TW201522393A - 由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性嵌段聚丁二烯 - Google Patents

由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性嵌段聚丁二烯 Download PDF

Info

Publication number
TW201522393A
TW201522393A TW103136993A TW103136993A TW201522393A TW 201522393 A TW201522393 A TW 201522393A TW 103136993 A TW103136993 A TW 103136993A TW 103136993 A TW103136993 A TW 103136993A TW 201522393 A TW201522393 A TW 201522393A
Authority
TW
Taiwan
Prior art keywords
polybutadiene
group
stereoregular diblock
cis
phosphine
Prior art date
Application number
TW103136993A
Other languages
English (en)
Other versions
TWI678379B (zh
Inventor
Giovanni Ricci
Giuseppe Leone
Anna Sommazzi
Francesco Masi
Mraia Francesca Pirini
Original Assignee
Versalis Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versalis Spa filed Critical Versalis Spa
Publication of TW201522393A publication Critical patent/TW201522393A/zh
Application granted granted Critical
Publication of TWI678379B publication Critical patent/TWI678379B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7095Cobalt, nickel or compounds thereof
    • C08F4/7096Cobalt or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/05Transitioning, i.e. transition from one catalyst to another with use of a deactivating agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本發明揭示由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯。該立體規則性二嵌段聚丁二烯可有利地用於鞋業(例如製造鞋子之鞋底)及機動車輛及/或卡車用輪胎之製造。

