TW201539847A - 鋰硫電池 - Google Patents

鋰硫電池 Download PDF

Info

Publication number
TW201539847A
TW201539847A TW103143836A TW103143836A TW201539847A TW 201539847 A TW201539847 A TW 201539847A TW 103143836 A TW103143836 A TW 103143836A TW 103143836 A TW103143836 A TW 103143836A TW 201539847 A TW201539847 A TW 201539847A
Authority
TW
Taiwan
Prior art keywords
lithium
electrolyte
tetrafluoroborate
sulfur
battery
Prior art date
Application number
TW103143836A
Other languages
English (en)
Inventor
Sebastien Desilani
Original Assignee
Oxis Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxis Energy Ltd filed Critical Oxis Energy Ltd
Publication of TW201539847A publication Critical patent/TW201539847A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一種鋰-硫電池,其包含一陽極,其包含鋰金屬或鋰金屬合金,一陰極,其包含一電活性硫材料與固態導電材料之混合物,一電解質,其包含一四氟硼酸鹽及一有機溶劑,其中該四氟硼酸鹽在該電解質中的存在量為0.05至0.5M之濃度,及其中該四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4-)對在電活性材料中的硫(S)之莫耳比例為0.009-0.09:1。

Description

鋰硫電池
本發明有關一鋰-硫電池。本發明亦有關使用四氟硼酸鹽為一添加劑以增進鋰-硫電池的週期壽命。此外,本發明有關一用於鋰硫電池的電解質。
發明背景
一典型的鋰-硫電池包含一由鋰金屬或一鋰金屬合金形成的陽極(負極),及一由元素硫或其他電活性硫材料形成的陰極(正極)。硫或其他電活性含硫材料可與一導電材料混合,如碳,以改良其導電性。典型地,碳與硫為磨成粉並接著與一溶劑及結合劑混合以形成一漿料。此漿料施用至一電流收集器並接著乾燥以去除溶劑。砑光此生成的結構以形成一複合結構,其可切成預期形狀以形成一陰極。一隔離物置於陰極上並將一鋰陽極置於隔離物上。導入電解質至電池中以濕潤陰極及隔離物。
鋰-硫電池為二次電池,且可施加一外部電流至電池以充電。此型式的可充電電池具有一廣範圍的潛在應用。當開發時,一重要考量為使電池的有效週期壽命最大化。
當充電一鋰-硫電池時,在陰極的硫以二階段還 原。在第一階段,硫(亦即元素硫)還原為多元硫化物種Sn 2-(n2)。在充電的第二階段,多元硫化物還原為硫化鋰Li2S,其典型地沉積在陽極表面。當電池已充電,此二階段機制典型地間隔發生,硫化鋰被還原為多元硫化鋰及接著至鋰與硫。預期多元硫化物種溶解在電解質中,因為此在充電期間增加電活性材料的利用。沒有多元硫化物的不溶解,電活性硫的還原作用限制在碳-硫介面,造成相對低電池容量。
鋰硫電池的電解質典型地包含一電解質鹽及一有機溶劑。合宜的電解質鹽包括鋰鹽。範例包括六氟磷酸鋰(LiPF6)、六氟砷酸鋰(LiAsF6)、過氯酸鋰(LiClO4)、三氟甲烷磺醯亞胺鋰(LiN(CF3SO2)2)與三氟甲烷磺酸鋰(CF3SO3Li)。此些鋰鹽在電解質中提供帶電荷物種,允許在電極的氧化還原反應發生。
鋰四氟硼酸(LiBF4)為一可在鋰離子電池中做為電解質鹽的鋰鹽。然而,依Journal of Power Sources 231(2013)153-162,鋰四氟硼酸不適合做為一電解質鹽,因為其與多元硫化鋰如下反應:LiBF4+Li2Sn→LiBS2F2+2LiF此造成四氟硼酸鋰與多元硫化物種不相容(參考第3.2.2部份)。
