TW201606089A - Reducing agents for silver morphology control - Google Patents

Reducing agents for silver morphology control Download PDF

Info

Publication number
TW201606089A
TW201606089A TW104121756A TW104121756A TW201606089A TW 201606089 A TW201606089 A TW 201606089A TW 104121756 A TW104121756 A TW 104121756A TW 104121756 A TW104121756 A TW 104121756A TW 201606089 A TW201606089 A TW 201606089A
Authority
TW
Taiwan
Prior art keywords
reducing agent
metal
silver
halide
reaction mixture
Prior art date
Application number
TW104121756A
Other languages
Chinese (zh)
Inventor
大衛R 韋康
Original Assignee
保健潮流健康公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保健潮流健康公司 filed Critical 保健潮流健康公司
Publication of TW201606089A publication Critical patent/TW201606089A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes

Abstract

A method comprising providing at least one reducing agent comprising at least one phenol group, the at least one reducing agent not also comprising a halogen atom, and reducing at least one silver ion to at least one silver nanowire in a reaction mixture comprising the at least one reducing agent. Exemplary reducing agents are 3,4-dihydroxybenzotriazole, 2,2'-isobutylidene-bis-(4,6-dimethyl-phenol), and tannic acid.

Description

用於銀形態控制之還原劑 Reductant for silver form control

已知自銀離子進行銀奈米線(10-200縱橫比)之一般製備。參見例如Y.Xia,Y.Xiong,B.Lim,S.E.Skrabalak,Angew.Chem.Int.Ed.,2009, 48,60;J.Jiu,K.Murai,D.Kim,K.Kim,K.Suganuma,Mat.Chem.& Phys.,2009,114,333;頒予Yang等之美國專利公開案第2013/0192423號;頒予Wang等之美國專利第7,922,787號;及頒予Whitcomb等之美國專利第8,613,888號,其皆以全文引用之方式併入本文中。該等製備方法通常涉及使用還原劑來還原銀離子且形成奈米級銀晶種粒子,其可導致形成銀奈米線。Y.Xia,Y.Xiong,B.Lim,S.E.Skrabalak,Angew.Chem.Int.Ed.,2009,48,60。在一些製程中,藉由來自高溫製備之金屬晶種諸如鈀或鉑來促進銀奈米線生長。Y.C.Lu,K.S.Chou,Nanotechnology,2010,215707,6頁,其以全文引用之方式併入本文中。 It is known to carry out the general preparation of silver nanowires (10-200 aspect ratio) from silver ions. See, e.g. Y.Xia, Y.Xiong, B.Lim, SESkrabalak, Angew.Chem.Int.Ed, 2009, 48, 60;. J.Jiu, K.Murai, D.Kim, K.Kim, K.Suganuma , Mat. Chem. & Phys ., 2009 , 114 , 333; U.S. Patent Publication No. 2013/0192423 to Yang et al; U.S. Patent No. 7,922,787 to Wang et al; and U.S. Patent No. to Whitcomb et al. No. 8,613,888, which is incorporated herein in its entirety by reference. Such methods of preparation generally involve the use of a reducing agent to reduce silver ions and form nanoscale silver seed particles which can result in the formation of silver nanowires. Y.Xia, Y. Xiong, B. Lim, SESkrabalak, Angew . Chem . Int . Ed ., 2009 , 48 , 60. In some processes, silver nanowire growth is promoted by metal seed crystals such as palladium or platinum prepared from high temperatures. YC Lu, KSChou, Nanotechnology , 2010 , 215707 , p. 6, incorporated herein by reference in its entirety.

已使用一些相對強之還原劑,例如,抗壞血酸、硼氫化鈉或含烷基胺之甲苯。參見例如Mehdi Jalali-Heravi,Hossein Robatjazi,Heshmatollah Ebrahimi-Najafabadi,Physicochem.Eng.Aspects,2012,393,46;M.S.Bakshi,J.Nanosci.Nanotechn.2010,10,1757;及H.Hiramatsu,F.E.Osterloh,Chem.Mater.,2004,16,13,2509,其皆以全文引用之方式併入本文中。已使用其他不太強之還原劑,例如,由乙二醇熱產生之還原劑。JP Lagier,B.Blin,B. Beaudoin,M.Figlarz,Solid State Ionics,1989,32/33,198;S.E.Skrabalak,BJ Wiley,M.Kim,EV Formo,Y.Xia.Nano Letters,2008,8(7),2077-81;Silvert P-Y等,J.Mater.Chem.,1997,7,293-9;及Silvert P-Y等,J.Mater.Chem.,1996,6,573-7,其皆以全文引用之方式併入本文中。 Some relatively strong reducing agents have been used, for example, ascorbic acid, sodium borohydride or toluene containing alkylamines. See, for example, Mehdi Jalali-Heravi, Hossein Robatjazi, Heshmatollah Ebrahimi-Najafabadi, Physicochem . Eng. Aspects , 2012 , 393 , 46; MS Bakshi, J. Nanosci. Nanotechn. 2010 , 10 , 1757; and H. Hiramatsu, FEOsterloh, Chem. Mater ., 2004 , 16 , 13 , 2509, which are incorporated herein by reference in their entirety. Other less powerful reducing agents have been used, for example, a reducing agent that is thermally produced from ethylene glycol. JP Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics , 1989 , 32/33 , 198; SESkrabalak, BJ Wiley, M. Kim, EV Formo, Y. Xia. Nano Letters , 2008 , 8 ( 7) , 2077-81; Silver PY et al, J. Mater . Chem ., 1997 , 7 , 293-9; and Silver PY et al, J. Mater . Chem ., 1996 , 6 , 573-7, all of which are The manner of reference is incorporated herein.

在一些情況下,已經用酚類還原化合物及極性質子溶劑製備大的結晶銀粒子。參見例如頒予Dannelly等之美國專利第3,940,261號。在一些情況下,已經用兩種不同還原劑製備各向異性金屬奈米粒子。參見例如頒予Uzio等之美國專利第8,030,242號及頒予Bisson等之美國專利第8,652,232號。在一些情況下,已經用可水解單甯諸如鞣酸製備奈米粒子。參見例如頒予Santhanam等之美國專利第8,361,188號。 In some cases, large crystalline silver particles have been prepared using phenolic reducing compounds and polar protic solvents. See, for example, U.S. Patent No. 3,940,261 to Dannelly et al. In some cases, anisotropic metal nanoparticles have been prepared using two different reducing agents. See, for example, U.S. Patent No. 8,030,242 to U.S. Patent No. 8,652,232, issued to U.S. Pat. In some cases, nanoparticles have been prepared using hydrolyzable tannins such as citric acid. See, for example, U.S. Patent No. 8,361,188 to Santhanam et al.

頒予Whitcomb等之美國專利第8,613,888號及頒予Whitcomb等之美國專利公開案第2013/0340570號揭示在錳或錳離子存在下之金屬離子還原。頒予Whitcomb等之美國專利第8,613,888號、頒予Ollmann等之美國專利第8,551,211號、頒予Ollmann等之美國專利公開案第2013/0343950號、頒予Whitcomb等之美國專利公開案第2013/0340570號及頒予Zhang等之美國專利公開案第2012/0294755號揭示在錫或錫離子存在下之金屬離子還原。 The reduction of metal ions in the presence of manganese or manganese ions is disclosed in U.S. Patent No. 8,613,888 issued to Whitcomb et al., and to U.S. Patent Publication No. 2013/0340570, issued toW. U.S. Patent No. 8, 613, 888 to Whitcomb, et al., U.S. Patent No. 8, 551, 211 to Ollmann et al., U.S. Patent Publication No. 2013/0343, issued to O.S. U.S. Patent Publication No. 2012/0294755 to Zhang et al. discloses the reduction of metal ions in the presence of tin or tin ions.

在一些實施例中,一種方法經揭示為包括由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子、第一還原劑及第二還原劑之反應混合物產生金屬產物,其中該第二還原劑包含酚基。在一些實施例中,該金屬產物包含金屬晶種粒子。在一些實施例中,該金屬產物包含金屬奈米線。 In some embodiments, a method is disclosed to include a halide compound comprising a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion, or a halide ion produced by the halide compound, first reduction The reaction mixture of the agent and the second reducing agent produces a metal product, wherein the second reducing agent comprises a phenol group. In some embodiments, the metal product comprises metal seed particles. In some embodiments, the metal product comprises a metal nanowire.

在一些實施例中,第一中間體混合物包含第一部分之金屬化合物、保護劑、鹵化物化合物或由鹵化物化合物產生之鹵離子,及第一還原劑;第二中間體混合物包含第二部分之金屬化合物及第二還原劑;並且該第一中間體混合物及該第二中間體混合物在組合時形成反應混合物。 In some embodiments, the first intermediate mixture comprises a first portion of a metal compound, a protecting agent, a halide compound or a halide ion produced from a halide compound, and a first reducing agent; the second intermediate mixture comprises a second portion a metal compound and a second reducing agent; and the first intermediate mixture and the second intermediate mixture form a reaction mixture when combined.

在一些實施例中,該反應混合物包含由金屬化合物產生之可還原金屬離子。在一些實施例中,該第一中間體混合物包含由該第一部分之金屬化合物產生之第一可還原金屬離子,並且該第二中間體混合物包含由該第二部分之金屬化合物產生之第二可還原金屬離子。 In some embodiments, the reaction mixture comprises reducible metal ions produced from a metal compound. In some embodiments, the first intermediate mixture comprises a first reducible metal ion produced from the first portion of the metal compound, and the second intermediate mixture comprises a second available from the second portion of the metal compound Reduce metal ions.

在一些實施例中,該第二還原劑包含3,4-二羥基苯并***。在一些實施例中,該第二還原劑包含鞣酸。在一些實施例中,該第二還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。在一些實施例中,該保護劑包含聚乙烯吡咯啶酮。在一些實施例中,該鹵化物化合物包含氯化鈰(III)。在一些實施例中,該鹵化物化合物包含氯化錳(II)。在一些實施例中,該第一還原劑包含多元醇。在一些實施例中,該第一還原劑包含丙二醇。在一些實施例中,該第一還原劑包含乙二醇。 In some embodiments, the second reducing agent comprises 3,4-dihydroxybenzotriazole. In some embodiments, the second reducing agent comprises citric acid. In some embodiments, the second reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol). In some embodiments, the protectant comprises polyvinylpyrrolidone. In some embodiments, the halide compound comprises cerium (III) chloride. In some embodiments, the halide compound comprises manganese (II) chloride. In some embodiments, the first reducing agent comprises a polyol. In some embodiments, the first reducing agent comprises propylene glycol. In some embodiments, the first reducing agent comprises ethylene glycol.

