第二離子交換浴中離子交換玻璃物件,第二離子交換浴包含;及形成應力輪廓的一第二區域,第二區域從表面延伸到第一深度D1,第二區域具有線性部分從表面延伸到至多約5 μm的深度,線性部分具有斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm。
根據本發明的態樣51,提供態樣50的方法,其中0.08t £DOC£0.22t
根據本發明的態樣52,提供態樣51的方法,其中0.1t £DOC£0.20t
根據本發明的態樣53,提供態樣46至52中任一態樣的方法,其中壓縮層於表面具有壓縮應力CS,其中500 MPa£CS£950 MPa。
根據本發明的態樣54,提供態樣46至53中任一態樣的方法,其中玻璃物件為非易碎。
本發明的上述和其他態樣、優點和顯著特徵在參閱以下詳細實施方式說明、附圖和後附申請專利範圍後,將變得更清楚易懂。
在以下說明中,相同的元件符號代表各視圖中相仿或對應的零件。亦應理解除非具體指明,否則諸如「頂部」、「底部」、「向外」、「向內」等用語僅為便於說明,而非視為限定用語。此外,當描述某一群組包含至少一組元件和元件組合物時,應理解該群組可包含、本質由或由個別或結合任何數量的提及元件組成。同樣地,當描述某一群組由至少一組元件或元件組合物組成時,應理解該群組可由個別或結合任何數量的提及元件組成。除非具體指明,否則所述數值範圍包括範圍的上限與下限和介於二者間的任何範圍。除非具體指明,否則在此所用不定冠詞「一」和對應定冠詞「該」意指「至少一」或「一或更多」。亦應理解說明書和圖式所述各種特徵結構可以任何和所有結合方式使用。
大體參照圖式且特別參照第1圖,應理解圖式說明係為描述特定實施例,而無意限定本發明或後附申請專利範圍。圖式不必然按比例繪製,為清楚簡潔呈現,某些特徵結構和一些視圖當可放大或概要圖示。
在此,「玻璃物件」一詞係採用最廣泛的意義而包括整體或部分由玻璃製成的任何物體。除非特別指明,否則所有玻璃組成係以莫耳百分比(莫耳%)表示,所有離子交換浴組成係以重量百分比(重量%)表示。
注意在此所用「實質」和「約」等用語係表示任何定量比較、數值、量測或其他表述引起的固有不確定程度。該等用語在此亦表示定量表述偏離指定參考值、又不致改變所述標的的基本功能的程度。故例如,「實質無Li2 O」的玻璃係指不主動添加或批次加入Li2 O至玻璃、但可像污染物般少量存在著,即少於約0.1莫耳%。「無Li2 O」意指玻璃含有0莫耳%的Li2 O。
在此所用「層深度」和「DOL」係指利用市售儀器,例如FSM-6000應力計等,依表面應力計(FSM)量測測定的壓縮層深度。
在此所用「壓縮深度」和「DOC」係指玻璃內應力從壓縮變成拉伸應力的深度。在DOC處,應力從正(壓縮)應力橫跨到負(拉伸)應力,是以具有零值。壓縮深度DOC係利用反演溫哲爾-柯拉麻-布裏元(IWKB)法,由TM與TE偏振束縛光學模態光譜測定,此描述於Rostislav V. Roussev等人於西元2012年5月3日申請、名稱為「Systems And Methods for Measuring the Stress Profile of Ion-Exchanged Glass」的美國專利案第9,140,543號(以下稱作「Roussev I」),並主張西元2011年5月25日申請、具相同名稱的美國臨時專利申請案第61/489,800號的優先權。以上專利申請案全文內容以引用方式併入本文中。其他此領域已知包括、但不限於折射近場(RNF)、偏振測定(例如,散射線性偏振(SCALP))和蝕刻及拋光技術等方法可用於測定DOC和強化玻璃物件的應力輪廓。
在此所用「物理中心張力」和「物理CT」係指玻璃物件中心或中點(即t /2,其中t 係玻璃物件厚度)的拉伸應力。
如所述,除非特別指明,否則壓縮應力(CS)和中心張力或物理中心張力(CT)係以兆帕(MPa)表示,層深度(DOL)和壓縮深度(DOC)係以微米(μm)表示,其中1 μm=0.001 mm,厚度t係以毫米表示,其中1 mm=1000 μm。
根據此領域一般所用科學常規,壓縮表示成負(<0)應力,張力表示成正(>0)應力。然在本文中,壓縮應力CS表示為正或絕對值,即如同所述,CS=|CS|,中心張力或拉伸應力表示為負值,以更佳地圖形化所述壓縮應力輪廓。
在此,「斜率(m )」係指應力輪廓極近似直線的區段或部分的斜率。主斜率定義為極近似直線區段區域的平均斜率。此為應力輪廓的二階導數絕對值小於一階導數絕對值比率且近似區域深度一半的區域。例如,在強化玻璃物件表面附近既尖又淺的應力輪廓區段,本質直線區段為就各點應力輪廓的二階導數絕對值小於應力輪廓的局部斜率絕對值除以應力絕對值呈2倍變化時的深度的部分。同樣地,在玻璃更深處的應力輪廓區段,區段的直線部分為應力輪廓的局部二階導數絕對值小於應力輪廓的局部斜率絕對值除以一半DOC的區域。
就典型應力輪廓而言,二階導數限制可保證斜率隨深度較和緩變化,因此能合理適當定義,並用於定義應力輪廓的重要斜率區域,此認為有利於落下性能。
令應力輪廓為深度「x」的函數(1), 及令應力輪廓的一階導數與深度有關(2), 而二階導數為(3)。
若淺區段約莫延伸到深度ds ,則欲定義主斜率,輪廓的直線部分為一區域,其中(4)。
在傳統項上,若深區段約莫延伸到較大深度DOC或較大深度dd 或深度DOL,則輪廓的直線部分為一區域,其中(5)。
後一方程式亦適用在除了待於玻璃中取代供化學強化的離子、僅含單一鹼金屬離子的鹽中進行單一離子交換而獲得的1-區段應力輪廓。
較佳地,直線區段選定為一區域,其中(6), 其中d代表區域相關淺或深的深度。
所述壓縮應力輪廓的直線區段的斜率m 假定為斜率絕對值,即所述m 等於||。更特定言之,斜率m 代表輪廓的斜率絕對值,為此,壓縮應力大致隨深度增加而降低。
壓縮應力CS和層深度DOL係應力輪廓參數,用於化學強化品管。壓縮應力CS提供表面壓縮估計,此與造成玻璃物件破損所需應力量息息相關,特別係當玻璃無深機械裂縫時。層深度DOL做為較大(強化)陽離子(例如K+ 與Na+ 交換期間的K+ )穿透深度的近似量測,較大DOL值與較大壓縮層深度有相當關聯性,藉由遏止深裂縫可保護玻璃,及防止裂縫在較低外部施加應力條件下造成破損。
即使玻璃物件輕微到中度彎曲,彎曲力矩引發的應力分佈通常從表面隨深度呈線性,彎曲外側具最大拉伸應力,彎曲內側具最大壓縮應力,所謂中性表面為零應力,此通常在內部。就回火玻璃零件而言,彎曲引起的恆定斜率應力分佈將加至回火應力輪廓而在存有外部(彎曲)應力下產生淨應力輪廓。
玻璃物件內存有彎曲引發應力的淨應力輪廓通常具有壓縮深度DOC,此不同於無彎曲情況的應力輪廓。特別地,彎曲時,玻璃物件外側的壓縮深度DOC將減小。若應力輪廓於鄰近且小於DOC的深度具有較小應力斜率,則DOC在存在彎曲下將實質減小。在淨應力輪廓中,中等深的裂縫尖端將接觸張力,相同裂縫尖端在無彎曲情況下於應力輪廓的壓縮區域一般會遭遏止。中等深裂縫故將擴大,並於彎曲期間造成破裂。
在此所用「誤差函數」和「Erf」係指函數為無因次化高斯函數在0與x /(σ√2)間積分的兩倍,「互補誤差函數」和「erfc」等於1減誤差函數;即Erfc(x )=1-Erf(x )。