本發明提供一種鋰-硫電池,其包含一陽極,其包含鋰金屬或鋰金屬合金,一陰極,其包含一電活性硫材 料與固態導電材料之混合物,一電解質,其包含一四氟硼酸鹽及一有機溶劑,其中該四氟硼酸鹽在該電解質中的存在量為0.05至0.5M之濃度,及其中該四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4 -)對在電活性材料中的硫(S)之莫耳比例為0.009-0.09:1。
圖1本發明係有關於參考電解質0.1M LiBF4摻雜電解質間的比較。
圖2本發明係有關於參考電解質0.05M LiBF4摻雜電解質間的比較。
圖3本發明係有關於參考電解質與0.2M LiBF4摻雜電解質間的比較。
圖4本發明係有關於參考電解質與0.3M LiBF4摻雜電解質間的比較。
圖5本發明係有關於參考電解質與0.4M LiBF4摻雜電解質間的比較。
圖6本發明係有關於參考電解質與0.05M TEABF4摻雜電解質間的比較。
圖7本發明係有關於參考電解質與0.2M LiBF4摻雜電解質間的比較。
在描述本發明之一特定實施例前,應瞭解本發明並未限制為本文描述之特定電池、方法或材料。亦應瞭解本文使用的術語僅為用於描述特定的實施例而非用於限制, 而保護的範圍為以申請專利範圍及其等效者限定。
在描述及主張本發明之電池與方法之專利範圍中,使用下列術語:單數形式‘一(a)’、‘一(an)’、及‘此(the)’除非特別指明為包括複數形式。因此,例如當提及‘陽極(anode)’時包括提及一或一以上之此元件。
依本發明之一態樣,提供一種鋰-硫電池,其包含一陽極,其包含鋰金屬或鋰金屬合金,一陰極,其包含一電活性硫材料與固態導電材料之混合物,一電解質,其包含一四氟硼酸鹽及一有機溶劑,其中該四氟硼酸鹽在該電解質中的存在量為0.05至0.5M之濃度,及其中該四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4-)對在電活性材料中的硫(S)之莫耳比例為0.009-0.09:1。
依另一態樣,本發明亦提供使用一四氟硼酸鹽為添加劑以增進鋰硫電池的週期壽命。
有利地,已發現可使用一四氟硼酸鹽為添加劑以增進鋰硫電池的週期壽命。不希望受限於任何理論,咸信四氟硼酸陰離子可溶劑化在放電時形成的多元硫化物,增進其在電解質的溶解性。此增加電活性材料在放電寺的利用性。無此多元硫化物的溶解,電活性硫的還原作用可能在碳-硫介面發生,造成相對低的電池容量。
因為硫為非傳導性,硫的還原作用典型地限制於與導電材料或電流集電器接觸之硫粒子的表面。因此,不欲有較小的硫粒子,因為在粒子中間的硫可能不能用於還原作用。驚訝地,咸信四氟硼酸陰離子可阻障硫的凝聚。藉由加入四氟硼酸鹽至電池,可減少硫的凝聚,因此減少電池的電阻及容量衰減之傾向。因此,可增加電池的週期壽命。
可使用任何合宜的四氟硼酸鹽。合宜的鹽包括金屬鹽及/或銨鹽。合宜的金屬鹽包括金屬鹽,其包括鉀、鈉及鋰鹽。較佳地,使用四氟硼酸鋰。合宜的銨鹽包括四烷基銨鹽。範例包括四乙基銨鹽與四甲基銨鹽。
四氟硼酸鹽以0.05至0.5M濃度存在於電解質中。四氟硼酸鹽濃度較佳應足以提供一在循環壽命的明顯改進。然而,其較佳應不能高至造成不預期副反應的上升。不欲受限於任何理論,咸信在明顯高於0.5M的濃度,四氟硼酸鹽可在不預期的副反應中與多元硫化物物種反應。此一不預期副反應的範例如下:LiBF4+Li2Sn→LiBS2F2+2LiF
較佳地,四氟硼酸鹽在電解質中以0.1至0.4M濃度存在,更較佳為0.2至0.3M,例如約0.3M。
當在一鋰硫電池中使用,四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4 -)對在電活性材料之硫(S)的莫耳比例為0.009-0.09:1,較佳為0.01-0.09:1,更較佳為0.02-0.09:1。較佳地,四氟硼酸陰離子(BF4 -)對在電活性 材料之硫(S)的莫耳比例為0.03-0.08:1,更較佳為0.04-0.07:1,例如0.05-0.07:1。在一實施例中,四氟硼酸陰離子(BF4 -)對在電活性材料之硫(S)的莫耳比例為0.06:1。為了避免疑慮,莫耳比例以BF4 -陰離子在電解質中的莫耳數與硫(S)在電活性材料中的莫耳數為基礎。因此,當電活性材料為並不僅有硫組成時,硫(S)在電活性材料中的莫耳數少於電活性材料的莫耳數。
