TW201518359A - Semiconductor nanoparticle-containing curable composition, cured material, optical materials, and electronic materials - Google Patents

Semiconductor nanoparticle-containing curable composition, cured material, optical materials, and electronic materials Download PDF

Info

Publication number
TW201518359A
TW201518359A TW103126889A TW103126889A TW201518359A TW 201518359 A TW201518359 A TW 201518359A TW 103126889 A TW103126889 A TW 103126889A TW 103126889 A TW103126889 A TW 103126889A TW 201518359 A TW201518359 A TW 201518359A
Authority
TW
Taiwan
Prior art keywords
meth
acrylate
composition containing
group
compound
Prior art date
Application number
TW103126889A
Other languages
Chinese (zh)
Inventor
Takashi Sekine
Hideo Miyata
Shigeru Yamaki
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW201518359A publication Critical patent/TW201518359A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Abstract

A semiconductor nanoparticle-containing curable compound includes silica microparticles (a), a (meth)acrylate compound (B), a polymerization initiator (d), and semiconductor nanoparticles (e) which are light emitters, wherein the (meth)acrylate compound(B) includes at least two types of compounds selected among a bifunctional (meth)acrylate compound (h) having two (meth)acryloyloxy groups, a multifunctional (meth)acrylate compound (b) having at least three (meth)acryloyloxy groups, and a monofunctional (meth)acrylate compound (c) having a (meth)acryloyloxy group; and the silica microparticles (a) are subjected to surface treatment by using a silane compound (f) represented by the following general formula (1) and a silane compound (g) represented by the following general formula (2) (in formula (1), R1 represents a hydrogen atom or a methyl group, R2 represents an alkyl group or a phenyl group having a carbon number of 1 to 3, R3 represents a hydrogen atom or a hydrocarbon group having a carbon number of 1 to 10, q is an integer from 1 to 16, and r is an integer from 0 to 2. In formula (2), R4 represents an alkyl group or a phenyl group having a carbon number of 1 to 3, R5 represents a hydrogen atom or a hydrocarbon group having a carbon number of 1 to 10, s is an integer from 0 to 6, and t is an integer from 0 to 2).

Description

含有半導體奈米粒子之硬化性組成物、硬化物、光學材料及電子材料 a hardenable composition, a cured material, an optical material, and an electronic material containing semiconductor nanoparticle

本發明係關於含有半導體奈米粒子之硬化性組成物、硬化物、光學材料及電子材料。更詳言之,本發明係關於含有半導體奈米粒子之硬化性組成物、使該含有半導體奈米粒子之硬化性組成物硬化獲得之硬化物、及由該硬化物所成之光學材料.電子材料。 The present invention relates to a curable composition, a cured product, an optical material, and an electronic material containing semiconductor nanoparticle. More specifically, the present invention relates to a curable composition containing semiconductor nanoparticles, a cured product obtained by curing the curable composition containing semiconductor nanoparticles, and an optical material formed from the cured product. electronic Materials.

本申請案基於2013年8月9日於日本提出申請之日本特願2013-167068而主張優先權,其內容援用於本文中。 The present application claims priority based on Japanese Patent Application No. 2013-167068, filed on Jan.

作為光學透鏡、光學元件、光波導及LED(發光二極體)密封材等光學零件.電子零件中所用之光學材料.電子材料有樹脂材料。 As optical components such as optical lenses, optical components, optical waveguides, and LED (light-emitting diode) sealing materials. Optical materials used in electronic parts. Electronic materials are made of resin materials.

過去,作為LED密封材所使用之樹脂材料,有含有二氧化矽微粒子、螢光體、液狀介質之含有螢光體之組成 物(參照例如專利文獻1~專利文獻4)。 In the past, as a resin material used for an LED sealing material, there is a composition containing a phosphor containing cerium oxide microparticles, a phosphor, and a liquid medium. (refer to, for example, Patent Document 1 to Patent Document 4).

且,作為可利用於LED密封材等之硬化性組成物,係含有二氧化矽微粒子、具有2個以上乙烯性不飽和基且不具有環構造之(甲基)丙烯酸酯、與具有乙烯性不飽和基且具有脂環式構造之(甲基)丙烯酸酯、與聚合起始劑,且二氧化矽微粒子以矽烷化合物進行表面處理者(參照例如專利文獻5)。 Further, the curable composition which can be used for an LED sealing material or the like contains cerium oxide fine particles, a (meth) acrylate having two or more ethylenically unsaturated groups and having no ring structure, and having an ethylenic property. A (meth) acrylate having an alicyclic structure and a polymerization initiator, and the cerium oxide microparticles are surface-treated with a decane compound (see, for example, Patent Document 5).

近年來,作為奈米尺寸之半導體粒子,顯示量子侷限(quantum confinement)效應之量子點受到矚目。此外,已檢討利用該量子點作為LED密封材之螢光體。例如,專利文獻6中記載含由無機螢光體及配位於該無機螢光體之烴基所構成之奈米粒子螢光體之液狀硬化性樹脂組成物。 In recent years, as a semiconductor particle of a nanometer size, quantum dots exhibiting a quantum confinement effect have attracted attention. In addition, the phosphor using the quantum dot as an LED sealing material has been reviewed. For example, Patent Document 6 describes a liquid curable resin composition containing a nanoparticle phosphor composed of an inorganic phosphor and a hydrocarbon group disposed in the inorganic phosphor.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2009-102514號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2009-102514

[專利文獻2]日本特開2009-096947號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2009-096947

[專利文獻3]日本特開2008-260930號公報 [Patent Document 3] Japanese Laid-Open Patent Publication No. 2008-260930

[專利文獻4]日本特開2008-050593號公報 [Patent Document 4] Japanese Patent Laid-Open Publication No. 2008-050593

[專利文獻5]日本再公表WO2010/001875號公報 [Patent Document 5] Japanese Re-publication No. WO2010/001875

[專利文獻6]日本特開2010-126596號公報 [Patent Document 6] Japanese Patent Laid-Open Publication No. 2010-126596

然而,以往之含奈米尺寸之半導體粒子之組成物具有之問題點為半導體奈米粒子之分散性差、黏度高、成形性不足等。 However, the conventional semiconductor composition of nanometer-sized semiconductor particles has a problem that the semiconductor nanoparticles have poor dispersibility, high viscosity, and insufficient formability.

本發明係鑑於上述情況而完成者,其課題係提供一種含發光體的半導體奈米粒子,半導體奈米粒子之分散性良好,在低黏度下具有優異之成形性之硬化性組成物、使其硬化獲得之硬化物、及由該硬化物所成之光學材料.電子材料。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor nanoparticle containing an illuminant, which is excellent in dispersibility of semiconductor nanoparticle, and has a curable composition having excellent moldability at a low viscosity. a hardened material obtained by hardening, and an optical material formed by the hardened material. electronic Materials.

本發明人等為解決上述課題而進行積極的檢討。結果,發現藉由一種硬化性組成物,能以低黏度獲得優異成形性與分散性,因而完成本發明,該硬化性組成物含有以特定之矽烷化合物表面處理之二氧化矽微粒子、(甲基)丙烯酸酯化合物、聚合起始劑、與發光體的半導體奈米粒子,且(甲基)丙烯酸酯化合物含有由具有2個以上之(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物(h)、具有3個以上之(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b)、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)選出之2種以上。 The present inventors conducted an active review to solve the above problems. As a result, it has been found that the present invention can be obtained by obtaining a good formability and dispersibility at a low viscosity by a curable composition containing cerium oxide fine particles surface-treated with a specific decane compound, (methyl An acrylate compound, a polymerization initiator, and a semiconductor nanoparticle with an illuminant, and the (meth) acrylate compound contains a bifunctional (meth) acrylate having two or more (meth) acryloxy groups. An ester compound (h), a polyfunctional (meth) acrylate compound (b) having three or more (meth) propylene decyloxy groups, and a monofunctional group having one (meth) acryloxy group (A) Two or more selected from the group consisting of acrylate compounds (c).

本發明係採用以下之構成。 The present invention adopts the following constitution.

(1)一種含有半導體奈米粒子之硬化性組成物,其 特徵係含有二氧化矽微粒子(a)、(甲基)丙烯酸酯化合物(B)、聚合起始劑(d)、與發光體的半導體奈米粒子(e),前述(甲基)丙烯酸酯化合物(B)含有自具有2個以上(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物(h)、具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b)、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)選出之2種以上,前述二氧化矽微粒子(a)係經以下述通式(1)表示之矽烷化合物(f)及以下述通式(2)表示之矽烷化合物(g)進行表面處理。 (1) A curable composition containing semiconductor nanoparticles, which The characteristics include cerium oxide microparticles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and a semiconductor nanoparticle (e) with an illuminant, and the (meth) acrylate compound (B) a polyfunctional (meth) having a bifunctional (meth) acrylate compound (h) having two or more (meth) acryloxy groups and having three or more (meth) propylene decyloxy groups Two or more kinds of the acrylate compound (b) and the monofunctional (meth) acrylate compound (c) having one (meth) acryloxy group, and the cerium oxide fine particles (a) are as follows The decane compound (f) represented by the formula (1) and the decane compound (g) represented by the following formula (2) are surface-treated.

(式(1)中,R1表示氫原子或甲基,R2表示碳數1~3之烷基或苯基,R3表示氫原子或碳數1~10之烴基,q為1~16之整數,r為0~2之整數)。 (In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and q is 1 to 16 The integer, r is an integer from 0 to 2).

(式(2)中,R4表示碳數1~3之烷基或苯基,R5表示氫原子或碳數1~10之烴基,s為0~6之整數,t為0~2之整數)。 (In the formula (2), R 4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, s is an integer of 0 to 6, and t is 0 to 2 Integer).

(2)如(1)所記載之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(B)含有具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b),與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)。 (2) The curable composition containing semiconductor nanoparticles according to (1), wherein the (meth) acrylate compound (B) contains a polyfunctional group having three or more (meth) acryloxy groups ( A methyl (meth) acrylate compound (b) and a monofunctional (meth) acrylate compound (c) having one (meth) propylene fluorenyloxy group.

(3)如(1)或(2)所記載之含有半導體奈米粒子之硬化性組成物,其中前述二氧化矽微粒子(a)中,表面處理所用之前述矽烷化合物(f)之使用量相對於表面處理前之二氧化矽微粒子100質量份為1~50質量份,表面處理所用之前述矽烷化合物(g)之使用量相對於表面處理前之二氧化矽微粒子100質量份為1~50質量份。 (3) The curable composition containing semiconductor nanoparticles according to (1) or (2), wherein the amount of the decane compound (f) used for surface treatment in the cerium oxide microparticle (a) is relatively 100 parts by mass of the cerium oxide microparticles before the surface treatment is 1 to 50 parts by mass, and the amount of the decane compound (g) used for the surface treatment is 1 to 50 masses relative to 100 parts by mass of the cerium oxide microparticles before the surface treatment. Share.

(4)如(1)~(3)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中表面處理前之二氧化矽微粒子之數平均粒徑為10~500nm。 (4) The curable composition containing semiconductor nanoparticles according to any one of (1) to (3), wherein the number average particle diameter of the cerium oxide microparticles before the surface treatment is 10 to 500 nm.

(5)如(1)~(4)中任一項所記載之含有 半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(b)係具有3個(甲基)丙烯醯氧基之3官能(甲基)丙烯酸酯化合物。 (5) The content as recited in any one of (1) to (4) A curable composition of semiconductor nanoparticles, wherein the (meth) acrylate compound (b) is a trifunctional (meth) acrylate compound having three (meth) acryloxy groups.

(6)如(5)所記載之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(b)係選自下列之1種或2種以上:三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、環己烷三甲醇三(甲基)丙烯酸酯、金剛烷基三(甲基)丙烯酸酯、金剛烷三甲醇三(甲基)丙烯酸酯、降冰片烷三羥甲基三(甲基)丙烯酸酯、三環癸烷三甲醇三(甲基)丙烯酸酯、全氫-1,4,5,8-二甲撐萘-2,3,7-(氧基甲基)三(甲基)丙烯酸酯、參(丙烯醯氧基乙基)異氰尿酸酯、己內酯改質之參(丙烯醯氧基乙基)異氰尿酸酯、二-(2-丙烯醯氧基乙基)單-(2-羥基乙基)異氰尿酸酯。 (6) The curable composition containing the semiconductor nanoparticle according to the above (5), wherein the (meth) acrylate compound (b) is one or more selected from the group consisting of trimethylolpropane Tris(meth)acrylate, pentaerythritol tri(meth)acrylate, cyclohexane trimethylol tri(meth)acrylate, adamantyl tri(meth)acrylate, adamantane trimethanol tri(methyl) Acrylate, norbornane trimethylol tri(meth)acrylate, tricyclodecane trimethanol tri(meth)acrylate, perhydro-1,4,5,8-dimethylnaphthalene-2, 3,7-(oxymethyl)tri(meth)acrylate, ginseng (propylene oxyethyl)isocyanurate, caprolactone modified ginseng (propylene oxyethyl) isocyanide Uric acid ester, bis-(2-propenyloxyethyl) mono-(2-hydroxyethyl)isocyanurate.

(7)如(1)~(6)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(B)之質量中之(甲基)丙烯酸酯(b)與(甲基)丙烯酸酯(h)之合計含量為99質量%以下。 (7) The curable composition containing semiconductor nanoparticles according to any one of (1) to (6), wherein (meth)acrylic acid of the mass of the (meth) acrylate compound (B) The total content of the ester (b) and the (meth) acrylate (h) is 99% by mass or less.

(8)如(1)~(7)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中前述半導體奈米粒子(e)具有含有由週期表第3族~第16族所組成之群選出之至少一種元素之離子之奈米粒子芯。 (8) The curable composition containing semiconductor nanoparticles according to any one of (1) to (7) wherein the semiconductor nanoparticle (e) has a group 3 to 16 of the periodic table. A nanoparticle core of ions of at least one element selected from the group consisting of.

(9)如(8)所記載之含有半導體奈米粒子之硬化性組成物,其中前述奈米粒子芯含有由ZnS、ZnSe、 ZnTe、InP、InAs、InSb、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PdS、PbSe、Si、Ge、MgSe、MgTe所組成之群選出之至少一種。 (9) The curable composition containing semiconductor nanoparticles according to (8), wherein the nanoparticle core contains ZnS, ZnSe, At least one selected from the group consisting of ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, and MgTe.

(10)如(1)~(9)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中前述半導體奈米粒子(e)含有奈米粒子芯、與具有配位於前述奈米粒子芯表面之保護基之保護層,前述奈米粒子芯表面由以無機材料所成之至少一層殼被覆。 (10) The curable composition containing semiconductor nanoparticles according to any one of (1) to (9) wherein the semiconductor nanoparticle (e) contains a nanoparticle core and has a ligand A protective layer of a protective layer on the surface of the rice particle core, wherein the surface of the nanoparticle core is covered with at least one shell formed of an inorganic material.

(11)如(1)~(10)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中前述含有半導體奈米粒子之硬化性組成物中之前述半導體奈米粒子(e)之含量為0.1~20質量%。 (11) The curable composition containing semiconductor nanoparticles according to any one of (1) to (10), wherein the semiconductor nanoparticle in the curable composition containing the semiconductor nanoparticle (e) The content is 0.1 to 20% by mass.

(12)如(1)~(11)中任一項所記載之含有半導體奈米粒子之硬化性組成物,其中前述通式(1)中,q為3~16之整數。 (12) The curable composition containing semiconductor nanoparticles according to any one of (1) to (11), wherein q is an integer of from 3 to 16 in the above formula (1).

(13)一種硬化物,其特徵係使如(1)~(12)中任一項所記載之含有半導體奈米粒子之硬化性組成物硬化而得。 (13) A cured product obtained by curing the curable composition containing the semiconductor nanoparticles according to any one of (1) to (12).

(14)一種光學材料,其特徵係由如(13)所記載之硬化物所成。 (14) An optical material characterized by being a cured product as described in (13).

(15)一種電子材料,其特徵係由如(13)所記載之硬化物所成。 (15) An electronic material characterized by being a cured product as described in (13).

本發明之含有半導體奈米粒子之硬化性組成物含有以特定之矽烷化合物予以表面處理之二氧化矽微粒子、(甲基)丙烯酸酯化合物、聚合起始劑、與發光體的半導體奈米粒子,且(甲基)丙烯酸酯化合物含有由具有2個以上(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物、具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物選出之2種以上。因此,本發明之含半導體奈米粒子之硬化性組成物係可利用藉由含有半導體奈米粒子所致之光波長轉換作用,且半導體奈米粒子之分散性良好,在低黏度具有優異之成形性者。 The curable composition containing semiconductor nanoparticles of the present invention contains cerium oxide microparticles, a (meth) acrylate compound, a polymerization initiator, and a semiconductor nanoparticle which are surface-treated with a specific decane compound. Further, the (meth) acrylate compound contains a bifunctional (meth) acrylate compound having two or more (meth) acryloxy groups and a polyfunctional group having three or more (meth) propylene decyloxy groups (A) Two or more selected from the group consisting of an acrylate compound and a monofunctional (meth) acrylate compound having one (meth) acryloxy group. Therefore, the hardenable composition containing the semiconductor nanoparticle of the present invention can utilize the wavelength conversion effect by the semiconductor nanoparticle, and the dispersibility of the semiconductor nanoparticle is good, and the formation is excellent at low viscosity. Sex.

此外,藉由使本發明之含有半導體奈米粒子之硬化性組成物硬化,而獲得可較好地使用於光學材料.電子材料之硬化物。 Further, by curing the curable composition containing the semiconductor nanoparticle of the present invention, it can be preferably used for an optical material. Hardened material for electronic materials.

以下,針對本發明之含有半導體奈米粒子之硬化性組成物(以下有時簡稱為「含有奈米粒子之組成物」)、使含有奈米粒子之組成物硬化獲得之硬化物、及由該硬化物所成之光學材料.電子材料加以詳細說明。又,以下說明中所例示之材料、尺寸等為一例,本發明並不受限於該等者。本發明在不變更其主旨之範圍內可適當變更且實施。 In the following, the curable composition containing the semiconductor nanoparticle of the present invention (hereinafter sometimes simply referred to as "the composition containing the nanoparticle"), the cured product obtained by curing the composition containing the nanoparticle, and the cured product thereof Optical material made of hardened material. The electronic materials are described in detail. Moreover, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to these. The present invention can be appropriately modified and implemented without departing from the spirit and scope of the invention.

