TW201710276A - 2-乙基己酸銠(iii)之製備 - Google Patents

2-乙基己酸銠(iii)之製備 Download PDF

Info

Publication number
TW201710276A
TW201710276A TW105120608A TW105120608A TW201710276A TW 201710276 A TW201710276 A TW 201710276A TW 105120608 A TW105120608 A TW 105120608A TW 105120608 A TW105120608 A TW 105120608A TW 201710276 A TW201710276 A TW 201710276A
Authority
TW
Taiwan
Prior art keywords
iii
ruthenium
solution
ethylhexanoate
precursor
Prior art date
Application number
TW105120608A
Other languages
English (en)
Inventor
安吉利諾 多普
柏吉 恩姆瑞奇
羅夫 卡期
安德烈斯 瑞法斯納斯
伊琳 沃納
Original Assignee
烏明克股份有限兩合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烏明克股份有限兩合公司 filed Critical 烏明克股份有限兩合公司
Publication of TW201710276A publication Critical patent/TW201710276A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/418Preparation of metal complexes containing carboxylic acid moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms
    • C07C53/128Acids containing more than four carbon atoms the carboxylic group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo-acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明提供了一種製備2-乙基己酸銠(III)溶液之方法,該方法供應具有較高空間產率及較低的鈉及氯離子含量之反應產物。從而初使地以銠(III)前驅物使2-乙基己酸的鹼金屬鹽的水溶液轉化。銠(III)前驅物係選自氯化銠(III)溶液、氯化銠(III)水合物、及硝酸銠(III)。將混合物加熱數小時。在冷卻到室溫後,用與水不互溶之醇或於與水不互溶之羧酸從水溶液中萃取所形成之2-乙基己酸銠(III),且可選地用水性無機酸洗滌。以這種方式獲得的2-乙基己酸銠(III)溶液可在氫甲醯化反應中直接用作為催化劑。