電解質可包含另一電解質鹽(亦即除了四氟硼酸鹽外提供之另一者)。另一電解質鹽較佳為一鋰鹽,(亦即一不是四氟硼酸鋰的鋰鹽)。合宜的鋰鹽包括四氟磷酸鋰、六氟砷酸鋰、過氯酸鋰、三氟甲烷磺醯亞胺鋰與三氟甲烷磺酸鋰。較佳地,鋰鹽三氟甲烷磺酸鋰。可使用鹽的組合。另一電解質鹽在電解質中以0.1至5M濃度存在,較佳地為0.5至3M,例如1M。在一實施例中,另一電解質鹽為一鋰鹽,其在電解質中以一在電解質或電解質溶劑中之鋰鹽的飽和濃度之50%至100%存在。此鋰鹽可以飽和濃度的70%至100%之濃度存在,更較佳為飽和濃度之80%至100%,例如飽和濃度之90%至100%。經由使用另一電解質之相等或接近其飽和限制之高濃縮溶液,可增加電池的周期效率且容量衰退的速率降低。
四氟硼酸鹽的莫耳濃度可少於另一電解質鹽之莫耳濃度的90%,較佳為少於80%,更較佳為少於70%,最較佳為少於60%,例如少於50%。在一實施例中,四氟硼酸鹽的莫耳濃度可少於另一電解質鹽之莫耳濃度的40%,例 如少於30%。四氟硼酸鹽的莫耳濃度可大於另一電解質鹽之莫耳濃度的1%,較佳為大於5%,例如大於10%。在一實施例中四氟硼酸鹽的莫耳濃可為另一電解質鹽之莫耳濃度的1至40%,較佳地為5至30%,例如10至20%。
在又一態樣中,本發明提供一種用於鋰硫電池的電解質,該電解質包含一四氟硼酸鹽,一有機溶劑,及一鋰鹽,其選自六氟磷酸鋰、六氟砷酸鋰、過氯酸鋰、三氟甲烷磺醯亞胺鋰與三氟甲烷磺酸鋰之至少一者,其中該四氟硼酸鹽在該電解質中以0.05至0.5M濃度存在,及其中該鋰鹽在電解質中以鋰鹽在電解質中的飽和濃度之50%至100%濃度存在。
如前文討論,本發明之另一態樣,其提供一種鋰硫電化學電池,其包括一含有鋰金屬或鋰金屬合金之陽極;一含有電活性硫材料與固態導電材料之混合物的陰極;一多孔隔離物;及一含有至少一鋰鹽、至少一有機溶劑與一界面活性劑的電解質。
本發明電化學電池可為任何合宜的鋰-硫電池。電池典型地包括一陽極、一陰極、一電解質及較佳地,一多孔隔離物,其有利地置於陽極與陰極間。陽極乭由鋰金屬或一鋰金屬合金形成。較佳地,陽極為一金屬箔電極, 如一鋰箔電極。鋰箔可由鋰金屬或鋰金屬合金形成。
電化學電池的陰極包括一電活性硫材料與導電材料之混合物。此混合物形成一電活性層,其置於與一電流集電器接觸。
電活性硫材料可包含元素硫、硫系有機化合物、硫系無機化合物與含硫聚合物。較佳地,使用元素硫。
固態導電材料可為任何合宜的導電材料。較佳地,此固態導電材料可由碳形成。範例包括碳黑、碳纖維、砂墨烯及奈米碳管。其他合宜的材料包括金屬(例如片、填充物及粉末)與導電聚合物。較佳為使用碳黑。
電活性硫材料及導電材料的混合物可以在一溶劑(例如水或一有機溶劑)中的漿料形式施用至一電流收集器。接著去除此溶劑,壓光此產生的結構以形成一複合材料,其裁切成所需的形狀以形成一陰極。一隔離物可置於陰極上而一鋰陽極置於該隔離物上。一隔離物置於陰極上且一鋰陽極置於隔離物上。接著導入電解質至電池中以濕潤陰極及隔離物。或者,可在鋰陽極置於隔離物上之前,電解質可經由塗覆或噴塗施用至隔離物上。
如前文討論,此電池包含一電解質。此電解質存在或分散於電極間,允許電荷在陽極與陰極間傳遞。較佳地,此電解質濕潤陰極的孔洞以及隔離物的孔洞。
合宜之用於電解質的有機溶劑為四氫呋喃、2-甲基六氫呋喃、二甲基碳酸酯、二乙基碳酸酯、乙基甲基碳酸酯、甲基丙基碳酸酯、甲基丙基丙酸酯、乙基丙基丙酸酯、乙基丙基丙酸 酯、乙酸甲酯、二甲氧基乙烷、1,3-二氧戊環、二乙二醇二甲醚(2-甲氧基乙基醚)、四乙二醇二甲醚、碳酸亞乙酯、碳酸亞丙酯、丁內酯、二氧戊環、六甲基磷醯胺、吡啶、二甲亞碸、三丁基磷酸酯、三甲基磷酸酯、N,N,N,N-四乙基磺醯胺與碸及其等之混合物。較佳地,有機溶劑為一碸或碸的混合物。碸的範例為二甲基碸與環丁碸。環丁碸可以單一溶劑使用或與例如其他碸組合使用。在一實施例中,此電解質包含三氟甲烷磺酸鋰及環丁碸。