[含有半導體奈米粒子之硬化性組成物] [Sclerosing composition containing semiconductor nanoparticles]

本發明之含有奈米粒子之組成物係含有二氧化矽微粒子(a)、(甲基)丙烯酸酯化合物(B)、聚合起始劑(d)、與發光體的半導體奈米粒子(e)。(甲基)丙烯酸酯化合物(B)含有自具有2個以上(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物(h)(以下亦稱為「(甲基)丙烯酸酯(h)」)、具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b)(以下亦稱為「(甲基)丙烯酸酯(b)」)、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)(以下亦稱為「(甲基)丙烯酸酯(c)」)選出之2種以上者。二氧化矽微粒子(a)係經以下述通式(1)表示之矽烷化合物(f)及以下述通式(2)表示之矽烷化合物(g)進行表面處理者。 The composition containing the nanoparticles of the present invention contains ceria fine particles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and a semiconductor nanoparticle (e) with an illuminant. . The (meth) acrylate compound (B) contains a bifunctional (meth) acrylate compound (h) having two or more (meth) acryloxy groups (hereinafter also referred to as "(meth) acrylate (hereinafter referred to as "(meth) acrylate ( h)"), a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloxy groups (hereinafter also referred to as "(meth) acrylate (b)")) Two or more selected ones of (meth) acrylate-based (meth) acrylate compounds (c) (hereinafter also referred to as "(meth) acrylate (c)"). The cerium oxide fine particles (a) are subjected to surface treatment by a decane compound (f) represented by the following formula (1) and a decane compound (g) represented by the following formula (2).

本發明之含有奈米粒子之組成物中,由於二氧化矽微粒子(a)以矽烷化合物(f)及矽烷化合物(g)進行表面處理,故而黏度低,且成形性優異。且,二氧化矽微粒子(a)上藉由表面處理而鍵結有矽烷化合物(f)及矽烷化合物(g)(藉表面處理使化學構造產生變化)。鍵結於二氧化矽微粒子(a)之化合物(f)及(g)(藉表面處理而使化學構造產生變化)在製造含有奈米粒子之組成物時,與含有選自(甲基)丙烯酸酯(h)、(b)、(c)之2種以上之(甲基)丙烯酸酯化合物(B)反應。結果,含有奈米粒子之組成物中之二氧 化矽微粒子(a)之分散安定性變良好。 In the composition containing the nanoparticles of the present invention, since the cerium oxide fine particles (a) are surface-treated with the decane compound (f) and the decane compound (g), the viscosity is low and the moldability is excellent. Further, the cerium oxide fine particles (a) are bonded to the decane compound (f) and the decane compound (g) by surface treatment (the chemical structure is changed by surface treatment). Compounds (f) and (g) bonded to the cerium oxide microparticles (a) (change in chemical structure by surface treatment), when the composition containing the nanoparticle is produced, and containing a component selected from (meth)acrylic acid Two or more kinds of (meth) acrylate compounds (B) of the esters (h), (b), and (c) are reacted. As a result, the dioxane in the composition containing the nanoparticles The dispersion stability of the bismuth microparticles (a) becomes good.

本發明之含有奈米粒子之組成物係包含以特定之矽烷化合物進行表面處理之二氧化矽微粒子(a)、含有選自(甲基)丙烯酸酯(h)、(b)、(c)之2種以上之(甲基)丙烯酸酯化合物(B)、聚合起始劑(d)、與發光體的半導體奈米粒子(e)者,藉由聚合反應而獲得堅固地硬化、線膨脹係數小、光透過率大之硬化物。使含有奈米粒子之硬化物硬化時,藉由二氧化矽微粒子(a)之存在,而抑制含有奈米粒子之組成物之硬化收縮。結果,可抑制例如硬化物係形成於基板上之硬化膜時之硬化物之翹曲。且,亦可防止所形成之硬化物變脆而於硬化物產生龜裂。 The nanoparticle-containing composition of the present invention comprises cerium oxide microparticles (a) surface-treated with a specific decane compound, and contains a compound selected from the group consisting of (meth) acrylates (h), (b), and (c). Two or more kinds of (meth) acrylate compound (B), a polymerization initiator (d), and a semiconductor nanoparticle (e) with an illuminant are strongly hardened by a polymerization reaction, and have a small coefficient of linear expansion. A hardened material with a high light transmittance. When the cured product containing the nanoparticles is hardened, the hardening shrinkage of the composition containing the nanoparticles is suppressed by the presence of the ceria particles (a). As a result, for example, warpage of the cured product when the cured product is formed on the cured film on the substrate can be suppressed. Further, it is also possible to prevent the formed hardened material from becoming brittle and cracking in the cured product.

本發明之含有奈米粒子之組成物由於係含(e)發光體的半導體奈米粒子者,故成為藉由半導體奈米粒子而獲得光波長轉換作用者。因此,本發明之含有奈米粒子之組成物可較佳地使用於光學透鏡、光學元件、光波導及LED密封材等之光學零件.電子零件中。 Since the composition containing the nanoparticle of the present invention is a semiconductor nanoparticle containing the (e) illuminant, it is a light wavelength conversion effect obtained by the semiconductor nanoparticle. Therefore, the composition containing the nanoparticles of the present invention can be preferably used for optical parts such as optical lenses, optical elements, optical waveguides, and LED sealing materials. In electronic parts.

本說明書中,所謂「(甲基)丙烯酸酯化合物」意指丙烯酸酯化合物及/或甲基丙烯酸酯化合物。且,所謂「3個以上(甲基)丙烯醯氧基」在(甲基)丙烯醯氧基僅為丙烯醯氧基時,意指3個以上之丙烯醯氧基,於(甲基)丙烯醯氧基僅為甲基丙烯醯氧基時,意指3個以上之甲基丙烯醯氧基,於(甲基)丙烯醯氧基包含丙烯醯氧基與甲基丙烯醯氧基兩者時,意指丙烯醯氧基與 甲基丙烯醯氧基之合計為3個以上。此外,所謂「2個(甲基)丙烯醯氧基」在(甲基)丙烯醯氧基僅為丙烯醯氧基時,意指2個丙烯醯氧基,於(甲基)丙烯醯氧基僅為甲基丙烯醯氧基時,意指2個甲基丙烯醯氧基,於(甲基)丙烯醯氧基包含丙烯醯氧基與甲基丙烯醯氧基兩者時,意指具有丙烯醯氧基與甲基丙烯醯氧基各1個。 In the present specification, the term "(meth) acrylate compound" means an acrylate compound and/or a methacrylate compound. Further, the term "three or more (meth) propylene fluorenyloxy groups" means that three or more propylene fluorenyloxy groups are (meth) propylene when the (meth) propylene fluorenyloxy group is only propylene hydroxy group. When the methoxy group is only a methacryloxy group, it means 3 or more methacryloxy groups, and when the (meth) propylene oxy group contains both an acryloxy group and a methacryloxy group. , meaning propylene oxime and The total of the methacryloxyl groups is three or more. Further, the "two (meth) propylene fluorenyloxy group" means that two (meth) fluorenyloxy groups are (meth) propylene oxy groups when the (meth) propylene oxime group is only propylene oxime oxy group. When it is only a methacryloxy group, it means 2 methacryloxy groups, and when the (meth) propylene oxy group contains both an acryloxy group and a methacryloxy group, it means propylene. One of a methoxy group and a methacryloxy group.

以下,針對本發明之含有奈米粒子之組成物之各含有成分加以說明。 Hereinafter, each component of the composition containing the nanoparticles of the present invention will be described.

〈二氧化矽微粒子(a)〉 <2O2 particles (a)>

二氧化矽微粒子(a)係藉以上述通式(1)表示之矽烷化合物(f)及以上述通式(2)表示之矽烷化合物(g)予以表面處理者。 The cerium oxide microparticles (a) are surface-treated by the decane compound (f) represented by the above formula (1) and the decane compound (g) represented by the above formula (2).

二氧化矽微粒子(a)藉由以矽烷化合物(f)進行表面處理,而成為在含有奈米粒子之組成物中之分散安定性優異者。且,二氧化矽微粒子(a)藉由以矽烷化合物(f)進行表面處理,而成為使含其之含有奈米粒子之組成物硬化時之收縮率小者。 The cerium oxide fine particles (a) are surface-treated with a decane compound (f), and are excellent in dispersion stability in a composition containing nano particles. Further, the cerium oxide microparticles (a) are surface-treated with the decane compound (f) to have a small shrinkage ratio when the composition containing the nanoparticles containing the particles is cured.

有,二氧化矽微粒子藉由以矽烷化合物(g)進行表面處理,而對表面賦予疏水性。結果,二氧化矽微粒子(a)在製造含有奈米粒子之組成物時所使用之有機溶劑中之分散性優異。且,藉由對二氧化矽微粒子(a)表面賦予疏水性,使二氧化矽微粒子(a)與含有奈米粒子之組成物中所含之(甲基)丙烯酸酯(c)之相溶性變 良好。因此,可減低含有奈米粒子之組成物之黏度,在提高含有奈米粒子之組成物之保存安定性之同時,可降低含有奈米粒子之組成物之吸水率。 Yes, the cerium oxide microparticles are rendered hydrophobic by surface treatment with a decane compound (g). As a result, the cerium oxide fine particles (a) are excellent in dispersibility in an organic solvent used in the production of a composition containing nano particles. Further, by imparting hydrophobicity to the surface of the cerium oxide microparticles (a), the compatibility of the cerium oxide microparticles (a) with the (meth) acrylate (c) contained in the composition containing the nanoparticles is changed. good. Therefore, the viscosity of the composition containing the nanoparticle can be reduced, and the water absorption of the composition containing the nanoparticle can be reduced while improving the storage stability of the composition containing the nanoparticle.

又,含有奈米粒子之組成物中含有未以矽烷化合物(f)進行表面處理之二氧化矽微粒子時,含有奈米粒子之組成物之黏度顯著增加而凝膠化故較不佳。 Further, when the composition containing the nanoparticles contains the cerium oxide microparticles which are not surface-treated with the decane compound (f), the viscosity of the composition containing the nanoparticles is remarkably increased and gelation is less preferable.

此外,含有奈米粒子之組成物中含有未以矽烷化合物(f)及(g)進行表面處理之二氧化矽微粒子時,成為使含其之含有奈米粒子之組成物硬化時之收縮率高。因此,硬化物容易發生龜裂。 Further, when the composition containing the nanoparticles contains the cerium oxide fine particles which are not surface-treated with the decane compounds (f) and (g), the shrinkage ratio when the composition containing the nanoparticles containing the particles is hardened is high. . Therefore, the hardened material is liable to be cracked.

《以矽烷化合物進行表面處理之二氧化矽微粒子》 "Ceria oxide granules surface treated with decane compounds"

以上述矽烷化合物(f)及(g)進行表面處理之二氧化矽微粒子可使用以往習知之二氧化矽微粒子。且亦可使用多孔質二氧化矽溶膠、或鋁、鎂、鋅等與矽之複合金屬氧化物作為經表面處理之二氧化矽微粒子。 Conventionally known cerium oxide microparticles can be used as the cerium oxide microparticles surface-treated with the above decane compounds (f) and (g). Further, a porous cerium oxide sol or a composite metal oxide of aluminum, magnesium, zinc or the like and cerium may be used as the surface-treated cerium oxide microparticles.

經表面處理之二氧化矽微粒子較好使用數平均粒徑10~500nm者。數平均粒徑為10nm以上時,成為二氧化矽微粒子(a)易分散於含有奈米粒子之組成物者,可抑制含有奈米粒子之組成物之黏度增大,獲得優異之成形性及保存安定性。因此,可充分確保含有奈米粒子之組成物中之二氧化矽微粒子(a)之含量,可抑制使其硬化所得之硬化物之透明性或散射性,並且可進一步提高耐熱性。此外,藉由使經表面處理之二氧化矽微粒子之數 平均粒徑成為500nm以下,可防止因二氧化矽微粒子(a)之平均粒徑過大造成之硬化物之光透過率控制效果之降低。 The surface-treated cerium oxide microparticles preferably have a number average particle diameter of 10 to 500 nm. When the number average particle diameter is 10 nm or more, the cerium oxide fine particles (a) are easily dispersed in a composition containing nano particles, and the viscosity of the composition containing the nanoparticles can be suppressed from increasing, and excellent formability and preservation can be obtained. Stability. Therefore, the content of the cerium oxide fine particles (a) in the composition containing the nanoparticles can be sufficiently ensured, and the transparency or scattering property of the cured product obtained by curing can be suppressed, and the heat resistance can be further improved. In addition, by the number of surface treated cerium oxide particles When the average particle diameter is 500 nm or less, it is possible to prevent a decrease in the light transmittance control effect of the cured product due to an excessively large average particle diameter of the cerium oxide fine particles (a).

經表面處理之二氧化矽微粒子之數平均粒徑,就含有奈米粒子之組成物之黏度與硬化物之透明性及散射性之光學平衡之觀點而言,較好為10~200nm。 The number average particle diameter of the surface-treated cerium oxide microparticles is preferably from 10 to 200 nm from the viewpoint of the viscosity of the composition of the nanoparticles and the optical balance between the transparency and the scattering property of the cured product.

又,上述經表面處理之二氧化矽微粒子(表面處理前)之數平均粒徑之較佳範圍通常亦為經表面處理之二氧化矽微粒子(a)(表面處理後)之數平均粒徑之較佳範圍。 Further, the preferred range of the number average particle diameter of the surface-treated cerium oxide microparticles (before surface treatment) is usually also the number average particle diameter of the surface-treated cerium oxide microparticles (a) (after surface treatment). Preferred range.

經表面處理之二氧化矽微粒子之數平均粒徑可藉以下所示之方法測定。首先,使用高分解能透過型電子顯微鏡(日立製作所(股)製H-9000型),觀察二氧化矽微粒子,獲得二氧化矽粒子影像。接著,任意選擇100個二氧化矽粒子,藉由習知之影像數據統計處理手法求出數平均粒徑。 The number average particle diameter of the surface-treated cerium oxide microparticles can be measured by the method shown below. First, a high-decomposition energy transmission electron microscope (H-9000 type manufactured by Hitachi, Ltd.) was used to observe cerium oxide microparticles to obtain an image of cerium oxide particles. Next, 100 cerium oxide particles were arbitrarily selected, and the number average particle diameter was determined by a conventional image data statistical processing method.

二氧化矽微粒子亦可使用平均粒徑不同之複數種二氧化矽微粒子。藉由使用該二氧化矽微粒子,可調整含有奈米粒子之組成物中之二氧化矽微粒子(a)之含量之可能含有範圍。例如,使含有奈米粒子之組成物中之二氧化矽微粒子(a)之含量增多,可進一步提高使其硬化所得之硬化物之透明性及耐熱性。 As the cerium oxide microparticles, a plurality of cerium oxide microparticles having different average particle diameters can also be used. By using the cerium oxide microparticles, the possible content range of the content of the cerium oxide microparticles (a) in the composition containing the nanoparticles can be adjusted. For example, the content of the ceria fine particles (a) in the composition containing the nanoparticles is increased, and the transparency and heat resistance of the cured product obtained by curing can be further improved.

經表面處理之二氧化矽微粒子,就在含有奈米粒子之組成物中之分散性方面而言,較好使用分散於有 機溶劑中之二氧化矽微粒子。 The surface-treated cerium oxide microparticles are preferably dispersed in the dispersion of the composition containing the nanoparticles. The cerium oxide microparticles in the organic solvent.

使經表面處理之二氧化矽微粒子分散之有機溶劑較好使用能使含有奈米粒子之組成物中所含有之(甲基)丙烯酸酯化合物(B)溶解者。該有機溶劑列舉為例如醇類、酮類、酯類、二醇醚類。 The organic solvent in which the surface-treated cerium oxide microparticles are dispersed is preferably used in such a manner that the (meth) acrylate compound (B) contained in the composition containing the nanoparticles is dissolved. The organic solvent is exemplified by, for example, an alcohol, a ketone, an ester, or a glycol ether.

該等中基於自二氧化矽微粒子(a)與含有自(甲基)丙烯酸酯(h)、(b)、(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)之混合液去除有機溶劑之脫溶劑步驟中之脫溶劑容易度而言,有機溶劑較好使用甲醇、乙醇、異丙醇、丁醇、正丙醇、甲基乙基酮、甲基異丁基酮,最好使用異丙醇。使用分散於異丙醇中之二氧化矽微粒子時,脫溶劑後之含有奈米粒子之組成物之黏度相較於使用其他溶劑之情況較低,可安定地製作低黏度之含有奈米粒子之組成物。 These are based on a mixture of two or more (meth) acrylate compounds (B) selected from the group consisting of cerium oxide microparticles (a) and (meth) acrylates (h), (b), and (c). In terms of easiness of solvent removal in the solvent removal step of the liquid removal organic solvent, the organic solvent is preferably methanol, ethanol, isopropanol, butanol, n-propanol, methyl ethyl ketone or methyl isobutyl ketone. It is best to use isopropanol. When the cerium oxide microparticles dispersed in isopropyl alcohol are used, the viscosity of the composition containing the nanoparticles after desolvation is lower than that of the other solvent, and the low viscosity of the nanoparticle-containing particles can be stably produced. Composition.

分散於有機溶劑中之二氧化矽微粒子可藉以往習知之方法製造。且,分散於有機溶劑中之二氧化矽微粒子係以例如商品名Snowtex IPA-ST(日產化學(股)製)等銷售。 The cerium oxide microparticles dispersed in an organic solvent can be produced by a conventional method. Further, the cerium oxide fine particles dispersed in an organic solvent are sold, for example, under the trade name of Snowtex IPA-ST (manufactured by Nissan Chemical Co., Ltd.).

又,使用分散於有機溶劑中之二氧化矽微粒子作為經表面處理之二氧化矽微粒子時,後述之「表面處理前之二氧化矽微粒子100質量份」只要沒有特別指明,則係指「分散於有機溶劑中之僅二氧化矽微粒子之質量」(亦即,不含有機溶劑之質量)。 When the cerium oxide microparticles dispersed in the organic solvent are used as the surface-treated cerium oxide microparticles, the "100 parts by mass of the cerium oxide microparticles before the surface treatment" described later means "dispersed" unless otherwise specified. The mass of only cerium oxide microparticles in the organic solvent" (that is, the mass of the organic solvent-free).

《表面處理所用之矽烷化合物》 "Cerane compounds used in surface treatment" (矽烷化合物(f)) (decane compound (f))

矽烷化合物(f)係以下述通式(1)表示。 The decane compound (f) is represented by the following formula (1).

式(1)中,R1表示氫原子或甲基。 In the formula (1), R 1 represents a hydrogen atom or a methyl group.