在一些實施例中,一種方法經揭示為包括由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子、極性非質子溶劑及第一還原劑之反應混合物產生金屬產物,其中該第一還原劑包含酚基。在一些實施例中,該金屬產物包含金屬晶種粒子。在一些實施例中,該金屬產物包含金屬奈米線。 In some embodiments, a method is disclosed to include the halide ion, polar aprotic generated from a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion, or a halide compound. The reaction mixture of the solvent and the first reducing agent produces a metal product, wherein the first reducing agent comprises a phenol group. In some embodiments, the metal product comprises metal seed particles. In some embodiments, the metal product comprises a metal nanowire.

在一些實施例中,該第一還原劑包含3,4-二羥基苯并***。在一些實施例中,該第一還原劑包含鞣酸。在一些實施例中,該第 一還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。在一些實施例中,該保護劑包含聚乙烯吡咯啶酮。在一些實施例中,該鹵化物化合物包含氯化鈰(III)。在一些實施例中,該鹵化物化合物包含氯化錳(II)。在一些實施例中,該極性非質子溶劑包含丙酮。在一些實施例中,該極性非質子溶劑包含乙腈。 In some embodiments, the first reducing agent comprises 3,4-dihydroxybenzotriazole. In some embodiments, the first reducing agent comprises citric acid. In some embodiments, the first A reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol). In some embodiments, the protectant comprises polyvinylpyrrolidone. In some embodiments, the halide compound comprises cerium (III) chloride. In some embodiments, the halide compound comprises manganese (II) chloride. In some embodiments, the polar aprotic solvent comprises acetone. In some embodiments, the polar aprotic solvent comprises acetonitrile.

在一些實施例中,一種方法經揭示為包括由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子及第一還原劑之反應混合物產生奈米級金屬產物,其中該第一還原劑包含酚基。在一些實施例中,該奈米級金屬產物包含奈米級金屬晶種粒子。在一些實施例中,該奈米級金屬產物包含奈米級金屬奈米線。 In some embodiments, a method is disclosed to include a halide compound comprising a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion, or the halide ion and a first reduction produced by the halide compound. The reaction mixture of the agent produces a nanoscale metal product wherein the first reducing agent comprises a phenolic group. In some embodiments, the nanoscale metal product comprises nanoscale metal seed particles. In some embodiments, the nanoscale metal product comprises a nanoscale metal nanowire.

在一些實施例中,該第一還原劑包含3,4-二羥基苯并***。在一些實施例中,該第一還原劑包含鞣酸。在一些實施例中,該第一還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。在一些實施例中,該保護劑包含聚乙烯吡咯啶酮。在一些實施例中,該鹵化物化合物包含氯化鈰(III)。在一些實施例中,該鹵化物化合物包含氯化錳(II)。 In some embodiments, the first reducing agent comprises 3,4-dihydroxybenzotriazole. In some embodiments, the first reducing agent comprises citric acid. In some embodiments, the first reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol). In some embodiments, the protectant comprises polyvinylpyrrolidone. In some embodiments, the halide compound comprises cerium (III) chloride. In some embodiments, the halide compound comprises manganese (II) chloride.

圖1顯示使用3,4-二羥基苯并***作為還原劑在自首先添加AgNO3之PG溶液時起總計90分鐘後之反應產物的光學顯微照片。 Figure 1 shows an optical micrograph of the reaction product after a total of 90 minutes from the first addition of the PG solution of AgNO 3 using 3,4-dihydroxybenzotriazole as a reducing agent.

圖2顯示使用3,4-二羥基苯并***作為還原劑在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光學顯微照片。 Figure 2 shows an optical micrograph of the reaction product after a total of 120 minutes from the first addition of the PG solution of AgNO 3 using 3,4-dihydroxybenzotriazole as a reducing agent.

圖3顯示使用3,4-二羥基苯并***作為還原劑在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。 Figure 3 shows an optical micrograph of the reaction product after a total of 150 minutes from the first addition of the PG solution of AgNO 3 using 3,4-dihydroxybenzotriazole as a reducing agent.

圖4顯示圖3之反應產物在純化後的光學顯微照片。 Figure 4 shows an optical micrograph of the reaction product of Figure 3 after purification.

圖5顯示自來自純化後之反應產物(諸如圖4中所示者)之五個 圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑(以奈米計)之數目分佈圖。 Figure 5 shows five of the reaction products from the purification (such as those shown in Figure 4) The distribution of the number of silver nanowire diameters (in nanometers) obtained from random samples of 75 silver nanowires of the image.

圖6顯示自來自純化後之反應產物(諸如圖4中所示者)之九個圖像之347個銀奈米線隨機樣品獲取的銀奈米線長度(以μm計)之數目分佈圖。 Figure 6 is a graph showing the number distribution of silver nanowire lengths (in μm) taken from 347 silver nanowire random samples from nine images of purified reaction products (such as those shown in Figure 4).

圖7顯示使用75mg之2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)作為還原劑在自首先添加AgNO3之PG溶液時起總計90分鐘後之反應產物的光學顯微照片。 Figure 7 shows the reaction product after a total of 90 minutes from the first addition of PG solution of AgNO 3 using 75 mg of 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) as a reducing agent. Optical micrograph.

圖8顯示使用75mg之2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)作為還原劑在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光學顯微照片。 Figure 8 shows the reaction product after a total of 120 minutes from the first addition of PG solution of AgNO 3 using 75 mg of 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) as a reducing agent. Optical micrograph.

圖9顯示使用75mg之2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)作為還原劑在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。 Figure 9 shows the reaction product after a total of 150 minutes from the first addition of PG solution of AgNO 3 using 75 mg of 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) as a reducing agent. Optical micrograph.

圖10顯示圖9之反應產物在純化後的光學顯微照片。 Figure 10 shows an optical micrograph of the reaction product of Figure 9 after purification.

圖11顯示自來自純化後之反應產物(諸如圖10中所示者)之五個圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑(以奈米計)之數目分佈圖。 Figure 11 shows the distribution of the number of silver nanowire diameters (in nanometers) obtained from random samples of 75 silver nanowires from five images of purified reaction products (such as those shown in Figure 10). .

圖12顯示自來自純化後之反應產物(諸如圖10中所示者)之十個圖像之199個銀奈米線隨機樣品獲取的銀奈米線長度(以μm計)之數目分佈圖。 Figure 12 is a graph showing the number distribution of silver nanowire lengths (in μm) obtained from random samples of 199 silver nanowires from ten images of purified reaction products (such as those shown in Figure 10).

圖13顯示使用101mg之2,2’-亞異丁基-雙(4,6-二甲基-苯酚)在自首先添加AgNO3之PG溶液時起總計90分鐘後之反應產物的光學顯微照片。 Figure 13 shows the optical microscopy of the reaction product after a total of 90 minutes from the first addition of 101 mg of 2,2'-isobutylene-bis(4,6-dimethyl-phenol) from the first addition of PG solution of AgNO 3 . photo.

圖14顯示使用101mg之2,2’-亞異丁基-雙(4,6-二甲基-苯酚)在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光 學顯微照片。 Figure 14 shows the optical microscopy of the reaction product after a total of 120 minutes from the first addition of 101 mg of 2,2'-isobutylene-bis(4,6-dimethyl-phenol) from the first addition of PG solution of AgNO 3 . photo.

圖15顯示使用101mg之2,2’-亞異丁基-雙(4,6-二甲基-苯酚)在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。 Figure 15 shows the optical microscopy of the reaction product after a total of 150 minutes from the first addition of 101 mg of 2,2'-isobutylene-bis(4,6-dimethyl-phenol) from the first addition of PG solution of AgNO 3 . photo.

圖16顯示自來自反應產物(諸如圖15中所示者)之五個圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑(以奈米計)之數目分佈圖。 Figure 16 shows a distribution of the number of silver nanowire diameters (in nanometers) taken from a random sample of 75 silver nanowires from five images of reaction products (such as those shown in Figure 15).

圖17顯示自來自反應產物(諸如圖15中所示者)之八個圖像之336個銀奈米線隨機樣品獲取的銀奈米線長度(以μm計)之數目分佈圖。 Figure 17 shows a plot of the number of silver nanowire lengths (in μm) taken from 336 silver nanowire random samples from eight images of reaction products (such as those shown in Figure 15).

圖18顯示如對於使用0.96g之2,2’-亞異丁基-雙(4,6-二甲基-苯酚)之反應產物藉由銀離子特定電極所量測之銀離子濃度(以毫伏特計)隨時間(以分鐘計)的曲線圖。 Figure 18 shows the silver ion concentration as measured by a specific electrode of silver ion for the reaction product of 0.96 g of 2,2'-isobutylene-bis(4,6-dimethyl-phenol). Voltmeter) A graph over time (in minutes).

圖19顯示來自反應之純化反應產物(其繪製於圖18中)之光學顯微照片。 Figure 19 shows an optical micrograph of the purified reaction product from the reaction (which is plotted in Figure 18).

圖20顯示從反應產物(諸如在圖19中所示者)之圖像獲取的銀奈米線直徑(以奈米計)之數目分佈圖。 Figure 20 shows a graph of the number distribution of silver nanowire diameters (in nanometers) taken from images of reaction products such as those shown in Figure 19.

圖21顯示從反應產物(諸如在圖19中所示者)之圖像獲取的銀奈米線長度(以μm計)之數目分佈圖。 Figure 21 shows a distribution of the number of silver nanowire lengths (in μm) obtained from images of reaction products such as those shown in Figure 19.

在本文件中提及之所有公開案、專利及專利文件以全文引用之方式併入本文中,如同以引用之方式單獨地併入一樣。 All publications, patents, and patent documents mentioned in this specification are hereby incorporated by reference in their entirety in their entirety in their entirety herein

2014年7月3日申請之名稱為「REDUCING AGENTS FOR SILVER MORPHOLOGY CONTROL」之美國臨時申請案第62/020,431號以全文引用之方式併入本文中。 U.S. Provisional Application Serial No. 62/020,431, filed on Jan. 3,,,,,,,,,,,,,,,,,,,,

引言introduction

銀奈米線(AgNW)為具有線狀形狀之獨特且有用之銀結構,其中兩個短的尺寸(厚度尺寸)小於300nm,而第三尺寸(長度尺寸)大於1微米,優選大於10微米,並且縱橫比(長度尺寸與兩個厚度尺寸中之較大者的比率)大於五。其被用作電子器件中之導體或用作光學器件中之元件,以及其他可能用途。 The silver nanowire (AgNW) is a unique and useful silver structure having a linear shape in which two short dimensions (thickness dimensions) are less than 300 nm and the third dimension (length dimension) is greater than 1 micron, preferably greater than 10 micrometers, And the aspect ratio (the ratio of the length dimension to the larger of the two thickness dimensions) is greater than five. It is used as a conductor in electronic devices or as an element in optical devices, as well as other possible uses.