Description

2-乙基己酸銠(III)之製備 敘述 介紹
本發明的標的是一種製備2-乙基己酸銠(III)溶液的方法。2-乙基己酸銠(III),Rh[CH3(CH2)3CH(CH2CH3)COO]3,在下文中也被稱為「Rh(III)2EH」。類似地,2-乙基己酸根被稱為「2-EH」。
根據本發明之方法的特徵在於改良的程序執行。其促進高產率及極高品質的Rh(III)2EH溶液之製備;且該等溶液展現極高純度。「高純度(high purity)」在此上下文中意味著低濃度的鈉、氯離子、及Rh(II)物種。相對於所使用的銠,產率超過99%。此外,根據本文提出之方法,在Rh(III)2EH之製備的空間產率比基於先前技術的已知方法之製備的空間產率高得多。此高空間產率意味著根據本發明的方法在工業規模上是經濟上可行的。空間產率在此上下文中意味著在反應器中的每單位體積所形成的產物數量。
根據本發明的Rh(III)2EH溶液特別適合在氫 甲醯化反應中作為催化劑。
有兩種可能的2-乙基己酸銠結構:
2-乙基己酸銠的結構取決於銠的氧化程度。銠(II)二聚物是綠色的,而銠(III)化合物是黃棕色至紅棕色。
2-乙基己酸銠(III)係以CAS編號20845-92-5市售可得。
銠羧酸鹽主要是在化學工業中用作為氫甲醯化反應的預催化劑。
因此,WO 2009/059713 A1揭示一種藉由利用一氧化碳之烯烴氫甲醯化而製備醛類的方法,其中2-乙基己酸銠係用作為催化劑。氫甲醯化(或羰氧化反應)是過渡金屬催化之利用氫及一氧化碳將烯烴或烯烴不飽和化合物轉化成醛類及醇類,該等醛類及醇類比所使用之烯烴多包含一個碳原子。同時,氫甲醯化程序獲得了可觀的商業及技術意義。舉例而言,主要藉因此得到的醛類被原樣使用於或代表用於生產醇類、羧酸、酯類、或胺類的優越 前驅物。
氫甲醯化是由氫化金屬羰基化物(hydridometal carbonyl)進行催化,有利地為該元素週期表的VIII族金屬。除了鈷(經典的金屬催化劑)以外,現在這幾年基於銠的催化劑的使用亦已增長。相對於鈷,銠允許反應在較低的壓力下進行。此外,當使用末端烯烴時,有利地形成直鏈正醛類,而異醛類僅佔較小量。基本上相較於有鈷催化劑的應用,在銠催化劑的存在下,使所用烯烴氫化成飽和烴係顯著較低的。
工業上,烯烴不飽和化合物的氫甲醯化是在以三級有機膦或亞磷酸酯(phosphite)作為配位基之銠羰基錯合物的催化作用下進行。
根據進一步的方法變化中,銠催化之氫甲醯化反應也可以在沒有形成錯合物的配位基(例如膦或亞磷酸酯(phosphite))下進行。這種未使用膦或亞磷酸酯(phosphite)改質之銠催化劑及其作為氫甲醯化催化劑的適用性係從文獻中已知,且被稱為未改質的銠催化劑。在專業文獻中,假定該銠化合物HRh(CO)4在利用未改質的銠催化劑的氫甲醯化期間的是催化性活性的銠物種,雖然因為在反應區中許多化學反應彼此同時運行著,所以這個假定尚未被明確證實。據指出,在反應區中的氫甲醯化反應的條件下,未改質的銠催化劑係自銠化合物形成,據稱銠鹽,例如氯化銠(III)、硝酸銠(III)、乙酸銠(III)、乙酸銠(II)、硫酸銠(III)、或銠(III)氯化銨鹽;來自銠含氧酸的 鹽,例如銠酸鹽((rhodate);來自銠羰基化合物,例如Rh4(CO)12及Rh6(CO)16;或來自在一氧化碳/氫混合物(其也被稱為合成氣)的存在下之有機銠化合物,例如羰基乙醯丙酮銠(rhodium carbonyl acetylacetonate)、環辛二烯乙酸銠、或環辛二烯氯化銠。從而銠化合物可以固體使用或者適宜地在溶液中使用。例如,一種在未改質的銠錯合物的存在下的氫甲醯化之方法,其中使用2-乙基己酸銠,係描述於DE 38 22 038 A1中。
用於銠溶液之製備的合適銠化合物是例如具有2至13個碳原子之脂族單羧酸鹽或多羧酸鹽。此外,銠的羰基化合物已被證明是非常成功的。雖然也可以使用鹵素羰基化合物,但因為鹵離子的腐蝕行為,其等僅具有有限的應用。基本上,銠的錯合化合物,特別是銠(III)的化合物,也係適合用於在催化劑系統中製備催化性活性金屬組分的起始材料。這些化合物含有單牙、雙牙、或三牙配位基:例如β-二酮,例如乙醯丙酮;或脂族及二烯屬不飽和烴,例如環戊二烯及1,5-環辛二烯。特別適合用於製備銠溶液的銠化合物是銠氧化物、銠羰基化物(rhodium carbonyl)、乙酸銠、2-乙基己酸銠、異壬酸銠、及乙醯丙酮銠(III)。
先前技術中已知有二種製備2-乙基己酸銠的方法。
US 4,845,306描述了一種方法,其中在第一容器中,將1.5當量NaOH及1當量2-乙基己酸溶解在水 中。在第二容器中,將氯化銠水合物溶解於水中。將1當量氯化銠水合物溶液加到7當量2-乙基己酸鈉溶液中,並在95℃下攪拌二小時。形成呈暗綠色油狀形式的粗產物。然後用texanol酯醇萃取該粗產物。在此方法中,銠的濃度在有機相中是10,000ppm,而在合併的水相中是2ppm,使得相對於所使用的銠,產量係非常小的。因為使用大量的過量鹼,所以無法避免地形成了氫氧化銠。此外,綠色表示2-乙基己酸銠(II)(Rh(II)2EH)的存在,而在催化中,2-乙基己酸銠(II)被認為係活性較低的。
WO 92/10460描述了一種方法,其中三氯化銠三水合物溶解於乙醇。然後加入2-乙基己酸鈉(Na-2-EH)及乙基己酸,且在室溫下攪拌混合物。藉此RhCl3*3H2O對Na-2-EH的比率為大約1:3(mol/mol)。最後,將反應混合物加熱至40℃,並過濾以分離所產生的NaCl。得到黏稠的黃綠色油狀物。相對於所使用的銠,藉此得到之產率是97%;然而,該油狀物含有高濃度的鈉離子及氯離子,且綠色表示2-乙基己酸銠(II)(Rh(II)2EH)的存在。由於在鹼性介質中使用乙醇作為溶劑,可能會發生銠離子還原成銠金屬的狀況。出於此原因,需要間歇過濾錯合物以分離除去金屬。
在2-乙基己酸銠(III)中之高含量的氯離子是不利的,因為氯離子是腐蝕性的,且會藉由降低催化劑的活性而在氫甲醯化中干擾催化反應。
出於此原因,本發明的目的是克服先前技術在2-乙基己酸銠(III)之製備的缺點,並提供一種高產率在工業規模上可執行的方法,該方法實現具有低鈉離子及氯離子含量的反應產物。