易碎行為係指當玻璃物件遭到撞擊或損傷時的特定碎裂行為。在此,當玻璃經易碎性測試後,測試面積出現下列至少一者時,玻璃視為非易碎:(1)最大尺寸至少1 mm的四個或更少碎片,及/或(2)分叉數量小於或等於裂痕分支數量。計數以撞擊點為中心的任何2吋×2吋方形上的碎片、分叉和裂痕分支。故若玻璃根據下述程序產生斷裂,以撞擊點為中心的任何2吋×2吋方形符合測試(1)及/或(2),則玻璃視為非易碎。在易碎性測試中,使撞擊探針接觸玻璃,並於連續接觸迭代時增加撞擊探針伸入玻璃的深度。逐步增加撞擊探針的深度容許撞擊探針產生的裂縫及達拉伸區域,同時防止施加過大的外力而妨礙玻璃易碎行為的準確測定。在一實施例中,撞擊探針在玻璃內的深度於每次迭代增加約5 μm,且撞擊探針在各迭代間不接觸玻璃。測試面積係以撞擊點為中心的任何2吋×2吋方形。第9圖圖示非易碎測試結果。如第9圖所示,測試面積係以撞擊點130為中心的方形,其中方形的邊長a 為2吋。第9圖所示非易碎樣品包括三個碎片142、兩個裂痕分支140和單個分叉150。故第9圖所示非易碎樣品含有少於4個最大尺寸至少1 mm的碎片,又分叉數量小於或等於裂痕分支數量。在此,裂痕分支始於撞擊點,若碎片的任何部分延伸到測試面積,則視碎片在測試面積內。儘管塗層、黏著層等可結合所述強化玻璃物件使用,但此類外在束制不用於決定玻璃物件的易碎性或易碎行為。在一些實施例中,可在易碎性測試前,將不影響玻璃物件易碎行為的膜施用於玻璃物件,以防止碎片噴出玻璃物件,提高人員進行測試的安全性。
易碎樣品繪示於第10圖。易碎樣品包括5個最大尺寸至少1 mm的碎片142。第10圖所示樣品包括2個裂痕分支140和3個分叉150,是以分叉多於裂痕分支。故第10圖所示樣品未展現四個或更少碎片,或分叉數量小於或等於裂痕分支數量。
在所述易碎性測試中,撞擊以恰足以釋放強化玻璃物件內存有內部儲存能量的力傳遞到玻璃物件的表面。即,點撞擊力足以在強化玻璃片的表面產生至少一新裂痕,裂痕並延伸通過壓縮應力CS區域(即層深度)而至受到中心張力CT的區域。
因此,所述化學強化玻璃為「非易碎」,即,當遭到尖銳物體撞擊時,玻璃不展現上述易碎行為。
茲描述具厚度t 的玻璃物件,其中0.1 mm£t £0.4 mm(100 μm£t £400 μm),例如0.1 mm£t <0.4 mm(100 μm£t <400 μm)、0.1 mm£t £0.38 mm(100 μm£t £380 μm)、0.1 mm£t £0.35 mm(100 μm£t £350 μm)和其間任何子範圍。玻璃經化學強化而具有壓縮層從玻璃物件的表面延伸到壓縮深度DOC(在此亦稱作「DOC」),及拉伸區域從壓縮深度延伸到玻璃物件的中心區域。拉伸區域受到物理中心張力CT(在此亦稱作「物理CT」),其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。當遭到尖銳、破裂引發撞擊時,玻璃不展現不良行為,例如易碎,即玻璃非易碎。
第1圖圖示離子交換玻璃物件的截面示意圖。玻璃物件100具有厚度t 、第一表面110和第二表面112。在一些實施例中,玻璃物件100的厚度t 為至多約1 mm。雖然第1圖實施例繪示玻璃物件100為平坦片材或平板,但玻璃物件可具其他構造,例如三維形狀或非平面構造。玻璃物件100具有第一壓縮層120從第一表面110延伸壓縮深度(DOC)d1 而至玻璃物件100的塊體內。在第1圖所示實施例中,玻璃物件100亦具有第二壓縮層122從第二表面112延伸到第二壓縮深度d2 。第一和第二壓縮層120、122分別受到壓縮應力CS。在一些實施例中,第一和第二壓縮層120、122各自於第一和第二表面110、112具有最大壓縮應力。玻璃物件亦具有中心區域130,中心區域從d1 延伸到d2 。中心區域130受到拉伸應力或物理中心張力(CT),藉以平衡或抵消層120、122的壓縮應力。第一和第二壓縮層120、122的壓縮深度d1 d2 可保護玻璃物件100,以免尖銳撞擊玻璃物件100的第一與第二表面110、112造成的裂縫綿延,而壓縮應力可降低裂縫穿透第一與第二壓縮層120、122的深度d1 d2 的可能性。
在一些實施例中,壓縮深度「DOC」為大於0.05t ,例如至少0.1t 、至少0.15t 和其間任何子範圍。在一些實施例中,壓縮深度DOC的最大值為約0.22t (即DOC£0.22t )。
在一些實施例中,玻璃經離子交換並於玻璃表面具有約200兆帕(MPa)至約950 MPa的最大壓縮應力「CS1」。在一些實施例中,強化玻璃的壓縮層具有壓縮應力輪廓,即壓縮應力隨玻璃表面底下的深度變化。至少一部分的壓縮應力輪廓呈線性,線性部分具有斜率「m1 」,其中-200 MPa/μm≤m1 ≤-1 MPa/μm,或以斜率絕對值「|m1 |」表示時,200 MPa/μm³|m1 |³1 MPa/μm。在一些實施例中,-20 MPa/μm≤m1 ≤-1.2 MPa/μm或20 MPa/μm³|m1 |³1.2 MPa/μm,例如20 MPa/μm≤m1 ≤-1.2 MPa/μm或20 MPa/μm³|m1 |³1.2 MPa/μm、-15 MPa/μm≤m1 ≤-1.5 MPa/μm或15 MPa/μm³|m1 |³1.5 MPa/μm和其間任何子範圍。
在一些實施例中,應力輪廓進一步包括第二區域從表面延伸到深度「D1」。D1為至少約5 μm至至多約17 μm。在一些實施例中,D1為至少約7 μm,例如至少約9 μm。在一些實施例中,D1為小於或等於約15 μm,例如小於或等於約13 μm。第二區域包括線性部分從表面延伸到至多約5 μm的深度。線性部分具有斜率「m2 」,其中-200 MPa/μm≤m2 ≤-30 MPa/μm,或以斜率絕對值「|m2 |」表示時,200 MPa/μm³|m2 |³30 MPa/μm。在一些實施例中,-160 MPa/μm≤m2 ≤-40 MPa/μm或160 MPa/μm³|m2 |³40 MPa/μm,例如-120 MPa/μm≤m2 ≤-45 MPa/μm或120 MPa/μm³|m2 |³45 MPa/μm和其間任何子範圍。
在一些實施例中,玻璃以單步驟離子交換(SIOX)製程強化,其中玻璃浸入包含約25重量%至100重量%硝酸鉀(KNO3 )與0重量%至約75重量%硝酸鈉(NaNO3 )的離子交換浴。離子交換係在約300℃至約500℃的溫度下施行。諸如矽酸等附加材料可加入離子交換浴,以改善浴性能。
在一些實施例中,由SIOX製程獲得的壓縮應力輪廓在壓縮區域內呈實質線性,如第2圖所示,第2圖係壓縮應力(CS)隨玻璃內深度變化圖。在第2圖中,壓縮應力呈現實質線性行為,致使直線壓縮應力輪廓「a 」具有斜率「ma 」,此以MPa/μm表示,並與垂直y軸交切於「CSs 」。CS輪廓a 與x軸交切於點「da 」,da 係壓縮深度DOC。在此處,總應力為零。小於DOC時,玻璃物件受到張力,且於約玻璃物件中間(即約t /2)達中心物理中心張力。