製備奈米結構、例如奈米線之常用方法為「多元醇」方法。該方法描述於例如Angew.Chem.Int.Ed.2009,48,60,Y.Xia,Y.Xiong,B.Lim,S.E.Skrabalak中,該文獻以全文引用之方式併入本文中。在該等方法中,多元醇將金屬陽離子例如銀陽離子還原為所需金屬奈米結構產物例如銀奈米線。 A common method for preparing a nanostructure, such as a nanowire, is the "polyol" method. This method is described, for example, in Angew. Chem. Int. Ed. 2009, 48 , 60, Y. Xia, Y. Xiong, B. Lim, SESkrabalak, which is incorporated herein by reference in its entirety. In such processes, the polyol reduces a metal cation such as a silver cation to a desired metal nanostructure product such as a silver nanowire.

本申請人已發現,具有至少一個酚基之酚類還原劑可用於製備銀奈米線。酚類還原劑可替代「多元醇」方法中之「多元醇」或用作除「多元醇」之外的第二還原劑,其係與該多元醇同時引入或在該多元醇之後引入。 Applicants have discovered that phenolic reducing agents having at least one phenolic group can be used to prepare silver nanowires. The phenolic reducing agent may be substituted for the "polyol" in the "polyol" process or as a second reducing agent other than the "polyol", which is introduced simultaneously with or after the polyol.

製備方法及材料Preparation method and material

可導致形成銀奈米線之銀晶種可由包含至少一種還原劑、保護劑、鹵化物化合物(或由該鹵化物化合物產生之鹵離子)、金屬鹽及視情況選用之溶劑之反應混合物產生。在一些實施例中,該反應混合物可包含一種還原劑、保護劑、鹵化物化合物(或由該鹵化物化合物產生之鹵離子)、金屬鹽,並且無其他溶劑。在此等情況下,該還原劑因能夠將反應混合物之所有其他組分溶解在其中而可充當溶劑。在一些實施例中,該反應混合物可包含一種還原劑、保護劑、鹵化物化合物(或由該鹵化物化合物產生之鹵離子)、金屬鹽及至少一種其他溶劑,例如,極性質子溶劑或極性非質子溶劑。在一些實施例中,該反應混合物可包含第一還原劑、第二還原劑、保護劑、鹵化物化合物(或由該鹵化物化合物產生之鹵離子)及金屬 鹽。該反應混合物可經受自約100℃至約200℃之加熱。 Silver seed species which may result in the formation of silver nanowires may be produced from a reaction mixture comprising at least one reducing agent, a protecting agent, a halide compound (or a halide ion produced from the halide compound), a metal salt, and optionally a solvent. In some embodiments, the reaction mixture may comprise a reducing agent, a protecting agent, a halide compound (or a halide ion produced from the halide compound), a metal salt, and no other solvent. In such cases, the reducing agent can act as a solvent by being capable of dissolving all other components of the reaction mixture therein. In some embodiments, the reaction mixture may comprise a reducing agent, a protecting agent, a halide compound (or a halide ion produced from the halide compound), a metal salt, and at least one other solvent, for example, a polar protic solvent or a polar group. Aprotic solvent. In some embodiments, the reaction mixture may comprise a first reducing agent, a second reducing agent, a protecting agent, a halide compound (or a halide ion produced from the halide compound), and a metal salt. The reaction mixture can be subjected to heating from about 100 ° C to about 200 ° C.

反應混合物可由至少兩種中間體混合物、諸如第一中間體混合物及第二中間體混合物之組合形成。該第一中間體混合物可經受反應條件(例如N2頂空正壓力為0.5L/min,在110.0℃±0.3℃下加熱,在200rpm下攪拌,選定之滯留時間,已添加另一種物質之選定量等),隨後向該第一中間體混合物中添加該第二中間體混合物。該金屬鹽可分成第一部分及第二部分而分別加到用於組合成反應混合物的第一中間體混合物及第二中間體混合物中。 The reaction mixture can be formed from a combination of at least two intermediate mixtures, such as a first intermediate mixture and a second intermediate mixture. The first intermediate mixture can be subjected to reaction conditions (eg, N 2 headspace positive pressure is 0.5 L/min, heated at 110.0 ° C ± 0.3 ° C, stirred at 200 rpm, selected residence time, and another material has been selected The amount of the second intermediate mixture is then added to the first intermediate mixture. The metal salt can be separated into a first portion and a second portion and separately added to the first intermediate mixture and the second intermediate mixture for combination into a reaction mixture.

在第一實例中,金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)可在稍後步驟中添加至含有至少一種還原劑、保護劑及視情況選用之溶劑之混合物中。在此等情況下,第一中間體混合物包含至少一種還原劑、保護劑及視情況選用之溶劑,並且第二中間體混合物包含金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)。 In the first example, the metal salt and the halide compound (or the halide ion produced by the halide compound) may be added to a mixture containing at least one reducing agent, a protecting agent, and optionally a solvent, in a later step. In such cases, the first intermediate mixture comprises at least one reducing agent, a protecting agent, and optionally a solvent, and the second intermediate mixture comprises a metal salt and a halide compound (or a halide ion produced from the halide compound) .

在第二實例中,第一部分之金屬鹽可在稍後步驟中添加至含有至少一種還原劑、保護劑及視情況選用之溶劑以及鹵化物化合物(或由鹵化物化合物產生之鹵離子)的混合物中,並且可在已添加一定量(亦即第一部分)之金屬鹽後添加第二部分之金屬鹽。在此等情況下,第一中間體混合物包含至少一種還原劑、保護劑及視情況選用之溶劑,第二中間體混合物包含第一部分之金屬鹽,並且第三中間體混合物包含第二部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)。 In a second example, the first portion of the metal salt can be added to a mixture containing at least one reducing agent, a protecting agent, and optionally a solvent, and a halide compound (or a halide ion produced from a halide compound) in a later step. And the second portion of the metal salt may be added after a certain amount (ie, the first portion) of the metal salt has been added. In such cases, the first intermediate mixture comprises at least one reducing agent, a protecting agent, and optionally a solvent, the second intermediate mixture comprises a first portion of the metal salt, and the third intermediate mixture comprises the second portion of the metal Salt and halide compounds (or halides produced by halide compounds).

在第三實例中,金屬鹽可在稍後步驟中添加至含有至少一種還原劑、保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑之混合物中。在此等情況下,第一中間體混合物包含至少一種還原劑、保護劑、鹵化物化合物(或由鹵化物化 合物產生之鹵離子)及視情況選用之溶劑,並且第二中間體混合物可包含金屬鹽。 In a third example, the metal salt can be added to a mixture containing at least one reducing agent, a protecting agent, a halide compound (or a halide ion produced from a halide compound), and optionally a solvent, in a later step. In such cases, the first intermediate mixture comprises at least one reducing agent, protecting agent, halide compound (or by halideization) The halide ion produced by the compound and optionally a solvent, and the second intermediate mixture may comprise a metal salt.

在第四實例中,第二部分之金屬鹽可在稍後步驟中添加至含有第一部分之金屬鹽、至少一種還原劑、保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑之混合物中。在此等情況下,第一中間體混合物包含第二部分之金屬鹽,並且第一中間體混合物包含第一部分之金屬鹽、至少一種還原劑及保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑。 In a fourth example, the second portion of the metal salt can be added to the metal salt containing the first portion, at least one reducing agent, protecting agent, halide compound (or halide ion produced from the halide compound) in a later step, and Mix the solvent as appropriate. In such cases, the first intermediate mixture comprises a second portion of the metal salt, and the first intermediate mixture comprises a first portion of the metal salt, at least one reducing agent and a protecting agent, a halide compound (or produced from the halide compound) Halogen ion) and solvent as appropriate.

在第五實例中,第二部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)可在稍後步驟中添加至含有第一部分之金屬鹽、至少一種還原劑、保護劑及視情況選用之溶劑之混合物中。在此等情況下,第一中間體混合物包含第二部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子),並且第一中間體混合物包含第一部分之金屬鹽、至少一種還原劑及保護劑,及視情況選用之溶劑。 In a fifth example, the second portion of the metal salt and the halide compound (or the halide ion produced by the halide compound) may be added to the metal salt containing the first portion, at least one reducing agent, the protective agent, and Mix the solvent as appropriate. In such cases, the first intermediate mixture comprises a second portion of the metal salt and the halide compound (or a halide ion produced from the halide compound), and the first intermediate mixture comprises the first portion of the metal salt, at least one reduction Agents and protective agents, and solvents as appropriate.

在第六實例中,第二部分之金屬鹽可在稍後步驟中添加至含有第一部分之金屬鹽、至少一種還原劑、保護劑及視情況選用之溶劑之混合物中,並且可在已添加一定量之第二部分之金屬鹽後添加鹵化物化合物(或由鹵化物化合物產生之鹵離子)。在此等情況下,第一中間體混合物包含第一部分之金屬鹽、至少一種還原劑及保護劑,及視情況選用之溶劑,第二中間體混合物包含第二部分之金屬鹽,並且第三中間體混合物包含第三部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)。 In a sixth example, the second portion of the metal salt may be added to a mixture of the first portion of the metal salt, at least one reducing agent, the protecting agent, and optionally the solvent, in a later step, and may be added The second portion of the metal salt is then added with a halide compound (or a halide ion produced by the halide compound). In such cases, the first intermediate mixture comprises a first portion of a metal salt, at least one reducing agent and a protecting agent, and optionally a solvent, the second intermediate mixture comprising a second portion of the metal salt, and a third intermediate The bulk mixture comprises a third portion of a metal salt and a halide compound (or a halide ion produced from a halide compound).