Description

由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯
本發明關於具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯。
具體而言,本發明關於由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯。
本發明亦關於一種製備由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯之方法,其包含在包含至少一種鈷、與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之觸媒系統存在下,對1,3-丁二烯進行完全或部分立體特異性聚合,繼而添加至少一種單牙芳香族膦、視情況及1,3-丁二烯,且持續該立體特異性聚合。
該立體規則性二嵌段聚丁二烯可有利地用於鞋業(例如製造鞋子之鞋底)及機動車輛及/或卡車用輪胎之製造。
已知共軛二烯之立體特異性聚合對於獲得如 最廣為使用的橡膠之產物的化學工業為極為重要的方法。
亦已知各種可得自1,3-丁二烯之立體特異性 聚合之聚合物(即1,4-順式、1,4-反式、對排1,2、同排1,2、雜排1,2、具有不同的1,2單元含量之混合1,4-順式/1,2結構)中,唯有1,4-順式聚丁二烯與對排1,2-聚丁二烯為工業製造及商業化。關於該聚合物之進一步細節可發現於例如:Takeuchi Y.等人之“New Industrial Polymers”,“American Chemical Society Symposium Series”(1974),第4卷,第15-25頁;Halasa A.F.等人之“Kirk-Othmer Encyclopedia of Chemical Technology”(1989),第4版,Kroschwitz J.I.編輯,John Wiley and Sons,New York,第8卷,第1031-1045頁;Tate D.等人之“Encyclopedia of Polymer Science and Engineering(1989),第2版,Mark H.F.編輯,John Wiley and Sons,New York,第2卷,第537-590頁;Kerns M.等人之“Butadiene Polymers”,於“Encyclopedia of Polymer Science and Technology”(2003),Mark H.F.編輯,Wiley,第5卷,第317-356頁。
1,4-順式聚丁二烯為通常1,4-順式單元含量 為96%-97%,熔點(Tm)為約-2℃,結晶溫度(Tc)為約-25℃,及玻璃轉移溫度(Tg)低於-100℃之合成彈性體,其性質極類似天然橡膠,及其主要用途為機動車輛及/或卡車 用輪胎之製造。尤其是在輪胎製造中使用高1,4-順式單元含量之聚丁二烯。
1,4-順式聚丁二烯通常經由使用各種包含基 於鈦(Ti)、鈷(Co)、鎳(Ni)、釹(Nd)之觸媒的觸媒系統之聚合方法而製備。包含基於鈷之觸媒的觸媒系統具有高催化活性及立體特異性,且可視為上列中最多功能的,如改變其調配物則可產生上示聚丁二烯之所有可能的立體異構物,及揭述於例如Porri L.等人之“Comprehensive Polymer Science”(1989),Eastmond G.C.等人編輯,Pergamon Press,Oxford,UK,第4卷,第II部,第53-108頁;Thiele S.K.H.等人之“Macromolecular Science.Part C:Polymer Reviews”(2003),C43,第581-628頁;Osakada,K.等人之“Advanced Polymer Science”(2004),第171卷,第137-194頁;Ricci G.等人之“Advances in Organometallic Chemistry Research”(2007),Yamamoto K.編輯,Nova Science Publisher,Inc.,USA,第1-36頁;Ricci G.等人之“Coordination Chemistry Reviews”(2010),第254卷,第661-676頁;Ricci G.等人之“Cobalt:Characteristics,Compounds,and Applications”(2011),Lucas J.Vidmar編輯,Nova Science Publisher,Inc.,USA,第39-81頁。
例如觸媒系統鈷雙乙醯丙酮酸鹽/二乙基氯 化鋁/水[Co(acac)2/AlEt2Cl/H2O]提供1,4-順式單元含量為約97%之聚丁二烯,且一般用以工業製造此種聚合物,及揭述於例如Racanelli P等人之“European Polymer Journal”(1970),第6卷,第751-761頁。觸媒系統鈷參乙醯丙酮酸鹽/甲基鋁氧烷[Co(acac)3/MAO]亦提供1,4-順式單元含量為約97%之聚丁二烯,及揭述於例如Ricci G.等人之“Polymer Communication”(1991),第32卷,第514-517頁。
另一方面,觸媒系統鈷參乙醯丙酮酸鹽/三乙 基鋁/水[Co(acac)3/AlEt3/H2O]提供具有混合1,4-順式/1,2均等二元結構之聚丁二烯,及揭述於例如Furukawa J.等人之“Polymer Journal”(1971),第2卷,第371-378頁。然而,該觸媒系統被用於在二硫化碳(CS2)存在下工業製造高結晶對排1,2-聚丁二烯之方法。關於這些方法之進一步細節可發現於例如:Ashitaka H.等人之“Journal of Polymer Science:Polymer Chemistry Edition”(1983),第21卷,第1853-1860頁;Ashitaka H.等人之“Journal of Polymer Science:Polymer Chemistry Edition”(1983),第21卷,第1951-1972頁;Ashitaka H.等人之“Journal of Polymer Science:Polymer Chemistry Edition”(1983),第21卷,第1973-1988頁;Ashitaka H.等人之“Journal of Polymer Science:Polymer Chemistry Edition”(1983),第21卷,第1989-1995頁。
一種用以製備對排1,2-聚丁二烯之極有效及 具立體特異性之觸媒系統可得自烯丙基鈷錯合物(η4-C4H6)(η5-C8H13)Co,揭述於例如Natta G.等人之“Chemical Communications”(1967),第24期,第1263-1265頁,與二硫化碳(CS2)的組合,及揭述於例如 Ricci G.等人之“Polymer Communication”(1988),第29卷,第305-307頁。此烯丙基鈷錯合物單獨即可在室溫將1,3-丁二烯二聚合,及揭述於例如美國專利US 5,879,805號,但在低溫(-30℃)操作僅會產生對排1,2-聚丁二烯,及揭述於例如Ricci G.等人之“Polymer Communication”(1988),第29卷,第305-307頁。
具有對排1,2結構或混合1,4-順式/1,2結構 (具有沿聚合鏈無規分布之1,4-順式與1,2單元)之聚丁二烯,亦可在膦(例如三苯膦)存在下,使用組合二氯化鈷(CoCl2)或二溴化鈷(CoBr2)與有機鋁化合物(例如鋁之烷基化合物或鋁氧烷)而獲得的觸媒系統製造,及揭述於例如以下的美國專利:US 5,879,805、US 4,324,939、US 3,966,697、US 4,285,833、US 3,498,963、US 3,522,332、US 4,182,813、US 5,548,045、US 7,009,013;或Shiono T.等人之“Macromolecular Chemistry and Physics”(2002),第203卷,第1171-1177頁,“Applied Catalysis A:General”(2003),第238卷,第193-199頁,“Macromolecular Chemistry and Physics”(2003),第204卷,第2017-2022頁,“Macromolecules”(2009),第42卷,第7642-7643頁。相對於以揭述於上示Ricci G.等人之“Polymer Communication”(1988),第29卷,第305-307頁之觸媒系統而獲得的聚丁二烯,藉該觸媒系統而獲得的聚丁二烯之區域規則性與結晶度極低(例如80%-90%之1,2單元,熔點(Tm)為75℃至90℃之範圍)。
關於以包含預先形成的鈷與各種膦之錯合物 的觸媒系統聚合1,3-丁二烯之進一步細節提供於例如義大利專利IT 1,349,141、IT 1,349,142、IT 1,349,143號,及國際專利申請案WO 2003/018649號。使用不同的膦源自已知膦之立體及電子性質主要依磷原子上的取代基之型式而定,及揭述於例如:Dierkes P.等人之“Journal of Chemical Society,Dalton Transactions”(1999),第1519-1530頁;van Leeuwen P.等人之“Chemical Reviews”(2000),第100卷,第2741-2769頁;Freixa Z.等人之“Dalton Transactions”(2003),第1890-1901頁;Tolman C.之“Chemical Reviews”(1977),第77卷,第313-348頁。
關於使用上示膦之文件顯示,依以鈷原子配 位之膦之型式而定,使用預先形成的鈷之膦錯合物組合甲基鋁氧烷(MAO)如何能管理聚丁二烯之微結構而獲得具有各種結構之聚丁二烯。
將1,3-丁二烯以包含鈷與位阻單牙脂肪族膦 (例如P t Bu3、P i Pr3、P t Bu2 i Pr、P t Bu2Me、P i Bu2Cy、P i BuCy2、PCy3、PCyp3,其中P=磷, t Bu=第三丁基, i Pr=異丙基,Cy=環己基,及Cyp=環戊基)之錯合物的觸媒系統進行立體特異性聚合提供大多為1,4-順式結構之聚丁二烯,而具有混合1,4-順式/1,2結構之聚丁二烯則使用包含鈷與立體位阻較低之膦(例如PCy2H、P t Bu2H、PEt3、P n Pr3,其中P=磷,Cy=環己基, t Bu=第三丁基,Et=乙基,及 n Pr=正丙基)之錯合物的觸媒系統獲得,及揭述於例如國際專利申請案WO 2003/1018649號。
具有高1,4-順式單元含量(96%)之聚丁二烯 係使用包含鈷與雙牙膦(例如CoCl2[R2P(CH2)nPR2]/MAO,其中Co=鈷,Cl=氯,R=甲基、乙基、苯基,n=1或2,P=磷,及MAO=甲基鋁氧烷)之錯合物的觸媒系統獲得,其無關以鈷原子配位之雙牙膦之型式,及揭述於例如Ricci G.等人之“Coordination Chemistry Reviews”(2010),第254卷,第661-676頁;Ricci G.等人之“Cobalt:Characteristics,Compounds,and Applications”(2011),Lucas J.Vidmar編輯,Nova Science Publisher,Inc.,USA,第39-81頁。
另一方面現已證明,包含鈷與選自芳香族膦 之配位子(例如CoCl2(PRPh2)2/MAO,其中Co=鈷,Cl=氯,P=磷,R=甲基、正丙基、乙基、異丙基、環己基,Ph=苯基,MAO=甲基鋁氧烷)之錯合物的觸媒系統對1,3-丁二烯之1,2聚合極有效,及揭述於例如義大利專利IT 1,349,142、IT 1,349,143號。實際上使用該觸媒系統已獲得具有本質上1,2結構(在70%至90%之範圍內)之聚丁二烯,其關於錯合物之型式及聚合條件而具有不同的1,2單元含量。亦已知所獲得的聚丁二烯之立體規整性主要依錯合物之型式,即鍵結鈷原子之膦之型式而定,及以由13C-NMR光譜測定之對排三元組含量(即百分比)[(rr)%]表示的對排指數隨鍵結磷原子之烷基的立體要求增加而增加。
現已證明,以鈷與立體位阻較低之膦配位子 (例如PMePh2、PEtPh2、P n PrPh2,其中P=磷,Me=甲基, Et=乙基,Ph=苯基, n Pr=正丙基)的系統所獲得的1,2-聚丁二烯具有低結晶度,及20%至50%之範圍的對排三元組含量[(rr)%],另已證明,依聚合條件而定,以使用立體位阻較高之膦配位子(例如P i PrPh2、PCyPh2,其中P=磷, i Pr=異丙基,Ph=苯基,Cy=環己基)的觸媒系統所獲得的聚丁二烯為熔點(Tm)之範圍為100℃至140℃,及對排三元組含量[(rr)%]為60%至80%之範圍的結晶。
亦已研究將1,3-丁二烯以包含鈷與式 CoCl2(PR2Ph)2/MAO(其中Co=鈷,Cl=氯,R=甲基、乙基、環己基,Ph=苯基,MAO=甲基鋁氧烷)之芳香族膦之錯合物的觸媒系統聚合,及揭述於例如義大利專利IT 1,349,141、IT 1,349,142號。使用該觸媒系統已獲得本質上1,2-聚丁二烯,但是在相同聚合條件下,現已證明,該聚合物之對排指數通常比以包含鈷與上述式CoCl2(PRPh2)2/MAO之芳香族膦之錯合物的觸媒系統所獲得的1,2-聚丁二烯稍低:實際上對排三元組含量[(rr)%]為15%至45%之範圍。
所屬技術領域亦已知基於丁二烯之對稱或非 對稱、二嵌段或三嵌段聚合物,然而由組成物與微結構以及製造方法的觀點,其與本發明標的之立體特異性二嵌段聚丁二烯大不相同。所屬技術領域亦已知的二嵌段或三嵌段聚合物實際上藉各種同元聚合物之後改質反應(例如接枝),或藉使用鋰烷基作為試劑之陰離子性聚合,或藉使用自由基引發劑之乳化聚合而獲得。該二嵌段或三嵌段聚合物經常經由將結構不同的聚丁二烯嵌段 [一般為1,4-反式結構,因其在丁二烯之陰離子性或自由基聚合中為主要結構]以聚異戊二烯、苯乙烯、或苯乙烯-丁二烯嵌段接合而組成。尤其應指出,在具有1,4-反式結構之聚丁二烯嵌段中,雙鍵順著主鏈,而在本發明標的之立體規則性二嵌段聚丁二烯的具有對排1,2結構之聚丁二烯嵌段中,雙鍵在主鏈外。
關於以上二嵌段或三嵌段聚合物之進一步細 節可發現於例如:Szwark M.等人之“Journal of the American Chemical Society”(1956),第78卷,第2656段;Hsieh H.L.等人之“Anionic polymerization:principles and practical applications”(1996),第1版,Marcel Dekker,New York;Lovell P.A.等人之“Emulsion polymerization and emulsion polymers”(1997),Wiley New York;Xie H.等人之“Journal of Macromolecular Science:Part A-Chemistry”(1985),第22(10)卷,第1333-1346頁;Wang Y.等人之“Journal of Applied Polymer Science”(2003),第88卷,第1049-1054頁。
亦已知雖然陰離子性或自由基聚合可控制所 獲得的二嵌段或三嵌段聚合物之組成物(即存在的共單體之百分比),但與在立體特異性聚合所發生的相反,其無法適當控制嵌段之立體規則性之型式(即在丁二烯之情形,1,4-順式相對1,2相對1,4-反式選擇性)。
例如Zhang X.等人之“Polymer”(2009),第 50卷,第5427-5433頁揭述含可結晶高1,4-反式聚丁二烯嵌段之三嵌段聚丁二烯的合成及特徵。該合成係在作 為引發劑之二(乙二醇)乙基醚之鋇鹽/三異丁基-鋁/-二鋰(BaDEGEE/TIBA/DLi)存在下,藉丁二烯之循序陰離子性聚合進行。分析如此獲得的三嵌段聚丁二烯且顯示以下組成物:高1,4-反式-b-低1,4-順式-b-高1,4-反式(HTPB-b-LCPB-b-HTPBs)。該三嵌段聚丁二烯經由將1,4-順式單元含量低之彈性嵌段鍵結可結晶1,4-反式單元含量高之嵌段而組成。(HTPB:LCPB:HTPBs)嵌段之間的比例如下:25:50:25。所獲得的三嵌段聚丁二烯HTPB-b-LCPB-b-HTPBs由1,4-反式含量為52.5%之LCPB嵌段、與1,4-反式含量為55.9%至85.8%之範圍的之HTPB嵌段組成。這些值明確表示嵌段之立體規則性不高。所獲得的三嵌段聚丁二烯顯示玻璃轉移溫度(Tg)為約-92℃,及僅在1,4-反式含量>70%時結晶溫度(Tc)為約-66℃。
類似地,Zhang X.等人之“Polymer Bulletin” (2010),第65卷,第201-213頁揭述含可結晶高1,4-反式聚丁二烯嵌段之三嵌段共聚物的合成及特徵。各種含可結晶高1,4-反式聚丁二烯嵌段之三嵌段共聚物係在作為引發劑之二(乙二醇)乙基醚之鋇鹽/三異丁基-鋁/-二鋰(BaDEGEE/TIBA/DLi)存在下,藉1,3-丁二烯與異戊二烯(Ip)或苯乙烯(St)之循序陰離子性聚合合成。分析該三嵌段共聚物所獲得的結果顯示,中3,4-聚異戊二烯-b-高1,4-反式聚丁二烯-b-中3,4-聚異戊二烯共聚物、及聚苯乙烯-b-高1,4-反式聚丁二烯-b-聚苯乙烯共聚物具有1,4-反式單元含量高(最大含量為83%)之聚丁二烯嵌段、3,4 單元含量中等(含量為22%至27%之範圍)之聚異戊二烯嵌段,且1,4(順式+反式)單元總含量為72%至80%之範圍,另已證明聚苯乙烯嵌段為雜排。該共聚物具有約-80℃之玻璃轉移溫度(Tg),及約3℃之熔點(Tm)。
因此由上示可容易地推論,各種為了改良/ 控制基於丁二烯之二嵌段或三嵌段聚合物的立體規則性而進行的研究顯然不令人滿意。
亦關於改良/控制基於丁二烯之二嵌段或三嵌段聚合物的立體規則性之目的,另一種採用的方法為使用基於過渡金屬之配位觸媒。
關於此點,例如Naga N.等人之“Journal of Polymer Science Part A:Polymer Chemistry”(2003),第41(7)卷,第939-946頁,及歐洲專利申請案EP 1,013,683號表示,為了合成含有具有1,4-順式結構之聚丁二烯嵌段、與具有對排結構之聚苯乙烯嵌段的嵌段共聚物,而使用觸媒錯合物CpTiCl3/MAO(其中Cp=環戊二烯基,Ti=鈦,Cl=氯,MAO=甲基鋁氧烷)作為觸媒。然而,在此情形並未獲得嵌段共聚物,而是仍由於失去聚合活性而為具有無規多序列之共聚物。
Ban H.T.等人之“Journal of Polymer Science Part A:Polymer Chemistry”(2005),第43卷,第1188-1195頁,其使用觸媒錯合物Cp*TiMe3/B(C6F5)3/AlR3(其中Cp=環戊二烯基,Ti=鈦,Me=甲基,B(C6F5)3=參(五氟苯基)硼烷,AlR3=三烷基鋁),及Caprio M.等人之“Macromolecules”(2002),第 35卷,第9315-9322頁,其使用類似的觸媒錯合物,即CpTiCl3/Ti(OR4)/MAO(其中Cp=環戊二烯基,Ti=鈦,Cl=氯,R=烷基,MAO=甲基鋁氧烷),在指定聚合條件下操作而獲得含有具有對排結構之聚苯乙烯嵌段、與具有1,4-順式結構之聚丁二烯嵌段的多嵌段共聚物。為了維持聚合活性,Ban H.T.等人在激烈條件下,尤其是在低聚合溫度(對排聚苯乙烯嵌段為-20℃,及1,4-順式聚丁二烯嵌段為-40℃)操作而以低產率獲得具有對排聚苯乙烯嵌段(對排單元含量>95%)、與1,4-順式聚丁二烯嵌段(1,4-順式單元含量70%)的共聚物,其顯示熔點(Tm)為270℃,其歸因於對排聚苯乙烯嵌段。另一方面,Caprio M.等人在25℃至70℃之範圍的聚合溫度操作而以低產率獲得具有對排聚苯乙烯、非晶聚苯乙烯、與大多為1,4-順式結構之聚丁二烯之序列的多嵌段共聚物。然而,使用以上的觸媒錯合物則最終共聚物之組成物控制不良,且為了回收目標共聚物而必須在聚合結束時將所獲得的產物分化等。
美國專利US 4,255,296號揭述一種包含聚丁 二烯橡膠之組成物,其含有經由1,4-順式聚丁二烯與對排1,2-聚丁二烯之嵌段聚合或接枝聚合而獲得的聚合物,其微結構包含78重量百分比至93重量百分比之範圍的1,4-順式單元含量,及6重量百分比至20重量百分比之範圍的對排1,2單元含量,至少40重量百分比之該對排1,2-聚丁二烯被結晶,且具有平均直徑為0.05微米至1微米之範圍,及平均長度為0.8微米至10微米之範 圍的短纖維型式之形式。因接合嵌段並未經由合成,而是對1,4-順式聚丁二烯及對1,2-聚丁二烯進行後改質反應(即接枝聚合)而進行,故所獲得的聚合物大概具有多個接合點:因而該聚合物與藉立體特異性聚合所獲得的本發明標的之二嵌段聚丁二烯完全不同,及其中兩種嵌段,即具有1,4-順式結構之嵌段與具有對排1,2結構之嵌段,彼此藉單一接點而接合且未互穿。