此問題是藉由一種製備2-乙基己酸銠(III)溶液的方法解決,該方法包含以下步驟:a)藉由在室溫下在第一反應容器中將2-乙基己酸添加至鹼金屬氫氧化物水溶液而製備2-乙基己酸鹼的金屬鹽之水溶液,其中2-乙基己酸對鹼金屬氫氧化物的莫耳比率為1.0:1.0至1.1:1.0(mol/mol),b)在第二反應容器中提供銠(III)前驅物,該銠(III)前驅物係選自氯化銠(III)水合物RhCl3*xH2O、氯化銠(III)溶液H3[RhCl6]*(H2O)n、及硝酸銠(III)溶液Rh(NO3)3*(H2O)n、以及其混合物,c)將2-乙基己酸的鹼金屬鹽之水溶液及銠(III)前驅物的水溶液在反應容器中在20℃至30℃的內部溫度下混合,d)加熱來自步驟c)的混合物- 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則在反應容器中加熱到為80℃至90℃的內部溫度,或- 若該Rh(III)前驅物為硝酸銠(III),則加熱到為 80℃至100℃的內部溫度,e)在攪拌下冷卻來自步驟d)的該懸浮液- 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則冷卻到為40℃至50℃的內部溫度,或- 若該Rh(III)前驅物為硝酸銠(III),則冷卻到為55℃至65℃的內部溫度,f)在攪拌下添加與水不互溶的醇、與水不互溶的羧酸、或其混合物,g)之後攪拌30分鐘至3小時,h)冷卻至室溫,並留置乳液以使其沈降,i)排出下層不含Rh的水相,j)若在步驟中的該Rh(III)前驅物含有氯化銠(III)水合物RhCl3*xH2O及/或氯化銠(III)溶液H3[RhCl6]*(H2O)n,則以水性無機酸洗滌含有Rh-2-EH的有機相。
問題的解決方案包含提供製備2-乙基己酸銠(III)的方法。由於所使用的化學品、程序方法、高產物品質、可實現的高產率、以及空間產率,該方法是環境友善且經濟的。
本方法包含2-乙基己酸銠(III)之製備而無任何中間體之單離。本發明因此描述了其中從起始材料製備目標產物,而無昂貴且費時的中間體單離或中間體洗滌的程序。
本方法提供了呈溶液形式的2-乙基己酸銠(III)反應產物,其可直接用於Rh(III)2-EH應作用為催化劑的其他反應中。因此,不需要例如由於濃縮溶液或生產固體的Rh(III)2-EH之昂貴且費時的單離。使用根據本發明的方法製備之Rh(III)2-EH溶液基本上不含2-乙基己酸銠(II)。
根據本發明之製備2-乙基己酸銠(III)的方法係說明如下,其中本發明包含下文個別列出的所有實施例及該等實施例彼此之組合。
在根據本發明的方法的步驟a)中,藉由在攪拌下在室溫下將2-乙基己酸添加至鹼金屬氫氧化物水溶液而製備2-乙基己酸的鹼金屬鹽之水溶液。藉此2-乙基己酸對鹼金屬氫氧化物的莫耳比率為1:1至1.1比1(mol/mol)。已發現1至6mol/l的鹼金屬氫氧化物水溶液的濃度係實際可用的。在一特定的實施例中,此鹼金屬氫氧化物水溶液是使用去礦質水製備。合適的鹼金屬氫氧化物為LiOH、NaOH、及KOH。有利地使用NaOH。
在根據本發明的方法的步驟b)中,提供銠(III)前驅物。銠(III)前驅物係選自氯化銠(III)水合物RhCl3*xH2O、氯化銠(III)溶液H3[RhCl6]*(H2O)n、及硝酸銠(III)溶液Rh(NO3)3*2H2O、以及其混合物。可選地,在根據本發明的方法的步驟b)中,銠(III)前驅物可以水稀釋。
對所屬技術領域中具有通常知識者而言,已 知氯化銠(III)水合物及氯化銠(III)溶液並非具有精確化學計量組成之限定化合物。因此,式RhCl3*xH2O、及H3[RhCl6]*(H2O)n代表理想化的組成。本發明的錯合化合物視化合物的鹵離子含量及水含量而變化。氯化銠(III)水合物及其市售可得之水溶液通常以混合的氯水(chloro-aquo)錯合物存在,這是為什麼在理想化式中的水含量被定為「xH2O」的緣故。取決於氯化銠(III)水合物及氯化銠(III)溶液的生產程序,而會有更多或更少的水或氯離子配位基結合至銠(III)錯合物。在氯化銠(III)水合物固體的生產中,這取決於蒸發的程度,而在氯化銠(III)水合物溶液的生產中,這取決於酸含量(HCl)及該溶液的濃度。
要根據本發明而使用的Rh(III)前驅物(氯化銠(III)水合物RhCl3*xH2O、及氯化銠(III)溶液H3[RhCl6]*(H2O)n)是市售可得的。一般而言,所有的氯化銠(III)水合物及氯化銠(III)溶液皆可用於根據本發明的方法,無關於其各自的水或氯離子含量(Rh/Cl-比率),只是限定條件為該等氯化銠(III)水合物及氯化銠(III)完全溶於水。在本發明的上下文中,「完全溶於水(completely soluble in water)」意味著在室溫下,至少100g的對應銠化合物可溶解於一公升(1000mL)水中。
在一實施例中,Rh(III)前驅物是氯化銠(III)前驅物。其係選自具有最大為40%之銠含量之氯化銠(III)水合物、及具有大約20%之銠含量及4:1至6:1之氯/銠比率之氯化銠(III)溶液。
若氯化銠(III)前驅物是H3[RhCl6]*n(H2O)(其在下文稱為「氯化銠(III)溶液」),則係特別有利的。一般而言,使用具有小於30wt%銠含量的氯化銠(III)水溶液,因為他們是市售及生產可得的,例如藉由在濃鹽酸及氯氣的存在下使銠金屬溶解而得。然而,合適的氯化銠(III)溶液還可自貴金屬回收或工業貴金屬化學的程序流分流而得。此外,相較於通常使用的固體氯化銠(III)水合物,使用氯化銠(III)溶液具有提供更具有成本效益及更快處理的優點,因為上流蒸發、單離為氯化銠(III)水合物及分析以測定起始量非為必要。
在進一步的實施例中,氯化銠(III)前驅物為氯化銠(III)水合物RhCl3*xH2O。對所屬技術領域中具有通常知識者而言已知此物質是固體。
在進一步的實施例中,Rh(III)前驅物是具有15wt%之最大銠含量,及<0.1wt%之氯離子含量之硝酸銠(III)溶液。這些類型的硝酸銠(III)溶液是市售可得的。可替代地,硝酸銠溶液本身可以根據以下反應方程式、藉由以硝酸將新鮮製備的氫氧化銠(III)轉換成硝酸銠(III)而製備:RhCl3+3 NaOH → Rh(OH)3+3 NaCl
Rh(OH)3+3 HNO3 → Rh(NO3)3+3 H2O
獲得Rh(NO3)3水溶液。此製備硝酸銠(III)之 方法對所屬技術領域中具有通常知識者而言是已知的。
根據本發明而使用之硝酸銠(III)在上述定義的含義內也是完全水溶性的。
如上所述,氯化銠(III)溶液及硝酸銠(III)係以水溶液之形式存在。相對地,氯化銠(III)水合物是固體。三種所提及之銠(III)前驅物全都可抑或無進一步地添加水或以水稀釋、抑或在氯化銠(III)水合物的情況下而將該氯化銠(III)水合物溶解於水中,而用於根據本發明的方法的步驟b)中。去離子水,下文也稱為「DI水(DI water)」係有利地用於溶解或稀釋銠(III)前驅物。當然,去礦質水或蒸餾水也是合適的。
在一特定實施例中,在步驟b)中製備具有為15g/L至30g/L,有利地為20g/L至25g/L之純銠濃度的Rh(III)前驅物水溶液。
在根據本發明的方法的步驟c)中,在攪拌下,在為20℃至30℃的反應容器內部溫度下,使來自步驟a)之2-乙基己酸的鹼金屬鹽之溶液與來自步驟b)之Rh(III)前驅物水溶液混合。如此一來,2-乙基己酸(2-EH)的鹼金屬鹽及Rh(III)前驅物係以相對於乙基己酸及純銠的量以2:1至8:1(mol/mol)的比率有利地混合在一起。