在反應混合物包含至少兩種還原劑之情況下,第一還原劑及第二還原劑可在相同或不同的步驟期間添加。在第七實例中,反 應混合物可包含第一還原劑、金屬鹽、保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑,及第二還原劑。在第八實例中,第一中間體混合物可包含第一還原劑、第二還原劑、第一部分之金屬鹽、保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑,並且第二中間體可包含第二部分之金屬鹽。在第九實例中,第一中間體混合物可包含第一還原劑、第二還原劑、第一部分之金屬鹽、保護劑及視情況選用之溶劑,並且第二中間體可包含第二部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)。在第十實例中,第一中間體混合物可包含第一還原劑、第一部分之金屬鹽、保護劑、鹵化物化合物(或由鹵化物化合物產生之鹵離子)及視情況選用之溶劑,並且第二中間體混合物可包含第二還原劑及第二部分之金屬鹽。在第十一實例中,第一中間體混合物可包含第一還原劑、第一部分之金屬鹽、保護劑及視情況選用之溶劑,第二中間體混合物可包含第二還原劑及第二部分之金屬鹽,並且第三中間體混合物可包含第三部分之金屬鹽及鹵化物化合物(或由鹵化物化合物產生之鹵離子)。 Where the reaction mixture comprises at least two reducing agents, the first reducing agent and the second reducing agent may be added during the same or different steps. In the seventh example, the reverse The mixture should comprise a first reducing agent, a metal salt, a protective agent, a halide compound (or a halide ion produced from a halide compound), optionally a solvent, and a second reducing agent. In an eighth example, the first intermediate mixture may comprise a first reducing agent, a second reducing agent, a first portion of a metal salt, a protecting agent, a halide compound (or a halide ion derived from a halide compound), and optionally a solvent, and the second intermediate may comprise a second portion of the metal salt. In a ninth example, the first intermediate mixture may comprise a first reducing agent, a second reducing agent, a first portion of a metal salt, a protective agent, and optionally a solvent, and the second intermediate may comprise a second portion of the metal Salt and halide compounds (or halides produced by halide compounds). In a tenth example, the first intermediate mixture may comprise a first reducing agent, a first portion of a metal salt, a protective agent, a halide compound (or a halide ion derived from a halide compound), and optionally a solvent, and The second intermediate mixture can comprise a second reducing agent and a second portion of the metal salt. In an eleventh example, the first intermediate mixture may comprise a first reducing agent, a first portion of a metal salt, a protecting agent, and optionally a solvent, and the second intermediate mixture may comprise a second reducing agent and a second portion The metal salt, and the third intermediate mixture may comprise a third portion of the metal salt and the halide compound (or a halide ion produced by the halide compound).

還原劑reducing agent

還原劑為能夠將其電子轉移至另一種物質之物質。如上文所討論,可由包含至少一種還原劑之反應混合物製備銀晶種。在例示性實施例中,至少一種還原劑可包含酚基。在第一實例中,反應混合物可包含含有多元醇之第一還原劑及包含酚基之第二還原劑。該多元醇可充當溶劑來溶解金屬鹽(例如硝酸銀)以形成金屬溶液(例如銀溶液)且充當能夠將金屬鹽(例如硝酸銀)還原為金屬(例如銀)之還原劑。在此等情況下,第二還原劑可增強第一還原劑之還原能力及/或參與作為另一種還原劑。多元醇之非限制性實例包 括乙二醇、甘油、葡萄糖、二乙二醇、三乙二醇、丙二醇、丁二醇、二丙二醇及/或聚乙二醇。該多元醇可為單一多元醇或兩種或更多種不同多元醇(例如三種、四種、五種或更多種不同多元醇)之混合物。 A reducing agent is a substance that is capable of transferring its electrons to another substance. As discussed above, silver seed crystals can be prepared from a reaction mixture comprising at least one reducing agent. In an exemplary embodiment, the at least one reducing agent can comprise a phenolic group. In a first example, the reaction mixture can comprise a first reducing agent comprising a polyol and a second reducing agent comprising a phenol group. The polyol can act as a solvent to dissolve a metal salt (eg, silver nitrate) to form a metal solution (eg, a silver solution) and act as a reducing agent capable of reducing a metal salt (eg, silver nitrate) to a metal (eg, silver). In such cases, the second reducing agent can enhance the reducing power of the first reducing agent and/or participate as another reducing agent. Non-limiting example package of polyol These include ethylene glycol, glycerin, glucose, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, dipropylene glycol, and/or polyethylene glycol. The polyol can be a single polyol or a mixture of two or more different polyols (eg, three, four, five or more different polyols).

在第二實例中,反應混合物可包含一種含有酚基之還原劑。在本申請案中,術語「酚類」化合物、「酚類」還原劑或「酚」基係指包含至少一個第一芳族環、至少一個第一氧原子及鍵合至該至少一個第一氧原子之至少一個第一氫原子的化合物,其中該至少一個第一芳族環包含鍵合至該至少一個第一氧原子之至少一個第一碳原子。酚類還原劑之非限制性實例包括3,4-二羥基苯并***、2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及鞣酸。 In a second example, the reaction mixture can comprise a reducing agent containing a phenol group. In the present application, the term "phenolic" compound, "phenolic" reducing agent or "phenolic" group means comprising at least one first aromatic ring, at least one first oxygen atom and bonded to the at least one first a compound of at least one first hydrogen atom of an oxygen atom, wherein the at least one first aromatic ring comprises at least one first carbon atom bonded to the at least one first oxygen atom. Non-limiting examples of the phenolic reducing agent include 3,4-dihydroxybenzotriazole, 2,2'-isobutylene-bis-(4,6-dimethyl-phenol), and citric acid.

可還原金屬離子及金屬產物Reducible metal ions and metal products

一些實施例提供包括將至少一種可還原金屬離子還原為至少一種金屬之方法。可還原金屬離子為能夠在一些組之反應條件下還原為金屬之陽離子。在此等方法中,該至少一種第一可還原金屬離子可例如包含至少一種造幣金屬離子。造幣金屬離子為一種造幣金屬(其包括銅、銀及金)之離子。或者該可還原金屬離子可例如包含IUPAC第11族元素之至少一種離子。例示性可還原金屬離子為銀陽離子。該等可還原金屬離子在一些情況下可以鹽形式提供。例如,銀陽離子在一些情況下可以硝酸銀形式提供。 Some embodiments provide a method comprising reducing at least one reducible metal ion to at least one metal. The reducible metal ion is a cation capable of being reduced to a metal under the reaction conditions of some groups. In such methods, the at least one first reducible metal ion can comprise, for example, at least one coin metal ion. The coinage metal ion is an ion of a coinage metal (which includes copper, silver, and gold). Alternatively, the reducible metal ion may comprise, for example, at least one ion of an IUPAC Group 11 element. An exemplary reducible metal ion is a silver cation. These reducible metal ions may in some cases be provided in the form of a salt. For example, silver cations may be provided in the form of silver nitrate in some cases.

在該等實施例中,至少一種金屬為至少一種可還原金屬離子能夠經還原得到之金屬。例如,銀將為銀陽離子將能夠經還原得到之金屬。 In these embodiments, the at least one metal is a metal from which at least one reducible metal ion can be reduced. For example, silver will be a metal that the silver cation will be able to recover.

金屬化合物Metal compound

一些實施例提供包含金屬化合物之反應混合物。該金屬化合物可為當被還原時產生金屬之任何銀化合物。該金屬化合物可由 多元醇或酚類還原劑還原。該金屬化合物可為金屬氧化物、金屬氫氧化物或金屬鹽(有機或無機)。 Some embodiments provide a reaction mixture comprising a metal compound. The metal compound can be any silver compound that produces a metal when reduced. The metal compound can be Polyol or phenolic reducing agent is reduced. The metal compound may be a metal oxide, a metal hydroxide or a metal salt (organic or inorganic).

金屬鹽可於溶液中解離成金屬陽離子及陰離子。該金屬陽離子可由還原劑還原以形成金屬產物,諸如銀晶種、銀奈米粒子或銀奈米線。該金屬鹽可以各種形式提供,例如,呈溶液、固體(例如固體粉末)形式,或呈懸浮液形式。金屬鹽之非限制性實例包括硝酸鹽、亞硝酸鹽、硫酸鹽、鹵化物、碳酸鹽、磷酸鹽、疊氮化物、硼酸鹽、磺酸鹽、羧酸鹽、經取代之羧酸鹽,及其中金屬為陰離子之一部分之鹽及酸,或其組合。金屬鹽之特定非限制性實例包括硝酸銀、硝酸銀、氧化銀、氟化銀、乙酸銀或其組合。 The metal salt can be dissociated into metal cations and anions in solution. The metal cation can be reduced by a reducing agent to form a metal product such as a silver seed crystal, a silver nanoparticle or a silver nanowire. The metal salt can be provided in various forms, for example, in the form of a solution, a solid (e.g., a solid powder), or in the form of a suspension. Non-limiting examples of metal salts include nitrates, nitrites, sulfates, halides, carbonates, phosphates, azides, borates, sulfonates, carboxylates, substituted carboxylates, and The salt and acid in which the metal is part of an anion, or a combination thereof. Specific non-limiting examples of metal salts include silver nitrate, silver nitrate, silver oxide, silver fluoride, silver acetate, or combinations thereof.

溶劑Solvent

溶劑為溶解溶質(化學上不同之液體、固體或氣體)從而產生溶液之物質。溶劑可根據其介電常數(例如相對靜態電容率)而歸類為極性或非極性的。一種物質在給定條件下之相對電容率反映了其集中靜電通量線之程度。具有小於15之介電常數之溶劑通常被視為非極性的。具有大於15之相對靜態電容率之極性溶劑可進一步歸類為質子性及非質子性的。質子溶劑為具有可解離質子者,而非質子溶劑缺乏此等可解離質子。質子溶劑之漢森(Hansen)δH參數通常大於約12,而非質子溶劑之漢森δH參數通常小於約12。極性質子溶劑之非限制性實例包括甲酸、正丁醇、異丙醇、正丙醇、乙醇、甲醇、乙酸、硝基甲烷及水。極性非質子溶劑之非限制性實例包括二氯甲烷、四氫呋喃、乙酸乙酯、丙酮、二甲基甲醯胺、乙腈、二甲亞碸及碳酸丙二酯。 A solvent is a substance that dissolves a solute (a chemically different liquid, solid or gas) to produce a solution. Solvents can be classified as polar or non-polar depending on their dielectric constant (eg, relative static permittivity). The relative permittivity of a substance under given conditions reflects the extent to which it is concentrated in the static flux line. Solvents having a dielectric constant less than 15 are generally considered to be non-polar. Polar solvents having a relative static permittivity greater than 15 can be further classified as protic and aprotic. Protic solvents are those with dissociable protons, while non-protic solvents lack such dissociable protons. The Hansen δH parameter for protic solvents is typically greater than about 12, while the Hansen δH parameter for non-proton solvents is typically less than about 12. Non-limiting examples of polar protic solvents include formic acid, n-butanol, isopropanol, n-propanol, ethanol, methanol, acetic acid, nitromethane, and water. Non-limiting examples of polar aprotic solvents include dichloromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl hydrazine, and propylene carbonate.