可用於電解質的有機溶劑應為能夠溶解例如具有式Sn2-之多硫化物種,其中n=2至12,其係在電池放電期間電活性硫材料還原時形成。如前文討論,四氟硼酸陰離子有利地溶劑化該多元硫化物,增加其在電解質中的溶解度。
一隔離物存在於本發明的電池中,該隔離物可含有任何值的多孔基材,其允許離子在電池之電極間移動。此隔離物應置於電極間以防止電極間的直接接觸。基材的孔隙度應為至少30%,較佳為至少50%,例如高於60%。合宜的隔離物包括一由聚合材料形成的篩網。合宜的聚合物包括聚丙烯、尼龍及聚乙烯。非織物之聚丙烯特別適用。亦可以使用多層的隔離物。
實施例 實施例1
在此實施例中,在一鋰-硫電池中使用一含有在環丁碸中之1M三氟甲磺酸鋰之電解質為一參考電解質。此參考電池的放電容量在約140循環下測定。以一相同方式製造另一電池,除了在參考電解質中加入四氟硼酸鋰以在電解質中形成0.1M LiBF4溶液。電池的放電容量在約140循環 下測定。如從圖1可看出,容量的衰退可經由四氟硼酸鹽加入而減少。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.01875:1。
實施例2
在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了參考電解質中加入四氟硼酸鋰以在電解質中形成0.05M LiBF4溶液。電池的放電容量以約60循環測量。此些放電容量與參考電池的放電容量比較。如從圖2可看出,四氟硼酸鹽的加入,在約35循環後可觀察到容量衰退的改進。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.0093:1。
實施例3
在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了參考電解質中加入四氟硼酸鋰以在電解質中形成0.2M LiBF4溶液。電池的放電容量以約60+循環測量。此些放電容量與參考電池的放電容量比較。如從圖3可看出,四氟硼酸鹽的加入,在約25循環後可觀察到容量衰退的改進。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.0375:1。
實施例4
在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了參考電解質中加入四氟硼酸鋰以在電解質中形成0.3M LiBF4溶液。電池的放電容量以約50+循環測量。此些放電容量與參考電池的放電容量比較。如 從圖4可看出,四氟硼酸鹽的加入,可觀察到容量衰退的改進。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.05625:1。
實施例5
在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了參考電解質中加入四氟硼酸鋰以在電解質中形成0.4M LiBF4溶液。電池的放電容量以約40+循環測量。此些放電容量與參考電池的放電容量比較。如從圖5可看出,四氟硼酸鹽的加入,可觀察到容量衰退的改進。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.075:1。
實施例6
在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了參考電解質中加入四氟硼酸鋰以在電解質中形成0.05M TEABF4溶液。電池的放電容量以約50+循環測量。此些放電容量與參考電池的放電容量比較。如從圖6可看出,四氟硼酸鹽的加入,可觀察到容量衰退的改進。在此實施例中,在此電活性材料中四氟硼酸陰離子(BF4 -)對S的比例為0.0093:1。
實施例7
在此實施例中,在此實施例中,以相同於實施例1之參考電池的方法製造另一電池,除了使用含有1.25M三氟甲磺酸鋰之電解質。電池的放電容量以約50+循環測量。此些放電容量與參考電池的放電容量比較且實施例3的電 池(1M三氟磺酸鋰+0.2M LiBF4)。如從圖7可看出,使用含有1.25M三氟甲磺酸鋰之電解質的電池效能上比使用含有1M三氟甲磺酸鋰+0.2M LiBF4之電解質形成的電池更不好,儘管在電解質中整體的鋰鹽濃度為相當的。在電解質中加入0.2MLiBF4明顯改進電池的電阻至容量的衰退。