在一些實施例中,所述玻璃物件經SIOX步驟後的壓縮應力輪廓a 具有斜率ma 且落在特定範圍內。在一些實施例中,斜率ma 視為表面壓縮應力CS與壓縮深度DOC的比率(即CS/DOC)。例如在第2圖中,直線a 的斜率ma 介於上邊界δ2 與下邊界δ1 之間。如所述,斜率ma 、上邊界δ2 和下邊界δ1 係以絕對值表示;故δ2 ³ma ³δ1 相當於|δ2 |³|ma |³|δ1 |。在一些實施例中,單步驟離子交換將產生具斜率ma 的壓縮應力輪廓,斜率ma 的絕對值|ma |為1 MPa/µm至約200 MPa/µm(l MPa/μm£|ma |£200 MPa/μm),例如2 MPa/μm£|ma |£8 MPa/μm、3 MPa/μm£|ma |£6 MPa/μm、2 MPa/μm£|ma |£4.5 MPa/μm和其間任何子範圍。或者,斜率ma 可以依表面應力計量測測定的層深度(DOL)表示及依表面壓縮應力CSs 與DOL的比率(即CSs /DOL)計算。以DOL表示時,斜率ma 的絕對值|ma |為約0.6 MPa/µm至約200 MPa/µm,例如約0.6 MPa/µm至約15 MPa/µm、約0.8 MPa/µm至約10 MPa/µm、約1.5 MPa/µm至約10 MPa/µm和其間任何子範圍。
在一些實施例中,玻璃以二步驟離子交換(DIOX)製程強化。在此,玻璃先經SIOX處理而達成深的壓縮深度DOC或層深度DOL。玻璃接著在包含至少95重量% KNO3 的浴中經第二次離子交換,在一些實施例中為至少97重量% KNO3 ,在其他實施例中為100重量% KNO3 。第二離子交換步驟通常係在約370℃至約410℃的溫度下施行,計約5分鐘至約30分鐘。在特定實施例中,第二次離子交換係在約390℃下施行約12分鐘。經DIOX製程後的壓縮深度DOC為約0.05t 至約0.22t ,例如約0.1t 至約0.20t 和其間任何子範圍。
DIOX製程產生的壓縮應力輪廓為一個以上的實質線性函數組合,此如第3圖所示。從第3圖可知,壓縮應力輪廓具有第一區段或部分「a’ 」和第二區段或部分「b 」。至少一部分的第一部分a’ 從玻璃物件的強化表面到深度「da’ 」呈現實質線性行為。部分a’ 具有斜率「ma’ 」與y-截距「CSs 」,CSs 係玻璃表面的壓縮應力。在一些實施例中,深度da’ 為約10 μm至約13 μm。壓縮應力輪廓的第二部分b 乃第一次離子交換或SIOX步驟的結果,並從約深度da’ 延伸到壓縮深度DOC,及具有斜率「mb 」。第二次離子交換實驗後,輪廓的SIOX部分的斜率mb mb 的絕對值「|mb |」表示時為約1 MPa/µm至約30 MPa/µm,例如約1.2 MPa/µm至約20 MPa/µm、約1.5 MPa/µm至約15 MPa/µm和其間任何子範圍。輪廓的DIOX部分的斜率ma’ ma’ 的絕對值(即|ma’ |」表示時為約30 MPa/µm至約200 MPa/µm,例如約40 MPa/µm至約160 MPa/µm、約45 MPa/µm至約120 MPa/µm和其間任何子範圍。或者,應力輪廓的DIOX部分的斜率ma’ 可以依表面應力計量測測定的層深度(DOL)表示及依表面壓縮應力CSs 與層深度DOL的比率(即CSs /DOL)計算。應力輪廓的DIOX部分的斜率ma’ 以DOL表示時為約40 MPa/µm至約200 MPa/µm,例如約40 MPa/µm至約160 MPa/µm、約45 MPa/µm至約120 MPa/µm和其間任何子範圍。
深度da’ 處的壓縮應力「CS(da' )」表述如下: CS(da' )»CSs -da' (ma' )        (7)。
在非限定實例中,當厚度「t 」為約100 μm時,物理中心張力「CT」為約200 MPa;當厚度為約200 μm時,物理CT為約135 MPa;當厚度為約300 μm時,物理CT為約96.7 MPa。
在一些實施例中,DOC為0.05t 至約0.22t (0.05·t ≤DOC≤0.22·t ),其中t 係玻璃厚度。
壓縮層於玻璃表面的最大壓縮應力CSs 為約200 MPa至約950 MPa(200 MPa≤CS≤950 MPa),例如約500 MPa至約950 MPa(500 MPa≤CS≤950 MPa)和其間任何子範圍。
所述玻璃為可離子交換鹼鋁矽酸鹽玻璃,在一些實施例中,玻璃由下拉製程形成,例如此領域已知的狹槽抽拉或融合抽拉製程。在特定實施例中,玻璃的液相黏度為至少約100千泊(kP),例如至少約130 kP。在一實施例中,鹼鋁矽酸鹽玻璃包含SiO2 、Al2 O3 、P2 O5 和至少一鹼金屬氧化物(R2 O),其中0.75≤[(P2 O5 (莫耳%)+R2 O(莫耳%))/M2 O3 (莫耳%)]≤1.2,其中M2 O3 =Al2 O3 +B2 O3 。在一些實施例中,鹼鋁矽酸鹽玻璃包含或本質由下列組成:約40莫耳%至約70莫耳%的SiO2 、0莫耳%至約28莫耳%的B2 O3 、0莫耳%至約28莫耳%的Al2 O3 、約1莫耳%至約14莫耳%的P2 O5 及約12莫耳%至約16莫耳%的R2 O;在某些實施例中為約40至約64莫耳%的SiO2 、0莫耳%至約8莫耳%的B2 O3 、約16莫耳%至約28莫耳%的Al2 O3 、約2莫耳%至約12莫耳%的P2 O5 及約12莫耳%至約16莫耳%的R2 O。在一些實施例中,11莫耳%≤M2 O3 ≤30莫耳%;在一些實施例中,13莫耳%≤Rx O≤30莫耳%,其中Rx O係存於玻璃的鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物的總和;在其他實施例中,玻璃不含鋰。該等玻璃描述於Dana Craig Bookbinder等人於西元2011年11月28日申請、名稱為「Ion Exchangeable Glass with Deep Compressive Layer and High Damage Threshold」的美國專利案第9,346,703號,並主張西元2010年11月30日申請、具相同名稱的美國臨時專利申請案第61/417,941號的優先權,上述申請案全文內容以引用方式併入本文中。
在某些實施例中,鹼鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 ,其中(M2 O3 (莫耳%)/Rx O(莫耳%))<1,M2 O3 =Al2 O3 +B2 O3 ,Rx O係存於玻璃的鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物的總和。在一些實施例中,鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物選自由Li2 O、Na2 O、K2 O、Rb2 O、Cs2 O、MgO、CaO、SrO、BaO和ZnO所組成的群組。在一些實施例中,玻璃不含鋰,且本質由下列組成:約40莫耳%至約70莫耳%的SiO2 、約11莫耳%至約25莫耳%的Al2 O3 、約4莫耳%至約15莫耳%的P2 O5 、約13莫耳%至約25莫耳%的Na2 O、約13至約30莫耳%的Rx O,其中Rx O係存於玻璃的鹼金屬氧化物、鹼土金屬氧化物與過渡金屬一氧化物的總和、約11至約30莫耳%的M2 O3 ,其中M2 O3 =Al2 O3 +B2 O3 、0莫耳%至約1莫耳%的K2 O、0莫耳%至約4莫耳%的B2 O3 和3莫耳%或以下的一或更多TiO2 、MnO、Nb2 O5 、MoO3 、Ta2 O5 、WO3 、ZrO2 、Y2 O3 、La2 O3 、HfO2 、CdO、SnO2 、Fe2 O3 、CeO2 、As2 O3 、Sb2 O3 、Cl與Br;其中1.3<[(P2 O5 +R2 O)/M2 O3 ]≤2.3,其中R2 O係存於玻璃的單價陽離子氧化物總和。在一些實施例中,玻璃不含鋰。此玻璃描述於Timothy M. Gross於西元2012年11月15日申請、名稱為「Ion Exchangeable Glass with High Crack Initiation Threshold」的美國專利案第9,156,724號和Timothy M. Gross於西元2012年11月15日申請、名稱為「Ion Exchangeable Glass with High Crack Initiation Threshold」的美國專利案第8,756,262號,二專利案均主張西元2011年11月16日申請的美國臨時專利申請案第61/560,434號的優先權。上述專利和申請案全文內容以引用方式併入本文中。