R1係對使含有奈米粒子之組成物硬化時之硬化反應帶來影響者。為了促進含有奈米粒子之組成物之硬化反應,如以下所示,較好依據含有奈米粒子之組成物中所含之(甲基)丙烯酸酯化合物(B)之種類決定R1R 1 is an influence on the hardening reaction when the composition containing the nanoparticles is cured. In order to promote the hardening reaction of the composition containing the nanoparticles, as shown below, R 1 is preferably determined depending on the type of the (meth) acrylate compound (B) contained in the composition containing the nanoparticles.

亦即,含有由(甲基)丙烯酸酯(h)、(b)、(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)中含較多丙烯酸酯時,較好使用R1為氫原子之矽烷化合物(f)。有,含有由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)中含較多甲基丙烯酸酯時,較好使用R1為甲基之化合物(f)。 In other words, when two or more (meth) acrylate compounds (B) selected from (meth) acrylates (h), (b), and (c) contain a large amount of acrylate, R is preferably used. 1 is a decane compound (f) of a hydrogen atom. When two or more (meth) acrylate compounds (B) selected from (meth) acrylate (h) (b) (c) contain a large amount of methacrylate, R 1 is preferably used. A compound (f) which is a methyl group.

式(1)中,R2為碳數1~3之烷基或苯基。R2就矽烷化合物(f)之保存安定性、含有奈米粒子之組成 物之黏度減低及保存安定性方面而言,較好為甲基或乙基。R2就矽烷化合物(f)之合成容易而言最好為甲基。 In the formula (1), R 2 is an alkyl group having 1 to 3 carbon atoms or a phenyl group. R 2 is preferably a methyl group or an ethyl group in terms of storage stability of the decane compound (f), viscosity reduction of the composition containing the nano particles, and storage stability. R 2 is preferably a methyl group as far as the synthesis of the decane compound (f) is easy.

R3為氫原子或碳數1~10之烴基。R3就矽烷化合物(f)之保存安定矽、含有奈米粒子之組成物之黏度減低及保存安定性、矽烷化合物(f)之合持容易而言,較好為碳數1~10之烷基,更好為甲基或乙基。 R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. R 3 is preferably a carbon number of 1 to 10 in terms of the stability of the decane compound (f), the viscosity reduction of the composition containing the nano particles, the storage stability, and the convenience of the decane compound (f). More preferably, it is a methyl group or an ethyl group.

式(1)中,q為1~16之整數。為了降低含有奈米粒子之組成物之黏度,q較好為3~16之整數,更好為5~10之整數。 In the formula (1), q is an integer of 1 to 16. In order to reduce the viscosity of the composition containing the nanoparticles, q is preferably an integer of from 3 to 16, more preferably an integer of from 5 to 10.

r為0~2之整數,就矽烷化合物(f)合成容易而言,較好為0。又,r為2時複數存在之R2可彼此相同亦可不同。 r is an integer of 0 to 2, and is preferably 0 in terms of easy synthesis of the decane compound (f). Further, when r is 2, R 2 existing in plural may be the same or different.

矽烷化合物(f)列舉為例如3-丙烯醯氧基丙基二甲基甲氧基矽烷、3-丙烯醯氧基丙基甲基二甲氧基矽烷、3-丙烯醯氧基丙基二乙基甲氧基矽烷、3-丙烯醯氧基丙基乙基二甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷、3-丙烯醯氧基丙基二甲基乙氧基矽烷、3-丙烯醯氧基丙基甲基二乙氧基矽烷、3-丙烯醯氧基丙基二乙基乙氧基矽烷、3-丙烯醯氧基丙基乙基二乙氧基矽烷、3-丙烯醯氧基丙基三乙氧基矽烷、3-甲基丙烯醯氧基丙基二甲基甲氧基矽烷、3-甲基丙烯醯氧基丙基甲基二甲氧基矽烷、3-甲基丙烯醯氧基丙基二乙基甲氧基矽烷、3-甲基丙烯醯氧基丙基乙基二甲氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷(MPS)、3-甲基丙烯醯氧基丙基二甲基乙氧基矽 烷、3-甲基丙烯醯氧基丙基甲基二乙氧基矽烷、3-甲基丙烯醯氧基丙基二乙基乙氧基矽烷、3-甲基丙烯醯氧基丙基乙基二乙氧基矽烷、3-甲基丙烯醯氧基丙基三乙氧基矽烷、8-丙烯醯氧基辛基二甲基甲氧基矽烷、8-丙烯醯氧基辛基甲基二甲氧基矽烷、8-丙烯醯氧基辛基二乙基甲氧基矽烷、8-丙烯醯氧基辛基乙基二甲氧基矽烷、8-丙烯醯氧基辛基三甲氧基矽烷、8-丙烯醯氧基辛基二甲基乙氧基矽烷、8-丙烯醯氧基辛基甲基二乙氧基矽烷、8-丙烯醯氧基辛基二乙基乙氧基矽烷、8-丙烯醯氧基辛基乙基二乙氧基矽烷、8-丙烯醯氧基辛基三乙氧基矽烷、8-甲基丙烯醯氧基辛基二甲基甲氧基矽烷、8-甲基丙烯醯氧基辛基甲基二甲氧基矽烷、8-甲基丙烯醯氧基辛基二乙基甲氧基矽烷、8-甲基丙烯醯氧基辛基乙基二甲氧基矽烷、8-甲基丙烯醯氧基辛基三甲氧基矽烷、8-甲基丙烯醯氧基辛基二甲基乙氧基矽烷、8-甲基丙烯醯氧基辛基甲基二乙氧基矽烷、8-甲基丙烯醯氧基辛基二乙基乙氧基矽烷、8-甲基丙烯醯氧基辛基乙基二乙氧基矽烷、8-甲基丙烯醯氧基辛基三乙氧基矽烷、10-丙烯醯氧基癸基三甲氧基矽烷、10-甲基丙烯醯氧基癸基三甲氧基矽烷、10-丙烯醯氧基癸基三乙氧基矽烷、10-甲基丙烯醯氧基癸基三乙氧基矽烷、12-丙烯醯氧基十二烷基三甲氧基矽烷、12-甲基丙烯醯氧基十二烷基三甲氧基矽烷、12-丙烯醯氧基十二烷基三乙氧基矽烷、12-甲基丙烯醯氧基十二烷基三乙氧基矽烷等。 The decane compound (f) is exemplified by, for example, 3-propenyloxypropyldimethylmethoxydecane, 3-propenyloxypropylmethyldimethoxydecane, 3-propenyloxypropyldiethyl 3-methoxydecane, 3-propenyloxypropylethyldimethoxydecane, 3-propenyloxypropyltrimethoxydecane, 3-propenyloxypropyldimethylethoxydecane 3-propenyloxypropylmethyldiethoxydecane, 3-propenyloxypropyldiethylethoxydecane, 3-propenyloxypropylethyldiethoxydecane, 3 - propylene methoxy propyl triethoxy decane, 3-methacryloxypropyl dimethyl methoxy decane, 3-methyl propylene methoxy propyl methyl dimethoxy decane, 3 Methyl propylene methoxypropyl diethyl methoxy decane, 3-methyl propylene methoxy propyl ethyl dimethoxy decane, 3-methyl propylene methoxy propyl trimethoxy decane ( MPS), 3-methacryloxypropyl dimethyl ethoxy oxime Alkane, 3-methylpropenyloxypropylmethyldiethoxydecane, 3-methylpropenyloxypropyldiethylethoxydecane, 3-methylpropenyloxypropylethyl Diethoxydecane, 3-methylpropenyloxypropyltriethoxydecane, 8-propenyloxyoctyldimethylmethoxydecane, 8-propenyloxyoctylmethyldimethyl Oxydecane, 8-propenyloxyoctyldimethoxymethoxydecane, 8-propenyloxyoctylethyldimethoxydecane, 8-propenyloxyoctyltrimethoxydecane, 8 - propylene methoxy octyl dimethyl ethoxy decane, 8- propylene decyl octyl methyl diethoxy decane, 8- propylene decyl octyl diethyl ethoxy decane, 8- propylene醯oxyoctylethyldiethoxydecane, 8-propenyloxyoctyltriethoxydecane, 8-methylpropenyloxyoctyldimethylmethoxydecane, 8-methylpropene醯oxyoctylmethyldimethoxydecane, 8-methylpropenyloxyoctyldimethoxymethoxydecane, 8-methylpropenyloxyoctylethyldimethoxydecane, 8 -Methyl propylene oxime octyl trimethoxy decane, 8-methyl propylene醯 oxyoctyl dimethyl ethoxy decane, 8-methyl propylene decyl octyl methyl diethoxy decane, 8-methyl propylene decyl octyl diethyl ethoxy decane, 8 -Methyl propylene oxime octylethyl diethoxy decane, 8-methylpropenyl octyl octyl triethoxy decane, 10-propenyl decyl decyl trimethoxy decane, 10-methyl Propylene methoxy decyl trimethoxy decane, 10-propenyl decyl decyl triethoxy decane, 10-methyl propylene decyl decyl triethoxy decane, 12-propylene decoxy dodecane Trimethoxy decane, 12-methylpropenyloxydodecyltrimethoxydecane, 12-propenyloxydodecyltriethoxydecane, 12-methylpropenyloxydodecane Triethoxy decane and the like.

就二氧化矽微粒子(a)於含有奈米粒子之組 成物中之分散安定性提高、含有奈米粒子之組成物之黏度減低及保存安定性提高之觀點而言,較好使用下列作為矽烷化合物(f):3-丙烯醯氧基丙基二甲基甲氧基矽烷、3-丙烯醯氧基丙基甲基二甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷(APS)、3-甲基丙烯醯氧基丙基二甲基甲氧基矽烷、3-甲基丙烯醯氧基丙基甲基二甲氧基矽烷、3-甲基丙烯醯氧基丙基二甲基乙氧基矽烷、3-甲基丙烯醯氧基丙基甲基二乙氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷(MPS)、8-甲基丙烯醯氧基辛基三甲氧基矽烷(MOS),更好使用3-甲基丙烯醯氧基丙基三甲氧基矽烷(MPS)、8-甲基丙烯醯氧基辛基三甲氧基矽烷(MOS)。 As for the cerium oxide microparticles (a) in the group containing nanoparticles For the viewpoint of improved dispersion stability in the product, reduction in viscosity of the composition containing the nanoparticles, and improvement in storage stability, the following are preferably used as the decane compound (f): 3-propenyloxypropyl dimethyl Methoxymethoxydecane, 3-propenyloxypropylmethyldimethoxydecane, 3-propenyloxypropyltrimethoxydecane (APS), 3-methylpropenyloxypropyldimethyl Methoxymethoxydecane, 3-methylpropenyloxypropylmethyldimethoxydecane, 3-methylpropenyloxypropyldimethylethoxydecane, 3-methylpropenyloxy Propylmethyldiethoxydecane, 3-methacryloxypropyltrimethoxydecane (MPS), 8-methylpropenyloxyoctyltrimethoxydecane (MOS), better use 3 - Methacryloxypropyltrimethoxydecane (MPS), 8-methylpropenyloxyoctyltrimethoxydecane (MOS).

上述矽烷化合物(f)可單獨使用,亦可併用兩種以上使用。此外,上述矽烷化合物(f)可藉習知方法製造,亦可為市售。 The above decane compound (f) may be used singly or in combination of two or more. Further, the above decane compound (f) can be produced by a known method or can be commercially available.

(矽烷化合物(g)) (decane compound (g))

矽烷化合物(g)係以下述通式(2)表示。 The decane compound (g) is represented by the following formula (2).

式(2)中,R4為碳數1~3之烷基或苯基。R4就含有奈米粒子之組成物之黏度減低及保存安定性之觀點而言,較好為甲基。R4為苯基時,在不損及本發明效果之範圍內,苯基亦可鍵結有取代基。 In the formula (2), R 4 is an alkyl group having 1 to 3 carbon atoms or a phenyl group. R 4 to contain the nanoparticle composition viscosity was reduced and storage of view of stability, it is preferably a methyl group. When R 4 is a phenyl group, the phenyl group may be bonded with a substituent within a range not impairing the effects of the present invention.

式(2)中,R5為氫原子或碳數1~10之烴基。R5就含有奈米粒子之組成物之黏度減低及保存安定性之觀點而言,較好為碳數1~10之烷基,更好為甲基。 Formula (2), R 5 is a hydrogen atom or a hydrocarbon group having a carbon number of 1 to 10. R 5 is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, from the viewpoint of the viscosity reduction of the composition of the nanoparticle and the preservation stability.

式(2)中,s為0~6之整數,就含有奈米粒子之組成物之黏度減低及保存安定性之觀點而言,s較好為0或1。 In the formula (2), s is an integer of 0 to 6, and s is preferably 0 or 1 from the viewpoint of the viscosity reduction of the composition containing the nanoparticles and the preservation stability.

式(2)中,t為0~2之整數,就含有奈米粒子之組成物之黏度減低及保存安定性之觀點而言,t較好為0。又,t為2時,複數存在之R4可相同亦可不同。 In the formula (2), t is an integer of 0 to 2, and t is preferably 0 from the viewpoint of the viscosity reduction of the composition containing the nanoparticles and the preservation stability. Further, when t is 2, R 4 in the plural may be the same or different.

矽烷化合物(g)列舉為例如苯基二甲基甲氧基矽烷、苯基甲基二甲氧基矽烷、苯基二乙基甲氧基矽烷、苯基乙基二甲氧基矽烷、苯基三甲氧基矽烷(PHS)、苯基二甲基乙氧基矽烷、苯基甲基二乙氧基矽烷、苯基二乙基乙氧基矽烷、苯基乙基二乙氧基矽烷、苯基三乙氧基矽烷、苄基二甲基甲氧基矽烷、苄基甲基二甲氧基矽烷、苄基二乙基甲氧基矽烷、苄基乙基二甲氧基矽烷、苄基三甲氧基矽烷、苄基二甲基乙氧基矽烷、苄基甲基二乙氧基矽烷、苄基二乙基乙氧基矽烷、苄基乙基二乙氧基矽烷、及苄基三乙氧基矽烷等。 The decane compound (g) is exemplified by, for example, phenyldimethylmethoxydecane, phenylmethyldimethoxydecane, phenyldiethylmethoxydecane, phenylethyldimethoxydecane, phenyl. Trimethoxy decane (PHS), phenyl dimethyl ethoxy decane, phenyl methyl diethoxy decane, phenyl diethyl ethoxy decane, phenyl ethyl diethoxy decane, phenyl Triethoxy decane, benzyl dimethyl methoxy decane, benzyl methyl dimethoxy decane, benzyl diethyl methoxy decane, benzyl ethyl dimethoxy decane, benzyl trimethoxy Base decane, benzyl dimethyl ethoxy decane, benzyl methyl diethoxy decane, benzyl diethyl ethoxy decane, benzyl ethyl diethoxy decane, and benzyl triethoxy Decane and so on.

就含有奈米粒子之組成物之黏度減低、保存 安定性提高、亦包含吸水率降低之耐環境性提高之觀點而言,矽烷化合物(g)較好使用苯基二甲基甲氧基矽烷、苯基甲基二甲氧基矽烷、苯基二乙基甲氧基矽烷、苯基乙基二甲氧基矽烷、苯基三甲氧基矽烷(PHS),更好使用苯基三甲氧基矽烷(PHS)。 Decreasing and preserving the viscosity of the composition containing the nanoparticles The decane compound (g) is preferably a phenyl dimethyl methoxy decane, a phenylmethyl dimethoxy decane or a phenyl group, from the viewpoint of improvement in stability and improvement in environmental resistance including a decrease in water absorption. Ethylmethoxydecane, phenylethyldimethoxydecane, phenyltrimethoxydecane (PHS), more preferably phenyltrimethoxydecane (PHS).

上述矽烷化合物(g)可單獨使用,亦可併用兩種以上使用。此外,上述矽烷化合物(g)可藉習知方法製造,亦可為市售。 The above decane compound (g) may be used singly or in combination of two or more. Further, the above decane compound (g) can be produced by a known method or can be commercially available.

《二氧化矽微粒子之表面處理所用之矽烷化合物之使用量》 "Use of decane compounds used for surface treatment of cerium oxide microparticles"

二氧化矽微粒子(a)之表面處理所用之矽烷化合物(f)之使用量相對於表面處理前之二氧化矽微粒子100質量份較好為1~50質量份,更好為3~20質量份。 The amount of the decane compound (f) used for the surface treatment of the cerium oxide microparticles (a) is preferably from 1 to 50 parts by mass, more preferably from 3 to 20 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment. .

且,表面處理所用之矽烷化合物(g)之使用量相對於表面處理前之二氧化矽微粒子100質量份,較好為1~50質量份,更好為3~20質量份。 Further, the amount of the decane compound (g) used for the surface treatment is preferably from 1 to 50 parts by mass, more preferably from 3 to 20 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment.

表面處理所用之矽烷化合物(f)與矽烷化合物(g)之合計使用量相對於表面處理前之二氧化矽微粒子100質量份,較好為5~80質量份,更好為10~40質量份。 The total amount of the decane compound (f) and the decane compound (g) used for the surface treatment is preferably from 5 to 80 parts by mass, more preferably from 10 to 40 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment. .

上述合計使用量為5質量份以上時,藉由以矽烷化合物(f)及(g)進行表面處理之二氧化矽微粒子(a)對(甲基)丙烯酸酯化合物(B)之相溶性提高效果變高, 獲得更低黏度之含有奈米粒子之組成物。此外,上述合計使用量為80質量份以下時,可抑制因矽烷化合物(f)及(g)之使用量多引起之二氧化矽微粒子(a)之凝聚。 When the total amount used is 5 parts by mass or more, the compatibility of the (meth) acrylate compound (B) by the surface treatment of the cerium oxide fine particles (a) with the decane compounds (f) and (g) is improved. Becomes high, A composition containing nanoparticles of lower viscosity is obtained. In addition, when the total amount used is 80 parts by mass or less, aggregation of the cerium oxide microparticles (a) due to the use amount of the decane compounds (f) and (g) can be suppressed.

表面處理所用之矽烷化合物(f)與矽烷化合物(g)之質量比((f):(g))較好為1:2~2:1,更好為2:3~3:2。 The mass ratio ((f): (g)) of the decane compound (f) to the decane compound (g) used for the surface treatment is preferably from 1:2 to 2:1, more preferably from 2:3 to 3:2.