在一特定實施例中,Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,且2-EH對Rh(III)前驅物的比率為6:1至8:1mol/mol。
在一進一步特定實施例中,Rh(III)前驅物為 硝酸銠(III),且2-EH對Rh(III)前驅物的比率為2:1至5:1mol/mol。
2-EH溶液及Rh(III)前驅物溶液可連續混合或可不連續混合。連續混合意味著將2-EH溶液及Rh(III)前驅物溶液同時引入到混合容器中。不連續混合意味著將一種混合組分先完全引入,然後加入其他混合組分。
在一特定實施例中,將Rh(III)前驅物溶液引入,然後加入鹼金屬2-EH溶液。
在另一個有利的實施例中,將鹼金屬2-EH溶液引入,然後提供Rh(III)前驅物溶液。
一旦按照根據本發明的方法的步驟d)之2-EH溶液及Rh(III)前驅物溶液在攪拌下的混合結束,- 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則將其在反應容器中加熱到為80℃至90℃的內部溫度,或- 若該Rh(III)前驅物為硝酸銠(III),則將其加熱到為80℃至100℃的內部溫度;並在此溫度下攪拌1至4小時。有利地將其攪拌2至3小時。
按照根據本發明的方法的步驟e),在攪拌下將懸浮液冷卻,並確實執行以下內容- 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則冷卻到為40℃至50℃,更特定地為45℃的內部溫度,或 - 若該Rh(III)前驅物為硝酸銠(III),則冷卻到為55℃至65℃,更特定地為60℃的內部溫度。
此後,按照根據本發明的方法之步驟f),在攪拌下加入與水不互溶的醇或與水不互溶的羧酸、或其混合物。若氯化銠(III)水合物或氯化銠(III)溶液被用作為Rh(III)前驅物,則內部溫度從而為40℃至50℃,而若硝酸銠(III)被用作為Rh(III)前驅物,則內部溫度從而為60℃至70℃。
在本發明的範圍內,若在20℃,在水中醇類及羧酸的溶解度小於或等於50g/l,則該等醇類及羧酸被稱為「與水不互溶(immiscible with water)」。
合適的醇類為具有5至12個碳原子之飽和脂族、芳族、及芳脂族(araliphatic)醇類,其在室溫下是液體,該些醇類係例如,戊-1-醇、戊-2-醇、戊-3-醇、2-甲基丁-1-醇、3-甲基丁-1-醇、2-甲基丁-2-醇、3-甲基丁-2-醇、2,2-二甲基丙-1-醇、己-1-醇、庚-1-醇、辛-1-醇、2,4,4-三甲基戊醇、壬-1-醇、3,3,5-三甲基己醇、3,5,5-三甲基己醇、癸-1-醇、十一-1-醇、十二-1-醇、戊-1,5-二醇、戊-1,5-二醇、1,2,3-丙三醇、環戊醇、苯基甲醇、1-苯基乙-1-醇、2-苯基乙-1-醇、texanol酯醇、及2,2,4-三甲基-1,3-戊二醇單異丁酸酯。Texanol酯醇為2,2,4-三甲基-1,3-戊二醇單異丁酸酯。也可使用這些醇類的混合物。
合適的羧酸為具有5至13個碳原子之飽和羧酸,其在室溫下是液體。正戊酸、2-甲基丁酸、正己酸、 正庚酸、正辛酸、2-乙基己酸、正壬酸、異壬酸、及異十三酸被提及作為實例。異壬酸及異十三酸之名稱意指二異丁烯或四聚丙烯(tetrapropylene)經由氫甲醯化及隨後的氧化而獲得之反應產物。
此處之「醇、或羧酸、或其混合物(an alcohol or a carboxylic acid,or mixtures thereof)」意指- 單一醇或- 單一羧酸或- 數種醇類的混合物或- 數種羧酸的混合物或- 至少一種醇及至少一種羧酸的混合物
可被使用。原則上,這意味著此種醇類及羧酸是按照上面的定義與水不互溶。
在一特定實施例中,醇或羧酸係選自2-乙基己醇、2-乙基己酸、及texanol酯醇,其中在各情況下使用此等化合物的單獨一者。
醇、或羧酸、或其混合物係用來:從步驟e)中所形成的懸浮液萃取所形成之2-乙基己酸銠(III)。在步驟f)中進行萃取之期間,2-乙基己酸銠(III)基本上定量地轉移到有機相中。醇、或羧酸的量、或混合物的量,是在很廣的範圍內自由選擇的。有利地選擇,使得2-乙基己酸銠(III)在此有機相中的濃度與在完整實現根據本發明的方法後應獲得之2-乙基己酸銠(III)的濃度大約相等或略高。根據本發明的方法提供了於醇、羧酸、或其混合物的2-乙 基己酸銠(III)之即用(ready-to-use)溶液,而此等即用溶液可以直接用作為催化劑溶液,例如,如作為在氫甲醯化反應的催化劑溶液。若按照步驟f)之在有機相中的銠2EH濃度略高於在完整實現根據本發明的方法後應為的濃度,該有機相中的銠2EH可從而在被用作為催化劑溶液之前被稀釋。有利地,在此處使用與在步驟f)中所使用者相同的醇、或相同的羧酸、或相同的其混合物。
若按照根據本發明的方法的步驟d),所使用的Rh(III)前驅物是氯化銠(III)溶液或氯化銠(III)水合物,則溫度一定不得超過90℃,且在步驟e)及f)中,溫度一定不得超過50℃,原因係不依此原則就會有2-乙基己酸銠(III)及2-乙基己酸銠(II)的混合物形成。2-乙基己酸銠(II)在下文中也稱為Rh(II)2EH。在形成Rh(II)2EH的期間,形成綠色產物溶液。這顯示於比較例1至比較例3中。
然而,若所使用的Rh(III)前驅物為硝酸銠(III),則在根據本發明的方法的步驟d)的溫度可高達100℃,且在步驟e)及f)中,溫度可高達65℃,而無Rh(II)2-EH形成。
來自步驟f)的反應混合物現在在相同的內部溫度下,按照步驟g)再次攪拌30分鐘至3小時,有利地再次攪拌1至2小時。
按照根據本發明的方法的步驟h),然後將反應混合物冷卻至為20℃至30℃之內部溫度。停止攪拌乳 液,並使所形成的乳液沈降,其中發生了相分離。有利地,沈降於一至四小時的一段時間內發生。
然後將底部水相排出並棄除(步驟i)。
若氯化銠(III)水合物RhCl3*xH2O及/或氯化銠(III)溶液H3[RhCl6]*(H2O)n被用作為Rh(III)前驅物,則隨後以水性無機酸洗滌有機相至不含氯。合適的無機酸為不含鹵素之酸,例如,舉例而言,硫酸、硝酸、及磷酸。有利地,使用0.5至2%無機酸水溶液,特別有利地,使用0.5至2%硫酸水溶液。推薦的是,對於各洗滌階段,使用與2-EH鹼金屬鹽水溶液及Rh(III)前驅物水溶液的體積之和對應的大約一樣多的無機酸溶液。在無機酸的各次添加後,在室溫下進行攪拌2至6小時,隨後使乳液留置以使該乳液沈降2至6小時,然後將底部水相排出並棄除。有利的是重複此洗滌步驟一次或兩次。