離子交換玻璃中的應力輪廓形狀和數值先前認為受限於中心張力極限,即大於中心張力極限時,若玻璃遭受足以穿透壓縮表面層的撞擊,則預期將觀察到易碎行為。此極限通常以中心張力CT表示,此係玻璃中心於位置x=t /2處的拉伸應力值。由於離子交換製程期間在樣品中誘發的壓縮應力達力平衡,因而自然產生中心張力。應力輪廓的壓縮部分各點的應力積分或總和必須等於輪廓的拉伸部分各點的應力積分或總和,使得玻璃物件不會遭離子交換製程彎曲或翹曲。
假設在單一離子交換製程所得應力輪廓中,離子擴散由古典互補誤差函數引導。實驗顯示此將限制物理中心張力CT極限,且CT極限隨厚度變化,如第4圖所示,第4圖係物理中心張力CT極限隨玻璃厚度變化圖。在第4圖中,中心張力極限資料係就單一離子交換(SIOX)並依循近似互補誤差函數(erfc)形狀(線B)。CT極限表述如下: CT=-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994  (8), 其中t 以微米表示。
曲線(第4圖的線A)可用於決定玻璃厚度100 μm至1200 μm的其他物理中心張力極限值。依據曲線A,厚度300 μm的離子交換玻璃物件的物理CT極限為約97 MPa;就200 μm玻璃厚度而言,CT極限為約135 MPa;就100 μm玻璃厚度而言,CT極限為約200 MPa。
由雙重離子交換(DIOX)製程在厚度200 μm的玻璃樣品中產生的應力輪廓實例繪示於第5圖。第6圖圖示第5圖的局部細節。應力輪廓係利用前述反演溫哲爾-柯拉麻-布裏元(IWKB)法,由TM與TE偏振束縛光學模態光譜測定。第一離子交換步驟係在「毒化」(即包含大於30重量%的NaNO3 )浴中施行,浴為NaNO3 與KNO3 混合物。第二離子交換步驟係在主要含有(即³96重量%)KNO3 且些少毒化的離子交換浴中施行,而於應力輪廓中形成「尖峰」(即玻璃表面的壓縮應力急遽增加)。在所述玻璃厚度中(0.1-0.4 mm),從相對表面擴散到玻璃內的離子在適當短暫離子交換時間內於玻璃中心t /2相遇。擴散離子抵達中心t /2前,第一離子交換步驟產生的應力輪廓採互補誤差函數(Erfc)形式。擴散離子抵達玻璃中心後,第一離子交換步驟所得整體應力輪廓類似拋物線函數。尖峰會造成應力輪廓的斜率改變,導致表面有較大壓縮應力。壓縮深度(DOC)係壓縮應力為零的點(即應力從壓縮變成拉伸應力的點)。中心張力係在玻璃的相對主要表面間的中心或中點(即t /2)的應力值。
對初始厚度200 μm的離子交換玻璃進行一連串實驗。樣品在約450℃下,在毒化離子交換浴(49重量% NaNO3 /51重量% KNO3 )中第一次離子交換,計1.5小時、2小時、4小時、8小時、12小時、14小時和16小時,然後在約390℃下,在純(100重量%)KNO3 的第二浴中離子交換12分鐘(0.2小時)。撞擊測試時,無一離子交換玻璃樣品展現易碎行為,此表示有一區域可讓離子交換浴的離子擴散任何時間,而不會造成玻璃的易碎行為。此可歸因於用於獲得壓縮應力尖峰的離子交換浴毒化程度。如第5圖所示,最小毒化程度應對應或與給定厚度的最大容許CT相關。當離子交換浴毒化超過最小程度時,所述玻璃的物理中心張力CT可能在未展現易碎行為情況下超過CT極限(即CT超過式(8)給定易碎性極限)。故玻璃中的最大物理張力下限可表述如下: CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994| (9), 其中t 以微米表示。
評估及實驗證實達成離子無限擴散而不產生易碎行為的條件所需的離子交換浴毒化程度。第7圖係就單一離子交換(SIOX)製程的CT極限(線A)和離子交換浴的NaNO3 最小毒化程度(線B)隨玻璃厚度變化圖。毒化程度大於線B時,離子可無限擴散而不產生易碎行為。
當玻璃經第二次離子交換而於玻璃表面提供急遽增加的壓縮應力或「尖峰」時,將使離子無限擴散而不產生易碎性的最小浴毒化程度偏移。第8圖係就二步驟或雙重離子交換(DIOX)製程的CT極限(線A)和離子交換浴的NaNO3 最小毒化程度(線B)隨玻璃厚度變化圖。如同單步驟離子交換(第2圖),當毒化程度超過線B的下限時,離子可無限擴散而不產生易碎性。利用二步驟離子交換,在390℃下,在100重量% KNO3 浴中離子交換12分鐘造成的離子擴散會於樣品誘發額外應力,使最小毒化極限偏移,以補償樣品中誘發的額外應力。二步驟離子交換製程將使達成上述擴散作用所需最小毒化程度提高約10%。
具實質非線性擴散的玻璃的應力輪廓形狀、壓縮層深度DOL、物理中心張力CT和易碎行為閥值可取自經驗模型並總結於表1。根據模型,預期厚度200 μm(0.2 mm)的鹼鋁矽酸鹽玻璃在本質純KNO3 的熔融鹽浴中進行單一離子交換以實現層深度DOL約27 μm、表面最大壓縮應力CS約820 MPa、物理CT約107±5 MPa時,玻璃具易碎行為。玻璃的壓縮深度DOC估計為約21.5 μm。雖然高CS為諸如薄玻璃蓋等應用所期強度,但21.5 μm低深度壓縮DOC係裂縫引入引起破裂問題。在另一實例中,在含約5重量% NaNO3 與剩餘部分本質為KNO3 的單一浴中離子交換(SIOX)時,CS降低,DOL則增加。易碎行為現於DOL約36.5 μm時開始發生,其中CS為約610 MPa,DOC為約26.8 μm,物理CT為約113±5 MPa。在又一實例中,在具約10重量% NaNO3 與剩餘部分本質為KNO3 的離子交換混合物中,當DOL為約47 μm、CS為約490 MPa、DOC為約31.5 μm、物理CT為約120±5 MPa時,開始出現易碎行為。DOC比在純KNO3 浴中製備的樣品大幾乎50%,及可實質更適當地防止裂縫引入,因此較佳用於整體系統設計對引入裂縫防護較少的玻璃應用。 表1  就厚度200 μm(0.2 mm)的離子交換鹼鋁矽酸鹽玻璃計算的性質總結
在一經驗模型實例中,具約57莫耳% SiO2 、0莫耳% B2 O3 、約17莫耳% Al2 O3 、約7% P2 O5 、約17莫耳% Na2 O、約0.02莫耳% K2 O和約3莫耳% MgO的標稱組成及厚度200 µm的鹼鋁矽酸鹽玻璃經二步驟離子交換製程處理。第一次離子交換係在約450℃下,在含約51重量% KNO3 與約49重量% NaNO3 的熔融離子交換浴中進行約5.5小時,以於約87 μm的最大DOL處產生壓縮應力,物理CT高達約114 MPa。第一離子交換步驟後的層深度DOL為約0.3t 至約0.44t ,其中t 係厚度。玻璃接著在390℃下,在含約0.5重量% NaNO3 與約99.5重量% KNO3 的浴中經第二離子交換步驟處理15分鐘。第二離子交換步驟後,表面CS為約796 MPa,第二離子交換步驟產生既淺又尖的「尖峰」區域從玻璃表面延伸到約12-13 μm的深度。第二步驟後的物理CT為約154 MPa,且估計在此深離子交換及尖表面CS尖峰的轄域差不多開始具易碎性。在第二離子交換步驟加入尖峰前,壓縮深度為約44 μm,加入尖峰後為約34.5 μm。壓縮區域內輪廓深部(即從約13 μm的深度延伸到DOL或DOC的應力輪廓區段)的斜率為約4.5 MPa/μm。在此實例中,DOL為約0.435t ,其中t 係玻璃厚度,基板兩端的K+ 濃度分佈(K+ concentration profile)幾乎未及玻璃中心(t /2)。在一些實施例中,壓縮區域深部的斜率絕對值為約2 MPa/μm至約15 MPa/μm。