保護劑Protective agent

一些實施例提供包含保護劑之反應混合物。文獻已表明,保護劑可具有不同的目的,諸如避免粒子燒結、吸收至金屬奈米結 構上之能力等。通常認為保護劑減少或防止個別奈米結構之間的直接接觸。該等文獻已使用其他術語來提及「保護劑」,諸如「有機保護劑」、「保護劑」、「配位化合物」、「聚合物封端劑」、「聚合封端劑」、「封端劑」、「封端試劑」及「軟模板」。本文使用之片語「保護劑」意欲涵蓋所有此等其他各種片語以及此項技術中已知添加至金屬奈米結構之多元醇合成以從而減少及/或防止燒結或聚結之其他反應物。 Some embodiments provide a reaction mixture comprising a protective agent. The literature has shown that protective agents can have different purposes, such as avoiding particle sintering and absorption into metal nano knots. The ability to construct, etc. Protectants are generally considered to reduce or prevent direct contact between individual nanostructures. These documents have used other terms to refer to "protective agents" such as "organic protective agents", "protective agents", "coordinating compounds", "polymer blocking agents", "polymeric blocking agents", "sealing" Terminal agent, "end cap reagent" and "soft template". The phrase "protecting agent" as used herein is intended to cover all such other phrases and other polyols known in the art to be added to the metal nanostructure to reduce and/or prevent sintering or coalescence. .

通常,保護劑應該與反應混合物中之其他組分具有最小程度(若存在)之反應。保護劑亦不應該抑制或阻止所需奈米結構諸如銀奈米線之溶液介導產生。保護劑可為能夠與奈米粒子之金屬原子進行電子相互作用之物質。舉例而言,保護劑可能夠與奈米粒子表面上之金屬原子進行配價相互作用及/或能夠螯合該金屬原子。該保護劑可包含具有一或多個自由電子對之一或多個原子,例如,氧、氮及硫。具有自由電子對之原子可呈官能基形式,例如,羥基、羰基、醚基、胺基或其組合。可單獨地或以混合物形式使用之保護劑之非限制性實例包括聚乙烯吡咯啶酮(PVP)、聚乙烯醇,及界面活性劑,諸如十二烷基硫酸鈉(SDS)、月桂胺(larylamine)及羥丙基纖維素。在一些實施例中,保護劑為能夠還原金屬化合物之物質或包含能夠還原金屬化合物之物質。在此等情況下,保護劑可有資格作為還原劑。 Generally, the protectant should have a minimal, if any, reaction with the other components of the reaction mixture. The protective agent should also not inhibit or prevent solution-mediated production of the desired nanostructures such as silver nanowires. The protective agent may be a substance capable of electronically interacting with a metal atom of the nanoparticle. For example, the protecting agent can be capable of coordinating interaction with metal atoms on the surface of the nanoparticles and/or capable of sequestering the metal atoms. The protecting agent can comprise one or more atoms having one or more free electron pairs, such as oxygen, nitrogen, and sulfur. The atom having a free electron pair may be in the form of a functional group, for example, a hydroxyl group, a carbonyl group, an ether group, an amine group, or a combination thereof. Non-limiting examples of protecting agents which may be used singly or in the form of a mixture include polyvinylpyrrolidone (PVP), polyvinyl alcohol, and surfactants such as sodium dodecyl sulfate (SDS), laurylamine (larylamine). And hydroxypropyl cellulose. In some embodiments, the protective agent is a substance capable of reducing a metal compound or a substance capable of reducing a metal compound. In such cases, the protective agent can be qualified as a reducing agent.

鹵化物化合物Halide compound

反應混合物可包含能夠形成鹵離子之視情況選用之鹵化物化合物。據認為,各種反應物(例如第一還原劑及保護劑)可經一或多種能夠形成鹵離子之鹵化物化合物污染。即使在反應混合物中存在該等鹵化物污染物之情況下,反應混合物仍可需要添加視情況選用之鹵化物化合物以產生金屬晶種而使得形成金屬奈米線。鹵 化物化合物之非限制性實例包括氯化鈰(III)七水合物、氯化錳(II)四水合物及氯化錫(II)二水合物。 The reaction mixture may comprise a halide compound optionally selected to form a halide ion. It is believed that various reactants (e.g., first reducing agent and protecting agent) may be contaminated with one or more halide compounds capable of forming halide ions. Even in the presence of such halide contaminants in the reaction mixture, the reaction mixture may require the addition of optionally a halide compound to produce a metal seed crystal such that a metal nanowire is formed. halogen Non-limiting examples of compound compounds include cerium (III) chloride heptahydrate, manganese (II) chloride tetrahydrate, and tin (II) chloride dihydrate.

奈米結構及奈米線Nanostructure and nanowire

在一些實施例中,藉由此等方法形成之金屬產物為奈米結構,例如,一維奈米結構。奈米結構為具有至少一個小於300nm之「奈米級」尺寸之結構,並且至少一個其他尺寸遠遠大於該奈米級尺寸,例如,大至少約10或至少約100或至少約200或至少約1000倍。該等奈米結構之實例為奈米棒、奈米線、奈米管、奈米錐體、奈米棱柱、奈米板等。「一維」奈米結構具有遠遠大於其他兩個尺寸之一個尺寸,例如,大至少約10或至少約100或至少約200或至少約1000倍。 In some embodiments, the metal product formed by such methods is a nanostructure, such as a one-dimensional nanostructure. The nanostructure is a structure having at least one "nanoscale" size of less than 300 nm, and at least one other dimension is much larger than the nanoscale dimension, for example, at least about 10 or at least about 100 or at least about 200 or at least about 1000 times. Examples of such nanostructures are nanorods, nanowires, nanotubes, nanocones, nanoprisms, nanoplates, and the like. The "one-dimensional" nanostructure has a dimension that is much larger than the other two dimensions, for example, at least about 10 or at least about 100 or at least about 200 or at least about 1000 times greater.

該等一維奈米結構在一些情況下可包含奈米線。奈米線為如下一維奈米結構,其中兩個短的尺寸(厚度尺寸)小於300nm,較佳小於100nm,而第三尺寸(長度尺寸)大於1微米,較佳大於10微米,並且縱橫比(長度尺寸與兩個厚度尺寸中之較大者之比率)大於五。奈米線被用作電子器件中之導體或用作光學器件中之元件,以及其他可能用途。在一些此等應用中,銀奈米線為較佳的。 The one-dimensional nanostructures may comprise nanowires in some cases. The nanowire is a one-dimensional nanostructure in which two short dimensions (thickness dimensions) are less than 300 nm, preferably less than 100 nm, and the third dimension (length dimension) is greater than 1 micron, preferably greater than 10 micrometers, and the aspect ratio (The ratio of the length dimension to the larger of the two thickness dimensions) is greater than five. Nanowires are used as conductors in electronic devices or as components in optical devices, among other possible uses. In some such applications, silver nanowires are preferred.

該等方法可用於製備除奈米線之外之奈米結構,例如,奈米立方體、奈米棒、奈米錐體、奈米管以及其類似物。奈米線及其他奈米結構產品可併入物品中,例如,電子顯示器、觸控螢幕、攜帶型電話、行動電話、電腦顯示器、膝上型電腦、平板電腦、銷售點亭(point-of-purchase kiosk)、音樂播放器、電視、電子遊戲機、電子書閱讀器、透明電極、太陽能電池、發光二極體、其他電子裝置、醫學成像裝置、醫學成像介質及其類似物。 These methods can be used to prepare nanostructures other than nanowires, such as nanocubes, nanorods, nanocones, nanotubes, and the like. Nanowires and other nanostructured products can be incorporated into items such as electronic displays, touch screens, portable phones, mobile phones, computer monitors, laptops, tablets, point-of-sales (point-of- Purchase kiosk), music player, television, electronic game machine, e-book reader, transparent electrode, solar cell, light-emitting diode, other electronic devices, medical imaging devices, medical imaging media, and the like.

例示性實施例Illustrative embodiment

2014年7月3日申請之名稱為「REDUCING AGENTS FOR SILVER MORPHOLOGY CONTROL」之美國臨時申請案第62/020,431號以全文引用之方式併入本文中,其揭示以下35個非限制性例示性實施例: The name of the application on July 3, 2014 is "REDUCING AGENTS FOR" U.S. Provisional Application Serial No. 62/020,431, the disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety,

A.一種方法,其包括:由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子、第一還原劑及第二還原劑之反應混合物產生金屬產物,其中該第二還原劑包含酚基。 A. A method comprising: comprising a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion or the halide ion produced by the halide compound, a first reducing agent, and a second The reaction mixture of the reducing agent produces a metal product, wherein the second reducing agent comprises a phenol group.

B.根據實施例A之方法,其中該金屬產物包含金屬晶種粒子。 B. The method of embodiment A, wherein the metal product comprises metal seed particles.

C.根據實施例A或B中任一項之方法,其中該金屬產物包含金屬奈米線。 The method of any one of embodiments A or B, wherein the metal product comprises a metal nanowire.

D.根據實施例A-C中任一項之方法,其中第一中間體混合物包含第一部分之該金屬化合物、該保護劑、該鹵化物化合物或由該鹵化物化合物產生之該鹵離子,及該第一還原劑,其中第二中間體混合物包含第二部分之該金屬化合物及該第二還原劑,並且其中該第一中間體混合物及該第二中間體混合物在組合時形成反應混合物。 The method of any one of embodiments AC, wherein the first intermediate mixture comprises the first portion of the metal compound, the protective agent, the halide compound or the halide ion produced by the halide compound, and the first A reducing agent, wherein the second intermediate mixture comprises a second portion of the metal compound and the second reducing agent, and wherein the first intermediate mixture and the second intermediate mixture form a reaction mixture when combined.

E.根據實施例A-D中任一項之方法,其中該反應混合物包含由該金屬化合物產生之可還原金屬離子。 The method of any one of embodiments A-D, wherein the reaction mixture comprises a reducible metal ion produced from the metal compound.

F.根據實施例A-D中任一項之方法,其中該第一中間體混合物包含由該第一部分之該金屬化合物產生之第一可還原金屬離子,並且該第二中間體混合物包含由該第二部分之該金屬化合物產生之第二可還原金屬離子。 The method of any one of embodiments, wherein the first intermediate mixture comprises a first reducible metal ion produced from the first portion of the metal compound, and the second intermediate mixture comprises the second a portion of the second reducible metal ion produced by the metal compound.

G.根據實施例A-F中任一項之方法,其中該第二還原劑包含 3,4-二羥基苯并***。 The method of any one of embodiments A-F, wherein the second reducing agent comprises 3,4-dihydroxybenzotriazole.

H.根據實施例A-G中任一項之方法,其中該第二還原劑包含鞣酸。 The method of any one of embodiments A-G, wherein the second reducing agent comprises citric acid.

J.根據實施例A-H中任一項之方法,其中該第二還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。 The method of any one of embodiments A-H, wherein the second reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol).