取決於所使用的銠(III)前驅物,本方法提供以金屬計,以99%金屬之產率(「金屬產率(metal yield)」)之2-乙基己酸銠(III)溶液。獲得的Rh(III)2EH溶液基本上不含Rh(II)物種。這可在根據本發明之溶液的顏色中觀察到:2-乙基己酸銠(III)溶液具有黃棕色,而2-乙基己酸銠(II)溶液是綠色的。在先前技術中引用的一些製備2-乙基己酸銠(III)的方法提供含有顯著比例的2-乙基己酸銠(II)的產物。然而,Rh(II)2-EH在氫甲醯化反應中的催化效果比Rh(III)2EH差。出於此原因,在氫甲醯化反應中,有利的是使用幾乎完全由Rh(III)2-EH組成的2-乙基 己酸銠,且如果可能的話,不含Rh(II)2EH。
UV/VIS光譜法可用於研究藉由根據本發明的方法獲得之溶液實際上是否基本上不含Rh(II)2EH。若硝酸銠(III)溶液被用作為Rh(III)前驅物,則測量執行步驟i)後獲得之溶液,或者若氯化銠(III)溶液或氯化銠(III)水合物被用作為Rh(III)前驅物,則測量執行步驟j)後獲得之溶液。在這兩種情況下,藉由UV/VIS光譜法之量測係測量具有1.9至2.1wt%的銠濃度之溶液。對所屬技術領域中具有通常知識者而言,銠含量可藉由MS-ICP測定係為已知。如果銠含量高於1.9wt%至2.1wt%,則預先相應地調整溶液。合適的用於調整之溶劑為上述的羧酸及醇類。有利地,使用與在根據本發明的方法的步驟f)中所使用者相同的羧酸、相同的醇、或相同的混合物而調整。
藉由UV/VIS光譜法,在2mm QS光析管中,在597nm測量具有1.9wt%至2.1wt%銠含量之溶液。若吸收譜帶的強度小於或等於0.350,則銠(III)2-EH溶液在本發明的含義範圍內係「基本上不含Rh(II)2EH(essentially free of Rh(II)2EH)」。
若氯化銠(III)水合物及/或氯化銠(III)溶液被用作為Rh(III)前驅物,則根據本發明的Rh(III)2-EH溶液的鈉含量在500ppm以下,且總氯含量在2,500ppm以下。若硝酸銠(III)被用作為Rh(III)前驅物,則按照根據本發明的方法獲得的Rh(III)2EH溶液的鈉含量在250ppm以下,且氯離子含量在250ppm以下。從而指稱之ppm 的值指的是銠含量。
2-乙基己酸銠(III)適合在氫甲醯化反應中用作為催化劑。這樣的方法在先前技術中是已知的,且一般可被描述為包含以下步驟之氫甲醯化反應之方法:- 如請求項1至5中任一項提供2-乙基己酸銠(III)或其溶液;- 在氫甲醯化反應中採用如此獲得之該2-乙基己酸銠(III)或其溶液作為催化劑。
實例
下文中,「去離子水(deionized water)」被稱為「DI水(DI water)」。
實例1:在85℃下在2-乙基己醇中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(6.4eq.,99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈大約39g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量19.69wt%,Cl/Rh=4.86)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。然後將反應混合物加熱至T內部85℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入312g的2-乙基己醇(98%,Biesterfeld)。然後再次攪拌現在呈黃棕色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部無色的水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%金屬產率獲得具有大約2% Rh的澄清黃棕色產物溶液。
總氯含量是藉由氯分析器測定,為1350ppm(相對於銠)。鈉含量是根據ICP-OES測定,鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.242之強度的吸收譜帶。
實例2:在85℃下在2-乙基己酸中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中, 將呈大約42g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量18.39wt%,Cl/Rh=4.93)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。將反應混合物加熱至T內部85℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入318g的2-乙基己酸(98%,Oxea)。然後再次攪拌現在呈黃棕色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%產率獲得具有大約2% Rh的澄清黃棕色產物溶液。
總氯含量是藉由氯分析器測定,為2100ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.258之強度的吸收譜帶。
實例3:在85℃下在texanol酯醇中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的 2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈43g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量17.83wt%,Cl/Rh=4.99)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。將反應混合物加熱至T內部85℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入357g的texanol酯醇(99%,2,2,4-三甲基-1,3-戊二醇單異丁酸酯,Sigma Aldrich)。然後再次攪拌現在呈黃棕色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%產率獲得具有大約2% Rh的澄清黃棕色產物溶液。
總氯含量是藉由氯分析器測定,為2300ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.324之強度的吸收譜帶。
實例4:在85℃下在2-乙基己醇中自硝酸銠溶液製備2- 乙基己酸銠(III)
在攪拌下,將11g的氫氧化鈉(99%,Merck)溶解於150mL的DI水中。在冷卻到室溫後,將40g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈大約90g的硝酸銠(III)溶液(Umicore產物編號68.2565.2810;Rh含量10wt%,自由HNO3/Rh比率<2、Cl含量<0.1%)形式的9.0g的Rh於150mL的DI水中稀釋。