在另一經驗模型實例中,具約57莫耳% SiO2 、0莫耳% B2 O3 、約17莫耳% Al2 O3 、約7% P2 O5 、約17莫耳% Na2 O、約0.02莫耳% K2 O和約3莫耳% MgO的標稱組成及厚度200 µm的鹼鋁矽酸鹽玻璃經二步驟離子交換製程處理。第一次離子交換係在約450℃下,在含約57重量% KNO3 與約43重量% NaNO3 的熔融離子交換浴中進行約4.8小時。第一離子交換步驟後,玻璃表面的最大壓縮應力為218 MPa,層深度DOL為約87 μm,物理CT為約129 MPa。第一離子交換步驟後,DOL較佳為約0.3t 至約0.44t 。第二離子交換步驟係在390℃下,在含約2.5重量% NaNO3 與約95重量% KNO3 的浴中進行12分鐘。第二步驟後的CS為約720 MPa,第二步驟產生既淺又尖的「尖峰」區域從玻璃表面延伸到約11 μm的深度。第二步驟後的物理CT為約158 MPa,且估計在此深離子交換及尖表面CS尖峰的轄域差不多開始具易碎性。在第二離子交換步驟加入尖峰前,壓縮深度為約44 μm,形成尖峰後為約38 μm。壓縮區域內輪廓深部的斜率絕對值為約5 MPa/μm。在此實例中,DOL為約0.435t ,基板兩端的K+ 濃度分佈幾乎未及厚度中心(t /2)。
在又一經驗模型實例中,厚度200 µm及具約57莫耳% SiO2 、0莫耳% B2 O3 、約17莫耳% Al2 O3 、約7% P2 O5 、約17莫耳% Na2 O、約0.02莫耳% K2 O和約3莫耳% MgO的標稱組成的鹼鋁矽酸鹽玻璃經二步驟離子交換製程處理。第一次離子交換係在約450℃下,在含約58重量% KNO3 與約42重量% NaNO3 的熔融離子交換浴中進行約4.25小時。第一離子交換步驟後,玻璃表面的最大壓縮應力為229 MPa,層深度DOL為約82 μm,物理CT為約123 MPa。第二離子交換步驟係在390℃下,在含約2.5重量% NaNO3 與約95重量% KNO3 的浴中進行12分鐘。第二步驟後的CS為約730 MPa,第二步驟產生既淺又尖的「尖峰」區域從玻璃表面延伸到約11 μm的深度。第二步驟後的物理CT為約153 MPa,且估計在此深離子交換及尖表面CS尖峰的轄域差不多開始具易碎性。在第二離子交換步驟加入尖峰前,壓縮深度DOC為約43 μm,形成尖峰後為約37 μm。壓縮區域內輪廓深部的斜率為約5.3 MPa/μm。在此特定實施例中,第一步驟後的層深度為約0.3t 至約0.43t ,在一些實施例中約0.35t 至約0.42t
第4圖所示所得應力輪廓的實驗物理中心張力CT極限大致具有0.15或以下的DOC與厚度t 比率。基於非易碎與具高DOC/t 比率的易碎樣品觀察,當壓縮深度和應力輪廓較深時,例如當DOC>0.12t ,在一些實施例中,DOC>0.15t ,物理中心張力隨厚度變化的上限(即易碎性)較大。為變成非易碎,所述離子交換玻璃的物理中心張力CT不應超過此上限。在一些實施例中,物理CT上限「CT上限 」表述如下: CT上限 (MPa)=(85/√t (mm))    (10), 在某些實施例中, CT上限 (MPa)=(79/√t (mm))    (11)。
當由單一(SIOX)或雙重(DIOX)離子交換製程達成的壓縮深度DOC小於約0.22t 並大於約0.18t (即0.18t <DOC<0.22t )時,尤其建議採用式(11)給予的CT極限。例如,為避免不當行為,例如易碎行為,在DIOX製程的第二步驟後,具DOL 87 μm、DOC 38 μm的0.2 mm厚離子交換玻璃樣品的物理CT應小於或等於式(11)提供的CT上限 值。當基板中心的離子交換浴的離子濃度因離子交換而開始可測增加時,式(11)亦可用於以SIOX製程達成應力輪廓。
在該等實施例中,其中0.16t <DOC<0.19t ,物理CT不應超過減低上限: CT上限 (MPa)=(73/√t (mm))    (12), 此係施加於0.2 mm厚的實例,其中在DIOX製程的第二步驟後,DOL為約82 μm,DOC為約37 μm。
所述強化物件可併入另一物件,例如具顯示器的物件(或顯示物件)(例如消費性電子產品,包括行動電話、平板電腦、電腦、導航系統等)、建築用物件、運輸物件(例如汽車、火車、飛機、船隻等)、家電製品、或需一定透明度、耐刮性、耐磨性或上述組合的任何物件。併入所述任一強化物件的示例性物件繪示於第11A圖及第11B圖。特定言之,第11A圖及第11B圖圖示消費性電子裝置200,包括具有正面204、背面206和側面208的外殼202;電子部件(未圖示),至少部分或整個置於外殼內,並包括至少一控制器、記憶體和顯示器210,顯示器位於或鄰接外殼的正面;及蓋基板212,設在外殼正面或上面而覆蓋顯示器。在一些實施例中,蓋基板212包括所述任一強化物件。
雖然本發明已以典型實施例揭示如上,然以上說明不應視為限定本發明或後附申請專利範圍的範圍。因此,熟諳此技術者在不脫離本發明或後附申請專利範圍的精神和範圍內,當可作各種潤飾、修改與更動。
100‧‧‧玻璃物件
110、112‧‧‧表面
120、122‧‧‧壓縮層
130‧‧‧中心區域/撞擊點
140‧‧‧分支
142‧‧‧碎片
150‧‧‧分叉
200‧‧‧電子裝置
202‧‧‧外殼
204‧‧‧正面
206‧‧‧背面
208‧‧‧側面
210‧‧‧顯示器
212‧‧‧蓋基板
a‧‧‧邊長
d1 、d2‧‧‧ 壓縮深度
t‧‧‧厚度
第1圖係離子交換玻璃物件的截面示意圖。
第2圖係就單一離子交換製程得到的壓縮應力輪廓示意圖。
第3圖係就雙重離子交換製程得到的壓縮應力輪廓示意圖。
第4圖係就單一離子交換製程的物理中心張力隨樣品厚度變化圖。
第5圖係雙重離子交換製程在200 μm玻璃樣品中產生的應力輪廓圖。
第6圖係第5圖所示應力輪廓的詳細視圖。
第7圖係就單一離子交換製程的物理中心張力(CT)極限和離子交換浴的NaNO3 最小毒化程度隨玻璃厚度變化圖。
第8圖係就雙重離子交換製程的物理中心張力(CT)極限和離子交換浴的NaNO3 最小毒化程度隨玻璃厚度變化圖。
第9圖係非易碎樣品經易碎性測試後的示意圖。
第10圖係易碎樣品經易碎性測試後的示意圖。
第11A圖係併入所述任一強化物件的示例性電子裝置平面圖。
第11B圖係第11A圖示例性電子裝置的透視圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無

Claims (14)

  1. 一種玻璃物件,該玻璃物件具有一厚度t ,其中0.1 mm£t <0.4 mm,一壓縮層從該玻璃物件的一表面延伸到一壓縮深度DOC,一拉伸區域從該壓縮深度延伸到該玻璃物件的一中心區域,該拉伸區域受到一物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