Claims (14)

  1. 一種鋰-硫電池,其包含一陽極,其包含鋰金屬或鋰金屬合金,一陰極,其包含一電活性硫材料與固態導電材料之混合物,一電解質,其包含一四氟硼酸鹽及一有機溶劑,其中該四氟硼酸鹽以一0.05至0.5M之濃度存在於該電解質中,及其中該四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4 -)對在電活性材料中的硫(S)之莫耳比例為0.009-0.09:1。
  2. 如請求項1之電池,其中該四氟硼酸鹽以一0.1至0.4M之濃度存在於該電解質中。
  3. 如前述請求項中任一項之電池,其中該四氟硼酸鹽以一量存在,其中四氟硼酸陰離子(BF4 -)對在電活性材料中的硫(S)之莫耳比例為0.04-0.07:1。
  4. 如前述請求項中任一項之電池,其中該四氟硼酸鹽為鹼金屬鹽或銨鹽。
  5. 如前述請求項4之電池,其中該四氟硼酸鹽為四氟硼酸鋰及/或四氟硼酸四乙基銨。
  6. 如前述請求項中任一項之電池,其中該電解質包含一另一電解質鹽。
  7. 如前述請求項6之電池,其中該另一電解質鹽為鋰鹽。
  8. 如前述請求項7之電池,其中該鋰鹽為選自六氟磷酸鋰、六氟砷酸鋰、過氯酸鋰、三氟甲烷磺醯亞胺鋰與三氟甲烷磺酸鋰之至少一者。
  9. 如前述請求項6至8中任一項之電池,其中該另一電解質鹽以一0.3至2M之濃度存在於該電解質中。
  10. 如前述請求項8或9之電池,其中該另一電解質鹽以在該電解質中之該鋰鹽的飽和濃度之50%至100%的一濃度存在於該電解質中。
  11. 如前述請求項8至10中任一項之電池,其中該四氟硼酸鹽的莫耳濃度為該另一電解質鹽的莫耳濃度之10至20%。
  12. 如前述請求項中任一項之電池,其中該電活性硫材料為元素硫。
  13. 一種四氟硼酸鹽作為一用於增進鋰硫電池的週期壽命之添加劑的用途。
  14. 一種用於鋰硫電池的電解質,該電解質包含一四氟硼酸鹽,一有機溶劑,及一鋰鹽,其選自六氟磷酸鋰、六氟砷酸鋰、過氯酸鋰、三氟甲烷磺醯亞胺鋰與三氟甲烷磺酸鋰之至少一者其中該四氟硼酸鹽以一0.05至0.5M之濃度存在於該電解質中,及其中該另一電解質鹽以在該電解質中之該鋰鹽的 飽和濃度之50%至100%的一濃度存在於該電解質中。
TW103143836A 2013-12-17 2014-12-16 鋰硫電池 TW201539847A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13197674 2013-12-17

Publications (1)