在80℃下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到硝酸銠溶液。然後將反應混合物加熱至T內部85℃並保持此溫度2小時。在2小時結束時,將反應混合物冷卻至T內部:60℃。在此溫度下,藉由滴液漏斗加入400g的2-乙基己醇(98%,Biesterfeld)。然後再次攪拌現在呈黃棕色之乳液1小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降三小時。發生相分離。將底部無色的水相排出。
以99%金屬產率獲得具有大約2% Rh的澄清黃棕色產物溶液。
總氯含量是藉由氯分析器測定,為1290ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.085之強度的吸收譜帶。
實例5:在95℃下在2-乙基己醇中自硝酸銠溶液製備2-乙基己酸銠(III)
在攪拌下,將11g的氫氧化鈉(99%,Merck)溶解於150mL的DI水中。在冷卻到室溫後,將40g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈大約90g的硝酸銠(III)溶液(Umicore產物編號68.2565.2810;Rh含量10wt%,自由HNO3/Rh比率<2、Cl含量<0.1%)形式的9g的Rh於150mL的DI水中稀釋。
在80℃下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到硝酸銠溶液。然後將反應混合物加熱至T內部95℃並保持此溫度2小時。在3小時結束時,將反應混合物冷卻至T內部:60℃。在此溫度下,藉由滴液漏斗加入400g的2-乙基己醇(98%,Biesterfeld)。然後再次攪拌現在呈黃棕色之乳液1小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降三小時。發生相分離。將底部水相排出。
以99%金屬產率獲得具有大約2% Rh的澄清黃棕色產物溶液。
總氯含量是藉由氯分析器測定,為1110ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.093之強度的吸收譜帶。
比較實例1:在95℃下在2-乙基己醇中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈大約39.6g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量19.40wt%,Cl/Rh=4.74)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。將反應混合物加熱至T內部95℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入312g的2-乙基己醇(98%,Biesterfeld)。然後再次攪拌現呈綠黃色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%金屬產率獲得具有大約2% Rh的澄清暗綠色產物溶液。
總氯含量是藉由氯分析器測定,為1090ppm (相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.465之強度的吸收譜帶。
比較實例2:在95℃下在2-乙基己酸中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈40g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量19.28wt%,Cl/Rh=4.88)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。將反應混合物加熱至T內部95℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入318g的2-乙基己酸(98%,Oxea)。然後再次攪拌現呈綠色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%產率獲得具有大約2% Rh的澄清暗綠 色產物溶液。
總氯含量是藉由氯分析器測定,為2450ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.526之強度的吸收譜帶。
比較實例3:在95℃下在texanol酯醇中自氯化銠溶液製備2-乙基己酸銠(III)
在攪拌下,將19.3g的氫氧化鈉(99%,Merck)溶解於100mL的DI水中。在冷卻到室溫後,將71g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,在1L雙夾套反應器中,將呈大約39g的氯化銠(III)溶液(Umicore產物編號68.2565.2720;Rh含量19.67wt%,Cl/Rh=4.99)形式的7.7g的Rh於350mL的DI水中稀釋。
在室溫下,藉由滴液漏斗於15分鐘內將乙基己酸鈉溶液添加到氯化銠溶液。將反應混合物加熱至T內部95℃並保持此溫度3小時。在3小時結束時,將反應混合物冷卻至T內部:45℃。在此溫度下,藉由滴液漏斗加入357g的texanol酯醇(99%,2,2,4-三甲基-1,3-戊二醇單異丁酸酯,Sigma Aldrich)。然後再次攪拌現呈綠色之乳液2小時,隨後冷卻至25℃。然後關閉攪拌器,使乳液留置沈降一小時。發生相分離。將底部水相排出。將400mL的0.7% H2SO4水溶液添加到有機相,並使乳液攪拌4 小時。4小時後,將攪拌器關閉,相分離在1小時內再次發生。然後將水相排出。再次重複洗滌步驟。
以99%產率獲得具有大約2% Rh的澄清暗綠色產物溶液。
總氯含量是藉由氯分析器測定,為1300ppm(相對於銠)。鈉含量是根據ICP-OES測定;鈉含量為<500ppm(相對於銠)。UV/VIS光譜顯示在597nm處有0.748之強度的吸收譜帶。
比較實例4:根據US 4,845,306 A1,在texanol酯醇中自氯化銠水合物製備2-乙基己酸銠(III)
在攪拌下,在1L雙夾套反應器中,將32g的氫氧化鈉(10.3eq.,99%,Merck)溶解於400mL的DI水中。在冷卻到室溫後,將78.4g的2-乙基己酸(98%,Oxea)緩慢地逐滴加入。
同時,在攪拌下,將呈大約39g的氯化銠(III)水合物(Umicore產物編號68.2562.1138;Rh含量39.5wt%)形式的8g的銠於360mL的DI水中稀釋,然後在室溫下,藉由滴液漏斗於15分鐘內加入到乙基己酸鈉溶液。將反應混合物加熱至T內部95℃。有氫氧化銠黃色沈積物沉澱。故產物的轉換未發生。