  2. 如請求項1所述之玻璃物件,其中該壓縮層具有一應力輪廓,其中至少一部分的該應力輪廓呈線性並具有一斜率m1 ,其中200 MPa/μm≥|m1 |≥1 MPa/μm。
  3. 如請求項2所述之玻璃物件,其中該應力輪廓進一步包含一第二區域從該表面延伸一深度而達一深度D1,其中9 μm≤D1≤17 μm,該第二區域具有一線性部分從該表面延伸到至多約5 μm的一深度並具有一斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm。
  4. 一種玻璃物件,該玻璃物件具有一厚度t ,其中0.1 mm£t <0.4 mm,且包含: a. 一壓縮層,從該玻璃物件的一表面延伸到一壓縮深度DOC,該壓縮層具有一應力輪廓,該應力輪廓包含:i. 一第一區域,從至少一第一深度D1延伸到該壓縮深度DOC,其中至少一部分的該第一區域呈線性並具有一斜率m1 ,其中20 MPa/μm≥|m1 |≥1.2 MPa/μm,其中9 μm≤D1≤17 μm;及ii. 一第二區域,從該表面延伸到至多該第一深度D1的一深度,該第二區域具有一線性部分從該表面延伸到至多約5 μm或以下的一深度並具有一斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm;b. 一拉伸區域,從該壓縮深度延伸到該玻璃物件的一中心區域,該拉伸區域受到一物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
  5. 如前述請求項中任一項所述之玻璃物件,其中下列至少一者為真: 0.05t £DOC£0.22t ;該壓縮層於該表面具有一壓縮應力CS1,其中200 MPa£CS1£950 MPa;該物理中心張力CT小於或等於約200 MPa;及DOC>0.15t ,其中CT(MPa)£(85/√t (mm))。
  6. 如請求項1至5中任一項所述之玻璃物件,其中該玻璃物件經離子交換。
  7. 如請求項1至5中任一項所述之玻璃物件,其中該玻璃物件包含一鹼鋁矽酸鹽玻璃。
  8. 如請求項7所述之玻璃物件,其中該鹼鋁矽酸鹽玻璃不含鋰。
  9. 如請求項7所述之玻璃物件,其中該鹼鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 和0莫耳%至約5莫耳%的B2 O3 ,其中1.3<[(P2 O5 +R2 O)/M2 O3 ]≤2.3,其中M2 O3 =Al2 O3 +B2 O3 ,R2 O係存於該鹼鋁矽酸鹽玻璃的單價陽離子氧化物總和。
  10. 如請求項9所述之玻璃物件,其中下列至少一者為真: 11莫耳%≤M2 O3 ≤30莫耳%;13莫耳%≤Rx O≤30莫耳%,其中Rx O係存於該玻璃的鹼金屬氧化物、鹼土金屬氧化物和過渡金屬一氧化物的總和;及該鹼鋁矽酸鹽玻璃包含約40莫耳%至約70莫耳%的SiO2 、約11莫耳%至約25莫耳%的Al2 O3 、0莫耳%至約5莫耳%的B2 O3 、約4莫耳%至約15莫耳%的P2 O5 、約13莫耳%至約25莫耳%的Na2 O和0莫耳%至約1莫耳%的K2 O。
  11. 如請求項1至7中任一項所述之玻璃物件,其中該玻璃物件為非易碎。
  12. 一種消費性電子產品,包含: 一外殼,具有一正面、一背面和多個側面;多個電子部件,至少部分置於該外殼內,該等電子部件包括至少一控制器、一記憶體和一顯示器,該顯示器設於或鄰接該外殼的該正面;及如請求項1至7中任一項之該玻璃物件,置於該顯示器上面。
  13. 一種離子交換一玻璃物件的方法,該玻璃物件具有一厚度t ,其中0.1 mm£t <0.4 mm,該方法包含: a. 在約300℃至約500℃的一溫度下,在一第一離子交換浴中離子交換該玻璃物件,該第一離子交換浴包含約25重量%至約100重量%的KNO3 和至多約75重量%的NaNO3 ;b. 形成一壓縮層,該壓縮層從該玻璃物件的一表面延伸到一壓縮深度DOC,其中0.05t £DOC£0.22t ;及c. 於該玻璃物件的一中心部分形成一拉伸區域,該拉伸區域從該壓縮深度DOC延伸到該玻璃物件的一中心區域,該拉伸區域具有一物理中心張力CT,其中CT>|-1.956×10-16 ×t 6 + 1.24274×10-12 ×t 5 - 3.09196×10-9 ×t 4 + 3.80391×10-6 ×t 3 - 2.35207×10-3 ×t 2 + 5.96241×10-1 ×t + 36.5994|,其中t 以微米表示。
  14. 如請求項13所述之方法,進一步包含: a. 在該第一離子交換浴中離子交換該玻璃物件後,在一第二離子交換浴中離子交換該玻璃物件,該第二離子交換浴包含;及b. 形成該應力輪廓的一第二區域,該第二區域從該表面延伸到一第一深度D1,該第二區域具有一線性部分從該表面延伸到至多約5 μm的一深度,該線性部分具有一斜率m2 ,其中200 MPa/μm≥|m2 |≥30 MPa/μm。
TW106101173A 2016-01-13 2017-01-13 超薄非易碎的玻璃及製造方法 TWI731917B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662278125P 2016-01-13 2016-01-13
US62/278,125 2016-01-13

Publications (2)

Publication Number Publication Date
TW201733954A true TW201733954A (zh) 2017-10-01
TWI731917B TWI731917B (zh) 2021-07-01

Family

ID=58016790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106101173A TWI731917B (zh) 2016-01-13 2017-01-13 超薄非易碎的玻璃及製造方法

Country Status (7)

Country Link
US (2) US11286203B2 (zh)
EP (1) EP3402763A1 (zh)
JP (1) JP7441606B2 (zh)
KR (1) KR20180103972A (zh)
CN (1) CN108883975A (zh)
TW (1) TWI731917B (zh)
WO (1) WO2017123596A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750516B (zh) * 2018-10-09 2021-12-21 日商日本電氣硝子股份有限公司 強化玻璃以及強化玻璃的製造方法
TWI765106B (zh) * 2017-10-10 2022-05-21 美商康寧公司 具有不同厚度部分的基於玻璃的製品
US11964908B2 (en) 2018-12-25 2024-04-23 Nippon Electric Glass Co., Ltd. Tempered glass sheet and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102547240B1 (ko) 2017-04-06 2023-06-26 에이지씨 가부시키가이샤 화학 강화 유리