美國專利US 3,817,968號揭述一種製備均等二元1,4-順式/1,2-聚丁二烯之方法,其包含在得自以下反應的觸媒存在下,在惰性大氣中於非水性介質中以-80℃至100℃之範圍的溫度聚合丁二烯:(a)具有以下通式之三烷基鋁:Al(R)3
其中R表示具有1至6個碳原子之線形烴自由基;及(b)具有下式之三氯化二烷氧基鉬:MoCl3(OR’)2
其中R’表示具有1至6個碳原子之烴自由基;莫耳比(a)/(b)不小於6。如此獲得的聚丁二烯具有沿聚合鏈無規分布的具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段,其表示具有1,4-順式結構之非晶聚丁二烯嵌段、或具有1,2結構之結晶聚丁二烯嵌段均不存在。因此,在此情形這些聚合物亦與藉立體特異性聚合所獲得的本發明標的之二嵌段聚丁二烯完全不同,及其中兩種嵌段,即具有1,4-順式結構 之嵌段及具有對排1,2結構之嵌段,彼此藉單一接點而接合且未互穿。
如以上所指示,因聚丁二烯為工業上最廣為 使用的聚合物之一,尤其是用於輪胎製造,故新穎聚丁二烯之研究仍極具利益。尤其是具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯之研究極具利益,其可有利地用於鞋業(例如製造鞋子之鞋底)及機動車輛及/或卡車用輪胎之製造。
因此,申請人已考量發現具有1,4-順式/對排 1,2結構之立體規則性二嵌段聚丁二烯的問題。具體而言,申請人已考量發現由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯的問題。
申請人亦已發現,由具有1,4-順式結構之聚 丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯之製備,可有利地藉一種包含以下之方法進行:在包含至少一種鈷、與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之觸媒系統存在下,對1,3-丁二烯進行完全或部分立體特異性聚合,繼而添加至少一種單牙芳香族膦、視情況及1,3-丁二烯,且持續該立體特異性聚合。尤其是申請人已發現,使用該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物,可獲得具有活性1,4-順式結構之聚丁二烯,及在該單牙芳香族膦存在下,殘餘或視情況添 加的1,3-丁二烯之後續立體特異性聚合可產生以上的立體規則性二嵌段聚丁二烯。此外申請人已發現,改變該單牙芳香族膦之添加時間或1,3-丁二烯之量,則該方法可依欲獲得的最終產物之特徵而調節所獲得的立體規則性二嵌段聚丁二烯中兩種嵌段(即具有1,4-順式結構之嵌段與具有對排1,2結構之嵌段)之長度。此外申請人亦已發現,改變單牙芳香族膦之型式,則該方法可依欲獲得的最終產物之特徵而調節所獲得的立體規則性二嵌段聚丁二烯中具有對排1,2結構之嵌段的結晶度[即對排三元組含量[(rr)%]],因而及熔點(Tm)。
本發明之一目的因此關於由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯,其具有下式(I):PB1-PB2 (I)
其中:-PB1對應具有1,4-順式結構之聚丁二烯嵌段;-PB2對應具有對排1,2結構之聚丁二烯嵌段;本質上無1,4-反式單元。
第1(a)圖顯示在實施例6所獲得的聚丁二烯之FT-IR光譜。
第1(b)圖顯示在實施例7所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第1(c)圖顯示在實施例8所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第1(d)圖顯示在實施例9所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第2圖顯示在實施例7所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
第3圖顯示在實施例8所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第4圖顯示在實施例9所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第5圖顯示在實施例9所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
第6(a)圖顯示在實施例10所獲得的聚丁二烯之FT-IR光譜。
第6(b)圖顯示在實施例12所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第6(c)圖顯示在實施例14所獲得的聚丁二烯之FT-IR光譜。
第6(d)圖顯示在實施例15所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第7圖顯示在實施例10所獲得的聚丁二烯之DSC圖。
第8圖顯示在實施例11所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第9圖顯示在實施例12所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
第10(a)圖顯示在實施例16所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第10(b)圖顯示在實施例17所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第10(c)圖顯示在實施例18所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第10(d)圖顯示在實施例21所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第11圖顯示在實施例21所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
第12圖顯示在實施例22所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
第13(a)圖顯示在實施例20所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第13(b)圖顯示在實施例22所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第13(c)圖顯示在實施例23所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第13(d)圖顯示在實施例24所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第14圖顯示在實施例20所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第15圖顯示在實施例19所獲得的聚丁二烯、在實施例20所獲得的立體規則性二嵌段、在實施例21所獲得的立體規則性二嵌段、及聚丁二烯參考樣品Europrene Neocis® BR 40之彈性模數(G’)。
第16圖顯示在實施例19所獲得的聚丁二烯之DSC圖。
第17(a)圖顯示在實施例25所獲得的聚丁二烯之FT-IR光譜。
第17(b)圖顯示在實施例26所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第17(c)圖顯示在實施例27所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第18圖顯示在實施例27所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第19圖及第20圖顯示在實施例27藉原子力顯微術(AFM)而獲得的立體規則性二嵌段聚丁二烯之高度影像(「高度影像」)及相影像(「相影像」)。
為了本說明書及以下申請專利範圍之目標, 術語「立體規則性二嵌段聚丁二烯」表示其中僅有兩種結構不同的聚丁二烯嵌段,即1,4-順式結構與對排1,2結構,彼此藉單一接點而接合且未互穿之聚丁二烯。
為了本說明書及以下申請專利範圍之目標,術語「本質上無1,4-反式單元」表示該1,4-反式單元若存在,則相對存在於該立體規則性二嵌段聚丁二烯中的丁二烯單元總莫耳量為低於3莫耳百分比,較佳為低於1莫耳百分比之量。
為了本說明書及以下申請專利範圍之目標,數值範圍之定義始終包含端值,除非另有指示。
為了本說明書及以下申請專利範圍之目標,術語「包含」亦包括術語「本質上由…組成」或「由…組成」。
依照本發明之一較佳具體實施例,該立體規則性二嵌段聚丁二烯具有以下特徵:-在紅外線分析(FT-IR)中,代表1,4-順式及1,2單元之帶分別中央對齊737公分-1及911公分-1;-在13C-NMR分析中,具有1,4-順式結構之聚丁二烯嵌段、與具有1,2結構之聚丁二烯嵌段之間的接點之信號特徵位於30.7ppm、25.5ppm、與41.6ppm。
紅外線分析(FT-IR)及13C-NMR分析係如以下「分析及特徵化方法」之段落所示而進行。
依照本發明之一進一步較佳具體實施例,在該立體規則性二嵌段聚丁二烯中:-具有1,4-順式結構之嵌段可具有低於或等於-100℃,較佳為-104℃至-113℃之範圍的玻璃轉移溫度(Tg),低於或等於-2℃,較佳為-5℃至-20℃之範圍的熔點(Tm),及低於或等於-25℃,較佳為-30℃至-54℃之範圍的結晶溫度(Tc);-具有對排1,2結構之嵌段可具有低於或等於-10℃,較佳為-14℃至-24℃之範圍的玻璃轉移溫度(Tg),高於或等於70℃,較佳為95℃至140℃之範圍的熔點(Tm),及高於或等於55℃,較佳為60℃至130℃之範圍的結晶溫度(Tc)。
應指出,具有1,2結構之嵌段之熔點(Tm)及結晶溫度(Tc)的大範圍變動可歸因於對排三元組含量[(rr)%]不同,其依用於聚合之膦之型式而定[即立體規則性程度,即對排三元組含量[(rr)%],並隨所使用的芳香族膦之立體位阻增加而增加]。
該玻璃轉移溫度(Tg)、該熔點(Tm)、及該結晶溫度(Tc)係藉DSC熱分析(「差式掃描熱度計」)測定,其如以下「分析及特徵化方法」之段落所示而進行。
依照本發明之一進一步較佳具體實施例,該立體規則性二嵌段聚丁二烯可具有1.9至2.2之範圍的聚合分散性指數(PDI),其對應Mw/Mn比(Mw=重量平均分子量;Mn=數量平均分子量)。
該聚合分散性指數(PDI)係藉GPC(「凝膠滲透層析術」)測定,其如以下「分析及特徵化方法」之段落所示而進行。
應指出,出現窄及單頂峰,即1.9至2.2之範圍的聚合分散性指數(PDI),表示有均質聚合物種,且不存在兩種不同的同元聚合物(即有1,4-順式及1,2結構之同元聚合物)。
亦應指出,將本發明標的之立體規則性二嵌段聚丁二烯以二乙基醚在沸點連續萃取4小時所獲得的隔離分餾物(即可溶於醚之萃取物及不溶於醚之殘渣)始終具有完全類似「新生」起始聚合物之組成物/結構。
本發明標的之立體規則性二嵌段聚丁二烯在接受原子力顯微術(AFM)時顯示關於具有1,4-順式結構 之嵌段及具有對排1,2結構之嵌段的明顯區別兩域,尤其是該域之均質分布,如以下提供的第19及20圖所示。
該原子力顯微術(AFM)係如以下「分析及特徵化方法」之段落所示而進行。
此外,本發明標的之立體規則性二嵌段聚丁二烯在接受動態機械分析(DMA)時顯示彈性模數值(G’)比市售聚丁二烯(即Versalis Spa之Europrene Neocis® BR 40)高,如以下提供的第15圖所示。
該動態機械分析(DMA)係如以下「分析及特徵化方法」之段落所示而進行。
依照本發明之一較佳具體實施例,在該立體規則性二嵌段聚丁二烯中,具有1,4-順式結構之聚丁二烯嵌段在靜止條件下(即未接受應力)在室溫為非晶性,且相對存在於該具有1,4-順式結構之聚丁二烯嵌段中的丁二烯單元總莫耳量,可具有高於或等於96莫耳百分比,較佳為97莫耳百分比至99莫耳百分比之範圍的1,4-順式含量。
應指出,在該具有1,4-順式結構之聚丁二烯嵌段中,補足100,即低於或等於4莫耳百分比,較佳為1莫耳百分比至3莫耳百分比之範圍的含量,可具有上示量之1,2結構、或1,4-反式結構(若有)。
在本發明標的之立體規則性二嵌段聚丁二烯中,具有對排1,2結構之聚丁二烯嵌段可依對排三元組含量[(rr)%],即所使用的單牙芳香族膦之型式,而具有不同的結晶程度:尤其是該結晶程度隨對排三元組含量 [(rr)%]增加而增加。該對排三元組含量[(rr)%]較佳為高於或等於15%,較佳為60%至80%之範圍。
應指出,在本發明標的之立體規則性二嵌段聚丁二烯中,亦當具有1,2結構之聚丁二烯嵌段的特徵為低對排三元組含量[(rr)%](即15%至20%之範圍的含量)時,其證明為低結晶度、基本上非晶性,1,2單元含量是終維持高於或等於80%。
對排三元組含量[(rr)%]係藉13C-NMR光譜術分析測定,其如以下「分析及特徵化方法」之段落所示而進行。
依照本發明之一較佳具體實施例,在該立體規則性二嵌段聚丁二烯中,1,4-順式/1,2莫耳比可為15:85至80:20之範圍,較佳為25:75至70:30之範圍。
依照本發明之一較佳具體實施例,該立體規則性二嵌段聚丁二烯可具有100,000克/莫耳至800,000克/莫耳之範圍,較佳為150,000克/莫耳至600,000克/莫耳之範圍的重量平均分子量(Mw)。
本發明標的之立體規則性二嵌段聚丁二烯所接受的分析及特徵化顯示其可具有以下特徵:-在具有1,4-順式結構之聚丁二烯為非晶性(軟嵌段)之條件下,即在室溫在靜止條件下,具有對排1,2結構之聚丁二烯嵌段(硬嵌段)若以結晶形式存在則可作為硬填料(參見第15圖,其提供根據Guth-Gold and Thomas定律所預測的理論趨勢之比較,及揭述於例如Eggers E.等人之“Rubber Chemistry and Technology”(1996),第69卷,第2期,第253-265頁,及其中所示的參考資料); -在高溫動態機械分析(DMA)中,尤其是在130℃,該立體規則性二嵌段聚丁二烯顯示特徵為硬嵌段與軟嵌段之間的相分離之分支系統典型行為;在高溫相分離中具有對排1,2結構之嵌段(硬嵌段)實際上主要作為分支點,尤其是當其以低百分比存在時,只要溫度維持低於立體規則性二嵌段聚丁二烯之有序-無序溫度(ODT);此外,在低於有序-無序溫度(ODT)之溫度,甚至在低於具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的熔點(Tm)之溫度出現相分離,則產生代表熱塑性彈性體之立體規則性二嵌段聚丁二烯的性質[關於此點,應參考例如“Thermoplastic Elastomers”(2004),第3版,Holden,G.,Kricheldorf.、H.R.、與Quirk,R.P.編輯,Hanser Publishers,Munich;I.W.Hamley之“The Physics of Block Copolymers”(1998),Hamley I.W.,Oxford University Press所揭述者],當具有1,4-順式結構之聚丁二烯(軟嵌段)以高百分比存在時特別明顯;-在低溫動態機械分析(DMA)中,即在低於具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的熔點(Tm)之溫度,主要由於以結晶形式存在的具有對排1,2結構之聚丁二烯嵌段(硬嵌段)之硬度,該立體規則性二嵌段聚丁二烯顯示相對1,4-順式含量高的市售聚丁二烯為極高之彈性模數值(G’)(參見第15圖)。
亦應指出,本發明標的之立體規則性二嵌段聚丁二烯相對1,4-順式含量高的市售聚丁二烯、及如以下實施例所述而獲得的參考性同元聚合物有許多差異,例如: -由熱-流變性觀點,立體規則性二嵌段聚丁二烯對動態機械分析(DMA)之回應越來越複雜,例如由於該具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的相轉移(一級轉移),時間-溫度重疊隨存在於該立體規則性二嵌段聚丁二烯中的具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的百分比增加而失效(如各種聚丁二烯之Van Gurp-Palmen圖所示);該相轉移可將立體規則性二嵌段聚丁二烯之動態-機械特徵隨溫度變動而大為改變,如此可關於最終應用而調節之;此外,該相轉移可被調節,因而來自該立體規則性二嵌段聚丁二烯的熱-流變性觀點之複雜性、與其一般機械性能亦可被調節,可不僅藉由調節具有對排1,2結構之聚丁二烯嵌段的立體規則性(即改變對排三元組含量[(rr)%]),亦藉由調節該具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的分子量、與存在於該立體規則性二嵌段聚丁二烯中的具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的百分比而調節[關於這些圖表之進一步細節可發現於例如:Van Gurp M.等人之“Rheological Bulletin”(1998),第67卷,第5-8頁;Trinckle S.等人之“Rheological Acta”(2001),第40卷,第322-328頁;Trinckle S.等人之“Rheological Acta”(2002),第41卷,第103-113頁];-在低於具有對排1,2結構之聚丁二烯嵌段(硬嵌段)的熔點(Tm)之溫度混合交聯成分與立體規則性二嵌段聚丁二烯,而在立體規則性二嵌段聚丁二烯中選擇***聯(例如在過氧化氫及/或硫,視情況及佐劑存在下)兩種嵌 段之僅其中之一,尤其是具有1,4-順式結構之聚丁二烯嵌段(軟嵌段),以降低或甚至防止該成分分散於具有對排1,2結構之聚丁二烯嵌段(硬嵌段)中的可能性;-亦在由外部施加的變形或應力作用下,由於存在具有對排1,2結構之聚丁二烯嵌段(硬嵌段)作為分支點,因而增加立體規則性二嵌段聚丁二烯之黏彈性記憶(相對於因變形而誘發的黏彈性記憶對結晶之正面影響,其可參考例如Coppola S.等人之“Macromolecules”(2001),第34卷,第5030-5036頁),在靜止條件下在高於該嵌段的熔點(Tm)之溫度,相對於具有1,4-順式結構之同元聚合物,具有1,4-順式結構之聚丁二烯嵌段(軟嵌段)結晶之趨勢增加的可能性;此可能性使立體規則性二嵌段聚丁二烯可用於彈性摻合物,尤其是輪胎側壁用之彈性摻合物,較佳為在1,4-順式聚丁二烯及/或天然橡膠存在下(實際上由例如Santangelo P.G.等人之“Rubber Chemistry & Technology”(2003),第76卷,第4期,第892-898頁所揭述的文獻得知,由於由外部施加的變形及/或應力而可能結晶之橡膠對彈性摻合物之抗疲勞性有正面貢獻)。
亦應指出,不似例如所屬技術領域已知的聚苯乙烯-聚二烯共聚物之情形,其中聚苯乙烯嵌段由於無隔離的殘餘雙鍵而在僅有硫作為交聯劑下無法交聯,本發明標的之立體規則性二嵌段聚丁二烯中的兩種嵌段,即具有對排1,2結構之聚丁二烯嵌段(硬嵌段)、與具有1,4-順式結構之聚丁二烯嵌段(軟嵌段),依照在用以交聯二烯聚合物之文獻中得知的步驟而操作(關於此點,應參 考例如“Science and Technology of Rubber”(2005),Mark J.E.,Erman B.,Eirich F.R.編輯,第3版,Elsevier;“Rubber Technology”(1987),Morton M.編輯,第3版,Van Nostrand Reinhold;“Rubber Compounding-Chemistry and Applications”(2004),Rodgers B.編輯,Marcel Dekker;ASTM D3189;ASTM D3186;ISO 2476:2009,及後續更新所揭述者)可被交聯(例如在過氧化氫及/或硫,視情況及佐劑存在下)。
如以上所示,本發明亦關於一種用以製備由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯之方法。