Claims (9)

  1. 一種製備2-乙基己酸銠(III)溶液之方法,其包含以下步驟:a)藉由在室溫下在第一反應容器中將2-乙基己酸添加至鹼金屬氫氧化物水溶液而製備2-乙基己酸的鹼金屬鹽之水溶液,其中2-乙基己酸對鹼金屬氫氧化物的莫耳比率為1.0:1.0至1.1:1.0(mol/mol);b)在第二反應容器中提供銠(III)前驅物,該銠(III)前驅物係選自氯化銠(III)水合物RhCl3*xH2O、氯化銠(III)溶液H3[RhCl6]*(H2O)n、及硝酸銠(III)溶液Rh(NO3)3*(H2O)n、以及其混合物;c)將該2-乙基己酸的鹼金屬鹽之該水溶液及該銠(III)前驅物的該水溶液在為20℃至30℃的反應容器內部溫度下混合以得到混合物;d)加熱來自步驟c)的該混合物- 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則加熱到為80℃至90℃的反應容器內部溫度,或- 若該Rh(III)前驅物為硝酸銠(III),則加熱到為80℃至100℃的內部溫度,以獲得懸浮液;e)在攪拌下冷卻來自步驟d)的該懸浮液 - 若該Rh(III)前驅物為氯化銠(III)溶液或氯化銠(III)水合物,則冷卻到為40℃至50℃的內部溫度,或- 若該Rh(III)前驅物為硝酸銠(III),則冷卻到為55℃至65℃的內部溫度;f)在攪拌下添加與水不互溶的醇、與水不互溶的羧酸、或其混合物;g)攪拌30分鐘至3小時;h)冷卻至室溫,並留置所得乳液以使其沈降;i)將底部水相排出;j)若在步驟中的該Rh(III)前驅物含有氯化銠(III)水合物RhCl3*xH2O及/或氯化銠(III)溶液H3[RhCl6]*(H2O)n,則以水性無機酸洗滌頂部含有產物的有機相。
  2. 如請求項1之方法,其中按照步驟c)之該2-乙基己酸的鹼金屬鹽之該水溶液與該等銠(III)前驅物之該水溶液的混合是不連續地發生,其中先將該銠(III)前驅物之該溶液引入,然後加入該2-乙基己酸鈉的鹼金屬鹽的該水溶液。
  3. 如請求項1或2中任一項之方法,其中在步驟a)中之該鹼金屬氫氧化物為NaOH。
  4. 如請求項1或2中任一項之方法,其中在步驟f)中,該醇或該羧酸係選自2-乙基己醇、2-乙基己酸、及texanol酯醇。
  5. 如請求項1或2中任一項之方法,其中該水性無機酸係選自硫酸、硝酸、及磷酸。
  6. 一種藉由如請求項1至5之方法可獲得的2-乙基己酸銠(III)。
  7. 如請求項6之2-乙基己酸銠(III),其中其基本上不含乙基己酸銠(II),這意味著具有1.9至2.1wt%銠含量的溶液在2mm QS光析管中,在597nm的UV/VIS光譜量測,展現強度小於或等於0.350的吸收譜帶。
  8. 一種如請求項6或7中任一項之2-乙基己酸銠(III)在氫甲醯化反應中作為催化劑的用途。
  9. 一種氫甲醯化反應之方法,其包含以下步驟:- 如請求項1至5中任一項提供2-乙基己酸銠(III)或其溶液;- 在氫甲醯化反應中採用如此獲得之該2-乙基己酸銠(III)或其溶液作為催化劑。
TW105120608A 2015-07-02 2016-06-29 2-乙基己酸銠(iii)之製備 TW201710276A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15175105 2015-07-02