US11523527B2 (en) 2017-10-03 2022-12-06 Corning Incorporated Glass-based articles having crack resistant stress profiles
KR102584366B1 (ko) * 2018-02-12 2023-10-04 삼성디스플레이 주식회사 유리 제품 및 그 제조 방법
JP7332987B2 (ja) * 2018-06-07 2023-08-24 日本電気硝子株式会社 化学強化ガラスおよび化学強化ガラスの製造方法
EP4279461A1 (en) * 2018-06-08 2023-11-22 Corning Incorporated Fracture resistant stress profiles in glasses
JP7255594B2 (ja) * 2018-07-03 2023-04-11 Agc株式会社 化学強化ガラスおよびその製造方法
EP4269179A3 (en) * 2018-10-18 2024-06-26 Corning Incorporated Strengthened glass articles exhibiting improved headform impact performance and automotive interior systems incorporating the same
CN111867993A (zh) * 2018-11-13 2020-10-30 康宁股份有限公司 化学强化的焦硅酸锂-透锂长石玻璃陶瓷
CN113272262A (zh) * 2018-11-30 2021-08-17 康宁公司 表现出高压缩应力的玻璃制品、包含此玻璃制品的汽车内部***和其制造方法
CN115244018A (zh) * 2019-09-21 2022-10-25 安瀚视特控股株式会社 高性能强化玻璃
KR20210080654A (ko) 2019-12-20 2021-07-01 삼성디스플레이 주식회사 유리 제품 및 이를 포함하는 디스플레이 장치
KR20210081478A (ko) * 2019-12-23 2021-07-02 삼성디스플레이 주식회사 유리 제품 및 그 제조 방법
CN113754289B (zh) * 2021-09-18 2023-06-06 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309671B2 (en) * 2002-05-24 2007-12-18 Nippon Sheet Glass Co., Ltd. Glass composition, glass article, glass substrate for magnetic recording media, and method for producing the same
US8959953B2 (en) * 2005-09-12 2015-02-24 Saxon Glass Technologies, Inc. Method for making strengthened glass
US8232218B2 (en) * 2008-02-29 2012-07-31 Corning Incorporated Ion exchanged, fast cooled glasses
JP2011527661A (ja) * 2008-07-11 2011-11-04 コーニング インコーポレイテッド 民生用途のための圧縮面を有するガラス
CN102137822B (zh) * 2008-07-29 2015-12-09 康宁股份有限公司 用于化学强化玻璃的双阶段离子交换
JP2012500177A (ja) * 2008-08-21 2012-01-05 コーニング インコーポレイテッド 電子装置のための耐久性ガラスハウジング/エンクロージャ
US8341976B2 (en) * 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
DE102010009584B4 (de) * 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
US8778820B2 (en) * 2010-05-27 2014-07-15 Corning Incorporated Glasses having low softening temperatures and high toughness
JP2012020921A (ja) * 2010-06-18 2012-02-02 Asahi Glass Co Ltd ディスプレイ装置用のガラスおよびガラス板
US20120052271A1 (en) * 2010-08-26 2012-03-01 Sinue Gomez Two-step method for strengthening glass
US9346703B2 (en) * 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
US8756262B2 (en) 2011-03-01 2014-06-17 Splunk Inc. Approximate order statistics of real numbers in generic data
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
TWI591039B (zh) * 2011-07-01 2017-07-11 康寧公司 具高壓縮應力的離子可交換玻璃
US10280112B2 (en) * 2011-08-19 2019-05-07 Corning Incorporated Ion exchanged glass with high resistance to sharp contact failure and articles made therefrom
KR102036799B1 (ko) * 2011-11-16 2019-10-25 코닝 인코포레이티드 높은 균열 개시 임계값을 갖는 이온 교환가능한 유리
US20130129947A1 (en) * 2011-11-18 2013-05-23 Daniel Ralph Harvey Glass article having high damage resistance
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US9156725B2 (en) * 2012-05-30 2015-10-13 Corning Incorporated Down-drawable chemically strengthened glass for information storage devices