K.根據實施例A-J中任一項之方法,其中該保護劑包聚乙烯吡咯啶酮。 K. The method of any of embodiments A-J, wherein the protectant comprises polyvinylpyrrolidone.

L.根據實施例A-K中任一項之方法,其中該鹵化物化合物包含氯化鈰(III)。 The method of any one of embodiments A-K, wherein the halide compound comprises cerium (III) chloride.

M.根據實施例A-L中任一項之方法,其中該鹵化物化合物包含氯化錳(II)。 The method of any one of embodiments A-L, wherein the halide compound comprises manganese (II) chloride.

N.根據實施例A-M中任一項之方法,其中該第一還原劑包含多元醇。 The method of any one of embodiments A-M, wherein the first reducing agent comprises a polyol.

P.根據實施例A-N中任一項之方法,其中該第一還原劑包含聚乙二醇。 The method of any one of embodiments A-N, wherein the first reducing agent comprises polyethylene glycol.

Q.根據實施例A-P中任一項之方法,其中該第一還原劑包含乙二醇。 The method of any one of embodiments A-P, wherein the first reducing agent comprises ethylene glycol.

R.一種方法,其包括由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子、極性非質子溶劑及第一還原劑之反應混合物產生金屬產物,其中該第一還原劑包含酚基。 R. A method comprising: comprising a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion, or a halide ion, a polar aprotic solvent produced by the halide compound, and a first reduction The reaction mixture of the agent produces a metal product, wherein the first reducing agent comprises a phenol group.

S.根據實施例R之方法,其中該金屬產物包含金屬晶種粒子。 S. The method of embodiment R, wherein the metal product comprises metal seed particles.

T.根據實施例R或S中任一項之方法,其中該金屬產物包含金屬奈米線。 The method of any one of embodiments R or S, wherein the metal product comprises a metal nanowire.

U.根據實施例R-T中任一項之方法,其中該第一還原劑包含 3,4-二羥基苯并***。 The method of any one of embodiments R-T, wherein the first reducing agent comprises 3,4-dihydroxybenzotriazole.

V.根據實施例R-U中任一項之方法,其中該第一還原劑包含鞣酸。 The method of any one of embodiments R-U, wherein the first reducing agent comprises citric acid.

W.根據實施例R-V中任一項之方法,其中該第一還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。 The method of any one of embodiments R-V, wherein the first reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol).

X.根據實施例R-W中任一項之方法,其中該保護劑包含聚乙烯吡咯啶酮。 The method of any one of embodiments R-W, wherein the protective agent comprises polyvinylpyrrolidone.

Y.根據實施例R-X中任一項之方法,其中該鹵化物化合物包含氯化鈰(III)。 The method of any one of embodiments R-X, wherein the halide compound comprises cerium (III) chloride.

Z.根據實施例R-Y中任一項之方法,其中該鹵化物化合物包含氯化錳(II)。 The method of any one of embodiments R-Y, wherein the halide compound comprises manganese (II) chloride.

AA.根據實施例R-Z中任一項之方法,其中該極性非質子溶劑包含丙酮。 AA. The method of any one of embodiments R-Z, wherein the polar aprotic solvent comprises acetone.

AB.根據實施例R-AA中任一項之方法,其中該極性非質子溶劑包含乙腈。 The method of any one of embodiments R-AA, wherein the polar aprotic solvent comprises acetonitrile.

AC.一種方法,其包括:由包含能夠形成可還原金屬離子之金屬化合物、保護劑、能夠形成鹵離子之鹵化物化合物或由該鹵化物化合物產生之該鹵離子及第一還原劑之反應混合物產生奈米級金屬產物,其中該第一還原劑包含酚基。 AC. A method comprising: a reaction mixture comprising a metal compound capable of forming a reducible metal ion, a protective agent, a halide compound capable of forming a halide ion, or a halide ion and a first reducing agent produced by the halide compound A nanoscale metal product is produced, wherein the first reducing agent comprises a phenolic group.

AD.根據實施例AC之方法,其中該奈米級金屬產物包含奈米級金屬晶種粒子。 AD. The method of embodiment AC, wherein the nanoscale metal product comprises nanoscale metal seed particles.

AE.根據實施例AC或AD中任一項之方法,其中該奈米級金屬產物包含奈米級金屬奈米線。 AE. The method of any of embodiments AC or AD, wherein the nanoscale metal product comprises a nano-sized metal nanowire.

AF.根據實施例AC-AE中任一項之方法,其中該第一還原劑包含3,4-二羥基苯并***。 The method of any of embodiments AC-AE, wherein the first reducing agent comprises 3,4-dihydroxybenzotriazole.

AG.根據實施例AC-AF中任一項之方法,其中該第一還原劑包含鞣酸。 The method of any of embodiments AC-AF, wherein the first reducing agent comprises citric acid.

AH.根據實施例AC-AG中任一項之方法,其中該第一還原劑包含2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)。 AH. The method of any of embodiments AC-AG, wherein the first reducing agent comprises 2,2'-isobutylene-bis-(4,6-dimethyl-phenol).

AJ.根據實施例AC-AH中任一項之方法,其中該保護劑包含聚乙烯吡咯啶酮。 A. The method of any of embodiments AC-AH, wherein the protective agent comprises polyvinylpyrrolidone.

AK.根據實施例AC-AJ中任一項之方法,其中該鹵化物化合物包含氯化鈰(III)。 AK. The method of any of embodiments AC-AJ, wherein the halide compound comprises cerium (III) chloride.

AL.根據實施例AC-AK中任一項之方法,其中該鹵化物化合物包含氯化錳(II)。 The method of any of embodiments AC-AK, wherein the halide compound comprises manganese (II) chloride.

其他非限制性例示性實施例包括: Other non-limiting exemplary embodiments include:

AM.一種方法,其包括:提供至少一種包含至少一個酚基之還原劑,該至少一種還原劑亦不包含鹵素原子,及在包含該至少一種還原劑之反應混合物中將至少一種銀離子還原為至少一種銀奈米線。 AM. A method comprising: providing at least one reducing agent comprising at least one phenolic group, the at least one reducing agent also comprising no halogen atoms, and reducing at least one silver ion to a reaction mixture comprising the at least one reducing agent At least one silver nanowire.

AN.根據實施例AM之方法,其中該至少一種還原劑包含3,4-二羥基苯并***、2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及鞣酸中之至少一者。 The method of embodiment AM, wherein the at least one reducing agent comprises 3,4-dihydroxybenzotriazole, 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) And at least one of niacin.

AP.根據實施例AM之方法,其中該至少一種還原劑係選自由3,4-二羥基苯并***、2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及鞣酸組成之群組。 AP. The method of embodiment AM, wherein the at least one reducing agent is selected from the group consisting of 3,4-dihydroxybenzotriazole, 2,2'-isobutylene-bis-(4,6-dimethyl- Group of phenol) and tannic acid.

AQ.根據實施例AM-AP中任一項之方法,其中該反應混合物進一步包含至少一種多元醇。 AQ. The method of any of the embodiments AM-AP, wherein the reaction mixture further comprises at least one polyol.

AR.根據實施例AQ之方法,其中該至少一種多元醇包含丙二醇。 AR. The method of embodiment AQ, wherein the at least one polyol comprises propylene glycol.

AS.根據實施例AM-AR中任一項之方法,其中該反應混合物進一步包含至少一種保護劑。 The method of any of the embodiments AM-AR, wherein the reaction mixture further comprises at least one protective agent.

AT.根據實施例AS之方法,其中該至少一種保護劑包含聚乙烯吡咯啶酮。 The method of embodiment AS, wherein the at least one protective agent comprises polyvinylpyrrolidone.

AU.根據實施例AM-AT中任一項之方法,其中該反應混合物進一步包含至少一種能夠形成鹵離子之鹵化物化合物。 AU. The method of any of the embodiments AM-AT, wherein the reaction mixture further comprises at least one halide compound capable of forming a halide ion.

AV.根據實施例AM-AU中任一項之方法,其中該反應混合物進一步包含至少一種鹵離子。 The method of any of the embodiments AM-AU, wherein the reaction mixture further comprises at least one halide ion.

AW.根據實施例AM-AV中任一項之方法,其中該反應混合物進一步包含至少一種極性非質子溶劑。 AW. The method of any one of the embodiments, wherein the reaction mixture further comprises at least one polar aprotic solvent.

AX.根據實施例AW之方法,其中該至少一種極性非質子溶劑包含丙酮。 AX. The method of embodiment AW, wherein the at least one polar aprotic solvent comprises acetone.

實例Instance

材料material

除非另外說明,否則在以下實例中使用之所有材料可容易獲自標準商業來源,諸如Sigma-Aldrich Co.LLC.(St.Louis,Missouri)。使用以下其他材料。 All materials used in the following examples are readily available from standard commercial sources, such as Sigma-Aldrich Co. LLC. (St. Louis, Missouri), unless otherwise stated. Use the following other materials.

丙二醇(PG)可獲自BASF。 Propylene glycol (PG) is available from BASF.

聚乙烯吡咯啶酮(PVP)可以商品名KOLLIDON®獲自BASF,諸如KOLLIDON® 90 F。 Polyvinylpyrrolidone (PVP) is available from BASF under the trade name KOLLIDON®, such as KOLLIDON® 90 F.

2,2’-亞異丁基-雙-(4,6-二甲基-苯酚),其具有結構 ,其可以商品名LOWINOX® 22IB46獲自 Addivant(Middlebury,CT)。 2,2'-Isobutylene-bis-(4,6-dimethyl-phenol) having a structure It is available from Addivant (Middlebury, CT) under the trade name LOWINOX® 22IB46.

儀器instrument

使用具有四個頸之0.5L反應燒瓶來容納反應材料。在吾人之實驗中,四個頸中之每一者用於***攪拌軸、冷凝器、溫度計或諸如試劑或氮氣之物質。反應燒瓶可獲自Chemglass Life Sciences。 A 0.5 L reaction flask with four necks was used to hold the reaction material. In our experiments, each of the four necks was used to insert a stirring shaft, a condenser, a thermometer or a substance such as a reagent or nitrogen. Reaction flasks are available from Chemglass Life Sciences.

使用12號鐵氟龍(Teflon)注射器針頭來將材料自第一容器(例如瓶子)轉移至第二容器(例如燒瓶)。 A 12 gauge Teflon syringe needle is used to transfer material from a first container (eg, a bottle) to a second container (eg, a flask).

使用具有4.2cm外徑、具有四個角度為15°之刀片、尺寸為1cm×40cm之拋光玻璃攪拌軸來攪拌材料。所述攪拌軸可獲自Chemglass Life Sciences。 The material was agitated using a polished glass agitator shaft having a 4.2 cm outer diameter, a blade having four angles of 15°, and a size of 1 cm x 40 cm. The agitator shaft is available from Chemglass Life Sciences.