本發明之一進一步目的因此關於一種用以製備由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯之方法,其包含:-在包含至少一種鈷、與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之觸媒系統存在下,對1,3-丁二烯進行完全或部分立體特異性聚合,而獲得具有活性1,4-順式結構之聚丁二烯;-添加至少一種單牙芳香族膦、視情況及1,3-丁二烯,且持續該立體特異性聚合,而獲得該由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯。
依照本發明之一較佳具體實施例,該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物可選自具有通式(I)或(II)之鈷錯合物:
其中:-R1與R2為相同或不同,選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,更佳為選自異丙基、第三丁基、環戊基、環己基;-R3選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,更佳為選自甲基、乙基、正丙基、異丙基、第三丁基、環戊基、環己基;-R4與R5為相同或不同,選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,C6-C30,較佳為C6-C15芳基,更佳為選自甲基、乙基、正丙基、異丙基、第三丁基、環戊基、環己基、苯基;-Y表示二價基-(CH2)n-,其中n為1至5之範圍的整數;或二價基-NR6-,其中R6表示氫原子,或線形或 分支C1-C20,較佳為C1-C15烷基,更佳為氫原子;或二價基-(CH2)m-R’-(CH2)m-,其中R’表示視情況經取代之芳基,較佳為視情況經取代之苯基,及m為0、1或、2;-X1與X2為相同或不同,表示鹵素原子,例如氯、溴、碘,較佳為氯;或者其選自線形或分支C1-C20,較佳為C1-C15烷基,較佳為甲基、乙基、-OCOR7基、或-OR7基,其中R7選自線形或分支C1-C20,較佳為C1-C15烷基,較佳為甲基、乙基。
關於通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物,連同其製備之進一步細節可發現於以下文件,其內容納入此處作為參考:國際專利申請案WO 2003/018649號;義大利專利IT 1,349,143、IT 1,349,142、IT 1,349,141號;Ricci G.等人之“Journal of Molecular Catalysis A:Chemical”(2005),第226卷,第235-241頁;Ricci G.等人之“Macromolecules”(2005),第38卷,第1064-1070頁;Ricci G.等人之“Journal of Organometallic Chemistry”(2005),第690卷,第1845-1854頁;Ricci G.等人之“Advanced in Organometallic Chemistry Research”(2007),K.Yamamoto編輯,Nova Science Publisher,Inc.USA,第1-36頁;Ricci G.等人之“Coordination Chemistry Reviews”(2010),第254卷,第661-676頁;Ricci G.等人之“Cobalt:Characteristics,Compounds,and Applications”(2011),Lucas J.Vidmar編輯,Nova Science Publisher,Inc.,USA,第39-81頁;Ricci G.等人 之“Phosphorus:Properties,Health effects and the Environment”(2012),Ming Yue Chen與Da-Xia Yang編輯,Nova Science Publisher,Inc.,USA,第53-94頁。
依照本發明,通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物應被當作任何物理形式,例如隔離及純化固體形式,以合適溶劑之溶劑合形式、或在合適的有機或無機固體上的支撐形式,較佳為具有粒狀或粉末物理形式。
亦應指出,依照本發明,該通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物可原處製備,即在聚合環境中直接製備。關於此點,該通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物可藉由將配位子(例如以下實施例所揭述而獲得)、含鈷化合物[例如二氯化鈷(CoCl2)]、及欲聚合的預先選擇1,3-丁二烯分別引入,在進行聚合之條件下操作而製備。
依照本發明之一較佳具體實施例,該觸媒系統可包含至少一種選自非碳的元素M’之有機化合物的共觸媒,該元素M’選自屬於元素週期表第2、12、13、或14族之元素,較佳為硼、鋁、鋅、鎂、鎵、錫,甚至更佳為鋁、硼。
通式(I)或(II)之包含鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、及共觸媒之觸媒系統之形成通常及較佳為在惰性液體介質,更佳為在烴溶劑中進行。通式(I)或(II)之鈷與至少一種選自位阻脂 肪族膦或雙牙膦之膦配位子的錯合物、及共觸媒、以及所使用的特定方法之選擇可關於分子結構及所欲結果而改變。
依照本發明之一進一步較佳具體實施例,該共觸媒可選自具有通式(III)之烷基鋁:Al(X’)n(R8)3-n (III)
其中X’表示鹵素原子,例如氯、溴、碘、氟;R8選自線形或分支C1-C20烷基、環烷基、芳基,該基視情況經一個或以上的矽或鍺原子取代;及n為0至2之範圍的整數。
依照本發明之一進一步較佳具體實施例,該共觸媒可選自屬於元素週期表第13或14族之非碳的元素M’之有機氧化化合物,較佳為鋁、鎵、錫之有機氧化化合物。該有機氧化化合物可定義為M’之有機化合物,其中將M’鍵結至少一個氧原子、及至少一個由具有1至6個碳原子之烷基(較佳為甲基)所組成的有機基。
依照本發明之一進一步較佳具體實施例,該共觸媒可選自元素M’之有機金屬化合物、或有機金屬化合物的混合物,元素M’為非碳,其可以通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物反應,由其提取單或多價陰離子而一方面形成至少一種中性化合物,另一方面形成由含經配位子配位的金屬(Co)之陽離子所組成的離子性化合物;及含金屬M’之非配位有機陰離子,其中負電荷在多中心結構中不定域。
應指出,為了本說明書及以下申請專利範圍之目標,術語「元素週期表」係指日期為2007年6月22日之IUPAC版「元素週期表」,其由以下的網際網路網站提供:www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1Jun12.pdf。
應指出,為了本說明書及以下申請專利範圍之目標,片語「室溫」係指20℃至25℃之範圍的溫度。
對本發明之目標特別有用的通式(III)之烷基鋁的指定實例為:三甲基鋁、三(2,3,3-三甲基-丁基)鋁、三(2,3-二甲基-己基)鋁、三(2,3-二甲基-丁基)鋁、三(2,3-二甲基-戊基)鋁、三(2,3-二甲基-庚基)鋁、三(2-甲基-3-乙基-戊基)鋁、三(2-甲基-3-乙基-己基)鋁、三(2-甲基-3-乙基-庚基)鋁、三(2-甲基-3-丙基-己基)鋁、三乙基鋁、三(2-乙基-3-甲基-丁基)鋁、三(2-乙基-3-甲基-戊基)鋁、三(2,3-二乙基-戊基鋁)、三正丙基鋁、三異丙基鋁、三(2-丙基-3-甲基-丁基)鋁、三(2-異丙基-3-甲基-丁基)鋁、三正丁基鋁、三異丁基鋁(TIBA)、三第三丁基鋁、三(2-異丁基-3-甲基-戊基)鋁、三(2,3,3-三甲基-戊基)鋁、三(2,3,3-三甲基-己基)鋁、三(2-乙基-3,3-二甲基-丁基)鋁、三(2-乙基-3,3-二甲基-戊基)鋁、三(2-異丙基-3,3-二甲基-丁基)鋁、三(2-三甲基矽烷基-丙基)鋁、三2-甲基-3-苯基-丁基)鋁、三(2-乙基-3-苯基-丁基)鋁、三(2,3-二甲基-3-苯基-丁基)鋁、三(2-苯基-丙基)鋁、三[2-(4-氟苯基)-丙基]鋁、三[2-(4-氯苯基)-丙基]鋁、三[2-(3-異丙基-苯基-三(2-苯基-丁基)鋁、三(3-甲基-2-苯基-丁基) 鋁、三(2-苯基-戊基)鋁、三[2-(五氟苯基)-丙基]鋁、三(2,2-二苯基-乙基]鋁、三(2-苯基-甲基-丙基)鋁、三戊基鋁、三己基鋁、三環己基鋁、三辛基鋁、氫化二乙基鋁、氫化二正丙基鋁、氫化二正丁基鋁、氫化二異丁基鋁(DIBAH)、氫化二己基鋁、氫化二異己基鋁、氫化二辛基鋁、氫化二異辛基鋁、二氫化乙基鋁、二氫化正丙基鋁、二氫化異丁基鋁、氯化二乙基鋁(DEAC)、二氯化單乙基鋁(EADC)、氯化二甲基鋁、氯化二異丁基鋁、二氯化異丁基鋁、倍半氯化乙基鋁(EASC),及其中烴取代基之一被氫原子取代、與其中烴取代基之一或二被異丁基取代的對應化合物。特佳為氯化二乙基鋁(DEAC)、二氯化單乙基鋁(EADC)、倍半氯化乙基鋁(EASC)。
當用以形成本發明之催化聚合系統時,通式(III)之烷基鋁可較佳為以存在於通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物中的鈷、與存在於通式(III)之烷基鋁中的鋁之間的莫耳比可為5至5,000之範圍,較佳為10至1,000之範圍的比例,接觸通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物。通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、與通式(III)之烷基鋁彼此接觸的順序並不特別重要。
關於通式(III)之烷基鋁之進一步細節可發現於國際專利申請案WO 2011/061151號。
依照本發明之一特佳具體實施例,該有機氧化化合物可選自具有通式(IV)之鋁氧烷: (R9)2-Al-O-[-Al(R10)-O-]p-Al-(R11)2 (IV)
其中R9、R10、與R11為相同或不同,表示氫原子、鹵素原子,例如氯、溴、碘、氟;或者其選自線形或分支C1-C20烷基、環烷基、芳基,該基視情況經一個或以上的矽或鍺原子取代;及p為0至1,000之範圍的整數。
如已知,鋁氧烷為含有Al-O-Al鍵,且O/Al比可變動之化合物,其可藉所屬技術領域已知之方法獲得,例如在控制條件下,將烷基鋁或鹵化烷基鋁以水、或以含預定可用水量之其他化合物反應,例如在將三甲基鋁以硫酸鋁六水合物、硫酸酮五水合物、或硫酸鐵五水合物反應之情形。
該鋁氧烷,尤其是甲基鋁氧烷(MAO),為藉已知的有機金屬化學方法,例如將三甲基鋁加入硫酸鋁水合物於己烷中的懸浮液,而獲得的化合物。
當用以形成本發明之催化聚合系統時,通式(IV)之鋁氧烷可較佳為以存在於通式(IV)之烷基鋁中的鋁、與存在於通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物中的鈷之間的莫耳比為10至10,000之範圍,較佳為100至5,000之範圍的比例,接觸通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物。通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、與通式(IV)之烷基鋁彼此接觸的順序並不特別重要。
除了以上較佳的通式(IV)之烷基鋁,本發明化合物之定義亦可包括在通式(IV)中以鎵取代鋁之鎵氧 烷、及在通式(IV)中以錫取代鋁之錫氧烷,已知其在烯烴聚合中在茂金屬錯合物存在下作為共觸媒之用途。關於該鎵氧烷及錫氧烷之進一步細節可發現於美國專利US 5,128,295與US 5,258,475號。
對本發明之目標特別有用的通式(IV)之鋁氧烷的指定實例為:甲基鋁氧烷(MAO)、乙基鋁氧烷、正丁基鋁氧烷、四異丁基鋁氧烷(TIBAO)、第三丁基鋁氧烷、四(2,4,4-三甲基-戊基)鋁氧烷(TIOAO)、四(2,3-二甲基丁基)鋁氧烷(TDMBAO)、四(2,3,3-三甲基-丁基)鋁氧烷(TTMBAO)。特佳為甲基鋁氧烷(MAO)。
關於通式(IV)之烷基鋁之進一步細節可發現於國際專利申請案WO 2011/061151號。
依照本發明之一較佳具體實施例,該化合物或化合物的混合物可選自鋁、尤其是硼之有機化合物,例如由以下通式(V)、(VI)、或(VII)所表示者:[(RC)WH4-W]‧[B(RD)4]-、B(RD)3、Al(RD)3、B(RD)3P、[Ph3C]+‧[B(RD)4]- (V)
[(RC)3PH]+‧[B(RD)4]- (VI)
[Li]+‧[B(RD)4]-、[Li]+‧[Al(RD)4]- (VII)
其中w為0至3之範圍的整數,各RC基分別表示具有1至10個碳原子之烷基或芳基,及各RD基分別表示部分或完全,較佳為完全氟化,具有6至20個碳原子之芳基,P表示視情況經取代之吡咯基。
當用以形成本發明之催化聚合系統時,通式(V)、(VI)、或(VII)之化合物或化合物的混合物可較佳為 以存在於通式(V)、(VI)、或(VII)之化合物或化合物的混合物中的金屬(M’)、與存在於通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物中的鈷之間的莫耳比為0.1至15之範圍,較佳為0.5至10之範圍,更佳為1至6之範圍的比例,接觸通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物。通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、與通式(V)、(VI)、或(VII)之化合物或化合物的混合物彼此接觸的順序並不特別重要。
尤其是當通式(I)或(II)中的X1與X2不為烷基時,該通式(V)、(VI)、或(VII)之化合物或化合物的混合物必須結合通式(IV)之鋁氧烷,例如甲基鋁氧烷(MAO),或者較佳為通式(III)之鋁氧烷,更佳為各烷基殘基中具有1至8個碳原子之三烷基鋁,例如三甲基鋁、三乙基鋁、三異丁基鋁(TIBA),而使用。
當使用通式(V)、(VI)、或(VII)之化合物或化合物的混合物時,用以形成本發明之催化聚合系統之方法的實例如下列而定性系統化,然而其絕非限制本發明之全部範圍:(m1)將其中X1與X2至少之一為烷基的通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物,以至少一種通式(V)、(VI)、或(VII)之化合物或化合物的混合物接觸,其陽離子可與該烷基反應而形成中性化合物,及其陰離子體積大,不配位,且可使負電荷不定域; (m2)將通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物,以至少一種通式(III)之烷基鋁反應,較佳為三烷基鋁,其以10/1至300/1之莫耳過量使用,繼而以選自通式(V)、(VI)、或(VII)之化合物或化合物的混合物之強路易士酸,例如參(五氟苯基)硼,以相對鈷(Co)為幾乎化學定量之量或稍微過量反應;(m3)將通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物,以10/1至1,000/1,較佳為100/1至500/1之莫耳過量的至少一種三烷基鋁、或由式AlR'''mZ3-m所表示的鹵化烷基鋁接觸及反應,其中R'''為線形或分支C1-C8烷基、或其混合物,Z為鹵素,較佳為氯或溴,及m為1至3之範圍的十進位數,繼而對如此獲得的組成物添加至少一種通式(V)、(VI)、或(VII)之化合物或化合物的混合物,其量為該通式(V)、(VI)、或(VII)之化合物或化合物的混合物、或該通式(V)、(VI)、或(VII)之化合物或化合物的混合物之鋁、與通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之鈷之間的比例為0.1至15,較佳為1至6之範圍。
可與本發明之通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物反應而製造離子性觸媒系統的通式(V)、(VI)、或(VII)之化合物或化合物的混合物之實例揭述於以下公開物,雖然係參考離子性茂金屬錯合物之形成,其內容納入此處作為參考: -W.Beck等人之“Chemical Reviews”(1988),第88卷,第1405-1421頁;-S.H.Stares之“Chemical Reviews”(1993),第93卷,第927-942頁;-歐洲專利申請案EP 277 003、EP 495 375、EP 520 732、EP 427 697、EP 421 659、EP 418044號;-公開的國際專利申請案WO 92/00333、WO 92/05208號。
對本發明之目標特別有用的通式(V)、(VI)、或(VII)之化合物或化合物的混合物之指定實例為:三丁銨-肆五氟苯基-硼酸鹽、三丁銨-肆五氟苯基-鋁酸鹽、三丁銨-肆[(3,5-二(三氟苯基)]-硼酸鹽、三丁銨-肆(4-氟苯基)]-硼酸鹽、N,N-二甲基苄基-銨-肆五氟苯基-硼酸鹽、N,N-二甲基-己基銨-肆五氟苯基-硼酸鹽、N,N-二甲基苯銨-肆(五氟苯基)-硼酸鹽、N,N-二甲基苯銨-肆(五氟苯基)-鋁酸鹽、二(丙基)-銨-肆(五氟苯基)-硼酸鹽、二(環己基)-銨-肆(五氟苯基)-硼酸鹽、三苯基正碳-肆(五氟苯基)-硼酸鹽、三苯基正碳-肆(五氟苯基)-鋁酸鹽、參(五氟苯基)硼、參(五氟苯基)-鋁、或其混合物。較佳為肆五氟苯基-硼酸鹽。
為了本說明書及以下申請專利範圍之目標,術語「莫耳」及「莫耳比」係參照由分子組成的化合物,亦參照原子及離子而使用,後者省略術語克原子或原子比,即使科學上較正確。
為了調整以滿足指定的實務需求,可視情況將其他的添加劑或成分加入以上觸媒系統。如此獲得的觸媒系統因此應視為包括於本發明之範圍。可被加入以上觸媒系統之製備及/或調配的添加劑及/或成分為例如:惰性溶劑,例如脂肪族及/或芳香族烴;脂肪族及/或芳香族醚;選自例如不可聚合烯烴之弱配位添加劑(例如路易士鹼);立體位阻或電子性不良醚;鹵化劑,例如鹵化矽、鹵化烴,較佳為氯化;或其混合物。
如以上所指示,該觸媒系統可依照所屬技術領域已知的方法製備。
例如可分別(預先形成)製備該觸媒系統,繼而引入聚合環境中。關於此點,該觸媒系統可藉由視情況在選自上列之其他添加劑或成分存在下,在溶劑(例如甲苯、庚烷)存在下,在20℃至60℃之範圍的溫度,將至少一種通式(I)或(II)之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物以至少一種共觸媒反應10秒至10小時之範圍,較佳為30秒至5小時之範圍的時間而製備。該觸媒系統之製備之進一步細節可發現於以下提供的實施例。
或者,該觸媒系統可原處製備,即在聚合環境中直接製備。關於此點,該觸媒系統可藉由分別引入通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、共觸媒、及欲聚合的預先選擇1,3-丁二烯,在進行聚合之條件下操作而製備。
為了本發明之方法標的之目標,該觸媒系統亦可被支撐在惰性固體上,較佳為由矽及/或鋁之氧化物組成,例如二氧化矽、氧化鋁、或矽鋁酸鹽。其可使用已知的支撐技術支撐該觸媒系統,通常包含在合適的惰性液體介質中,載體與本發明標的之觸媒系統的成分之一或兩者(即通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、及共觸媒)之間的接觸,視情況加熱至高於200℃之溫度而活化。為了本發明之目標,其未必支撐兩種成分,可僅有通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、或共觸媒存在於載體表面上。在後者情形,繼而在欲形成對聚合有效的觸媒時,將不在表面上的成分以支撐成分接觸。
通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、及基於其之觸媒系統(已藉將後者官能化,及形成固體與通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之間的共價鍵,而被支撐在固體上),亦包括於本發明之範圍。
通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物、及可用於本發明之方法標的之共觸媒之量依欲進行的聚合方法而改變。該量在任何情形均使存在於通式(I)或(II)之該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物之鈷、與存在於共觸媒之金屬(例如當共觸媒選自通式(III) 之烷基鋁或通式(IV)之鋁氧烷時為鋁,當共觸媒選自通式(V)、(VI)、或(VII)之化合物或化合物的混合物時為硼)之間的莫耳比在上示值之內。