Publication Number Publication Date
TW201539847A true TW201539847A (zh) 2015-10-16

Family

ID=49765405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103143836A TW201539847A (zh) 2013-12-17 2014-12-16 鋰硫電池

Country Status (9)

Country Link
US (1) US20160315350A1 (zh)
EP (1) EP3084865A1 (zh)
JP (1) JP2017504155A (zh)
KR (1) KR20160100968A (zh)
CN (1) CN105830258A (zh)
CA (1) CA2932973A1 (zh)
HK (1) HK1224433A1 (zh)
TW (1) TW201539847A (zh)
WO (1) WO2015092384A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180044374A (ko) 2015-08-25 2018-05-02 옥시스 에너지 리미티드 배터리 센서
CN106129472A (zh) * 2016-07-01 2016-11-16 东风商用车有限公司 一种磷酸铁锂电池低温电解液
CN107978736B (zh) * 2017-10-25 2020-09-22 温州大学 金属合金/碳管/石墨烯载硫复合正极材料及其制备方法与应用
CN108011125A (zh) * 2017-12-13 2018-05-08 哈尔滨工业大学 一种含硼元素和含氟官能团物质的用途
CN110875495B (zh) * 2018-08-29 2021-08-13 中南大学 一种提升锂硫电池循环性能的电解液及其制备
CN109216769A (zh) * 2018-11-02 2019-01-15 珠海光宇电池有限公司 一种锂金属电池电解液及锂金属电池和锂硫电池
JPWO2021182614A1 (zh) * 2020-03-13 2021-09-16
KR20220099660A (ko) 2021-01-07 2022-07-14 주식회사 엘지에너지솔루션 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467453B1 (ko) * 2002-09-12 2005-01-24 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR101342509B1 (ko) * 2007-02-26 2013-12-17 삼성에스디아이 주식회사 리튬 이차 전지
EP2541665B1 (en) * 2010-02-22 2015-11-25 Toyota Jidosha Kabushiki Kaisha Non-aqueous liquid electrolyte secondary battery

Also Published As

Publication number Publication date
WO2015092384A1 (en) 2015-06-25
KR20160100968A (ko) 2016-08-24
US20160315350A1 (en) 2016-10-27
JP2017504155A (ja) 2017-02-02
EP3084865A1 (en) 2016-10-26
CN105830258A (zh) 2016-08-03
CA2932973A1 (en) 2015-06-25
HK1224433A1 (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
KR102530622B1 (ko) 보호된 애노드 및 이를 제조하고 사용하는 방법
TW201539847A (zh) 鋰硫電池
RU2402842C2 (ru) Химический источник электроэнергии и способ его изготовления
US10276891B2 (en) Electrolytes for calcium-based secondary cell and calcium-based secondary cell comprising the same
JP5651284B2 (ja) リチウム−硫黄電池
Wang et al. High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life
US20110179636A1 (en) Intercalation anode protection for cells with dissolved lithium polysulfides
US20140023936A1 (en) Lithium-sulfur electrolytes and batteries
EP2709194B1 (en) Lithium-sulfur battery with performance enhanced additives
JP6874605B2 (ja) 水系電解液及び水系リチウムイオン二次電池
KR101961516B1 (ko) 리튬­황 배터리용 전해질 조성물
JP2022034033A (ja) リチウムイオンキャパシタ
Moon et al. Simple and effective gas-phase doping for lithium metal protection in lithium metal batteries
EP3084864B1 (en) Electrolyte for a lithium-sulphur cell
US10461362B2 (en) Calcium-based secondary cell and battery comprising the same
JP2015088437A5 (zh)
JP6275243B2 (ja) リチウム−硫黄電池の充電方法
JP5824057B2 (ja) 電池
JP2013229279A (ja) リチウム−硫黄電池
Swiderska-Mocek Properties of LiMn 2 O 4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone
US10096835B2 (en) Lithium-ion accumulator
Barghamadi et al. Electrolyte for lithium–sulfur batteries
KR101511792B1 (ko) 전지 성능 향상 방법 및 전극 활물질 첨가제
JP4998392B2 (ja) 非水電解質電池
JP2014229389A (ja) ナトリウム二次電池