使用具有VA-3002多氣體分析儀、氮氣流速為1.5L/min且所選NO範圍為0-2000ppm之VS-3003多氣體採樣單元來定量監測NO形成。該等單元可獲自Horiba,Ltd。 NO formation was quantitatively monitored using a VS-3003 multigas sampling unit with a VA-3002 multigas analyzer with a nitrogen flow rate of 1.5 L/min and a selected NO range of 0-2000 ppm. These units are available from Horiba, Ltd.

實例1Example 1

在噴射隔夜後,250mL丙二醇(PG)、68mg之3,4-二羥基苯并***及4.5g之聚乙烯吡咯啶酮(PVP)經受0.5L/min之N2頂空正壓力,在110.0±0.3℃下加熱,並且在200rpm下攪拌。以0.5mL/min之速率添加24.0mL之1.0M硝酸銀(AgNO3)之PG溶液。在添加2.0mL之1.0M AgNO3之PG溶液後,以0.5mL/min之速率添加10mL之14mM氯化鈰(III)七水合物(CeCl3.7H2O)之PG溶液。反應產物具有少量銀奈米線於許多銀粒子中。 After spraying overnight, 250 mL of propylene glycol (PG), 68 mg of 3,4-dihydroxybenzotriazole and 4.5 g of polyvinylpyrrolidone (PVP) were subjected to a N 2 headspace positive pressure of 0.5 L/min at 110.0 Heat at ±0.3 ° C and stir at 200 rpm. 24.0 mL of a 1.0 M silver nitrate (AgNO 3 ) PG solution was added at a rate of 0.5 mL/min. After adding 2.0 mL of a 1.0 M AgNO 3 PG solution, 10 mL of a 14 mM ruthenium (III) chloride heptahydrate (CeCl 3 .7H 2 O) PG solution was added at a rate of 0.5 mL/min. The reaction product has a small amount of silver nanowires in many silver particles.

實例2Example 2

以與實例1中所述類似之方式來製備反應產物,不同之處在於使用11.7mg之3,4-二羥基苯并***替代68mg之3,4-二羥基苯并***。在整個反應中定量監測一氧化氮(NO)含量並且經測定其為相對較低的。 The reaction product was prepared in a similar manner to that described in Example 1, except that 11.7 mg of 3,4-dihydroxybenzotriazole was used instead of 68 mg of 3,4-dihydroxybenzotriazole. The nitric oxide (NO) content was quantitatively monitored throughout the reaction and was determined to be relatively low.

圖1顯示在自首先添加AgNO3之PG溶液時起總計90分鐘後之 反應產物的光學顯微照片。NO含量為0ppm。圖2顯示在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光學顯微照片。NO含量為4ppm。圖3顯示在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。NO含量為16ppm。圖4顯示圖3之反應產物在純化後的光學顯微照片。 Figure 1 shows an optical micrograph of the reaction product from a total of 90 min during the first self-PG was added a solution of AgNO 3. The NO content was 0 ppm. Figure 2 shows an optical micrograph from the reaction product after 120 minutes in total from the first when the PG AgNO 3 solution was added. The NO content was 4 ppm. Figure 3 shows the total reacted product after 150 minutes of the first self-PG solution of AgNO 3 was added optical micrographs. The NO content was 16 ppm. Figure 4 shows an optical micrograph of the reaction product of Figure 3 after purification.

圖5顯示自來自純化後之反應產物(諸如圖4中所示者)之五個圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑之分佈圖。對於銀奈米線直徑,平均值、中位值、標準偏差、最小值及最大值分別為60.24nm、59.55nm、11.21nm、40.01nm及97.23nm。圖6顯示自來自純化後之反應產物(諸如圖4中所示者)之九個圖像之347個銀奈米線隨機樣品獲取的銀奈米線長度之分佈圖。對於銀奈米線長度,平均值、中位值、標準偏差、最小值及最大值分別為9.62μm、7.81μm、7.51μm、0.18μm及37.02μm。 Figure 5 shows a distribution of silver nanowire diameters obtained from random samples of 75 silver nanowires from five images of purified reaction products (such as those shown in Figure 4). For the silver nanowire diameter, the average value, the median value, the standard deviation, the minimum value, and the maximum value were 60.24 nm, 59.55 nm, 11.21 nm, 40.01 nm, and 97.23 nm, respectively. Figure 6 shows a distribution of silver nanowire lengths obtained from 347 silver nanowire random samples from nine images of purified reaction products (such as those shown in Figure 4). For the silver nanowire length, the average value, the median value, the standard deviation, the minimum value, and the maximum value were 9.62 μm, 7.81 μm, 7.51 μm, 0.18 μm, and 37.02 μm, respectively.

實例3Example 3

以與實例2中所述類似之方式來製備反應產物,不同之處在於使用75mg之2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)替代11.7mg之3,4-二羥基苯并***。 The reaction product was prepared in a similar manner to that described in Example 2 except that 75 mg of 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) was used instead of 11.7 mg. , 4-dihydroxybenzotriazole.

圖7顯示在自首先添加AgNO3之PG溶液時起總計90分鐘後之反應產物的光學顯微照片。NO含量為0ppm。圖8顯示在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光學顯微照片。NO含量為16ppm。圖9顯示在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。NO含量為20ppm。圖10顯示圖9之反應產物在純化後的光學顯微照片。 Figure 7 shows an optical micrograph of the reaction product after a total of 90 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 0 ppm. Figure 8 shows an optical micrograph of the reaction product after a total of 120 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 16 ppm. Figure 9 shows an optical micrograph of the reaction product after a total of 150 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 20 ppm. Figure 10 shows an optical micrograph of the reaction product of Figure 9 after purification.

圖11顯示自來自純化後之反應產物(諸如圖10中所示者)之五個圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑之分佈圖。對於銀奈米線直徑,平均值、中位值、標準偏差、最小值及最大 值分別為42.27nm、43.26nm、7.65nm、26.98nm及62.8nm。圖12顯示自來自純化後之反應產物(諸如圖10中所示者)之十個圖像之199個銀奈米線隨機樣品獲取的銀奈米線長度之分佈圖。對於銀奈米線長度,平均值、中位值、標準偏差、最小值及最大值分別為6.85μm、6.89μm、3.24μm、0.27μm及27.18μm。 Figure 11 shows a distribution of silver nanowire diameters obtained from random samples of 75 silver nanowires from five images of purified reaction products (such as those shown in Figure 10). For silver nanowire diameter, mean, median, standard deviation, minimum and maximum The values were 42.27 nm, 43.26 nm, 7.65 nm, 26.98 nm, and 62.8 nm, respectively. Figure 12 shows a distribution of silver nanowire lengths obtained from random samples of 199 silver nanowires from ten images of purified reaction products (such as those shown in Figure 10). For the silver nanowire length, the average value, the median value, the standard deviation, the minimum value, and the maximum value were 6.85 μm, 6.89 μm, 3.24 μm, 0.27 μm, and 27.18 μm, respectively.

實例4Example 4

以與實例3中所述類似之方式來製備反應產物,不同之處在於使用101mg之2,2’-亞異丁基-雙(4,6-二甲基-苯酚)並且在添加2.0mL之1.0M AgNO3之PG溶液後添加4.5g之PVP。 The reaction product was prepared in a similar manner to that described in Example 3 except that 101 mg of 2,2'-isobutylene-bis(4,6-dimethyl-phenol) was used and 2.0 mL was added. After the 1.0 M AgNO 3 PG solution, 4.5 g of PVP was added.

圖13顯示在自首先添加AgNO3之PG溶液時起總計90分鐘後之反應產物的光學顯微照片。NO含量為0ppm。圖14顯示在自首先添加AgNO3之PG溶液時起總計120分鐘後之反應產物的光學顯微照片。NO含量為7ppm。圖15顯示在自首先添加AgNO3之PG溶液時起總計150分鐘後之反應產物的光學顯微照片。NO含量為11ppm。 Figure 13 shows an optical micrograph of the reaction product after a total of 90 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 0 ppm. Figure 14 shows an optical micrograph of the reaction product after a total of 120 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 7 ppm. Figure 15 shows an optical micrograph of the reaction product after a total of 150 minutes from the first addition of the PG solution of AgNO 3 . The NO content was 11 ppm.

圖16顯示自來自反應產物(諸如圖15中所示者)之五個圖像之75個銀奈米線隨機樣品獲取的銀奈米線直徑之分佈圖。對於銀奈米線直徑,平均值、中位值、標準偏差、最小值及最大值分別為39.57nm、39.54nm、5.34nm、28.38nm及49.73nm。圖17顯示自來自反應產物(諸如圖15中所示者)之八個圖像之336個銀奈米線隨機樣品獲取的銀奈米線長度之分佈圖。對於銀奈米線長度,平均值、中位值、標準偏差、最小值及最大值分別為8.76μm、8.37μm、3.8μm、1.21μm及24.35μm。 Figure 16 shows a distribution of silver nanowire diameters taken from a random sample of 75 silver nanowires from five images of reaction products (such as those shown in Figure 15). For the silver nanowire diameter, the average value, the median value, the standard deviation, the minimum value, and the maximum value were 39.57 nm, 39.54 nm, 5.34 nm, 28.38 nm, and 49.73 nm, respectively. Figure 17 shows a distribution of silver nanowire lengths obtained from 336 silver nanowire random samples from eight images of reaction products (such as those shown in Figure 15). For the silver nanowire length, the average value, the median value, the standard deviation, the minimum value, and the maximum value were 8.76 μm, 8.37 μm, 3.8 μm, 1.21 μm, and 24.35 μm, respectively.

實例5Example 5

將含有5.55g PVP、0.196g 2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及58.5mg MnCl2.4H2O之400mL PG用N2噴射隔夜並且隨後切 換為正頂空壓力,隨後添加AgNO3。以0.5mL/min向混合物中添加24.0mL之1.0M AgNO3之PG溶液。將混合物加熱至150℃±0.5℃並且保持在該溫度直至銀離子特定電極上之mV讀數穩定,此時將混合物冷卻。在反應期間產生之NO總量為約2.2mmol。 It will contain 5.55 g of PVP, 0.196 g of 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) and 58.5 mg of MnCl 2 . 400 mL of 4H 2 O PG was sprayed overnight with N 2 and then switched to positive headspace pressure, followed by the addition of AgNO 3 . 24.0 mL of a 1.0 M AgNO 3 PG solution was added to the mixture at 0.5 mL/min. The mixture was heated to 150 ° C ± 0.5 ° C and held at this temperature until the mV reading on the specific electrode of the silver ion was stable, at which time the mixture was cooled. The total amount of NO produced during the reaction was about 2.2 mmol.