依照本發明之一較佳具體實施例,該單牙芳香族膦可選自具有通式(VIII)之芳香族膦:P(R)m(Ph)n (VIII)
其中:-R選自線形或分支C1-C16,較佳為C1-C8烷基,C3-C16,較佳為C3-C8環烷基,其視情況經取代,烯丙基,視情況經取代苯基;-Ph為視情況經取代苯基;-m與n彼此不同,為1或2,m+n=3。
依照本發明之一較佳具體實施例,該單牙芳香族膦可選自:環己基二苯基膦(PCyPh2)、異丙基二苯基膦(P i PrPh2)、甲基二苯基膦(PMePh2)、乙基二苯基膦(PEtPh2)、正丙基二苯基膦(P n PrPh2)、二甲基苯基膦(PMe2Ph)、二乙基苯基膦(PEt2Ph)、二環己基苯基膦(PCy2Ph)、三苯基膦(PPh3)。較佳為環己基二苯基膦(PCyPh2)、異丙基二苯基膦(P i PrPh2)。
應指出,當使用具有立體位阻較高之單牙芳香族膦時,例如圓錐角(θ)為153°之環己基二苯基膦(PCyPh2)、圓錐角(θ)為150°之異丙基二苯基膦(P i PrPh2),得到其中具有1,2結構之聚丁二烯嵌段的結晶程度較高之立體規則性二嵌段聚丁二烯,即其對排三元組含量[(rr)%]高於或等於50%,較佳為60%至80%之 範圍,且熔點(Tm)高於或等於70℃,較佳為95℃至140℃之範圍;當使用立體位阻較低之單牙芳香族膦時,例如圓錐角(θ)為136°之甲基二苯基膦(PMePh2)、圓錐角(θ)為141°之乙基二苯基膦(PEtPh2)、圓錐角(θ)為142°之正丙基二苯基膦(P n PrPh2)、圓錐角(θ)為127°之二甲基苯基膦(PMe2Ph)、圓錐角(θ)為136°之二乙基苯基膦(PEt2Ph),得到其中具有1,2結構之聚丁二烯嵌段的結晶程度較低之立體規則性二嵌段聚丁二烯,即其對排三元組含量[(rr)%]低於或等於50%,較佳為30%至40%之範圍,且熔點(Tm)為50℃至70℃之範圍。圓錐角(θ)如TolmanC.A.之“Chemical Reviews”(1977),第77卷,第313-348頁所示。
依照本發明之一較佳具體實施例,該方法可在選自例如以下的惰性有機溶劑存在下進行:飽和脂肪族烴,例如丁烷、戊烷、己烷、庚烷、或其混合物;飽和環脂肪族烴,如環戊烷、環己烷、或其混合物;單烯烴,如1-丁烯、2-丁烯、或其混合物;芳香族烴,如苯、甲苯、二甲苯、或其混合物;鹵化烴,如二氯甲烷、氯仿、四氯化碳、三氯乙烯、四氯乙烯、1,2-二氯乙烷、氯苯、溴苯、氯甲苯、或其混合物。該溶劑較佳為選自飽和脂肪族烴。
或者該方法可依照已知為「整體製造方法」(bulk process)之方法,使用欲聚合的相同1,3-丁二烯作為溶劑而進行。
依照本發明之一較佳具體實施例,相對1,3-丁二烯與惰性有機溶劑的總重量,欲聚合的1,3-丁二烯在該惰性有機溶劑中的濃度可為5重量百分比至50重量百分比之範圍,較佳為10重量百分比至20重量百分比之範圍。
依照本發明之一較佳具體實施例,該方法可在-70℃至+120℃,較佳為-20℃至+100℃之範圍的溫度進行。
只要有關壓力,則較佳為在欲聚合混合物之成分的壓力操作,該壓力依所使用的聚合溫度而不同。
該方法可連續或分批進行。
為了較佳地了解本發明及其實務具體實施例,以下提供一些例證性及非限制性實施例。
〔實施例〕 《試劑及材料》
下列顯示用於以下本發明實施例之試劑及材料,連同其選用參數及其供應者:-二氯化鈷(CoCl2)(Strem Chemicals):直接使用;-二第三丁基膦(Strem Chemicals):直接使用;-二第三丁基甲基膦(Strem Chemicals):直接使用;-二第三丁基環己基膦(Strem Chemicals):直接使用;-二環己基第三丁基膦(Strem Chemicals):直接使用;-1,2-貳(二苯基膦)乙烷(Strem Chemicals):直接使用;-乙醇(Carlo Erba,RPE):直接使用,或以鎂(Mg)蒸餾而脫水; -戊烷(Aldrich):純,99.5%,在惰性大氣中以鈉(Na)蒸餾;-1,3-丁二烯(Air Liquide):純,99.5%,在各次製造前從容器蒸發,使其通過裝填分子篩之管柱而乾燥,及在已預先冷卻至-20℃之反應器內部冷凝;-甲苯(Aldrich):純,99.5%,在惰性大氣中以鈉(Na)蒸餾;-甲基鋁氧烷(MAO)(10重量百分比之甲苯溶液)(Aldrich):直接使用;-氫氯酸之37%水溶液(Aldrich):直接使用;-異丙基二苯基膦(P i PrPh2)(Strem Chemicals):直接使用;-甲基二苯基膦(PMePh2)(Strem Chemicals):直接使用;-四氫呋喃(THF)(Carlo Erba,RPE):以鉀/二苯基酮維持在回流溫度,然後在氮下蒸餾;-氘化四氯乙烷(C2D2Cl4)(Acros):直接使用;-氘化氯仿(CDCl3)(Acros):直接使用。
《分析及特徵化方法》
使用以下之分析及特徵化方法。
《元素分析》 a)Co測定
為了測定用於本發明目標之鈷錯合物中的鈷重量,在氮流下於乾燥箱中操作,將準確稱重一份量為約30-50毫克之樣品,連同1毫升之40%氫氟酸(HF)、 0.25毫升之96%硫酸(H2SO4)、與1毫升之70%硝酸(HNO3)的混合物置於約30毫升鉑坩堝中。然後將坩堝在加熱板上加熱,增溫直到白色硫酸煙霧出現(約200℃)。將如此獲得的混合物冷卻至室溫(20℃-25℃),添加1毫升之70%硝酸(HNO3),然後將混合物加熱直到又出現煙霧。在將此序列重複又2次之後,得到透明、幾乎無色溶液。然後冷添加1毫升之硝酸(HNO3)、與約15毫升之水,接著將混合物加熱至80℃歷時約30分鐘。將如此製備的樣品以MilliQ純度之水稀釋成準確稱重為約50克之重量而獲得溶液,使用ICP-OES(光學偵測電漿)Thermo Optek IRIS Advantage Duo光譜儀對其進行分析儀器測定,且比較已知濃度之溶液。在此製備各分析物在0ppm-10ppm之範圍內的測量溶液之校正曲線,其具有以公證溶液重量稀釋而獲得的已知滴定量。
在進行光譜光度分析之前,稱重而再度稀釋如上所述而製備的樣品溶液,以獲得接近作為參考之濃度。所有的樣品均製備兩份。如果單筆兩份測試之資料相對其平均值不相差超過2%,則結果視為可接受。
b)氯測定
在此在氮流下於乾燥箱中,在100毫升玻璃瓶中將用於本發明目標之鈷錯合物樣品準確稱重成約30毫克-50毫克。添加2克之碳酸鈉(Na2CO3),及在乾燥箱外50毫升之MillQ水。將混合物在加熱板上在磁性攪拌下加熱至沸點歷時約30分鐘。將其靜置冷卻,添加1/5稀硫酸直到反應變成酸性,且使用電位滴定器將混合物以0.1N硝酸銀(AgNO3)滴定。
c)碳、氫、與磷之測定
使用Carlo Erba自動分析儀1106型進行用於本發明目標之鈷錯合物中、及用於本發明目標之配位子中的碳、氫、與磷之測定。
13 C-HMR及 1 H-HMR光譜
藉Bruker Avance 400型核磁共振光譜儀,在103℃使用氘化四氯乙烷(C2D2Cl4)且以六甲基二矽氧烷(HDMS)作為內標準品,或者在25℃使用氘化氯仿(CDCl3)且以四甲基矽烷(TMS)作為內標準品,而記錄13C-HMR及1H-HMR光譜。在此使用相對聚合溶液總重量,濃度為10重量百分比之聚合物溶液。
基於文獻Mochel,V.D.之“Journal of Polymer Science Part A-1:Polymer Chemistry”(1972),第10卷,第4期,第1009-1018頁所示分析以上光譜,而測定聚合物之微結構,即1,4-順式單元含量(%)、1,2單元含量(%)、及對排三元組含量[(rr)%]。
二維 13 C-NMR光譜
藉Bruker Avance 400型核磁共振光譜儀,在103℃使用氘化四氯乙烷(C2D2Cl4)且以六甲基二矽氧烷(HDMS)作為內標準品,而記錄二維13C-NMR光譜。在此使用相對聚合物溶液總重量,濃度為10重量百分比之聚合物溶液。
藉可建立長期質子-碳相關(1H-13C長期相關)之二維HSQC(「異核單量子相關」)及HMBC(「異核多鍵相關」)NMR技術將信號歸類:以此方式可驗證具有 1,4-順式結構之聚丁二烯嵌段、與具有1,2結構之聚丁二烯嵌段之間的接點之信號特徵(參見圖A):
此外,二維1H-1H COSY(「相關光譜術」)NMR技術可由歸類為各嵌段內之1,4-順式與1,2單元而驗證相鄰1,4-順式與1,2單元之質子(即以*表示的接點單元)的化學位移「不同」。將以該1H-1H COSY技術所獲得的資料、與以上述HSQC及HMBC技術所獲得的資料交叉比對,可驗證不同單元之間的接點之相關信號。
I.R.光譜
藉Thermo Nicolet Nexus 670及Bruker IFS 48光譜光度儀記錄I.R.光譜(FT-IR)。
將欲分析的配位子分散於無水溴化鉀(KBr)(KBr片)中,或石蠟懸浮液中,而獲得用於本發明之配位子的I.R.光譜(FT-IR)。
將欲分析的鈷錯合物分散於無水溴化鉀(KBr)(KBr片)中,或石蠟懸浮液中,而獲得用於本發明之鈷錯合物的I.R.光譜(FT-IR)。
由溴化鉀(KBr)錠上的聚合物膜獲得聚合物之I.R.光譜(FT-IR),該膜係沉積欲分析的聚合物於熱鄰二氯苯中溶液而獲得。相對聚合物溶液總重量,所分析的聚合物溶液之濃度為10重量百分比。
熱分析(DSC)
使用TA Instruments之差式掃描熱度計DSC Q1000進行DSC(「差式掃描熱度計」)熱分析,而測定所獲得的聚合物之熔點(Tm)、玻璃轉移溫度(Tg)、及結晶溫度(Tc)。
標準DSC(「差式掃描熱度計」-DSC STD)熱分析設定在全部測量範圍使用等溫條件或固定溫度變動。在這些條件下,判讀其中所涉及的一些過程及能量之一些轉變或定量化經常為複雜且有時不可能。為了解決這些難處而引用「溫度調變差式掃描熱度計」技術(TMDSC),其中對典型溫度輪廓施加關於時間之變動(稱為調變)。因此,DSC STD與TMDSC之間的基本差異在於與簡單線形溫度變動重疊之調變溫度輪廓,及後續產生之瞬時加熱速率連續變動。其可驗證及展開關於加熱速率變動(即反熱流)的現象,如熱容(Cp),所產生對熱流之貢獻。由總熱流(以固定速率測量)與反熱流之間的差異可分離與熱容(非反熱流)無關的現象所產生之貢獻。
實務上,此分離包括可區別玻璃轉移/熔化/結晶型過程,其在相同的溫度範圍內依照以下方程式而發生:dH/dt=Cp(dT/dt)+f(T,t)
其中:-dH/dt為總熱流;-Cp為熱容;-(dT/dt)為加熱速率; -Cp(dT/dt)為反熱流;-f(T,t)為非反熱流。
因此施加以下的熱循環,其中在冷卻循環期間應用溫度調變差式掃描熱度計(TMDSC)而可區別結晶現象與玻璃轉移溫度(Tg)。
為了確保產物不因溫度降解而重複該循環(Tmax=155℃)。
在此對樣品施加的熱循環如下(T=溫度;v=掃描速率):-樣品調節:在標準掃描中以v=10℃/分鐘從T=25℃加熱至T=155℃,繼而為TMDSC(即調變DSC)之每60秒的+/-0.47℃調變,以v=3℃/分鐘從T=155℃至T=-130℃的冷卻輪廓(第1循環);-以v=10℃/分鐘從T=-130℃至T=155℃的後續加熱(標準掃描)(第2循環);-將樣品在T=155℃維持2分鐘,及如第1循環之相同步驟(TMDSC)的後續冷卻(第3循環);-如第2循環(標準掃描)之相同步驟,從T=-130℃至T=155℃的末尾加熱(第4循環)。
分子量測定
藉在以下條件下操作的GPC(「凝膠滲透層析術)」,進行所獲得的聚合物之分子量(MW)之測定:-Agilent 1100泵;-I.R. Agilent 1100偵測器;-PL Mixed-A管柱; -溶劑/溶析液:四氫呋喃(THF);-流速:1毫升/分鐘;-溫度:25℃;-分子質量計算:通用校正法。
報告重量平均分子量(Mw)、及對應Mw/Mn比(Mn=數量平均分子量)之聚合分散性指數(PDI)。
原子力顯微術(AFM)
在此,藉旋塗將該立體規則性二嵌段聚丁二烯於氯仿中或甲苯中溶液沉積在矽基板上,而製備欲分析的立體規則性二嵌段聚丁二烯薄膜。
使用N-MDT之NTEGRA光譜原子力顯微術(AFM),在無動態接觸(非接觸模式或分接模式)下而進行分析。在掃描該薄膜表面期間,尖端波動幅度之變動提供關於該表面之地形資訊(高度影像)。此外,尖端波動之相變動可用以區別存在於該膜表面上的不同型式材料(不同的材料相)。例如以下提供的第19及20圖顯示在實施例27(MM71)所獲得的立體規則性二嵌段聚丁二烯之資料。
動態機械分析(DMA)
使用Rheometrics Scientific之RMS 800流變計進行動態機械分析(DMA),其裝有8毫米平行板幾何。
將欲分析的樣品裝入流變計,且在分析之前調節成130℃恆溫。為了完全釋放板間有關裝載及擠壓樣品的應力,故對各樣品在130℃以100徑度/秒及0.01徑度/秒進行4次連續頻率掃測。為了研究樣品關於頻率 及溫度的回應,在此系列之頻率掃測之後,在110℃、90℃、70℃、50℃、與30℃從100徑度/秒至0.01徑度/秒對同一樣品進行又一系列之頻率掃測。
為了比較,除了在實施例19(G1168)所獲得的聚丁二烯樣品[1,4-順式聚丁二烯(參考性同元聚合物)]之外,具有高1,4-順式含量的市售聚丁二烯獲得的樣品,即Europrene Neocis® BR 40(BR40),亦接受相同的分析。
至於實例,以下提供的第15圖顯示實施例20(MM59)及21(MM57)之立體規則性二嵌段聚丁二烯、以及實施例19(G1168)及Europrene Neocis® BR 40(BR40)之聚丁二烯參考樣品的彈性模數值(G’)。
〔實施例1〕 《CoCl2(P t Bu3)2之合成》
將三第三丁基膦(1.14克,5.6毫莫耳)於乙醇(20毫升)中溶液在攪拌下逐滴加入無水二氯化鈷(CoCl2)(0.293克,2.26毫莫耳)於乙醇(30毫升)中溶液。其形成淺藍色沉澱。
將所獲得的懸浮液在攪拌下在室溫(25℃)保持20小時,繼而以真空過濾器過濾。將殘留在過濾器上的殘渣真空乾燥,為了移除過量三第三丁基膦與未反應二氯化鈷(CoCl2)之殘量而在低溫(-50℃)以戊烷(2×15毫升)及乙醇(2×10毫升)清洗。
將所獲得的固體殘渣真空乾燥過夜而獲得0.75克之淺藍色固體(按所裝載的二氯化鈷(CoCl2)計,產率為62.1%)。
元素分析[實測(計算值)]:Co:11.09%(11.03%);Cl:13.01%(13.27%);P:11.41%(11.59%)。
FT-IR(KBr):ν(公分-1)2954(m);2924(s);2854(m);1465(s);1378(m)。
〔實施例2〕 《CoCl2(P t Bu2Me)2之合成》
將二第三丁基甲基膦(1.35克,8.4毫莫耳)於乙醇(10毫升)中溶液加入無水二氯化鈷(CoCl2)(0.37克,2.8毫莫耳)於乙醇(25毫升)中溶液。其立刻形成藍色懸浮液,將其在攪拌下在室溫(25℃)保持24小時,繼而以真空過濾器過濾。
將殘留在過濾器上的藍色殘渣以少量乙醇與戊烷清洗,繼而真空乾燥而獲得藍色固體,將其以戊烷在沸點連續萃取而獲得結晶形式的固體。在萃取過程期間在用於此目的之燒瓶底部直接形成該觸媒,繼而移除戊烷溶液且將其冷卻至-30℃而獲得其他結晶,且獲得0.88克之藍色結晶形式的固體(按所裝載的二氯化鈷(CoCl2)計,產率為70.3%)。
元素分析[實測(計算值)]:Co:13.70%(13.09%);Cl:16.30%(15.75%);P:13.50%(15.75%)。
FT-IR(KBr):ν(公分-1)2963(s),2949(s),2905(m),2873(m),1475(s),1396(m),1372(s),1304(s),1182(w),1127(s),1101(s),1047(m),1025(m),943(m),886(s),818(s),759(m),726(w),641(m),485(w),471(w),455(m),414(w)。
〔實施例3〕 《CoCl2(PCy t Bu2)2之合成》
將二第三丁基環己基膦(2.0克,8.8毫莫耳)於乙醇(20毫升)中溶液加入無水二氯化鈷(CoCl2)(0.53克,4.1毫莫耳)於乙醇(40毫升)中溶液。其形成藍色懸浮液,將其在攪拌下在室溫(25℃)保持48小時,繼而以真空過濾器過濾。
將殘留在過濾器上的藍色殘渣以少量乙醇與戊烷清洗,真空乾燥,繼而以戊烷在沸點連續萃取而獲得1.84克之藍色微結晶固體(按所裝載的二氯化鈷(CoCl2)計,產率為76.5%)。
元素分析[實測(計算值)]:Co:10.20%(10.05%);Cl:12.30%(12.09%);P:10.80%(10.56%)。
〔實施例4〕 《CoCl2(PCy2 t Bu)2之合成》
將二環己基第三丁基膦(2.0克,7.9毫莫耳)加入無水二氯化鈷(CoCl2)(0.49克,3.8毫莫耳)於乙醇(40毫升)中溶液。
數分鐘後形成藍色溶液,將其在攪拌下在室溫(25℃)保持48小時,繼而真空乾燥。將所獲得的殘渣以乙醇(3×10毫升)清洗,再度真空乾燥而獲得2.1克之藍色微結晶固體(按所裝載的二氯化鈷(CoCl2)計,產率為86.5%)。
元素分析[實測(計算值)]:Co:9.10%(9.23%);Cl:11.30%(11.10%);P:9.90%(9.70%)。
〔實施例5〕 《CoCl2(dppe)之合成》
將1,2-貳(二苯基膦)乙烷(2.1克,5毫莫耳)於乙醇(50毫升)中懸浮液加入無水二氯化鈷(CoCl2)(0.55克,4.2毫莫耳)於乙醇(25毫升)中溶液:懸浮液顏色從暗藍色快速變成青綠色。
將所獲得的懸浮液加熱至回流溫度歷時3小時,冷卻至室溫(25℃),繼而以真空過濾器過濾。
將殘留在過濾器上的殘渣以乙醇繼而以戊烷清洗數次,然後在室溫(25℃)真空乾燥過夜而獲得1.96克之固體產物(按所裝載的二氯化鈷(CoCl2)計,產率為88%)。
元素分析[實測(計算值)]:Co:11.20%(10.87%);Cl:13.25%(13.08%);P:11.30%(11.42%)。
FT-IR(KBr):ν(公分-1)3053(m);1485(m);1435(s);1159(m);1104(s);998(m);966(m);744(s);694(s);546(m);509(sm)。
〔實施例6(MM46)〕 《1,4-順式聚丁二烯(參考性同元聚合物)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.0毫升之甲苯,且將如此獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例1所述的錯合物CoCl2(P t Bu3)2(2.68毫升之濃度為2毫克/毫升之甲苯溶 液;1x10-5莫耳,約5.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時40分鐘。然後添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之1,4-順式單元含量為96.8%之聚丁二烯:該方法及所獲得的聚丁二烯之其他特徵示於表1。
第1(a)圖顯示所獲得的聚丁二烯之FT-IR光譜。
〔實施例7(MM48)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.0毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例1所述的錯合物CoCl2(P t Bu3)2(2.68毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時5分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又100分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有 1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比35.9/64.1)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第1(b)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第2圖顯示所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