《二氧化矽微粒子(a)之含量》 "Content of cerium oxide microparticles (a)"

含有奈米粒子之組成物中之二氧化矽微粒子(a)之含量可依表面處理前之二氧化矽微粒子之質量規定,將表面處理前之二氧化矽微粒子、與(甲基)丙烯酸酯(b)、(甲基)丙烯酸酯(c)、(甲基)丙烯酸酯(h)之合計設為100質量份時,較好為1~80質量份,就硬化物之耐熱性、透明性、耐環境性、含有奈米粒子之組成物之黏度之平衡之觀點而言,更好為20~50質量份。此外,為提高含有奈米粒子之組成物中所含之半導體奈米粒子(e)之分散性,二氧化矽微粒子(a)之含量以表面處理前之二氧化矽微粒子換算,較好為10質量份以上,更好為20質量份以上。 The content of the cerium oxide microparticles (a) in the composition containing the nanoparticles may be determined according to the quality of the cerium oxide microparticles before the surface treatment, and the cerium oxide microparticles and the (meth) acrylate before the surface treatment ( b) When the total of the (meth) acrylate (c) and the (meth) acrylate (h) is 100 parts by mass, it is preferably from 1 to 80 parts by mass, and the heat resistance and transparency of the cured product are From the viewpoint of the balance between the environmental resistance and the viscosity of the composition containing the nanoparticles, it is preferably from 20 to 50 parts by mass. Further, in order to increase the dispersibility of the semiconductor nanoparticle (e) contained in the composition containing the nanoparticle, the content of the cerium oxide microparticle (a) is preferably 10 in terms of the cerium oxide microparticles before the surface treatment. More than the mass part, more preferably 20 parts by mass or more.

〈(甲基)丙烯酸酯化合物(B)〉 <(Meth)acrylate compound (B)>

(甲基)丙烯酸酯化合物(B)係含有由具有2個(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物(h)、具有3個以上(甲基)丙烯醯氧基之多官能(甲 基)丙烯酸酯化合物(b)、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)選出之2種以上者。因此,含有以矽烷化合物(f)與矽烷化合物(g)進行表面處理之二氧化矽微粒子(a)之本實施形態之含有奈米粒子之組成物中,各成分之分散性變良好。另外,本實施形態之含有奈米粒子之組成物由於含上述之(甲基)丙烯酸酯化合物(B),故在塗佈含有奈米粒子之組成物時,容易調整成最適黏度,且獲得使其硬化所得之硬化膜之收縮率低之效果。 The (meth) acrylate compound (B) contains a bifunctional (meth) acrylate compound (h) having two (meth) propylene fluorenyloxy groups and having three or more (meth) acryloxy groups. Polyfunctional (A Two or more selected from the group consisting of the acrylate compound (b) and the monofunctional (meth) acrylate compound (c) having one (meth) acryloxy group. Therefore, in the composition containing the nanoparticles of the present embodiment containing the cerium oxide fine particles (a) surface-treated with the decane compound (f) and the decane compound (g), the dispersibility of each component becomes good. Further, since the composition containing the nanoparticles of the present embodiment contains the above (meth) acrylate compound (B), when the composition containing the nanoparticles is applied, it is easy to adjust the optimum viscosity and obtain The effect of the shrinkage rate of the cured film obtained by the hardening is low.

又,對使含有奈米粒子之組成物硬化所得之硬化膜賦予柔軟性時,(甲基)丙烯酸酯化合物(B)較好為丙烯酸酯化合物(b)與(甲基)丙烯酸酯化合物(c)之組合。 Further, when the cured film obtained by curing the composition containing the nanoparticles is imparted with flexibility, the (meth) acrylate compound (B) is preferably an acrylate compound (b) and a (meth) acrylate compound (c). a combination of).

〈(甲基)丙烯酸酯(b)〉 <(Meth)acrylate (b)>

(甲基)丙烯酸酯(b)係具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物。藉由於含有奈米粒子之組成物中含(甲基)丙烯酸酯(b),而成為獲得耐熱性與強度優異之硬化物者。 The (meth) acrylate (b) is a polyfunctional (meth) acrylate compound having three or more (meth) acryloxy groups. The (meth) acrylate (b) is contained in the composition containing the nanoparticles, and is a cured product excellent in heat resistance and strength.

(甲基)丙烯酸酯(b)較好為脂肪族多元醇與(甲基)丙烯酸之酯。具體例列舉為三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、環己烷三甲醇三(甲基)丙烯酸酯、金剛烷基三(甲基)丙烯酸酯、金剛烷三甲醇三(甲基)丙烯酸酯、降冰片烷三羥甲基三(甲基)丙烯酸酯、三環癸烷三甲醇三(甲基)丙 烯酸酯、全氫-1,4,5,8-二甲撐萘-2,3,7-(氧基甲基)三(甲基)丙烯酸酯、參(丙烯醯氧基乙基)異氰尿酸酯、己內酯改質之參(丙烯醯氧基乙基)異氰尿酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、三羥甲基丙烷三氧基乙基(甲基)丙烯酸酯、二-(2-丙烯醯氧基乙基)單-(2-羥基乙基)異氰尿酸酯等。(甲基)丙烯酸酯(b)在上述中尤其以具有3個(甲基)丙烯醯氧基之3官能(甲基)丙烯酸酯化合物較佳。 The (meth) acrylate (b) is preferably an ester of an aliphatic polyol and (meth)acrylic acid. Specific examples are trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, cyclohexane trimethylol tri(meth)acrylate, adamantyl tri(meth)acrylate, Adamantane trimethylol tri(meth)acrylate, norbornane trimethylol tri(meth)acrylate, tricyclodecane trimethanol tris(methyl)propene Oleate, perhydro-1,4,5,8-dimethylnaphthalene-2,3,7-(oxymethyl)tri(meth)acrylate, ginseng(propyleneoxyethyl) Cyanurate, caprolactone modified ginseng (propylene oxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol five (a Acrylate, dipentaerythritol hexa(meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, bis-(2-propenyl methoxyethyl) mono-(2-hydroxyl Ethyl) isocyanurate or the like. Among the above, the (meth) acrylate (b) is preferably a trifunctional (meth) acrylate compound having three (meth) propylene fluorenyloxy groups.

上述之(甲基)丙烯酸酯(b)可單獨使用,亦可併用兩種以上。 The above (meth) acrylate (b) may be used singly or in combination of two or more.

(甲基)丙烯酸酯(b)之含量相對於表面處理前之二氧化矽微粒子100質量份較好為10~1800質量份,更好為50~450質量份。 The content of the (meth) acrylate (b) is preferably from 10 to 1800 parts by mass, more preferably from 50 to 450 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment.

含有奈米粒子之組成物中之(甲基)丙烯酸酯(b)之含量較好為10~50質量%,更好為20~40質量%。 The content of the (meth) acrylate (b) in the composition containing the nanoparticles is preferably from 10 to 50% by mass, more preferably from 20 to 40% by mass.

〈(甲基)丙烯酸酯(h)〉 <(Meth)acrylate (h)>

(甲基)丙烯酸酯(h)係具有2個(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物。藉由於含有奈米粒子之組成物中含(甲基)丙烯酸酯(h),而使組成物之黏度調整容易,尤其容易低黏度化。 The (meth) acrylate (h) is a bifunctional (meth) acrylate compound having two (meth) propylene fluorenyloxy groups. Since the composition containing the nanoparticles contains the (meth) acrylate (h), the viscosity of the composition is easily adjusted, and the viscosity is particularly low.

(甲基)丙烯酸酯(h)列舉為例如1,4-丁二 醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、異壬二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、雙酚A環氧乙烷改質之二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、新戊基二(甲基)丙烯酸酯等。 (meth) acrylate (h) is exemplified by, for example, 1,4-butane Alcohol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, isodecanediol di(meth)acrylate 1,10-nonanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, Bisphenol A ethylene oxide modified di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, neopentyl di(meth)acrylate, and the like.

上述之(甲基)丙烯酸酯(h)可單獨使用,亦可併用兩種以上。 The above (meth) acrylate (h) may be used singly or in combination of two or more.

(甲基)丙烯酸酯(h)之含量相對於表面處理前之二氧化矽微粒子100質量份較好為10~1800質量份,更好為50~450質量份。 The content of the (meth) acrylate (h) is preferably from 10 to 1800 parts by mass, more preferably from 50 to 450 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment.

含有奈米粒子之組成物中之(甲基)丙烯酸酯(h)之含量較好為5~55質量%,更好為10~45質量%。 The content of the (meth) acrylate (h) in the composition containing the nanoparticles is preferably from 5 to 55% by mass, more preferably from 10 to 45% by mass.

〈(甲基)丙烯酸酯(c)〉 <(Meth)acrylate (c)>

(甲基)丙烯酸酯(c)係具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物。藉由於含有奈米粒子之組成物中含(甲基)丙烯酸酯(c),而使硬化時之收縮率低,且獲得柔軟性優異之硬化物者。 The (meth) acrylate (c) is a monofunctional (meth) acrylate compound having one (meth) propylene fluorenyloxy group. When the (meth) acrylate (c) is contained in the composition containing the nanoparticles, the shrinkage ratio at the time of curing is low, and a cured product excellent in flexibility is obtained.

(甲基)丙烯酸酯(c)列舉為例如環己烷二甲醇單(甲基)丙烯酸酯、(甲基)丙烯酸4-丁基環己酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊二烯酯、(甲基)丙烯酸冰片 酯、(甲基)丙烯酸異冰片酯、(甲基)丙烯酸三環癸酯、三環癸烷二甲醇單(甲基)丙烯酸酯、金剛烷基(甲基)丙烯酸酯、甲氧基聚乙二醇(甲基)丙烯酸酯、2-(甲基)丙烯醯氧基乙基琥珀酸酯、甲基丙烯酸2-羥基-3-(甲基)丙烯醯氧基丙酯、甲基丙烯酸異冰片酯、γ-丁內酯甲基丙烯酸酯、丙烯酸月桂酯、丙烯醯氧基嗎啉等。 The (meth) acrylate (c) is exemplified by, for example, cyclohexanedimethanol mono(meth)acrylate, 4-butylcyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, (A) Dicyclopentyl acrylate, dicyclopentadienyl (meth)acrylate, borneol (meth)acrylate Ester, isobornyl (meth)acrylate, tricyclodecyl (meth)acrylate, tricyclodecane dimethanol mono(meth)acrylate, adamantyl (meth)acrylate, methoxypolyethyl Glycol (meth) acrylate, 2-(meth) propylene methoxyethyl succinate, 2-hydroxy-3-(methyl) propylene methoxy propyl methacrylate, isobornyl methacrylate Ester, γ-butyrolactone methacrylate, lauryl acrylate, acryloxymorpholine, and the like.

上述之(甲基)丙烯酸酯(c)可單獨使用,亦可併用兩種以上。 The above (meth) acrylate (c) may be used singly or in combination of two or more.

(甲基)丙烯酸酯(c)之含量相對於表面處理前之二氧化矽微粒子100質量份,較好為10~1800質量份,更好為50~450質量份。 The content of the (meth) acrylate (c) is preferably from 10 to 1800 parts by mass, more preferably from 50 to 450 parts by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment.

含有奈米粒子之組成物中之(甲基)丙烯酸酯(c)之含量較好為10~50質量%,更好為20~40質量%。 The content of the (meth) acrylate (c) in the composition containing the nanoparticles is preferably from 10 to 50% by mass, more preferably from 20 to 40% by mass.

(甲基)丙烯酸酯(c)與(甲基)丙烯酸酯(b)之合計含量中之(甲基)丙烯酸酯(b)之含量較好為99質量%以下,更好為80質量%以下。此外,上述合計質量中之(甲基)丙烯酸酯(b)之含量較好為30質量%以上,更好為40質量%以上。 The content of the (meth) acrylate (b) in the total content of the (meth) acrylate (c) and the (meth) acrylate (b) is preferably 99% by mass or less, more preferably 80% by mass or less. . Further, the content of the (meth) acrylate (b) in the total mass is preferably 30% by mass or more, more preferably 40% by mass or more.

又含有由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)之質量中之(甲基)丙烯酸酯(b)與(甲基)丙烯酸酯(h)之合計含量較好為99質量%以下,更好為80質量%以下。且,上述合計質量中之(甲基)丙烯酸酯(b)與(甲基)丙烯酸酯(h)之合計含量較好為30質量%以 上,更好為40質量%以上。 Further, the (meth) acrylate (b) and (a) of the mass of the (meth) acrylate compound (B) selected from the group consisting of (meth) acrylate (h) (b) (c) The total content of the acrylate (h) is preferably 99% by mass or less, more preferably 80% by mass or less. Further, the total content of the (meth) acrylate (b) and the (meth) acrylate (h) in the total mass is preferably 30% by mass. Above, it is more preferably 40% by mass or more.

〈聚合起始劑(d)〉 <Polymerization initiator (d)>

聚合起始劑(d)有助於含有奈米粒子之組成物之硬化。聚合起始劑(d)列舉為產生自由基之光聚合起始劑、或熱聚合起始劑。 The polymerization initiator (d) contributes to the hardening of the composition containing the nanoparticles. The polymerization initiator (d) is exemplified as a photopolymerization initiator which generates a radical, or a thermal polymerization initiator.

光聚合起始劑列舉為例如二苯甲酮、苯偶因甲基醚、苯偶因丙基醚、二乙氧基苯乙酮、1-羥基-苯基苯基酮、2,6-二甲基苯甲醯基二苯基氧化膦、二苯基-(2,4,6-三甲基苯甲醯基)氧化膦及雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦。該等光聚合起始劑亦可併用2種以上。 The photopolymerization initiators are exemplified by, for example, benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-phenyl phenyl ketone, 2,6-di Methyl benzhydryl diphenylphosphine oxide, diphenyl-(2,4,6-trimethylbenzylidene)phosphine oxide and bis(2,4,6-trimethylbenzylidene) - Phenylphosphine oxide. These photopolymerization initiators may be used in combination of two or more kinds.

熱聚合起始劑列舉為例如苯甲醯基過氧化物、二異丙基過氧基碳酸酯、第三丁基過氧基(2-乙基己酸酯)、第三丁基過氧基新癸酸酯、第三己基過氧基特戊酸酯、1,1,3,3-四甲基丁基過氧基-2-乙基己酸酯、第三丁基過氧基特戊酸酯、第三丁基過氧基-2-乙基己酸酯、第三己基過氧基異丙基單羧酸酯、二月桂醯基過氧化物、二異丙基過氧基二羧酸酯、二(4-第三丁基環己基)過氧基二羧酸酯、2,2-二(4,4-二-(第三丁基過氧基)環己基)丙烷。該等熱聚合起始劑可單獨使用,亦可併用兩種以上。 Thermal polymerization initiators are exemplified by, for example, benzammonium peroxide, diisopropylperoxycarbonate, tert-butylperoxy (2-ethylhexanoate), and tert-butylperoxy Neodecanoate, third hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-butylperoxypentan Acid ester, tert-butylperoxy-2-ethylhexanoate, third hexylperoxyisopropyl monocarboxylate, dilauroyl peroxide, diisopropylperoxydicarboxylate An acid ester, bis(4-tert-butylcyclohexyl)peroxydicarboxylate, 2,2-bis(4,4-di-(t-butylperoxy)cyclohexyl)propane. These thermal polymerization initiators may be used singly or in combination of two or more.

聚合起始劑(d)在含有奈米粒子之組成物中之含量只要為使含有奈米粒子之組成物適度硬化之量即可。含有奈米粒子之組成物中之聚合起始劑之含量較好為 0.01~10質量%,更好為0.02~5質量%,又更好為0.1~2質量%。聚合起始劑之含量過多時,含有奈米粒子之組成物之保存安定性降低,有變色之情況。且,聚合起始劑之含量過多時,獲得硬化物時之交聯急遽進行,有發生破裂等問題之情況。另外,聚合起始劑之添加量太少時,含有奈米粒子之組成物不易硬化。 The content of the polymerization initiator (d) in the composition containing the nanoparticles may be an amount such that the composition containing the nanoparticles is moderately cured. The content of the polymerization initiator in the composition containing the nanoparticles is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, still more preferably 0.1 to 2% by mass. When the content of the polymerization initiator is too large, the storage stability of the composition containing the nanoparticles is lowered, and there is a case of discoloration. Further, when the content of the polymerization initiator is too large, crosslinking at the time of obtaining a cured product proceeds rapidly, and problems such as cracking may occur. Further, when the amount of the polymerization initiator added is too small, the composition containing the nanoparticles is hard to be hardened.

〈半導體奈米粒子(e)〉 <Semiconductor Nanoparticles (e)>

半導體奈米粒子(e)為發光體。半導體奈米粒子(e)較好使用平均粒徑為1nm~1000nm者。半導體奈米粒子(e)之粒徑較好未達20nm,更好未達15nm。半導體奈米粒子(e)之粒徑最好為2~5nm。半導體奈米粒子(e)為粒徑2~未達20nm者時,成為具有量子性侷限半導體奈米粒子(e)之電子的量子點效果之螢光體。 The semiconductor nanoparticle (e) is an illuminant. The semiconductor nanoparticle (e) is preferably one having an average particle diameter of from 1 nm to 1000 nm. The particle size of the semiconductor nanoparticle (e) is preferably less than 20 nm, more preferably less than 15 nm. The particle diameter of the semiconductor nanoparticle (e) is preferably 2 to 5 nm. The semiconductor nanoparticle (e) is a phosphor having a quantum dot effect of electrons having quantum-limited semiconductor nanoparticles (e) when the particle diameter is 2 to less than 20 nm.

半導體奈米粒子(e)較好為含有奈米粒子芯、與具有配位於奈米粒子芯表面之保護基之保護層者。 The semiconductor nanoparticle (e) is preferably a protective layer containing a nanoparticle core and a protective group having a surface disposed on the surface of the nanoparticle core.

保護基係由烴基所成者。 The protective group is composed of a hydrocarbon group.

半導體奈米粒子(e)之奈米粒子芯係含有離子者。奈米粒子芯中所含之離子並無特別限制,列舉為例如由週期表之第2族~第16族所成之群選出之至少一種元素之離子。奈米粒子芯較好含由週期表第3族~第16組所成之群選出之至少一種元素之離子。 The nanoparticle core of the semiconductor nanoparticle (e) contains an ion. The ions contained in the nanoparticle core are not particularly limited, and examples thereof include ions of at least one element selected from the group consisting of Groups 2 to 16 of the periodic table. The nanoparticle core preferably contains ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table.

且,奈米粒子芯為含兩種以上元素之離子者時,較好含以下所示之第1離子及第2離子。第1離子係 由週期表第11族~第14族所組成之群選出之至少一種元素之離子。又,第2離子係由週期表第14族~第16族所組成之群選出之至少一種元素之離子。 Further, when the nanoparticle core is an ion containing two or more elements, it preferably contains the first ion and the second ion shown below. First ion system An ion of at least one element selected from the group consisting of Groups 11 to 14 of the periodic table. Further, the second ion is an ion of at least one element selected from the group consisting of Group 14 to Group 16 of the periodic table.