圖18顯示如以引用之方式併入本文中之2015年6月3日申請之美國臨時申請案第62/170,164號中所述藉由銀離子特定電極所量測之銀離子濃度(以mV計)隨時間(以分鐘計)的曲線圖。圖19顯示經純化反應產物之光學顯微照片。圖20顯示從反應產物(諸如在圖19中所示者)之圖像獲取的銀奈米線直徑之分佈圖。圖21顯示從反應產物(諸如在圖19中所示者)之圖像獲取的銀奈米線長度之分佈圖。 Figure 18 shows the silver ion concentration (measured in mV) as measured by a silver ion specific electrode as described in U.S. Provisional Application Serial No. 62/170,164, the entire disclosure of which is incorporated herein by reference. ) A graph of time (in minutes). Figure 19 shows an optical micrograph of the purified reaction product. Figure 20 shows a distribution of silver nanowire diameters obtained from images of reaction products such as those shown in Figure 19. Figure 21 shows a distribution of silver nanowire lengths obtained from images of reaction products such as those shown in Figure 19.

實例6Example 6

向280mL乙二醇(EG)中添加含有53.0mg AgNO3及106.5mg鞣酸及2.1g之9.3mM SnCl2.2H2O之EG溶液的5.19g EG。將基礎混合物用N2脫氣,同時在100rpm下攪拌兩小時。將0.25M AgNO3於EG及0.84M聚乙烯吡咯啶酮(PVP)中之溶液脫氣並且加熱至145℃持續至少60分鐘。將該溶液以0.8mL/min添加至基礎混合物以產生反應混合物。當冷卻至環境溫度時,藉由相等體積之丙酮來稀釋反應混合物並且在400G下離心45分鐘。將傾析固體再分散於200mL異丙醇(IPA)中,攪拌10分鐘,離心,傾析,且用15mL IPA稀釋。未檢測到銀奈米線。 To 280 mL of ethylene glycol (EG), 53.0 mg of AgNO 3 and 106.5 mg of citric acid and 2.1 g of 9.3 mM SnCl 2 were added . 5.19 g EG of 2H 2 O EG solution. The basic mixture was degassed with N 2, while stirring at 100rpm for two hours. The solution was degassed 0.25M AgNO 3 in 0.84M EG and polyvinylpyrrolidone (PVP) and heated to 145 in the deg.] C for at least 60 minutes. This solution was added to the base mixture at 0.8 mL/min to produce a reaction mixture. When cooled to ambient temperature, the reaction mixture was diluted with an equal volume of acetone and centrifuged at 400 G for 45 minutes. The decanted solid was redispersed in 200 mL of isopropanol (IPA), stirred for 10 minutes, centrifuged, decanted, and diluted with 15 mL of IPA. No silver nanowires were detected.

已參照特定實施例對本發明進行了詳細描述,但應理解,可在本發明之精神及範疇內實現改變及修改。本文揭示之實施例因此在所有方面中視為說明性而非限制性的。本發明之範疇由申請專利範圍指示並且在其含義及等效範圍內之所有變化意欲涵蓋於其中。 The present invention has been described in detail with reference to the preferred embodiments thereof. The embodiments disclosed herein are therefore considered in all aspects as illustrative and not limiting. The scope of the invention is intended to be embraced by the scope of the claims

Claims (11)

一種方法,其包括:提供至少一種包含至少一個酚基之還原劑,該至少一種還原劑亦不包含鹵素原子,及在包含該至少一種還原劑之反應混合物中將至少一種銀離子還原為至少一種銀奈米線。 A method comprising: providing at least one reducing agent comprising at least one phenolic group, the at least one reducing agent also comprising no halogen atoms, and reducing at least one silver ion to at least one in a reaction mixture comprising the at least one reducing agent Silver nanowires. 如請求項1之方法,其中該至少一種還原劑包含3,4-二羥基苯并***、2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及鞣酸中之至少一者。 The method of claim 1, wherein the at least one reducing agent comprises 3,4-dihydroxybenzotriazole, 2,2'-isobutylene-bis-(4,6-dimethyl-phenol), and hydrazine At least one of the acids. 如請求項1之方法,其中該至少一種還原劑係選自由3,4-二羥基苯并***、2,2’-亞異丁基-雙-(4,6-二甲基-苯酚)及鞣酸組成之群組。 The method of claim 1, wherein the at least one reducing agent is selected from the group consisting of 3,4-dihydroxybenzotriazole, 2,2'-isobutylene-bis-(4,6-dimethyl-phenol) And a group of tannic acid. 如請求項1之方法,其中該反應混合物進一步包含至少一種多元醇。 The method of claim 1, wherein the reaction mixture further comprises at least one polyol. 如請求項4之方法,其中該至少一種多元醇包含丙二醇。 The method of claim 4, wherein the at least one polyol comprises propylene glycol. 如請求項1之方法,其中該反應混合物進一步包含至少一種保護劑。 The method of claim 1, wherein the reaction mixture further comprises at least one protective agent. 如請求項6之方法,其中該至少一種保護劑包含聚乙烯吡咯啶酮。 The method of claim 6, wherein the at least one protective agent comprises polyvinylpyrrolidone. 如請求項1之方法,其中該反應混合物進一步包含至少一種能夠形成鹵離子之鹵化物化合物。 The method of claim 1, wherein the reaction mixture further comprises at least one halide compound capable of forming a halide ion. 如請求項1之方法,其中該反應混合物進一步包含至少一種鹵離子。 The method of claim 1, wherein the reaction mixture further comprises at least one halide ion. 如請求項1之方法,其中該反應混合物進一步包含至少一種極性非質子溶劑。 The method of claim 1, wherein the reaction mixture further comprises at least one polar aprotic solvent. 如請求項10之方法,其中該至少一種極性非質子溶劑包含丙酮。 The method of claim 10, wherein the at least one polar aprotic solvent comprises acetone.
TW104121756A 2014-07-03 2015-07-03 Reducing agents for silver morphology control TW201606089A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462020431P 2014-07-03 2014-07-03
US14/741,643 US20160001370A1 (en) 2014-07-03 2015-06-17 Reducing agents for silver morphology control

Publications (1)

Publication Number Publication Date
TW201606089A true TW201606089A (en) 2016-02-16

Family

ID=55016368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104121756A TW201606089A (en) 2014-07-03 2015-07-03 Reducing agents for silver morphology control

Country Status (3)

Country Link
US (1) US20160001370A1 (en)
TW (1) TW201606089A (en)
WO (1) WO2016003681A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238744A (en) * 2016-07-29 2016-12-21 广东南海启明光大科技有限公司 A kind of metal and oxide nano-particles process for thermosynthesizing thereof
CN108436104B (en) * 2018-06-05 2021-04-06 黔南民族师范学院 Process for preparing copper nanowires by using acidic etching waste liquid

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940261A (en) 1974-07-24 1976-02-24 Eastman Kodak Company Process for preparing crystalline silver particles having electrically conductive surfaces and product
KR100716201B1 (en) * 2005-09-14 2007-05-10 삼성전기주식회사 Metal nanoparticles and method for manufacturing thereof
FR2893262A1 (en) 2005-11-14 2007-05-18 Inst Francais Du Petrole PROCESS FOR SYNTHESIS IN THE PRESENCE OF CATALYST REDUCER BASED ON ANISOTROPIC METAL NANOPARTICLES.
JP2007246997A (en) * 2006-03-16 2007-09-27 Univ Of Tokyo Metal nano bar-shaped body and its production method
US8454721B2 (en) * 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
MXNL06000107A (en) * 2006-12-20 2008-10-08 Ind Penoles Sa De Cv Process for the manufacture of nanometric, monodisperse and stable metallic silver and product obtained therefrom.
FR2914200B1 (en) 2007-03-30 2009-11-27 Inst Francais Du Petrole PROCESS FOR THE SYNTHESIS OF CUBIC METAL NANOPARTICLES IN THE PRESENCE OF TWO REDUCERS
US7922787B2 (en) 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
US8361188B2 (en) 2009-04-03 2013-01-29 Indian Institute Of Science Methods for preparing metal and metal oxide nanoparticles
CN102781817B (en) * 2010-03-11 2015-10-14 Lg化学株式会社 The preparation method of metal nanobelt
US9327348B2 (en) 2010-11-22 2016-05-03 Junping Zhang Nanowire preparation methods, compositions, and articles
US8613888B2 (en) 2010-11-23 2013-12-24 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
US8551211B2 (en) 2011-02-15 2013-10-08 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
US20130192423A1 (en) 2012-01-27 2013-08-01 Blue Nano Inc. Method of producing silver nanowires
EP3129177B1 (en) * 2014-04-11 2019-12-18 Cambrios Film Solutions Corporation Methods of controlling nanowire morphology

Also Published As

Publication number Publication date
US20160001370A1 (en) 2016-01-07
WO2016003681A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
Dong et al. Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements
Sodipo et al. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica
Sun Silver nanowires–unique templates for functional nanostructures
Konar et al. Shape-dependent catalytic activity of CuO nanostructures
Tan et al. Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route
Pastoriza‐Santos et al. N, N‐dimethylformamide as a reaction medium for metal nanoparticle synthesis
Zhou et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process
Ma et al. Rapid production of silver nanowires based on high concentration of AgNO 3 precursor and use of FeCl 3 as reaction promoter
US9346913B2 (en) Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
Xu et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells
Zeb et al. Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application
Ullah et al. pH‐Selective Synthesis of Monodisperse Nanoparticles and 3D Dendritic Nanoclusters of CTAB‐Stabilized Platinum for Electrocatalytic O2 Reduction
Albers et al. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials
Wang et al. Surfactant-assisted synthesis of double-wall Cu 2 O hollow spheres
Saravanan et al. Synthesis and Characterisation of Nanomaterials.
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
Pulit et al. Chemical reduction as the main method for obtaining nanosilver
Kharissova et al. Ultrasound in nanochemistry: recent advances
ES2365313A1 (en) Process for preparing anisotropic metal nanoparticles
Huang et al. Synthesis of Cu2O nanoboxes, nanocubes and nanospheres by polyol process and their adsorption characteristic
Liu et al. Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn (OH) 6 spheres
Titkov et al. Synthesis of˜ 10 nm size Cu/Ag core-shell nanoparticles stabilized by an ethoxylated carboxylic acid for conductive ink
KR101842763B1 (en) preparation method of copper nano-structures
Ahmed et al. Shape controlled synthesis and characterization of Cu2O nanostructures assisted by composite surfactants system
Xiong et al. Galvanic replacement-mediated synthesis of hollow Cu 2 O–Au nanocomposites and Au nanocages for catalytic and SERS applications