WO2013181134A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US9499431B2 (en) 2012-06-08 2016-11-22 Corning Incorporated Strengthened glass articles and methods of making
US9703011B2 (en) * 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US20140345325A1 (en) * 2013-05-24 2014-11-27 Corning Incorporated Double ion exchange process
US20140356605A1 (en) * 2013-05-31 2014-12-04 Corning Incorporated Antimicrobial Articles and Methods of Making and Using Same
US10131574B2 (en) * 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
JP6761344B2 (ja) * 2013-08-30 2020-09-23 コーニング インコーポレイテッド イオン交換可能なガラス、ガラスセラミック、およびその製造方法
US9701573B2 (en) * 2013-09-06 2017-07-11 Corning Incorporated High strength glass-ceramics having lithium disilicate and beta-spodumene structures
US10125044B2 (en) * 2013-11-19 2018-11-13 Corning Incorporated Ion exchangeable high damage resistance glasses
WO2015080043A1 (ja) * 2013-11-26 2015-06-04 旭硝子株式会社 ガラス部材およびガラス部材の製造方法
US10118858B2 (en) * 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
US9409815B2 (en) * 2014-04-04 2016-08-09 Corning Incorporated Opaque colored glass-ceramics comprising nepheline crystal phases
JP6596894B2 (ja) * 2014-05-20 2019-10-30 日本電気硝子株式会社 強化ガラス板及びその製造方法
TWI705889B (zh) * 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
WO2015195419A2 (en) * 2014-06-19 2015-12-23 Corning Incorporated Strengthened glass with deep depth of compression
DE102014108798A1 (de) * 2014-06-24 2015-12-24 Krones Ag Pasteurisationssystem mit Reinigung der Prozessflüssigkeit
US10150698B2 (en) * 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
TWI696595B (zh) 2014-11-04 2020-06-21 美商康寧公司 深不易碎的應力分佈及其製造方法
EP3031783A1 (en) * 2014-12-09 2016-06-15 AGC Glass Europe Chemically temperable glass sheet
JP2018505117A (ja) * 2014-12-09 2018-02-22 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
CN112684152B (zh) * 2015-06-04 2023-05-12 康宁股份有限公司 经过离子交换的化学强化含锂玻璃的表征方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765106B (zh) * 2017-10-10 2022-05-21 美商康寧公司 具有不同厚度部分的基於玻璃的製品
US11655184B2 (en) 2017-10-10 2023-05-23 Corning Incorporated Glass-based articles with sections of different thicknesses
TWI750516B (zh) * 2018-10-09 2021-12-21 日商日本電氣硝子股份有限公司 強化玻璃以及強化玻璃的製造方法
US11964908B2 (en) 2018-12-25 2024-04-23 Nippon Electric Glass Co., Ltd. Tempered glass sheet and method for manufacturing same

Also Published As

Publication number Publication date
CN108883975A (zh) 2018-11-23
JP2019503330A (ja) 2019-02-07
KR20180103972A (ko) 2018-09-19
US11286203B2 (en) 2022-03-29
US20220185727A1 (en) 2022-06-16
WO2017123596A1 (en) 2017-07-20
TWI731917B (zh) 2021-07-01
US20170197876A1 (en) 2017-07-13
JP7441606B2 (ja) 2024-03-01
EP3402763A1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
TW201733954A (zh) 超薄非易碎的玻璃及製造方法
TWI771909B (zh) S型應力輪廓及製造方法
TWI680954B (zh) 深不易碎的應力分佈及其製造方法
JP7198325B2 (ja) 落下性能が改善されたガラス
KR102018834B1 (ko) 금속 산화물 농도 구배를 포함하는 유리-계 제품
US11028014B2 (en) Coated glass-based articles with engineered stress profiles
WO2015195465A1 (en) Glasses having non-frangible stress profiles
TW201607910A (zh) 具有深壓縮深度的強化玻璃
JP2023551815A (ja) ポアソン比が高いガラス組成物
JP2022548606A (ja) 破壊抵抗性ガラス系物品
KR102687333B1 (ko) S-형 응력 프로파일 및 생산 방법