奈米粒子芯係含半導體材料者。奈米粒子芯所用之半導體材料列舉為含有由ZnS、ZnSe、ZnTe、InP、InAs、InSb、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PdS、PbSe、Si、Ge、MgSe、MgTe、CdS、CdSe、CdTe、CdO、AlP、MgS、ZnO所組成之群選出之至少一種。該等中,作為奈米粒子芯所用之半導體材料,較好含有由ZnS、ZnSe、ZnTe、InP、InAs、InSb、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PdS、PbSe、Si、Ge、MgSe、MgTe所組成之群選出之至少一種。 Nanoparticle cores are those containing semiconductor materials. The semiconductor material used for the nanoparticle core is exemplified by ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, MgTe, At least one selected from the group consisting of CdS, CdSe, CdTe, CdO, AlP, MgS, and ZnO. Among these, the semiconductor material used for the nanoparticle core preferably contains ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, At least one selected from the group consisting of Ge, MgSe, and MgTe.

半導體奈米粒子(e)較好為奈米粒子芯之表面以由無機材料所成之殼被覆之芯殼型。殼可為由一層所成者,亦可為由二層以上所成(芯-多殼型)者。 The semiconductor nanoparticle (e) is preferably a core-shell type in which the surface of the nanoparticle core is coated with a shell made of an inorganic material. The shell may be formed of one layer or may be made of two or more layers (core-multishell type).

芯-殼型之半導體奈米粒子(e)由於藉由殼而促進奈米粒子芯與保護基之鍵結,故獲得優異之量子點效果。 The core-shell type semiconductor nanoparticle (e) obtains an excellent quantum dot effect by promoting the bonding of the nanoparticle core to the protecting group by the shell.

此外,半導體奈米粒子(e)亦可為經摻雜之奈米粒子或傾斜之奈米粒子。 Further, the semiconductor nanoparticle (e) may be a doped nanoparticle or an inclined nanoparticle.

含有奈米粒子之組成物中之半導體奈米粒子(e)之含量較好為0.1~20質量%。含有奈米粒子之組成物中之半導體奈米粒子(e)之含量為0.1質量%以上時,藉由含有半導體奈米粒子(e)而充分獲得光波長轉換作 用。因此,可於光學透鏡、光學元件、光波導及LED密封材等光學零件.電子零件中較好地使用含有奈米粒子之組成物之硬化物。另外,半導體奈米粒子(e)之調配量為20質量%以下時,可充分確保硬化物之強度。 The content of the semiconductor nanoparticle (e) in the composition containing the nanoparticle is preferably from 0.1 to 20% by mass. When the content of the semiconductor nanoparticle (e) in the composition containing the nanoparticle is 0.1% by mass or more, the wavelength conversion of the light is sufficiently obtained by including the semiconductor nanoparticle (e). use. Therefore, it can be used in optical components such as optical lenses, optical components, optical waveguides and LED sealing materials. A cured product containing a composition of nano particles is preferably used in the electronic component. In addition, when the compounding amount of the semiconductor nanoparticle (e) is 20% by mass or less, the strength of the cured product can be sufficiently ensured.

此外,半導體奈米粒子(e)為可藉由改變平均粒徑或奈米粒子芯之材料,而調整半導體奈米粒子(e)之發光波長者。因此,例如於LED表面塗佈含半導體奈米粒子(e)之含有奈米粒子之組成物並硬化,可藉由半導體奈米粒子(e)之光波長轉換作用,製造發出白色光之LED。 Further, the semiconductor nanoparticle (e) is one in which the light emission wavelength of the semiconductor nanoparticle (e) can be adjusted by changing the average particle diameter or the material of the nanoparticle core. Therefore, for example, a composition containing nanoparticles containing semiconductor nanoparticles (e) is applied to the surface of the LED and cured, and an LED emitting white light can be produced by the wavelength conversion effect of the semiconductor nanoparticle (e).

〈其他成分〉 <Other ingredients>

本發明之含有奈米粒子之組成物除上述必要成分外,亦可視需要,在不損及組成物之黏度、及硬化物之透明性及耐熱性等特性之範圍內,含有聚合抑制劑、調平劑、抗氧化劑、紫外線吸收劑、紅外線吸收劑、光安定劑、顏料、其他無機填料等填充劑、反應性稀釋劑、其他改質劑等。 In addition to the above-mentioned essential components, the composition containing the nanoparticles of the present invention may contain a polymerization inhibitor, a tone, and the like, without impairing the viscosity of the composition, the transparency and heat resistance of the cured product, and the like. Filling agents such as flat agents, antioxidants, ultraviolet absorbers, infrared absorbers, light stabilizers, pigments, other inorganic fillers, reactive diluents, other modifiers, and the like.

又,本發明之含有奈米粒子之組成物較好實質上不含有機溶劑及水。此處所謂實質上意指實際使用本發明之含有奈米粒子之組成物獲得硬化物時,不需要再度經過脫溶劑之步驟,具體而言,意指含有奈米粒子之組成物中之有機溶劑及水之各殘留量較好為2質量%以下,更好為1質量%以下。 Further, the composition containing the nanoparticles of the present invention preferably contains substantially no organic solvent or water. The term "substantially means" in the actual use of the composition containing the nanoparticles of the present invention to obtain a cured product does not require a step of removing the solvent again, and specifically means an organic solvent in the composition containing the nanoparticles. The residual amount of water and water is preferably 2% by mass or less, more preferably 1% by mass or less.

聚合抑制劑列舉為例如氫醌、氫醌單甲基醚、苯醌、對-第三丁基兒茶酚、2,6-二第三丁基-4-甲基酚等。該等可使用1種或組合2種以上使用。 The polymerization inhibitor is exemplified by, for example, hydroquinone, hydroquinone monomethyl ether, benzoquinone, p-t-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. These may be used alone or in combination of two or more.

調平劑列舉為例如聚醚改質之二甲基聚矽氧烷共聚物、聚酯改質之二甲基聚矽氧烷共聚物、聚醚改質之甲基烷基聚矽氧烷共聚物、芳烷基改質之甲基烷基聚矽氧烷共聚物、聚醚改質之甲基烷基聚矽氧烷共聚物等。該等可使用1種或組合2種以上使用。 The leveling agent is exemplified by, for example, a polyether modified dimethyl polyoxyalkylene copolymer, a polyester modified dimethyl polyoxyalkylene copolymer, and a polyether modified methyl alkyl polyoxyalkylene copolymer. a methacrylic modified methyl alkyl polyoxyalkylene copolymer, a polyether modified methyl alkyl polyoxyalkylene copolymer, and the like. These may be used alone or in combination of two or more.

填充劑或顏料列舉為碳酸鈣、滑石、雲母、黏土、AEROSIL(註冊商標)等,硫酸鋇、氫氧化鋁、硬脂酸鋅、鋅白、紅色氧化鐵、偶氮顏料等。該等可使用1種或組合2種以上使用。 The filler or pigment is exemplified by calcium carbonate, talc, mica, clay, AEROSIL (registered trademark), etc., barium sulfate, aluminum hydroxide, zinc stearate, zinc white, red iron oxide, azo pigment, and the like. These may be used alone or in combination of two or more.

〈含有奈米粒子之組成物之製造方法〉 <Method for Producing Composition Containing Nanoparticles>

本發明之含有奈米粒子之組成物可藉由例如進行以下所示之步驟1~步驟5而製造。 The composition containing the nanoparticles of the present invention can be produced, for example, by performing the steps 1 to 5 shown below.

(步驟1)以矽烷化合物(f)及(g)表面處理二氧化矽微粒子,獲得二氧化矽微粒子(a)。 (Step 1) The cerium oxide microparticles (a) are obtained by surface-treating cerium oxide microparticles with decane compounds (f) and (g).

(步驟2)混合步驟1中所得之二氧化矽微粒子(a)與含由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B),獲得混合液。 (Step 2) mixing the cerium oxide microparticles (a) obtained in the step 1 with two or more (meth) acrylate compounds (B) selected from (meth) acrylate (h) (b) (c) ), to obtain a mixture.

(步驟3)自步驟2所得之混合液餾除揮發分(以下亦稱為「脫溶劑」),獲得基底組成物。 (Step 3) The volatile liquid (hereinafter also referred to as "desolvation") is distilled off from the mixed liquid obtained in the step 2 to obtain a base composition.

(步驟4)於步驟3所得之基底組成物中添加.混合半導體奈米粒子(e),且視需要脫溶劑,獲得含半導體奈米粒子(e)之基底組成物。 (Step 4) is added to the base composition obtained in Step 3. The semiconductor nanoparticle (e) is mixed, and the solvent is removed as needed to obtain a base composition containing the semiconductor nanoparticle (e).

(步驟5)於步驟4所得之含半導體奈米粒子(e)之基底組成物中添加.混合聚合起始劑(d),獲得含奈米粒子之組成物。 (Step 5) is added to the base composition of the semiconductor nanoparticle (e) obtained in the step 4. The polymerization initiator (d) was mixed to obtain a composition containing nano particles.

以下,針對各步驟加以說明。 Hereinafter, each step will be described.

《步驟1》 "step 1"

步驟1係以矽烷化合物(f)及(g)表面處理二氧化矽微粒子。表面處理係藉以下所示方法進行。首先,將分散於有機溶劑中之二氧化矽微粒子、與矽烷化合物(f)及矽烷化合物(g)饋入反應器中並混合.攪拌,成為混合液。隨後,將水及觸媒(或觸媒之水溶液)添加於混合液中,使矽烷化合物(f)及矽烷化合物(g)水解。藉由進行該等步驟,獲得分散有二氧化矽微粒子(a)之分散液。 Step 1 is to surface-treat cerium oxide microparticles with decane compounds (f) and (g). The surface treatment was carried out by the method shown below. First, the cerium oxide microparticles dispersed in an organic solvent, and the decane compound (f) and the decane compound (g) are fed into the reactor and mixed. Stir and become a mixture. Subsequently, water and a catalyst (or an aqueous solution of a catalyst) are added to the mixed solution to hydrolyze the decane compound (f) and the decane compound (g). By performing these steps, a dispersion in which the cerium oxide microparticles (a) are dispersed is obtained.

上述之表面處理方法中,藉水解自矽烷化合物(f)及矽烷化合物(g)生成矽醇(Si-OH)。生成之矽醇彼此(可為自矽烷化合物(f)生成之矽醇彼此,亦可為自矽烷化合物(g)生成之矽醇彼此,亦可為自矽烷化合物(f)生成之矽醇與自矽烷化合物(g)生成之矽醇)經部分縮合,形成具有矽氧烷鍵(Si-O-Si)之聚合物。該聚合物與混合液中之二氧化矽微粒子之羥基進行氫 鍵結。結果,二氧化矽微粒子成為由聚合物被覆之經表面處理之二氧化矽微粒子(a)。 In the above surface treatment method, sterol (Si-OH) is produced by hydrolysis from the decane compound (f) and the decane compound (g). The sterols formed may be sterols formed from the decane compound (f), sterols formed from the decane compound (g), and sterols derived from the decane compound (f). The sterol compound (g) is partially condensed to form a polymer having a siloxane chain (Si-O-Si). Hydrogenation of the polymer with the hydroxyl group of the cerium oxide microparticles in the mixed solution Bonding. As a result, the cerium oxide microparticles become the surface-treated cerium oxide microparticles (a) coated with the polymer.

又,上述之表面處理方法中,矽烷化合物(f)及/或矽烷化合物(g)中之一部分亦可未經水解。另外,未經水解而殘留之矽烷化合物(f)及/或矽烷化合物(g)之一部分或全部亦可成為附著於二氧化矽微粒子之狀態。 Further, in the above surface treatment method, a part of the decane compound (f) and/or the decane compound (g) may not be hydrolyzed. Further, part or all of the decane compound (f) and/or the decane compound (g) remaining without being hydrolyzed may be in a state of being attached to the cerium oxide microparticles.

且,藉由水解自矽烷化合物(f)及矽烷化合物(g)生成之矽醇可僅一部分聚合,亦可全部聚合。未聚合之矽醇之一部分或全部亦可附著於二氧化矽微粒子。又,矽醇經部分縮合之聚合物中之一部分亦可不與二氧化矽微粒子進行氫鍵結。 Further, the sterol produced by hydrolyzing the decane compound (f) and the decane compound (g) may be polymerized only partially or entirely. Part or all of the unpolymerized sterol may also be attached to the cerium oxide microparticles. Further, a part of the partially condensed polymer of decyl alcohol may not be hydrogen-bonded to the cerium oxide microparticles.

藉該表面處理,在二氧化矽微粒子之表面進行矽烷化合物(f)及(g)之水解.聚縮合。 By the surface treatment, the hydrolysis of the decane compounds (f) and (g) is carried out on the surface of the cerium oxide microparticles. Polycondensation.

水解過程中之矽烷化合物(f)及(g)之消失可利用氣相層析法確認。其測定條件如實施例所記載。 The disappearance of the decane compounds (f) and (g) during the hydrolysis can be confirmed by gas chromatography. The measurement conditions are as described in the examples.

至於二氧化矽微粒子,就其於含有奈米粒子之組成物中之分散性之觀點而言,較好使用使二氧化矽微粒子分散於有機溶劑中而成之分散體,最好使用分散於有機溶劑中之膠體二氧化矽。前述有機溶劑較好使用使含有奈米粒子之組成物中所有含之(甲基)丙烯酸酯化合物(B)溶解者。 As for the cerium oxide microparticles, a dispersion obtained by dispersing cerium oxide microparticles in an organic solvent is preferably used from the viewpoint of dispersibility in the composition containing the nanoparticle, and it is preferably dispersed in an organic layer. Colloidal cerium oxide in a solvent. The organic solvent is preferably used by dissolving all of the (meth) acrylate compound (B) contained in the composition containing the nanoparticles.

上述二氧化矽微粒子之分散體中之二氧化矽微粒子之含量較好為1~50質量%。分散體中之二氧化矽微粒子之 含量,基於其在含有奈米粒子之組成物中之分散性之觀點而言,更好為10~50質量%,又更好為20~40質量%。 The content of the cerium oxide fine particles in the dispersion of the above cerium oxide fine particles is preferably from 1 to 50% by mass. Titanium dioxide microparticles in the dispersion The content is preferably from 10 to 50% by mass, more preferably from 20 to 40% by mass, from the viewpoint of dispersibility in the composition containing the nanoparticles.

矽烷化合物(f)及(g)水解所需之水量相對於表面處理前之二氧化矽微粒子100質量份,較好為1~100質量份,更好為1~50質量份,又更好為1~30質量份。水量過少時,水解速度極端變慢而有缺乏經濟性之虞,或有無法充分進行表面處理之虞。水量過多時,會有二氧化矽微粒子(a)形成凝膠之虞。 The amount of water required for the hydrolysis of the decane compound (f) and (g) is preferably from 1 to 100 parts by mass, more preferably from 1 to 50 parts by mass, based on 100 parts by mass of the cerium oxide microparticles before the surface treatment. 1 to 30 parts by mass. When the amount of water is too small, the hydrolysis rate is extremely slow, there is a lack of economic efficiency, or there is a possibility that the surface treatment cannot be sufficiently performed. When the amount of water is too large, the cerium oxide microparticles (a) form a gel.

進行水解時,較好使用水解反應用之觸媒。 When the hydrolysis is carried out, it is preferred to use a catalyst for the hydrolysis reaction.

水解反應用觸媒列舉為例如鹽酸(氯化氫水溶液)、乙酸、硫酸及磷酸等無機酸;甲酸、丙酸、草酸、對甲苯磺酸、苯甲酸、苯二甲酸及馬來酸等有機酸;氫氧化鉀、氫氧化鈉、氫氧化鈣及氨等鹼性觸媒;有機金屬、金屬烷氧化物、二丁基錫二月桂酸鹽、二丁基錫二辛酸鹽及二丁基錫乙酸鹽等有機錫化合物;參(乙醯基丙酮酸)鋁、肆(乙醯基丙酮酸)鈦、雙(丁氧基)雙(乙醯基丙酮酸)鈦、雙(異丙氧基)雙(乙醯基丙酮酸)鈦、雙(丁氧基)雙(乙醯基丙酮酸)鋯及雙(異丙氧基)雙(乙醯基丙酮酸)鋯等之金屬螯合化合物;丁氧化硼及硼酸等硼化合物。該等中,基於對水之溶解性、獲得充分水解速度而言,較好使用鹽酸、乙酸、馬來酸及硼化合物作為觸媒。水解反應用觸媒可單獨使用,亦可併用兩種以上。 The catalyst for hydrolysis reaction is exemplified by inorganic acids such as hydrochloric acid (aqueous hydrogen chloride solution), acetic acid, sulfuric acid, and phosphoric acid; organic acids such as formic acid, propionic acid, oxalic acid, p-toluenesulfonic acid, benzoic acid, phthalic acid, and maleic acid; Alkaline catalysts such as potassium oxide, sodium hydroxide, calcium hydroxide and ammonia; organotin compounds such as organometallics, metal alkoxides, dibutyltin dilaurate, dibutyltin dioctoate and dibutyltin acetate; Ethylpyruvate)aluminum, bismuth (acetylthiopyruvate) titanium, bis(butoxy)bis(acetylthiopyruvate) titanium, bis(isopropoxy)bis(ethylmercaptopyruvate) titanium a metal chelate compound such as bis(butoxy)bis(acetylthiopyruvate) zirconium or bis(isopropoxy)bis(acetylsulfonate)zirconium; a boron compound such as boron bromide or boric acid. Among these, hydrochloric acid, acetic acid, maleic acid, and a boron compound are preferably used as a catalyst based on solubility in water and a sufficient hydrolysis rate. The catalyst for the hydrolysis reaction may be used singly or in combination of two or more.

水解反應用觸媒可使用非水溶性觸媒、或水溶性觸媒,較好使用水溶性觸媒。使用水溶性觸媒作為水 解反應用觸媒時,使水溶性觸媒溶解於適當量之水中成為水溶液後,添加於水解之反應系時,可使觸媒均勻分散故較佳。 As the catalyst for the hydrolysis reaction, a water-insoluble catalyst or a water-soluble catalyst can be used, and a water-soluble catalyst is preferably used. Use water-soluble catalyst as water When the catalyst for the reaction is dissolved, the water-soluble catalyst is dissolved in an appropriate amount of water to form an aqueous solution, and when added to the reaction system for hydrolysis, the catalyst can be uniformly dispersed, which is preferable.