〔實施例8(MM49)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.0毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例1所述的錯合物CoCl2(P t Bu3)2(2.68毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時12分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又93分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚 丁二烯嵌段(莫耳比54.5/45.5)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第1(c)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第3圖顯示所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
〔實施例9(MM47)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.0毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例1所述的錯合物CoCl2(P t Bu3)2(2.68毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又80分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比68/32)的立體規則性二嵌段聚丁二 烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第1(d)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第4圖顯示所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第5圖顯示所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
〔實施例10(MM53)〕 《1,4-順式聚丁二烯(參考性同元聚合物)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例2所述的錯合物CoCl2(P t Bu2Me)2(2.25毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約4.5毫克)。將全部混合物在20℃保持在磁性攪拌下歷時40分鐘。然後添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.035克之1,4-順式單元含量為96.9%之聚丁二烯:該方法及所獲得的聚丁二烯之其他特徵示於表1。
第6(a)圖顯示所獲得的聚丁二烯之FT-IR光譜。
第7圖顯示所獲得的聚丁二烯之DSC圖。
〔實施例11(MM54)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例2所述的錯合物CoCl2(P t Bu2Me)2(2.25毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約4.5毫克)。將全部混合物在20℃保持在磁性攪拌下歷時12分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又93分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比39.4/60.6)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第8圖顯示所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
〔實施例12(G1173)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例2所述的錯合物CoCl2(P t Bu2Me)2(2.25毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約4.5毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又30分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比48/52)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第6(b)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第9圖顯示所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
〔實施例13(MM64)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例2所述的錯合物CoCl2(P t Bu2Me)2(2.25毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約4.5毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加甲基二苯基膦(PMePh2)於甲苯中溶液(0.48毫升;1.2x10-5莫耳,約2.4毫克;莫耳比P/Co=1.2)。將聚合進行又360分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比45.4/54.6)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
〔實施例14(MM50)〕 《1,4-順式聚丁二烯(參考性同元聚合物)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例4所述的錯合物CoCl2(PCy2 t Bu)2(3.2毫升之濃度為2毫克/毫升之甲苯溶 液;1x10-5莫耳,約6.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時180分鐘。然後添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之1,4-順式單元含量為97.1%之聚丁二烯:該方法及所獲得的聚丁二烯之其他特徵示於表1。
第6(c)圖顯示所獲得的聚丁二烯之FT-IR光譜。
〔實施例15(MM60)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例4所述的錯合物CoCl2(PCy2 t Bu)2(3.2毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約6.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時5分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又10分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有 1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比26.7/73.3)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第6(d)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例16(G1174)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例4所述的錯合物CoCl2(PCy2 t Bu)2(3.2毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約6.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又25分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比58.7/41.3)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第10(a)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例17(MM65)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例4所述的錯合物CoCl2(PCy2 t Bu)2(3.2毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約6.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時5分鐘,然後添加甲基二苯基膦(PMePh2)於甲苯中溶液(0.48毫升;1.2x10-5莫耳,約2.4毫克;莫耳比P/Co=1.2)。將聚合進行又247分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比28.4/71.6)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第10(b)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例18(MM66)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例4所述的錯合物CoCl2(PCy2 t Bu)2(3.2毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約6.4毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加甲基二苯基膦(PMePh2)於甲苯中溶液(0.48毫升;1.2x10-5莫耳,約2.4毫克;莫耳比P/Co=1.2)。將聚合進行又227分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比75/25)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第10(c)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例19(G1168)〕 《1,4-順式聚丁二烯(參考性同元聚合物)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例3所述的錯合物CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時200分鐘。然後添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之1,4-順式單元含量為97%之聚丁二烯:該方法及所獲得的聚丁二烯之其他特徵示於表1。
第15圖顯示所獲得的聚丁二烯之彈性模數(G’)。
第16圖顯示所獲得的聚丁二烯之DSC圖譜。
〔實施例20(MM59)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例3所述的錯合物CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶 液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時5分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又10分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比31.4/68.6)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第13(a)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第14圖顯示所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第15圖顯示所獲得的立體規則性二嵌段聚丁二烯之彈性模數(G’)。
〔實施例21(MM57)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例3所述的錯合物 CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時25分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又80分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比62.5/37.5)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第15圖顯示所獲得的立體規則性二嵌段聚丁二烯之彈性模數(G’)。
第10(d)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第11圖顯示所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
〔實施例22(MM58)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58 克),繼而獲得如實施例3所述的錯合物CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時45分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又60分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比85.1/14.9)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第13(b)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第12圖顯示所獲得的立體規則性二嵌段聚丁二烯之DSC圖。
〔實施例23(MM68)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例3所述的錯合物 CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時5分鐘,然後添加甲基二苯基膦(PMePh2)於甲苯中溶液(0.48毫升;1.2x10-5莫耳,約2.4毫克;莫耳比P/Co=1.2)。將聚合進行又145分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比33.9/66.1)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第13(c)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例24(MM69)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加6.5毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例3所述的錯合物CoCl2(PCy t Bu2)2(2.9毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.9毫克)。將全部混合物在20℃保持在磁性攪拌下歷時20分鐘,然後添加甲基二苯基膦 (PMePh2)於甲苯中溶液(0.48毫升;1.2x10-5莫耳,約2.4毫克;莫耳比P/Co=1.2)。將聚合進行又130分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比84/16)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第13(d)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例25(MM67)〕 《1,4-順式聚丁二烯(參考性同元聚合物)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例5所述的錯合物CoCl2(dppe)(2.65毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.3毫克)。將全部混合物在20℃保持在磁性攪拌下歷時120分鐘。然後添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得0.765克之1,4-順式單元含量為97.2%之聚丁二烯:該方法及所獲得的聚丁二烯之其他特徵示於表1。
第17(a)圖顯示所獲得的聚丁二烯之FT-IR光譜。
〔實施例26(MM70)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例5所述的錯合物CoCl2(dppe)(2.65毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.3毫克)。將全部混合物在20℃保持在磁性攪拌下歷時12分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又138分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比35.9/64.1)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第17(b)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
〔實施例27(MM71)〕 《具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯(本發明)之合成》
將2毫升之1,3-丁二烯(約1.4克)於25毫升試管中在低溫(-20℃)冷凝。繼而添加7毫升之甲苯,且將所獲得的溶液之溫度提高到20℃。然後添加甲基鋁氧烷(MAO)於甲苯溶液(6.3毫升;1x10-2莫耳,約0.58克),繼而獲得如實施例5所述的錯合物CoCl2(dppe)(2.65毫升之濃度為2毫克/毫升之甲苯溶液;1x10-5莫耳,約5.3毫克)。將全部混合物在20℃保持在磁性攪拌下歷時30分鐘,然後添加異丙基二苯基膦(P i PrPh2)於甲苯中溶液(0.55毫升;1.2x10-5莫耳,約2.7毫克;莫耳比P/Co=1.2)。將聚合進行又120分鐘,繼而添加2毫升之甲醇(含數滴氫氯酸)而中止聚合。然後添加40毫升之甲醇溶液(含4%之抗氧化劑Irganox® 1076(Ciba))而將所獲得的聚合物凝結,且獲得1.4克之具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段(莫耳比55.5/44.5)的立體規則性二嵌段聚丁二烯:該方法及所獲得的立體規則性二嵌段聚丁二烯之其他特徵示於表1。
第17(c)圖顯示所獲得的立體規則性二嵌段聚丁二烯之FT-IR光譜。
第18圖顯示所獲得的立體規則性二嵌段聚丁二烯之1H-NMR及13C-NMR光譜。
第19圖及第20圖顯示藉原子力顯微術(AFM)而獲得的立體規則性二嵌段聚丁二烯之高度影像(「高度影像」)及相影像(「相影像」)。
(a):1,4-順式%;
(b):根據13C-NMR分析而測定,具有1,2對排結構之聚丁二烯嵌段中的對排三元組含量[(rr)%];
(c):熔點;
(d):結晶溫度;
(e):玻璃轉移溫度;
(cs):具有1,4-順式結構之嵌段的熔點;
(ch):具有1,2對排結構之嵌段的熔點;
(ds):具有1,4-順式結構之嵌段的結晶溫度;
(dh):具有1,2對排結構之嵌段的結晶溫度;
(es):具有1,4-順式結構之嵌段的玻璃轉移溫度;
(eh):具有1,2對排結構之嵌段的玻璃轉移溫度;
n.d.:未測定。