Publications (1)

Publication Number Publication Date
TW201710276A true TW201710276A (zh) 2017-03-16

Family

ID=53524624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120608A TW201710276A (zh) 2015-07-02 2016-06-29 2-乙基己酸銠(iii)之製備

Country Status (7)

Country Link
US (2) US10584142B2 (zh)
EP (1) EP3317243B1 (zh)
JP (1) JP2018521046A (zh)
CN (2) CN107771173B (zh)
DE (1) DE112016002970T5 (zh)
TW (1) TW201710276A (zh)
WO (1) WO2017001647A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106831399B (zh) * 2017-01-23 2020-05-05 杭州凯大催化金属材料股份有限公司 一种2-乙基己酸铑(ii)的合成方法
CN111718253B (zh) * 2020-06-24 2022-12-13 上海沃凯生物技术有限公司 一种辛酸铑二聚体的制备方法
CN111704540A (zh) * 2020-07-01 2020-09-25 中山华明泰科技股份有限公司 一种复合异辛酸铝制备方法及应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2716288B1 (de) * 1977-04-13 1978-11-02 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur Herstellung von 23-Dimethylpentanal
DE3534317A1 (de) * 1985-09-26 1987-04-02 Ruhrchemie Ag Verfahren zur herstellung von nonadecandiolen
US4845306A (en) 1987-04-24 1989-07-04 Eastman Kodak Company Catalyst material recovery or concentration process
DE3822038A1 (de) 1988-06-30 1990-03-01 Hoechst Ag Verfahren zur herstellung von 3(4),8(9)-bis-(aminomethyl)-tricyclo (5.2.1.0(pfeil hoch)2(pfeil hoch)(pfeil hoch),(pfeil hoch)(pfeil hoch)6(pfeil hoch))-decan
US4947003A (en) * 1988-11-28 1990-08-07 Virginia Tech Intellectual Properties, Inc. Process for the hydroformulation of olefinically unsaturated organic reactants using a supported aqueous phase catalyst
US5149854A (en) 1990-12-10 1992-09-22 Mooney Chemicals, Inc. Preparation of platinum group metal and rhenium carboxylates
DE19700804C1 (de) * 1997-01-13 1998-08-06 Hoechst Ag Verfahren zur Herstellung von Aldehyden durch Hydroformylierung olefinischer Verbindungen mit 6 bis 16 Kohlenstoffatomen in Anwesenheit einer Rhodium und sulfonierte Triarylphosphine als Katalysator enthaltenden wäßrigen Phase
DE102005026793B3 (de) * 2005-06-10 2007-04-26 Celanese Chemicals Europe Gmbh Verfahren zur Herstellung alicyclischer, gesättigter Ketone aus alicyclischen, ungesättigten, sekundären Alkoholen
DE102007053385A1 (de) 2007-11-09 2009-05-20 Oxea Deutschland Gmbh Verfahren zur Herstellung von Aldehyden
US7872156B2 (en) * 2007-12-26 2011-01-18 Eastman Chemical Company Fluorophosphite containing catalysts for hydroformylation processes
US8758865B2 (en) 2008-09-04 2014-06-24 Xerox Corporation Ultra-violet curable gellant inks for tactile and regular print applications for signature and document authentication

Also Published As

Publication number Publication date
JP2018521046A (ja) 2018-08-02
US20200087333A1 (en) 2020-03-19
DE112016002970T5 (de) 2018-06-07
US10584142B2 (en) 2020-03-10
CN112250563A (zh) 2021-01-22
CN107771173B (zh) 2021-06-29
US11225498B2 (en) 2022-01-18
CN107771173A (zh) 2018-03-06
WO2017001647A1 (en) 2017-01-05
US20180170952A1 (en) 2018-06-21
EP3317243B1 (en) 2020-04-29
EP3317243A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
US11225498B2 (en) Preparation of rhodium(III)-2-ethylhexanoate
KR102113105B1 (ko) 고급 알코올을 제조하기 위한 촉매
WO2011107559A2 (de) Herstellung von ethylenisch ungesättigten carbonsäuresalzen durch carboxylierung von alkenen
WO2011110249A1 (de) Verfahren zur herstellung von linearen alpha,omega-dicarbonsäurediestern
WO2003099832A1 (de) Hydroxydiphosphine und deren verwendung in der katalyse
JP2011503018A (ja) アルデヒドの製造方法
DE10108474A1 (de) Verfahren zur Herstellung von Aldehyden
EP3921298A1 (en) Process for the production of acetals from carbon dioxide
US9163045B2 (en) Process for preparing diketonato-rhodium(I)-carbonyl complexes
JP2014530216A (ja) 二酸化炭素を水素と反応させることによるギ酸の製造法
KR860000449B1 (ko) 합성가스로부터 알칸올을 제조하는 방법
JP2009233659A (ja) 触媒の保存方法及びアリル化合物の異性化方法
JP6289310B2 (ja) 触媒又はその前駆体並びにこれらを利用した二酸化炭素の水素化方法及びギ酸塩の製造方法
CN104307572B (zh) 一种脒基铝金属催化剂及其制备方法
CN106661069B (zh) 用于制备三(三苯基膦)羰基氢化铑(i)的方法
Efimenko et al. Binary α-unsaturated palladium carboxylates and their complexes with morpholine derivatives: the Crystal structure of palladium carbamoyl crotonate (OC 4 H 8 NH) 2 Pd [OC 4 H 8 N (C= O)](MeCH= CHCO 2)· H 2 O, a product of the first inner-sphere amination reaction of α-unsaturated palladium carbonyl carboxylates with morpholine
CN105435791B (zh) 一种用于丙二酸二烷基酯加氢制备1,3-丙二醇的催化剂及其制备方法和应用
RU2556219C1 (ru) Каталитически активные перфторкарбоксилатные соединения четырехвалентной платины
EP1019354B1 (de) Verfahren zur herstellung von aldehyden
CN114471578A (zh) 一种铜锌铝系气相醛加氢催化剂的制备方法及催化剂
TW201838924A (zh) 用於生產金屬羰基化合物之程序
WO2013096624A1 (en) Methanol homologation
CN105189442A (zh) 生产脱氢芳樟醇乙酸酯(i)的方法
JP2007044568A (ja) 遷移金属の除去方法
WO2012072594A1 (en) Ligand, catalyst and process for hydroformylation