水解所使用之觸媒之添加量並無特別限制,但相對於表面處理前之二氧化矽微粒子100質量份,較好為0.01~1質量份,更好為0.01~0.5質量份。又,以使上述觸媒溶解於水中作成之水溶液使用於水解反應時,上述觸媒之添加量表示水溶液中所含之僅觸媒(例如酸或鹼)之量。 The amount of the catalyst to be used for the hydrolysis is not particularly limited, but is preferably 0.01 to 1 part by mass, more preferably 0.01 to 0.5 part by mass, per 100 parts by mass of the cerium oxide microparticles before the surface treatment. Further, when the aqueous solution prepared by dissolving the catalyst in water is used in the hydrolysis reaction, the amount of the catalyst added indicates the amount of only the catalyst (for example, an acid or a base) contained in the aqueous solution.

水解反應之反應溫度並無特別限制,較好為10~80℃之範圍,更好為20~50℃之範圍。反應溫度過低時,水解速度極端變慢而有缺乏經濟性之虞,或有無法充分進行表面處理之虞。反應溫度過高時,有容易引起凝膠化反應之傾向。 The reaction temperature of the hydrolysis reaction is not particularly limited, and is preferably in the range of 10 to 80 ° C, more preferably in the range of 20 to 50 ° C. When the reaction temperature is too low, the hydrolysis rate is extremely slow, there is a lack of economic efficiency, or there is a possibility that the surface treatment cannot be sufficiently performed. When the reaction temperature is too high, there is a tendency that a gelation reaction is likely to occur.

進行水解反應之反應時間並無特別限制,但較好為10分鐘~48小時,更好為30分鐘~24小時之範圍。 The reaction time for carrying out the hydrolysis reaction is not particularly limited, but is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.

步驟1中之二氧化矽微粒子之利用矽烷化合物(f)及矽烷化合物(g)進行之表面處理係如上述,同時一次進行時,就反應製程之單純化或效率化方面係較佳。又,亦可藉矽烷化合物(f)與矽烷化合物(g)之任一者表面處理二氧化矽微粒子後,再以另一矽烷化合物進行表面處理。 The surface treatment of the cerium oxide microparticles in the first step using the decane compound (f) and the decane compound (g) is as described above, and at the same time, it is preferred in terms of simplification or efficiency in the reaction process. Further, the cerium oxide fine particles may be surface-treated by either of the decane compound (f) and the decane compound (g), and then subjected to surface treatment with another decane compound.

《步驟2》 Step 2

步驟2係混合步驟1所得之分散有二氧化矽微粒子(a)之分散液、與含由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)、與視需要之其他成分。混合方法並無特別限制,列舉為例如在室溫或加熱條件下利用混練機、球磨機或3軸輥等混合機混合前述各成分之方法,在進行步驟1之反應器中邊連續攪拌,邊添加.混合含由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)、與視需要之其他成分之方法。 Step 2 is a mixture of the dispersion of the cerium oxide microparticles (a) obtained in the mixing step 1 and two or more (meth)acrylic acids selected from the (meth) acrylate (h) (b) (c). The ester compound (B) and other components as needed. The mixing method is not particularly limited, and for example, a method in which the above components are mixed by a mixer such as a kneader, a ball mill or a 3-axis roll at room temperature or under heating is added, and the mixture is continuously stirred while being subjected to the step 1 . A method of mixing two or more kinds of (meth) acrylate compounds (B) selected from (meth) acrylate (h) (b) (c) and, if necessary, other components.

《步驟3》 Step 3

步驟3係自含二氧化矽微粒子(a)、含由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)之混合物餾除有機溶劑及水等揮發分(脫溶劑),獲得基底組成物。進行脫溶劑時較好在減壓狀態加熱該混合液。 Step 3 is distilled off from a mixture containing two or more (meth) acrylate compounds (B) selected from (meth) acrylate (h) (b) (c). A volatile matter (desolvation) such as an organic solvent or water is used to obtain a base composition. When the solvent is removed, it is preferred to heat the mixture under reduced pressure.

脫溶劑時之混合液溫度較好保持在20~100℃。混合液之溫度,就凝聚凝膠化防止與脫溶劑速度等之平衡之觀點而言,更好為30~70℃,又更好為30~50℃。混合液之溫度過高時,含有奈米粒子之組成物之流動性極端降低,有成為凝膠狀之虞。 The temperature of the mixture at the time of solvent removal is preferably maintained at 20 to 100 °C. The temperature of the mixed solution is preferably from 30 to 70 ° C, more preferably from 30 to 50 ° C from the viewpoint of the balance between the gelation prevention and the solvent removal speed. When the temperature of the mixed solution is too high, the fluidity of the composition containing the nanoparticles is extremely lowered, and it becomes a gel.

脫溶劑中減壓時之真空度通常為10~4,000kPa。真空度就實現脫溶劑速度與凝聚凝膠防止平衡方面而言,更好為10~1,000kPa,最好為10~500kPa。真空度 之值過大時,脫溶劑速度極端變慢而有缺乏經濟性之情況。 The degree of vacuum during decompression in desolvation is usually from 10 to 4,000 kPa. The degree of vacuum is preferably from 10 to 1,000 kPa, preferably from 10 to 500 kPa, in terms of the solvent removal rate and the aggregation gel to prevent balance. Vacuum degree When the value is too large, the solvent removal rate is extremely slow and there is a lack of economy.

脫溶劑後所得之基底組成物較好實質上不含有機溶劑及水。此處所謂實質上意指實際使用本發明之含有奈米粒子之組成物獲得硬化物時,不需要再度經過脫溶劑之步驟,具體而言,意指基底組成物中之有機溶劑及水之各殘留量較好為2質量%以下,更好為1質量%以下。 The base composition obtained after solvent removal preferably contains substantially no organic solvent and water. The term "substantially means" in the actual use of the composition containing the nanoparticles of the present invention to obtain a cured product does not require a step of removing the solvent again. Specifically, it means that the organic solvent and the water in the base composition are each The residual amount is preferably 2% by mass or less, more preferably 1% by mass or less.

步驟3中,脫溶劑前,亦可以相對於含有奈米粒子之組成物100質量%成為0.2質量%以下之添加量,添加聚合抑制劑。聚合抑制劑係為了在脫溶劑過程中或脫溶劑後之基底組成物及含有奈米粒子之組成物之保存中防止其含有成分引起聚合反應而使用。 In the step 3, before the solvent is removed, the polymerization inhibitor may be added in an amount of 0.2% by mass or less based on 100% by mass of the composition containing the nanoparticles. The polymerization inhibitor is used in order to prevent the polymerization reaction of the base composition and the composition containing the nanoparticle during the solvent removal or after the solvent removal.

步驟3亦可將步驟2所得之含二氧化矽微粒子(a)、與含由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)之混合液移到專用之裝置中進行。且,使用步驟1中實施之反應器進行步驟2時,亦可在步驟2後接著於該反應器中進行步驟3。 In step 3, the cerium oxide-containing fine particles (a) obtained in the step 2 and the (meth) acrylate compound containing the two or more selected from the (meth) acrylate (h) (b) (c) may be used ( The mixture of B) is moved to a dedicated apparatus. Further, when the step 2 is carried out using the reactor carried out in the step 1, the step 3 may be carried out in the reactor after the step 2.

《步驟4》 Step 4

步驟4中添加於基底組成物中之半導體奈米粒子(e),就於含有奈米粒之組成物中之分散性之觀點而言,較好使用使半導體粒子(e)分散於有機溶劑而成之分散體。使半導體奈米粒子(e)分散之有機溶劑列舉為 例如苯、二甲苯、甲苯等。 The semiconductor nanoparticle (e) added to the base composition in the step 4 is preferably used by dispersing the semiconductor particles (e) in an organic solvent from the viewpoint of dispersibility in the composition containing the nanoparticles. Dispersion. The organic solvent in which the semiconductor nanoparticle (e) is dispersed is enumerated as For example, benzene, xylene, toluene, and the like.

步驟4中,係將半導體奈米粒子(e)添加.混合於步驟3所得之基底組成物中,且視需要脫溶劑,獲得含半導體奈米粒子(e)之基底組成物。 In step 4, the semiconductor nanoparticle (e) is added. The substrate composition obtained in the step 3 is mixed, and if necessary, the solvent is removed to obtain a substrate composition containing the semiconductor nanoparticle (e).

基底組成物與半導體奈米粒子(e)之混合方法並無特別限制,列舉為例如在室溫以混練機、球磨機或3軸輥等混合機混合前述各成分之方法,或在進行步驟1~3之反應器中邊連續攪拌邊添加.混合半導體奈米粒子(e)之方法。 The method of mixing the base composition and the semiconductor nanoparticle (e) is not particularly limited, and for example, a method of mixing the above components by a mixer such as a kneader, a ball mill or a 3-axis roll at room temperature, or performing the step 1~ The reactor of 3 is added while continuously stirring. A method of mixing semiconductor nanoparticles (e).

混合基底組成物與半導體奈米粒子(e)後,使用使半導體奈米粒子(e)分散於有機溶劑而成之分散體作為半導體奈米粒子(e)時,則進行脫溶劑。 After the base composition and the semiconductor nanoparticle (e) are mixed, and the dispersion in which the semiconductor nanoparticle (e) is dispersed in an organic solvent is used as the semiconductor nanoparticle (e), the solvent is removed.

脫溶劑時之基底組成物與半導體奈米粒子(e)之混合液之溫度較好保持在20~100℃。就含有奈米粒子之組成物之防止凝聚凝膠化與脫溶劑速度之平衡之觀點而言,脫溶劑時之基底組成物與半導體奈米粒子(e)之混合液溫度更好為30~70℃,又更好為30~50℃。基底組成物與半導體奈米粒子(e)之混合液溫度太高時,含有奈米粒子之組成物之流動性極端降低,有成為凝膠狀之虞。 The temperature of the mixture of the substrate composition and the semiconductor nanoparticle (e) at the time of solvent removal is preferably maintained at 20 to 100 °C. From the viewpoint of preventing the balance between the aggregation gelation and the solvent removal rate of the composition containing the nanoparticles, the temperature of the mixture of the base composition and the semiconductor nanoparticle (e) at the time of solvent removal is preferably 30 to 70. °C, and better 30~50 °C. When the temperature of the liquid mixture of the base composition and the semiconductor nanoparticle (e) is too high, the fluidity of the composition containing the nanoparticle is extremely lowered, and it becomes a gel.

使脫溶劑用之容器內減壓時,較好成為10~4,000kPa之壓力。就實現脫溶劑度與凝聚凝膠化防止之平衡而言,脫溶劑時容器內之壓力更好為10~1,000kPa,最好為10~500kPa。脫溶劑時容器內之真空度值太高時,脫溶劑速度極端變慢而有缺乏經濟性之問題。 When the pressure in the container for solvent removal is reduced, it is preferably a pressure of 10 to 4,000 kPa. In terms of achieving a balance between the degree of desolvation and the prevention of coagulation gelation, the pressure in the vessel during desolvation is preferably from 10 to 1,000 kPa, preferably from 10 to 500 kPa. When the degree of vacuum in the container is too high when the solvent is removed, the solvent removal rate is extremely slow and there is a problem of lack of economy.

脫溶劑後之基底組成物與半導體奈米粒子(e)之混合物較好實質上不含有機溶劑及水。此處所謂實質上意指實際使用本發明之含有奈米粒子之組成物獲得硬化物時,不需要再度經過脫溶劑之步驟,具體而言,意指含有半導體奈米粒子(e)之基底組成物中之有機溶劑及水之各殘留量較好為2質量%以下,更好為1質量%以下。 The mixture of the base composition after desolvation and the semiconductor nanoparticle (e) is preferably substantially free of organic solvents and water. The term "substantially means that the composition of the nanoparticle-containing composition of the present invention is used to obtain a cured product does not require a solvent removal step, specifically, the composition of the substrate containing the semiconductor nanoparticle (e). The residual amount of the organic solvent and water in the product is preferably 2% by mass or less, more preferably 1% by mass or less.

《步驟5》 Step 5

步驟5係將聚合起始劑(d)、視需要之其他成分添加.混合於步驟4所得之含半導體奈米粒子(e)之基底組成物中作成含有奈米粒子之組成物。混合方法並無特別限制,列舉為例如在室溫下利用混練機、球磨機或3軸輥等混合機混合前述各成分之方法,或在進行步驟1~4之反應器中邊連續攪拌邊添加.混合聚合起始劑(d)、與視需要之其他成分之方法。 Step 5 is to add the polymerization initiator (d), if necessary, other ingredients. The composition containing the nanoparticle is mixed in the base composition containing the semiconductor nanoparticle (e) obtained in the step 4. The mixing method is not particularly limited, and is, for example, a method of mixing the above components by a mixer such as a kneader, a ball mill or a 3-axis roll at room temperature, or adding it while continuously stirring in the reactors of steps 1 to 4. A method of mixing the polymerization initiator (d) and other components as needed.

再者,相對於步驟5所得之含有奈米粒子之組成物,亦可視需要進行過濾。該過濾係為了去除含有奈米粒子之組成物中之污物等外來異物而進行。過濾方法並無特別限制,可使用加壓過濾孔徑10μm之薄膜過濾器、匣式等過濾器,較好使用加壓過濾之方法。 Further, the composition containing the nanoparticles obtained in the step 5 may be filtered as needed. This filtration is carried out in order to remove foreign matter such as dirt contained in the composition of the nanoparticle. The filtration method is not particularly limited, and a membrane filter having a pressure filtration pore size of 10 μm or a filter such as a ruthenium type filter can be used, and a pressure filtration method is preferably used.

藉由經過以上各步驟,可製造本發明之含有奈米粒子之組成物。 The composition containing the nanoparticles of the present invention can be produced by the above steps.

本發明之含有奈米粒子之組成物可利用藉由含有半導 體奈米粒子(e)之光波長轉換作用,即使不含溶劑亦為低黏度,且具有良好的處理性。此係因為本發明之含有奈米粒之組成物係含有發光體的半導體奈米粒子(e)者,以矽烷化合物(f)及(g)進行表面處理之二氧化矽微粒子(a)具有與含有由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)之高的反應性與相溶性。 The composition containing the nanoparticle of the present invention can be utilized by containing a semiconducting The wavelength conversion effect of the bulk nanoparticle (e) is low viscosity even without a solvent, and has good handleability. This is because the composition containing the nanoparticle of the present invention contains the semiconductor nanoparticle (e) of the illuminant, and the cerium oxide microparticle (a) surface-treated with the decane compound (f) and (g) has and contains High reactivity and compatibility of two or more (meth) acrylate compounds (B) selected from (meth) acrylate (h) (b) (c).

[硬化物] [hardened material]

本發明之硬化物係藉由使本發明之含有奈米粒子之組成物硬化獲得。 The cured product of the present invention is obtained by hardening the composition containing the nanoparticles of the present invention.

因此,本發明之硬化物藉由利用因含有半導體奈米粒子(e)之光波長轉換作用,可較好地使作為光學透鏡、光碟基板、液晶顯示元件用塑膠基板、彩色濾光器用基板、有機EL顯示元件用塑膠基板、太陽能電池基板、觸控面板、光學元件、光波導、LED密封材等光學材料.電子材料。 Therefore, the cured product of the present invention can be preferably used as an optical lens, a optical disk substrate, a plastic substrate for a liquid crystal display element, or a color filter substrate by utilizing a wavelength conversion action of the semiconductor nanoparticle (e). Optical materials for organic EL display devices, solar cell substrates, touch panels, optical components, optical waveguides, LED sealing materials, etc. electronic Materials.

[硬化物之製造方法] [Method for producing cured product]

本發明之硬化物之製造方法具有使本發明之含有奈米粒子之組成物硬化之步驟。 The method for producing a cured product of the present invention has a step of hardening the composition containing the nanoparticles of the present invention.

硬化方法有例如藉由活性能量線之照射使(甲基)丙烯醯氧基交聯之方法,藉由進行熱處理使(甲基)丙烯醯氧基熱聚合之方法,亦可併用該等。 The hardening method is, for example, a method of crosslinking a (meth) propylene oxime group by irradiation with an active energy ray, and a method of thermally polymerizing a (meth) propylene oxime group by heat treatment, or a combination thereof.

對含有奈米粒子之組成物照射紫外線等活性能量線進行硬化時,上述步驟5中,於含半導體奈米粒子(e)之基底組成物中含有光聚合起始劑作為聚合起始劑(d)。藉熱處理使含有奈米粒子之組成物硬化時,上述步驟5中,於含半導體奈米粒子(e)之基底組成物中含有熱聚合起始劑作為聚合起始劑(d)。 When the composition containing the nanoparticles is cured by irradiation with an active energy ray such as ultraviolet rays, in the above step 5, a photopolymerization initiator is contained as a polymerization initiator in the base composition containing the semiconductor nanoparticles (e). ). When the composition containing the nanoparticles is cured by heat treatment, in the above step 5, a thermal polymerization initiator is contained as a polymerization initiator (d) in the base composition containing the semiconductor nanoparticles (e).

形成本發明之硬化物時,係例如將本發明之含有奈米粒子之組成物塗佈於玻璃板、塑膠板、金屬板或矽晶圓等基板上而形成塗膜。隨後,藉由對該塗膜照射活性能量線及/或加熱該塗膜並硬化而獲得。 When the cured product of the present invention is formed, for example, the composition containing the nanoparticles of the present invention is applied onto a substrate such as a glass plate, a plastic plate, a metal plate or a tantalum wafer to form a coating film. Subsequently, it is obtained by irradiating the coating film with an active energy ray and/or heating the coating film and hardening.

含有奈米粒子之組成物之塗佈方法列舉為例如以棒塗佈器、敷料器、模嘴塗佈器、旋轉塗佈器、噴霧塗佈器、簾式塗佈器或輥塗佈器等之塗佈、利用網版印刷等之塗佈、及利用浸漬等之塗佈。 The coating method of the composition containing the nanoparticle is exemplified by, for example, a bar coater, an applicator, a die coater, a spin coater, a spray coater, a curtain coater, or a roll coater. Coating, coating by screen printing, etc., and coating by dipping or the like.

本發明之含有奈米粒子之組成物於基板上之塗佈量並無特別限制,可根據目的適當調整,較好為使藉活性能量線照射及/或加熱之硬化處理後所得之塗膜之膜厚成為1μm~10mm之量,更好成為10~1000μm之量。 The coating amount of the composition containing the nanoparticles of the present invention on the substrate is not particularly limited, and may be appropriately adjusted according to the purpose, and is preferably a coating film obtained by hardening treatment by active energy ray irradiation and/or heating. The film thickness is from 1 μm to 10 mm, more preferably from 10 to 1000 μm.