Claims (18)

  1. 一種由具有1,4-順式結構之聚丁二烯嵌段、與具有1,2對排結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯,其具有下式(I):PB1-PB2 (I)其中:- PB1對應具有1,4-順式結構之聚丁二烯嵌段;- PB2對應具有對排1,2結構之聚丁二烯嵌段;本質上無1,4-反式單元。
  2. 如請求項1之立體規則性二嵌段聚丁二烯,其中該立體規則性二嵌段聚丁二烯具有以下特徵:- 在紅外線分析(FT-IR)中,代表1,4-順式及1,2序列之帶分別中央對齊737公分-1及911公分-1;- 在13C-NMR分析中,具有1,4-順式結構之聚丁二烯嵌段、與具有1,2結構之聚丁二烯嵌段之間的接點之信號特徵位於30.7ppm、25.5ppm、與41.6ppm。
  3. 如請求項1或2之立體規則性二嵌段聚丁二烯,其中在該立體規則性二嵌段聚丁二烯中:- 具有1,4-順式結構之嵌段具有低於或等於-100℃,較佳為-104℃至-113℃之範圍的玻璃轉移溫度(Tg),低於或等於-2℃,較佳為-5℃至-20℃之範圍的熔點(Tm),及低於或等於-25℃,較佳為-30℃至-54℃之範圍的結晶溫度(Tc);- 具有1,2對排結構之嵌段具有低於或等於-10℃,較佳為-14℃至-24℃之範圍的玻璃轉移溫度(Tg),高於 或等於70℃,較佳為95℃至140℃之範圍的熔點(Tm),及高於或等於55℃,較佳為60℃至130℃之範圍的結晶溫度(Tc)。
  4. 如以上請求項中任一項之立體規則性二嵌段聚丁二烯,其中該立體規則性二嵌段聚丁二烯具有1.9至2.2之範圍的聚合分散性指數(PDI),其對應Mw/Mn比(Mw=重量平均分子量;Mn=數量平均分子量)。
  5. 如以上請求項中任一項之立體規則性二嵌段聚丁二烯,其中在該立體規則性二嵌段聚丁二烯中,該具有1,4-順式結構之聚丁二烯嵌段在靜止條件下(即未接受應力)在室溫為非晶性,且相對存在於該具有1,4-順式結構之聚丁二烯嵌段中的丁二烯單元總莫耳量,具有高於或等於96莫耳百分比,較佳為97莫耳百分比至99莫耳百分比之範圍的1,4-順式含量。
  6. 如以上請求項中任一項之立體規則性二嵌段聚丁二烯,其中在該立體規則性二嵌段聚丁二烯中,具有1,2對排結構之聚丁二烯嵌段具有高於或等於15%,較佳為60%至80%之範圍的對排三元組含量[(rr)%]。
  7. 如以上請求項中任一項之立體規則性二嵌段聚丁二烯,其中在該立體規則性二嵌段聚丁二烯中,1,4-順式/1,2莫耳比為15:85至80:20之範圍,較佳為25:75至70:30之範圍。
  8. 如以上請求項中任一項之立體規則性二嵌段聚丁二烯,其中該立體規則性二嵌段聚丁二烯具有100,000克/莫耳至800,000克/莫耳之範圍,較佳為120,000克/莫耳至600,000克/莫耳之範圍的重量平均分子量(Mw)。
  9. 一種用以製備如以上請求項中任一項之立體規則性二嵌段聚丁二烯之方法,其包含:- 在包含至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的觸媒系統存在下,對1,3-丁二烯進行完全或部分立體特異性聚合,而獲得具有1,4-順式活性結構之聚丁二烯;- 添加至少一種單牙芳香族膦、視情況及1,3-丁二烯,且持續該立體特異性聚合,而獲得該由具有1,4-順式結構之聚丁二烯嵌段、與具有對排1,2結構之聚丁二烯嵌段所構成的立體規則性二嵌段聚丁二烯。
  10. 如請求項9之方法,其中該鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物選自具有通式(I)或(II)之鈷錯合物: 其中:- R1與R2為相同或不同,選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,更佳為選自異丙基、第三丁基、環戊基、環己基; - R3選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,更佳為選自甲基、乙基、正丙基、異丙基、第三丁基、環戊基、環己基;- R4與R5為相同或不同,選自線形或分支C1-C20,較佳為C1-C15烷基,C3-C30,較佳為C4-C15環烷基,C6-C30,較佳為C6-C15芳基,更佳為選自甲基、乙基、正丙基、異丙基、第三丁基、環戊基、環己基、苯基;- Y表示二價基-(CH2)n-,其中n為1至5之範圍的整數;或二價基-NR6-,其中R6表示氫原子,或線形或分支C1-C20,較佳為C1-C15烷基,更佳為氫原子;或二價基-(CH2)m-R’-(CH2)m-,其中R’表示視情況經取代之芳基,較佳為視情況經取代之苯基,及m為0、1或、2;- X1與X2為相同或不同,表示鹵素原子,例如氯、溴、碘,較佳為氯;或者其選自線形或分支C1-C20,較佳為C1-C15烷基,較佳為甲基、乙基、-OCOR7基、或-OR7基,其中R7選自線形或分支C1-C20,較佳為C1-C15烷基,較佳為甲基、乙基。
  11. 如請求項9或10之方法,其中該觸媒系統包含至少一種選自非碳的元素M’之有機化合物的共觸媒,該元素M’選自屬於元素週期表第2、12、13、或14族之元素,如硼、鋁、鋅、鎂、鎵、錫,甚至更佳為鋁、硼。
  12. 如請求項11之方法,其中該共觸媒選自具有通式(III)之烷基鋁:Al(X’)n(R8)3-n (III)其中X’表示鹵素原子,如氯、溴、碘、氟;R8選自線形或分支C1-C20烷基、環烷基、芳基,該基視情況經一個或以上的矽或鍺原子取代;及n為0至2之範圍的整數。
  13. 如請求項11之方法,其中該共觸媒選自屬於元素週期表第13或14族之非碳的元素M’之有機氧化化合物,較佳為具有通式(IV)之鋁氧烷:(R9)2-Al-O-[-Al(R10)-O-]p-Al-(R11)2 (IV)其中R9、R10、與R11為相同或不同,表示氫原子、鹵素原子,如氯、溴、碘、氟;或者其選自線形或分支C1-C20烷基、環烷基、芳基,該基視情況經一個或以上的矽或鍺原子取代;及p為0至1,000之範圍的整數。
  14. 如請求項11之方法,其中該共觸媒選自以下之有機金屬化合物、或有機金屬化合物的混合物:非碳的元素M’,其可以如請求項10之鈷與至少一種選自位阻脂肪族膦或雙牙膦之膦配位子的錯合物反應,由其提取單或多價陰離子而一方面形成至少一種中性化合物,另一方面形成由含經配位子配位的金屬(Co)之陽離子所組成的離子性化合物;及含金屬M’之非配位有機陰離子,其中負電荷在多中心結構中不定域,較佳為鋁、尤其是硼之有機化合物,例如由以下通式(V)、(VI)、或(VII)所表示者: [(RC)WH4-W]‧[B(RD)4]-、B(RD)3、Al(RD)3、B(RD)3P、[Ph3C]+‧[B(RD)4]- (V) [(RC)3PH]+‧[B(RD)4]- (VI) [Li]+‧[B(RD)4]-、[Li]+‧[Al(RD)4]- (VII)其中w為0至3之範圍的整數,各RC基分別表示具有1至10個碳原子之烷基或芳基,及各RD基分別表示部分或完全,較佳為完全氟化,具有6至20個碳原子之芳基,P表示視情況經取代之吡咯基。
  15. 如請求項9至14中任一項之方法,其中該單牙芳香族膦選自具有通式(VIII)之芳香族膦:P(R)m(Ph)n (VIII)其中:- R選自線形或分支C1-C16,較佳為C1-C8烷基,C3-C16,較佳為C3-C8環烷基,其視情況經取代,烯丙基,視情況經取代苯基;- Ph為視情況經取代苯基;- m與n彼此不同,為1或2,m+n=3。
  16. 如請求項9至15中任一項之方法,其中該方法在選自以下的惰性有機溶劑存在下進行:飽和脂肪族烴,如丁烷、戊烷、己烷、庚烷、或其混合物;飽和環脂肪族烴,如環戊烷、環己烷、或其混合物;單烯烴,如1-丁烯、2-丁烯、或其混合物;芳香族烴,如苯、甲苯、二甲苯、或其混合物;鹵化烴,如二氯甲烷、氯仿、四氯化碳、三氯乙烯、全氯乙烯、1,2-二氯乙烷、氯苯、溴苯、氯甲苯、或其混合物。
  17. 如請求項16之方法,其中相對1,3-丁二烯與惰性有機溶劑混合物的總重量,欲聚合的1,3-丁二烯在該惰性有機溶劑中的濃度為5重量百分比至50重量百分比之範圍,較佳為10重量百分比至20重量百分比之範圍。
  18. 如請求項9至17中任一項之方法,其中該方法在-70℃至+120℃之範圍,較佳為-20℃至+100℃之範圍的溫度進行。
TW103136993A 2013-11-05 2014-10-27 由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯及其製備方法 TWI678379B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2013A001828 2013-11-05
IT001828A ITMI20131828A1 (it) 2013-11-05 2013-11-05 Polibutadieni di-blocco stereoregolari a struttura 1,4-cis/1,2 sindiotattica da polimerizzazione stereospecifica