為使含有奈米粒子之組成物硬化而使用之活性能量線較好為電子束、或紫外線至紅外線之波長範圍之光。至於光源若為紫外線則可使用超高壓水銀光源或金屬鹵化物光源、若為可見光則可使用金屬鹵化物光源或鹵素光源,若為紅外線則可使用鹵素光源,但其他亦可使用雷射、LED等光源。 The active energy ray used to harden the composition containing the nanoparticles is preferably an electron beam or a light having a wavelength range of ultraviolet rays to infrared rays. If the light source is ultraviolet light, an ultra-high pressure mercury light source or a metal halide light source may be used. If it is visible light, a metal halide light source or a halogen light source may be used. If it is infrared light, a halogen light source may be used, but other lasers or LEDs may be used. Equal light source.

活性能量線之照射量係依據光源之種類、塗膜膜厚等適當設定。 The amount of irradiation of the active energy ray is appropriately set depending on the type of the light source, the thickness of the coating film, and the like.

此外,照射活性能量線而硬化後,亦可視需要經加熱處理(退火處理)進一步進行含有奈米粒子之組成物之硬化。此時之加熱溫度較好為50~150℃之範圍,加熱時間較好為5分鐘~60分鐘之範圍。 Further, after the active energy ray is irradiated and hardened, the composition containing the nanoparticles may be further subjected to heat treatment (annealing treatment) as needed. The heating temperature at this time is preferably in the range of 50 to 150 ° C, and the heating time is preferably in the range of 5 minutes to 60 minutes.

藉由加熱含有奈米粒子之組成物之熱聚合而硬化時,加熱溫度較好為40~200℃之範圍,更好為50~150℃之範圍。加熱溫度低於前述範圍時,有必要加長加熱時間而有欠缺經濟性之傾向。加熱溫度高於前述範圍時,增加能量成本,且加熱升溫時間及降溫時間長故有缺乏經濟性之傾向。加熱時間係依據加熱溫度、塗膜膜厚等適當設定。 When it is hardened by heating the thermal polymerization of the composition containing the nanoparticles, the heating temperature is preferably in the range of 40 to 200 ° C, more preferably in the range of 50 to 150 ° C. When the heating temperature is lower than the above range, it is necessary to lengthen the heating time and it is disadvantageous in that it is economical. When the heating temperature is higher than the above range, the energy cost is increased, and the heating and heating time and the cooling time are long, so that there is a tendency for lack of economy. The heating time is appropriately set depending on the heating temperature, the film thickness of the coating film, and the like.

藉由熱聚合使含有奈米粒子之組成物硬化後,亦可視需要進行加熱處理(退火處理)進一步進行含有奈米粒子之組成物之硬化。此時之加熱溫度較好為50~150℃之範圍。加熱時間較好為5分鐘~60分鐘之範圍。 After the composition containing the nanoparticles is cured by thermal polymerization, the composition containing the nanoparticles may be further subjected to heat treatment (annealing treatment) as needed. The heating temperature at this time is preferably in the range of 50 to 150 °C. The heating time is preferably in the range of 5 minutes to 60 minutes.

[實施例] [Examples]

以下,基於實施例更具體說明本發明,但本發明並不受該等實施例之限制。以下之實施例等之記載中,只要沒有特別提及,則「份」係表示「質量份」。又,以下所示之實施例及比較例中係使用表1~表3及以 下所示之材料。 Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited by the examples. In the following description of the examples and the like, "parts" means "parts by mass" unless otherwise specified. In addition, in the examples and comparative examples shown below, Tables 1 to 3 are used and The material shown below.

「表面處理前之二氧化矽微粒子」 "The cerium oxide microparticles before surface treatment"

異丙醇分散型膠體二氧化矽(二氧化矽微粒子含量30質量%,平均粒徑10nm,商品名Snowtec IPA-ST;日產化學工業(股)製) Isopropanol-dispersed colloidal cerium oxide (cerium oxide microparticle content: 30% by mass, average particle diameter: 10 nm, trade name: Snowtec IPA-ST; manufactured by Nissan Chemical Industries Co., Ltd.)

「矽烷化合物(f)」 "decane compound (f)"

MOS:8-甲基丙烯醯氧基辛基三甲氧基矽烷 MOS: 8-methylpropenyloxyoctyltrimethoxydecane

MPS:3-甲基丙烯醯氧基丙基三甲氧基矽烷 MPS: 3-methacryloxypropyltrimethoxydecane

「矽烷化合物(g)」 "decane compound (g)"

PhS:苯基三甲氧基矽烷 PhS: Phenyltrimethoxydecane

「(甲基)丙烯酸酯(b)」 "(Meth)acrylate (b)"

TMPTA:三羥甲基丙烷三丙烯酸酯(日本化藥(股)製) TMPTA: Trimethylolpropane triacrylate (manufactured by Nippon Kayaku Co., Ltd.)

A9300-1CL:己內醯胺改質之參(丙烯醯氧基乙基)異氰尿酸酯(新中村化學工業(股)製) A9300-1CL: ginsengamine modified ginseng (propylene oxyethyl) isocyanurate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)

M313:參-(2-丙烯醯氧基乙基)異氰尿酸酯與二-(2-丙烯醯氧基乙基)單-(2-羥基乙基)異氰尿酸酯之混合物(東亞合成(股)製) M313: a mixture of gin-(2-propenyloxyethyl)isocyanurate and bis-(2-propenyloxyethyl)mono-(2-hydroxyethyl)isocyanurate (East Asia Synthetic (share) system

「(甲基)丙烯酸酯(c)」 "(Meth)acrylate (c)"

ADMA:甲基丙烯酸金剛烷酯(大阪有機化學工業(股)製) ADMA: Adamantyl methacrylate (Osaka Organic Chemical Industry Co., Ltd.)

IBXMA:甲基丙烯酸異冰片酯(和光純藥(股)製) IBXMA: isobornyl methacrylate (made by Wako Pure Chemical Industries, Ltd.)

FA513M:甲基丙烯酸二環戊酯(日立化成(股)製) FA513M: Dicyclopentyl methacrylate (made by Hitachi Chemical Co., Ltd.)

GBLMA:γ-丁內酯甲基丙烯酸酯(大阪有機化學工業(股)製) GBLMA: γ-butyrolactone methacrylate (made by Osaka Organic Chemical Industry Co., Ltd.)

LA:丙烯酸月桂酯(大阪有機化學工業(股)製) LA: Lauryl Acrylate (Osaka Organic Chemical Industry Co., Ltd.)

ACMO:丙烯醯基嗎啉(興人薄膜與化學品(股)製) ACMO: acryloyl morpholine (made by Xingren Film and Chemicals Co., Ltd.)

「(甲基)丙烯酸酯(h)」 "(Meth)acrylate (h)"

IRR214-K:三環癸烷二甲醇二丙烯酸酯(DAICEL-ALLNEX(股)製) IRR214-K: Tricyclodecane dimethanol diacrylate (DAICEL-ALLNEX)

NPGDA:新戊基二丙烯酸酯(新中村化學工業(股)製) NPGDA: neopentyl diacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)

「聚合起始劑(d)」 "Polymerization initiator (d)"

Esacure KTO-46(Lamberti製) Esacure KTO-46 (Lamberti)

「半導體奈米粒子(e)」 "Semiconductor Nanoparticles (e)"

RED-CFQD-G2-604(NANOCO TECHNOLOGIES製,半導體奈米粒子含量10質量%之甲苯溶液,奈米粒子芯(InP)殼(ZnS),平均粒徑3~4nm) RED-CFQD-G2-604 (manufactured by NANOCO TECHNOLOGIES, a toluene solution having a semiconductor nanoparticle content of 10% by mass, a nanoparticle core (InP) shell (ZnS), an average particle diameter of 3 to 4 nm)

GREEN-CFQD-G3-525(NANOCO TECHNOLOGIES製,半導體奈米粒子含量10質量%之甲苯溶液,奈米粒子芯(InP)殼(ZnS),平均粒徑2~3nm) GREEN-CFQD-G3-525 (manufactured by NANOCO TECHNOLOGIES, a toluene solution having a semiconductor nanoparticle content of 10% by mass, a nanoparticle core (InP) shell (ZnS), an average particle diameter of 2 to 3 nm)

表1~表3中,表面處理前之二氧化矽微粒子、(甲基)丙烯酸酯(b)、(甲基)丙烯酸酯(c)、 (甲基)丙烯酸酯(h)之含量係將表面處理前之二氧化矽微粒子、(甲基)丙烯酸酯(b)、(甲基)丙烯酸酯(c)與(甲基)丙烯酸酯(h)之合計設為100質量份時之含量(質量份)。 In Tables 1 to 3, the cerium oxide microparticles before the surface treatment, (meth) acrylate (b), (meth) acrylate (c), The content of (meth) acrylate (h) is cerium oxide microparticles, (meth) acrylate (b), (meth) acrylate (c) and (meth) acrylate (h) before surface treatment. The total amount (parts by mass) when the total amount is 100 parts by mass.

矽烷化合物(f)及矽烷化合物(g)之含量係將表面處理前之二氧化矽微粒子設為100質量份時之含量(質量份)。 The content of the decane compound (f) and the decane compound (g) is the content (parts by mass) when the cerium oxide fine particles before the surface treatment is 100 parts by mass.

[實施例1] [Example 1] 〈二氧化矽微粒子(a)之表面處理〉 <Surface treatment of cerium oxide microparticles (a)>

將分散於有機溶劑中之二氧化矽微粒子500g(含溶劑之質量,二氧化矽微粒子之質量為150g)饋入可分離燒瓶中。接著,於該可分離燒瓶中添加18g之MOS作為矽烷化合物(f)、27g之PhS作為矽烷化合物(g),並經攪拌混合。隨後,再將濃度0.1825質量%之鹽酸13.9g添加於可分離燒瓶中,在25℃攪拌24小時。藉此獲得分散有經表面處理之二氧化矽微粒子(a)之分散液。 500 g of cerium oxide fine particles (mass containing solvent, mass of cerium oxide fine particles of 150 g) dispersed in an organic solvent were fed into a separable flask. Next, 18 g of MOS was added as a decane compound (f) and 27 g of PhS as a decane compound (g) to the separable flask, and the mixture was stirred and mixed. Subsequently, 13.9 g of a hydrochloric acid having a concentration of 0.1825% by mass was further added to a separable flask, and stirred at 25 ° C for 24 hours. Thereby, a dispersion in which the surface-treated cerium oxide microparticles (a) are dispersed is obtained.

又,矽烷化合物(f)及矽烷化合物(g)在添加鹽酸之時點後6小時後之時點消失。矽烷化合物(f)及矽烷化合物(g)之消失係利用氣相層析儀(型號6850;Agilent(股)製),藉以下條件確認。亦即,使用無極性管柱DB-1(J&W公司製),在溫度50~300℃、升溫速度10℃/分鐘、使用He作為載體氣體、流量1.2cc/分鐘、以氫焰離子化檢測器以內部標準法測定。 Further, the decane compound (f) and the decane compound (g) disappeared 6 hours after the point of addition of hydrochloric acid. The disappearance of the decane compound (f) and the decane compound (g) was confirmed by the following conditions using a gas chromatograph (Model 6850; manufactured by Agilent Co., Ltd.). In other words, a non-polar column DB-1 (manufactured by J&W) was used at a temperature of 50 to 300 ° C, a temperature increase rate of 10 ° C / min, and He was used as a carrier gas, a flow rate of 1.2 cc / min, and a hydrogen flame ionization detector. Determined by internal standard method.

〈基底組成物之調製〉 <Modulation of Substrate Composition>

混合上述所得之分散有二氧化矽微粒子(a)之分散液、75g之作為(甲基)丙烯酸酯(b)之三羥甲基丙烷三丙烯酸酯(TMPTA)(相對於分散液中之表面處理前之二氧化矽微粒子50份為25份之量)、75g之作為(甲基)丙烯酸酯(c)之甲基丙烯酸金剛烷酯(ADMA)(相對於分散液中之表面處理前之二氧化矽微粒子50份為25份之量),邊攪拌邊在40℃、100kPa下減壓加熱去除揮發分,獲得實施例1之基底組成物。 Mixing the above-obtained dispersion of cerium oxide microparticles (a) and 75 g of trimethylolpropane triacrylate (TMPTA) as (meth) acrylate (b) (relative to surface treatment in dispersion) 50 parts of the former cerium oxide microparticles in an amount of 25 parts), 75 g of adamantyl methacrylate (ADMA) as (meth) acrylate (c) (relative to the surface oxidation before the surface treatment in the dispersion) The granules of the granules were in an amount of 25 parts by weight, and the volatile matter was removed by heating under reduced pressure at 40 ° C and 100 kPa while stirring to obtain the base composition of Example 1.

〈含有奈米粒子之組成物之調製〉 <Modulation of Compositions Containing Nanoparticles>

於由上述所得之基底組成物150g(表面處理後二氧化矽分為84.8g)中添加半導體奈米粒子(e)的7.9g之RED-CFQD-G2-604(半導體奈米粒子含量10質量%)、142.1g之GREEN-CFQD-G3-525(半導體奈米粒子含量10質量%),並混合獲得含半導體奈米粒子(e)之基底組成物。隨後,邊攪拌含半導體奈米粒子(e)之基底組成物邊在40℃、100kPa下減壓加熱,去除揮發分。 197 g of RED-CFQD-G2-604 (semiconductor nanoparticle content: 10% by mass) of semiconductor nanoparticle (e) was added to 150 g of the base composition obtained above (84.8 g of cerium oxide after surface treatment) ), 142.1 g of GREEN-CFQD-G3-525 (semiconductor nanoparticle content: 10% by mass), and mixed to obtain a base composition containing the semiconductor nanoparticle (e). Subsequently, while stirring the base composition containing the semiconductor nanoparticle (e), the mixture was heated under reduced pressure at 40 ° C and 100 kPa to remove volatile matter.

於已去除揮發分之含半導體奈米粒子(e)之基底組成物中添加.混合6g之Esacure KTO-46作為光聚合起始劑,獲得實施例1之含有奈米粒子之組成物。 Adding to the base composition of the semiconductor nanoparticle (e) containing the volatile matter removed. 6 g of Esacure KTO-46 was mixed as a photopolymerization initiator to obtain a composition containing the nanoparticles of Example 1.

[實施例2~21、比較例1~9] [Examples 2 to 21, Comparative Examples 1 to 9]

除了將表1~表3所示之材料設為表1~表3所示之含量以外,餘與實施例1同樣,獲得實施例2~21、比較例1~9之基底組成物及含有奈米粒子之組成物。 In the same manner as in Example 1, except that the materials shown in Tables 1 to 3 were used as the contents shown in Tables 1 to 3, the base compositions of Examples 2 to 21 and Comparative Examples 1 to 9 and the inclusion of Nai were obtained. The composition of rice particles.

[基底組成物之評價] [Evaluation of Substrate Composition]

使用實施例1~21、比較例1~9之基底組成物中,於含有奈米粒子之組成物之製造中未凝膠化者,藉以下所示之方法,測定黏度、氧透過係數、玻璃轉移溫度(Tg)、吸水率、收縮率並進行評價。其結果示於表1~表3。 In the base compositions of Examples 1 to 21 and Comparative Examples 1 to 9, the particles which were not gelled in the production of the composition containing the nanoparticles were used to measure the viscosity, the oxygen permeability coefficient, and the glass by the method shown below. The transfer temperature (Tg), water absorption rate, and shrinkage rate were evaluated. The results are shown in Tables 1 to 3.

〈黏度〉 <viscosity>

使用B型黏度計DV-III ULTRA(BROOKFIELD公司製),在25℃測定基底樹脂之黏度。黏度為適度時,處理性變好。 The viscosity of the base resin was measured at 25 ° C using a B-type viscometer DV-III ULTRA (manufactured by BROOKFIELD Co., Ltd.). When the viscosity is moderate, the handleability is improved.

〈氧透過係數〉 <oxygen permeability coefficient>

於基底組成物100質量份中添加.混合3.3g(2質量份)之Eascure KTO-46作為光聚合起始劑,作成硬化性組成物。以使硬化膜之大小成為55mm 、厚度成為200μm之方式將所得硬化性組成物塗佈於玻璃基板上,形成塗膜。隨後,以組入有超高壓水銀燈之曝光裝置,以3J/cm2之條件使塗膜曝光並硬化。使用GTR-30XASD(GTR TEC公司製)求出所得硬化膜之氧透過係數[1×10-11(cc*cm/cm2*sec*cmHg)]。 Added to 100 parts by mass of the base composition. 3.3 g (2 parts by mass) of Eascure KTO-46 was mixed as a photopolymerization initiator to prepare a curable composition. To make the size of the cured film 55mm The obtained curable composition was applied onto a glass substrate to have a thickness of 200 μm to form a coating film. Subsequently, the coating film was exposed and hardened at a condition of 3 J/cm 2 in an exposure apparatus in which an ultrahigh pressure mercury lamp was incorporated. The oxygen permeability coefficient [1 × 10 -11 (cc * cm / cm 2 * sec * cmHg)] of the obtained cured film was determined using GTR-30XASD (manufactured by GTR TEC Co., Ltd.).

〈玻璃轉移溫度(Tg)〉 <glass transition temperature (Tg)>

以使硬化膜之厚度成為100μm之方式將與氧透過係數測定時同樣調整之硬化性組成物塗佈於玻璃基板(50mm×50mm)上,形成塗膜。隨後,以組入有超高壓水銀燈之曝光裝置,以3J/cm2之條件使塗膜曝光並硬化。針對所得硬化膜,使用DMS6100(SEIKO電子工業公司製),以拉伸模式、溫度範圍30℃~250℃、升溫速度2℃/min、頻率1Hz之條件測定,評價升溫時之tanδ之峰值溫度,求出玻璃轉移溫度(Tg)。 The curable composition adjusted in the same manner as in the measurement of the oxygen permeability coefficient was applied onto a glass substrate (50 mm × 50 mm) so that the thickness of the cured film became 100 μm to form a coating film. Subsequently, the coating film was exposed and hardened at a condition of 3 J/cm 2 in an exposure apparatus in which an ultrahigh pressure mercury lamp was incorporated. The obtained cured film was measured using a DMS6100 (manufactured by SEIKO Electronics Co., Ltd.) in a tensile mode, a temperature range of 30 ° C to 250 ° C, a temperature increase rate of 2 ° C/min, and a frequency of 1 Hz, and the peak temperature of tan δ at the time of temperature rise was evaluated. The glass transition temperature (Tg) was determined.