Publications (2)

Publication Number Publication Date
TW201522393A true TW201522393A (zh) 2015-06-16
TWI678379B TWI678379B (zh) 2019-12-01

Family

ID=49683904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136993A TWI678379B (zh) 2013-11-05 2014-10-27 由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯及其製備方法

Country Status (22)

Country Link
US (1) US10093763B2 (zh)
EP (1) EP3066139B1 (zh)
JP (1) JP6574190B2 (zh)
KR (1) KR102223300B1 (zh)
CN (1) CN105683230B (zh)
BR (1) BR112016009097B1 (zh)
CA (1) CA2925263C (zh)
EA (1) EA031540B1 (zh)
ES (1) ES2726852T3 (zh)
HK (1) HK1223386A1 (zh)
HR (1) HRP20190874T1 (zh)
HU (1) HUE043431T2 (zh)
IT (1) ITMI20131828A1 (zh)
MX (1) MX2016005664A (zh)
MY (1) MY172664A (zh)
PL (1) PL3066139T3 (zh)
PT (1) PT3066139T (zh)
RS (1) RS58772B1 (zh)
SG (1) SG11201603260WA (zh)
TR (1) TR201907212T4 (zh)
TW (1) TWI678379B (zh)
WO (1) WO2015068094A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653250B (zh) 2013-11-05 2019-03-11 佛沙里斯股份有限公司 用以製備由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性雙嵌段聚丁二烯之方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700059763A1 (it) 2017-05-31 2018-12-01 Versalis Spa Copolimeri butadiene-isoprene di-blocco e procedimento per la loro preparazione
IT202000028823A1 (it) 2020-11-27 2022-05-27 Consiglio Nazionale Ricerche Copolimeri dienici a stereoblocchi e relativo processo di preparazione.

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158296A (en) 1966-09-26 1969-07-16 Japan Synthetic Rubber Co Ltd Unsaturated Hydrocarbon Polymers
US3522332A (en) 1967-06-02 1970-07-28 Japan Synthetic Rubber Co Ltd Process for the preparation of 1,2-polybutadiene
JPS4917667B1 (zh) 1970-12-25 1974-05-02
JPS4917666B1 (zh) * 1970-12-25 1974-05-02
US3817968A (en) 1972-11-28 1974-06-18 Bridgestone Tire Co Ltd Method of producing equibinary (cis 1.4-1.2) polybutadiene
DE2447203C3 (de) 1974-10-03 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von Polybutadien
JPS53143685A (en) 1977-05-23 1978-12-14 Japan Synthetic Rubber Co Ltd Preparation of 1,2-polybutadiene
US4255296A (en) 1977-12-02 1981-03-10 Bridgestone Tire Company Limited Polybutadiene rubber composition
DE2911262A1 (de) 1979-03-22 1980-10-02 Bayer Ag Katalysator, dessen herstellung und verfahren zur polymerisation von butadien
DE3000708A1 (de) 1980-01-10 1981-07-16 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von reaktionsprodukten aus konjugierten diolefinen und aromatischen kohlenwasserstoffen
JPS56109204A (en) * 1980-01-31 1981-08-29 Japan Synthetic Rubber Co Ltd Preparation of polybutadiene
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
IT1231774B (it) 1989-08-03 1991-12-21 Enichem Anic Spa Catalizzatore e procedimento per la polimerizzazione e per la copolimerizzazione di alfa olefine.
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
CA2024830A1 (en) 1989-09-29 1991-03-30 Richard E. Campbell, Jr. Process for preparation of syndiotactic vinyl aromatic polymers
EP0427697B1 (en) 1989-10-10 1996-05-08 Fina Technology, Inc. Metallocene catalysts with Lewis acids and aluminum alkyls
DE551277T1 (de) 1990-06-22 1996-10-10 Exxon Chemical Patents Inc., Linden, N.J. Aluminiumfreie monocyclopentadienyl-metallocenkatalysatoren für olefinpolymerisation.
DE69117520T2 (de) 1990-09-14 1996-08-01 Exxon Chemical Patents Inc Ionischer katalysator zur herstellung von polyalphaolefinen mit kontrollierter takticität
US5189192A (en) 1991-01-16 1993-02-23 The Dow Chemical Company Process for preparing addition polymerization catalysts via metal center oxidation
JP3463811B2 (ja) * 1991-04-24 2003-11-05 Jsr株式会社 ブタジエン系重合体の製造方法
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
US5258475A (en) 1991-07-12 1993-11-02 Mobil Oil Corporation Catalyst systems for polymerization and copolymerization of olefins
JPH05194658A (ja) * 1991-10-22 1993-08-03 Ube Ind Ltd ポリブタジエンゴム及びその組成物
US5879805A (en) 1997-09-09 1999-03-09 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization of vinylpolybutadiene
US6271313B1 (en) 1998-12-21 2001-08-07 The Goodyear Tire & Rubber Company Styrene-butadiene block copolymer
ITMI20011813A1 (it) 2001-08-24 2003-02-24 Enichem Spa Complessi di cobalto utili nella polimerizzazione del 1,3-butadiene
DE60336822D1 (de) 2002-07-22 2011-06-01 Jsr Corp Verfahren zur herstellung von kristallinem 1,2-polybutadien
JP5375092B2 (ja) * 2006-05-22 2013-12-25 宇部興産株式会社 ポリブタジエンの製造方法
WO2011061151A1 (en) 2009-11-17 2011-05-26 Basell Polyolefine Gmbh Ethylene copolymers
ITMI20131830A1 (it) * 2013-11-05 2015-05-06 Versalis Spa Polibutadieni di-blocco stereoregolari a struttura 1,4-cis/1,2 sindiotattica da polimerizzazione stereospecifica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653250B (zh) 2013-11-05 2019-03-11 佛沙里斯股份有限公司 用以製備由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性雙嵌段聚丁二烯之方法

Also Published As

Publication number Publication date
KR102223300B1 (ko) 2021-03-05
MY172664A (en) 2019-12-09
JP2016536447A (ja) 2016-11-24
CN105683230B (zh) 2018-07-13
SG11201603260WA (en) 2016-05-30
CN105683230A (zh) 2016-06-15
PT3066139T (pt) 2019-05-31
HRP20190874T1 (hr) 2019-07-12
EP3066139B1 (en) 2019-02-20
EP3066139A1 (en) 2016-09-14
PL3066139T3 (pl) 2019-08-30
RS58772B1 (sr) 2019-06-28
EA031540B1 (ru) 2019-01-31
BR112016009097A2 (zh) 2017-08-01
CA2925263C (en) 2021-11-30
US10093763B2 (en) 2018-10-09
TR201907212T4 (tr) 2019-06-21
EA201690625A1 (ru) 2016-12-30
ES2726852T3 (es) 2019-10-09
HK1223386A1 (zh) 2017-07-28
KR20160084854A (ko) 2016-07-14
HUE043431T2 (hu) 2019-08-28
CA2925263A1 (en) 2015-05-14
WO2015068094A1 (en) 2015-05-14
ITMI20131828A1 (it) 2015-05-06
MX2016005664A (es) 2016-12-07
JP6574190B2 (ja) 2019-09-11
US20160264707A1 (en) 2016-09-15
TWI678379B (zh) 2019-12-01
BR112016009097B1 (pt) 2021-09-14

Similar Documents

Publication Publication Date Title
TWI653250B (zh) 用以製備由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性雙嵌段聚丁二烯之方法
RU2768696C2 (ru) Бутадиен-изопреновые диблок-сополимеры и способ их получения
KR102140709B1 (ko) 코발트의 비스-이민 착물을 포함하는 촉매 시스템의 존재하에 컨주게이팅된 디엔의 (코)폴리머의 제조 방법
RU2653502C2 (ru) Способ получения сополимеров сопряженных диенов в присутствии каталитической системы, включающей бис-имино-пиридиновый комплекс кобальта
KR102078536B1 (ko) 코발트의 옥소-질소화된 착물, 상기 옥소-질소계 착물을 포함하는 촉매 시스템 및 컨주게이팅된 디엔의 (공)중합 방법
RU2649578C2 (ru) Способ получения сополимеров сопряженных диенов в присутствии каталитической системы, включающей оксоазотосодержащий комплекс кобальта
TWI678379B (zh) 由立體特異性聚合之具有1,4-順式/對排1,2結構之立體規則性二嵌段聚丁二烯及其製備方法
KR102418429B1 (ko) 지르코늄의 피리딘 착물, 상기 지르코늄의 피리딘 착물을 포함하는 촉매 시스템 및 컨쥬게이션된 디엔의 (공)중합 방법
CN111315752B (zh) 双亚胺钛络合物、包括该双亚胺钛络合物的催化体系和用于共轭二烯类的(共)聚合的方法
US20230416436A1 (en) Stereoblock diene copolymers and preparation process thereof