〈收縮率〉 <Shrinkage>

以密度比重計(DA-650;京都電子工業(股)製)測定與氧透過率之測定時同樣調整之硬化性組成物之比重。且,以使硬化膜之厚度成為100μm之方式將硬化性組成物塗佈於玻璃基板(10mm×10mm)上,形成塗膜。隨後,以組入有超高壓水銀燈之曝光裝置,以3J/cm2之條件使塗膜曝光且使塗膜硬化。以自動比重計(DMA-220H;新光電子(股)製)測定所得硬化膜之比重。接著,由硬化性組成物及硬化物之比重,利用下述式算出收縮率。 The specific gravity of the curable composition adjusted in the same manner as in the measurement of the oxygen permeability was measured by a densitometer (DA-650; manufactured by Kyoto Electronics Manufacturing Co., Ltd.). Further, the curable composition was applied onto a glass substrate (10 mm × 10 mm) so that the thickness of the cured film became 100 μm to form a coating film. Subsequently, the coating film was exposed to a condition of 3 J/cm 2 and the coating film was hardened by an exposure apparatus in which an ultrahigh pressure mercury lamp was incorporated. The specific gravity of the obtained cured film was measured by an automatic hydrometer (DMA-220H; manufactured by Shinko Optoelectronics Co., Ltd.). Next, the shrinkage ratio was calculated from the specific gravity of the curable composition and the cured product by the following formula.

收縮率(%)={(硬化物之比重-硬化性組成物之比重)/硬化物之比重}×100 Shrinkage ratio (%) = {(specific gravity of hardened material - specific gravity of hardened composition) / specific gravity of hardened material} × 100

〈吸水率〉 Water absorption rate

將與收縮率之測定同樣獲得之硬化膜浸漬於純水中24小時,由其浸漬前後之重量變化測定吸水率。吸水率愈低之硬化膜,耐環境性愈優異。 The cured film obtained in the same manner as the measurement of the shrinkage rate was immersed in pure water for 24 hours, and the water absorption rate was measured from the change in weight before and after the immersion. The cured film having a lower water absorption rate is more excellent in environmental resistance.

[含有奈米粒子之組成物之評價] [Evaluation of Compositions Containing Nanoparticles]

針對實施例1~21、比較例1~9之含有奈米粒子之組成物,利用以下所示之方法評價黏度及分散性。其結果示於表1~表3。 The compositions containing the nanoparticles of Examples 1 to 21 and Comparative Examples 1 to 9 were evaluated for viscosity and dispersibility by the methods described below. The results are shown in Tables 1 to 3.

〈黏度〉 <viscosity>

與基底組成物同樣,測定含有奈米粒子之組成物之黏度。 The viscosity of the composition containing the nanoparticles was measured in the same manner as the base composition.

〈分散性〉 Dispersion

將含有奈米粒子之組成物放置24小時,以目視確認半導體奈米粒子(e)有無分離及沉降。 The composition containing the nanoparticles was allowed to stand for 24 hours, and the presence or absence of separation and sedimentation of the semiconductor nanoparticles (e) was visually confirmed.

〈關於表1~表3中之數值〉 <About the values in Table 1 to Table 3>

將含有由(甲基)丙烯酸酯(h)(b)(c)選出之2種以上之(甲基)丙烯酸酯化合物(B)與二氧化矽微粒子量(未被覆者之溶劑除外)之合計設為100%時,表示(甲基)丙烯酸酯及二氧化矽微粒子量之比例。 A total of two or more kinds of (meth) acrylate compound (B) selected from (meth) acrylate (h) (b) (c) and cerium oxide microparticles (excluding unexposed solvents) When it is 100%, it shows the ratio of the quantity of (meth)acrylate and a cerium oxide particle.

矽烷化合物(f)及(g)之值係將去除溶劑之表面處理前之二氧化矽微粒子之使用量設為100質量份時之相對於其之使用量(質量份)。 The value of the decane compound (f) and (g) is the amount (parts by mass) relative to the amount of the cerium oxide microparticles before the surface treatment of the solvent to be removed is 100 parts by mass.

實施例2~21及比較例1~9中,使用完全與實施例1相同質量之膠體二氧化矽(未被覆二氧化矽微粒子)。而且,針對表1~表3中所記載之成分以成為表1~表3中所記載之質量比之方式調整。且,關於表1~表3中未記載之成分均使用與實施例1相同之質量。 In Examples 2 to 21 and Comparative Examples 1 to 9, colloidal cerium oxide (uncoated cerium oxide microparticles) having the same quality as in Example 1 was used. Further, the components described in Tables 1 to 3 were adjusted so as to have the mass ratios shown in Tables 1 to 3. Further, the same components as those in the first embodiment were used in the same manner as in the first embodiment.

如表1及表2所示,實施例1~21之基底組成物及含有奈米粒子之組成物之評價結果為良好。 As shown in Tables 1 and 2, the evaluation results of the base composition of Examples 1 to 21 and the composition containing the nanoparticles were good.

另一方面,不含二氧化矽微粒子之比較例4~9中,半導體奈米粒子(e)在含有奈米粒子之組成物中分離或沉降,無法獲得均勻之含有奈米粒子之組成物。 On the other hand, in Comparative Examples 4 to 9 in which the cerium oxide microparticles were not contained, the semiconductor nanoparticle (e) was separated or precipitated in the composition containing the nanoparticles, and a uniform composition containing the nanoparticles was not obtained.

且,使用未經表面處理之二氧化矽微粒子之比較例1、(甲基)丙烯酸酯化合物(B)僅為(甲基)丙烯酸酯(c)之比較例2、(甲基)丙烯酸酯化合物(B)僅為(甲基)丙烯酸酯(b)之比較例3,在調整基底組成物中均凝膠化。 Further, Comparative Example 1 in which the surface-treated cerium oxide microparticles were used, (meth) acrylate compound (B) was only the (meth) acrylate (c) Comparative Example 2, (meth) acrylate compound (B) Comparative Example 3 of only (meth) acrylate (b), gelled in the adjustment base composition.

且,由實施例2~4,可知相較於使用MPS作 為矽烷偶合劑(f)之情況,使用MOS者基於基底組成物及含有奈米粒子之組成物之黏度或收縮率之觀點而言係較佳。 Moreover, from Examples 2 to 4, it can be seen that compared with the use of MPS In the case of the decane coupling agent (f), it is preferred from the viewpoint of the viscosity or shrinkage ratio of the base composition and the composition containing the nano particles.

Claims (15)

一種含有半導體奈米粒子之硬化性組成物,其特徵係含有二氧化矽微粒子(a)、(甲基)丙烯酸酯化合物(B)、聚合起始劑(d)、與發光體的半導體奈米粒子(e),前述(甲基)丙烯酸酯化合物(B)含有自具有2個以上(甲基)丙烯醯氧基之2官能(甲基)丙烯酸酯化合物(h)、具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b)、與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)選出之2種以上,前述二氧化矽微粒子(a)係經以下述通式(1)表示之矽烷化合物(f)及以下述通式(2)表示之矽烷化合物(g)進行表面處理, (式(1)中,R1表示氫原子或甲基,R2表示碳數1~3之烷基或苯基,R3表示氫原子或碳數1~10之烴基,q 為1~16之整數,r為0~2之整數), (式(2)中,R4表示碳數1~3之烷基或苯基,R5表示氫原子或碳數1~10之烴基,s為0~6之整數,t為0~2之整數)。 A curable composition containing semiconductor nanoparticles, characterized by containing cerium oxide microparticles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and a semiconductor nanoparticle with an illuminant The particle (e), the (meth) acrylate compound (B) contains a bifunctional (meth) acrylate compound (h) having two or more (meth) acryloxy groups, and has three or more (A) Two or more selected from the group consisting of a polyfunctional (meth) acrylate compound (b) having a propylene methoxy group and a monofunctional (meth) acrylate compound (c) having one (meth) acryloxy group The cerium oxide microparticles (a) are surface-treated with a decane compound (f) represented by the following formula (1) and a decane compound (g) represented by the following formula (2). (In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and q is 1 to 16 The integer, r is an integer from 0 to 2), (In the formula (2), R 4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, s is an integer of 0 to 6, and t is 0 to 2 Integer). 如請求項1之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(B)含有具有3個以上(甲基)丙烯醯氧基之多官能(甲基)丙烯酸酯化合物(b),與具有1個(甲基)丙烯醯氧基之單官能(甲基)丙烯酸酯化合物(c)。 The hardenable composition containing semiconductor nanoparticle according to claim 1, wherein the (meth) acrylate compound (B) contains a polyfunctional (meth) acrylate having three or more (meth) propylene decyloxy groups. Compound (b) and a monofunctional (meth) acrylate compound (c) having one (meth) propylene decyloxy group. 如請求項1或2之含有半導體奈米粒子之硬化性組成物,其中前述二氧化矽微粒子(a)中,表面處理所用之前述矽烷化合物(f)之使用量相對於表面處理前之二氧化矽微粒子100質量份為1~50質量份,表面處理所用之前述矽烷化合物(g)之使用量相對於表面處理前之二氧化矽微粒子100質量份為1~50質量份。 A hardenable composition containing semiconductor nanoparticles according to claim 1 or 2, wherein in said cerium oxide microparticles (a), the amount of said decane compound (f) used for surface treatment is relative to that before surface treatment The amount of the cerium microparticles is from 1 to 50 parts by mass, and the amount of the decane compound (g) used for the surface treatment is from 1 to 50 parts by mass based on 100 parts by mass of the cerium oxide microparticles before the surface treatment. 如請求項1~3中任一項之含有半導體奈米粒子之硬化性組成物,其中表面處理前之二氧化矽微粒子之數平均粒徑為10~500nm。 The hardenable composition containing semiconductor nanoparticles according to any one of claims 1 to 3, wherein the number average particle diameter of the cerium oxide microparticles before the surface treatment is 10 to 500 nm. 如請求項1~4中任一項之含有半導體奈米粒子之 硬化性組成物,其中前述(甲基)丙烯酸酯化合物(b)係具有3個(甲基)丙烯醯氧基之3官能(甲基)丙烯酸酯化合物。 The semiconductor nanoparticle containing any one of claims 1 to 4 A curable composition in which the (meth) acrylate compound (b) is a trifunctional (meth) acrylate compound having three (meth) acryloxy groups. 如請求項5之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(b)係選自下列之1種或2種以上:三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、環己烷三甲醇三(甲基)丙烯酸酯、金剛烷基三(甲基)丙烯酸酯、金剛烷三甲醇三(甲基)丙烯酸酯、降冰片烷三羥甲基三(甲基)丙烯酸酯、三環癸烷三甲醇三(甲基)丙烯酸酯、全氫-1,4,5,8-二甲撐萘-2,3,7-(氧基甲基)三(甲基)丙烯酸酯、參(丙烯醯氧基乙基)異氰尿酸酯、己內酯改質之參(丙烯醯氧基乙基)異氰尿酸酯、二-(2-丙烯醯氧基乙基)單-(2-羥基乙基)異氰尿酸酯。 The curable composition containing semiconductor nanoparticles according to claim 5, wherein the (meth) acrylate compound (b) is one or more selected from the group consisting of trimethylolpropane tri(methyl) Acrylate, pentaerythritol tri(meth)acrylate, cyclohexane trimethylol tri(meth)acrylate, adamantyl tri(meth)acrylate, adamantane trimethylol tri(meth)acrylate, norbornene Alkane trimethylol tri(meth)acrylate, tricyclodecane trimethanol tri(meth)acrylate, perhydro-1,4,5,8-dimethylnaphthalene-2,3,7-( Oxymethyl)tris(meth)acrylate, ginseng(propenyloxyethyl)isocyanurate, caprolactone modified ginseng (propylene oxyethyl)isocyanurate, -(2-Propyloxyethyl)mono-(2-hydroxyethyl)isocyanurate. 如請求項1~6中任一項之含有半導體奈米粒子之硬化性組成物,其中前述(甲基)丙烯酸酯化合物(B)之質量中之(甲基)丙烯酸酯(b)與(甲基)丙烯酸酯(h)之合計含量為99質量%以下。 The hardenable composition containing semiconductor nanoparticle according to any one of claims 1 to 6, wherein (meth)acrylate (b) and (a) of the mass of the (meth) acrylate compound (B) The total content of the acrylate (h) is 99% by mass or less. 如請求項1~7中任一項之含有半導體奈米粒子之硬化性組成物,其中前述半導體奈米粒子(e)具有含有由週期表第3族~第16族所組成之群選出之至少一種元素之離子之奈米粒子芯。 The hardenable composition containing semiconductor nanoparticles according to any one of claims 1 to 7, wherein the semiconductor nanoparticle (e) has at least one selected from the group consisting of Groups 3 to 16 of the periodic table. An elemental ion nanoparticle core. 如請求項8之含有半導體奈米粒子之硬化性組成物,其中前述奈米粒子芯含有由ZnS、ZnSe、ZnTe、 InP、InAs、InSb、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PdS、PbSe、Si、Ge、MgSe、MgTe所組成之群選出之至少一種。 The hardenable composition containing semiconductor nanoparticles according to claim 8, wherein the nanoparticle core contains ZnS, ZnSe, ZnTe, At least one selected from the group consisting of InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, and MgTe. 如請求項1~9中任一項之含有半導體奈米粒子之硬化性組成物,其中前述半導體奈米粒子(e)含有奈米粒子芯、與具有配位於前述奈米粒子芯表面之保護基之保護層,前述奈米粒子芯表面由以無機材料所成之至少一層殼被覆。 The hardening composition containing semiconductor nanoparticle according to any one of claims 1 to 9, wherein the semiconductor nanoparticle (e) contains a nanoparticle core and a protective group having a surface disposed on the surface of the nanoparticle core. The protective layer, the surface of the nanoparticle core is covered with at least one shell made of an inorganic material. 如請求項1~10中任一項之含有半導體奈米粒子之硬化性組成物,其中前述含有半導體奈米粒子之硬化性組成物中之前述半導體奈米粒子(e)之含量為0.1~20質量%。 The hardening composition containing semiconductor nanoparticle according to any one of claims 1 to 10, wherein the semiconductor nanoparticle (e) in the hardenable composition containing the semiconductor nanoparticle is 0.1 to 20 quality%. 如請求項1~11中任一項之含有半導體奈米粒子之硬化性組成物,其中前述通式(1)中,q為3~16之整數。 The hardenable composition containing semiconductor nanoparticles according to any one of claims 1 to 11, wherein q is an integer of 3 to 16 in the above formula (1). 一種硬化物,其特徵係使如請求項1~12中任一項之含有半導體奈米粒子之硬化性組成物硬化而得。 A cured product obtained by hardening a curable composition containing semiconductor nanoparticles according to any one of claims 1 to 12. 一種光學材料,其特徵係由如請求項13之硬化物所成。 An optical material characterized by a hardened material as claimed in claim 13. 一種電子材料,其特徵係由如請求項13之硬化物所成。 An electronic material characterized by a cured product as claimed in claim 13.
TW103126889A 2013-08-09 2014-08-06 Semiconductor nanoparticle-containing curable composition, cured material, optical materials, and electronic materials TW201518359A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167068 2013-08-09

Publications (1)

Publication Number Publication Date
TW201518359A true TW201518359A (en) 2015-05-16

Family

ID=52461277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126889A TW201518359A (en) 2013-08-09 2014-08-06 Semiconductor nanoparticle-containing curable composition, cured material, optical materials, and electronic materials

Country Status (3)

Country Link
JP (1) JPWO2015019941A1 (en)
TW (1) TW201518359A (en)
WO (1) WO2015019941A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688599B (en) * 2015-08-11 2020-03-21 南韓商東友精細化工有限公司 Self-emission type photosensitive resin composition, color filter manufactured therefrom and image display device provided with the color filter
TWI699564B (en) * 2016-11-16 2020-07-21 日商Ns材料股份有限公司 Sub-point component, sheet component, backlight device and display device
US10941338B2 (en) 2016-02-12 2021-03-09 Nanoco Technologies Ltd. Highly stable quantum DOT-containing polymer films
TWI791663B (en) * 2017-11-10 2023-02-11 日商迪愛生股份有限公司 Ink composition, method for producing same, light conversion layer and color filter
CN116544316A (en) * 2023-07-07 2023-08-04 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127925B1 (en) 2014-03-31 2019-10-09 Mitsubishi Chemical Corporation Curable composition, laminate, and automobile headlamp lens
JP6243872B2 (en) * 2014-05-19 2017-12-06 富士フイルム株式会社 Method for producing quantum dot-containing laminate, quantum dot-containing laminate, backlight unit, liquid crystal display device, and quantum dot-containing composition
WO2016088646A1 (en) * 2014-12-04 2016-06-09 昭和電工株式会社 Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
EP3070109B1 (en) * 2015-03-16 2018-12-05 Rohm and Haas Electronic Materials LLC Multilayer polymer composite for encapsulating quantum dots
EP3070756B9 (en) * 2015-03-18 2021-11-03 Raynergy Tek Inc. Semiconductor mixtures comprising nanoparticles
JP6589318B2 (en) * 2015-03-23 2019-10-16 コニカミノルタ株式会社 Color gamut expansion film
TWI641645B (en) * 2016-07-08 2018-11-21 羅門哈斯電子材料有限公司 Multilayer polymer composite for encapsulating quantum dots
JP6732045B2 (en) * 2016-12-19 2020-07-29 富士フイルム株式会社 Wavelength conversion film and backlight unit
JP7228804B2 (en) * 2018-11-22 2023-02-27 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light emitting device, method for producing color filter, and method for producing light emitting device
WO2024024370A1 (en) * 2022-07-25 2024-02-01 信越化学工業株式会社 Photocurable composition, cured product of same, and coated article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265411B1 (en) * 2008-07-03 2013-05-16 쇼와 덴코 가부시키가이샤 Hardening composition and resultant hardened material
SG172185A1 (en) * 2008-12-16 2011-07-28 Showa Denko Kk Hardening composition and hardened product of same
GB0916699D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
GB0916700D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
JP2011246548A (en) * 2010-05-25 2011-12-08 Showa Denko Kk Curable resin composition and transparent film
JP2013018827A (en) * 2011-07-08 2013-01-31 Showa Denko Kk Curable composition and cured product thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688599B (en) * 2015-08-11 2020-03-21 南韓商東友精細化工有限公司 Self-emission type photosensitive resin composition, color filter manufactured therefrom and image display device provided with the color filter
US10941338B2 (en) 2016-02-12 2021-03-09 Nanoco Technologies Ltd. Highly stable quantum DOT-containing polymer films
TWI699564B (en) * 2016-11-16 2020-07-21 日商Ns材料股份有限公司 Sub-point component, sheet component, backlight device and display device
TWI791663B (en) * 2017-11-10 2023-02-11 日商迪愛生股份有限公司 Ink composition, method for producing same, light conversion layer and color filter
CN116544316A (en) * 2023-07-07 2023-08-04 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell
CN116544316B (en) * 2023-07-07 2023-09-08 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell

Also Published As

Publication number Publication date
JPWO2015019941A1 (en) 2017-03-02
WO2015019941A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
TW201518359A (en) Semiconductor nanoparticle-containing curable composition, cured material, optical materials, and electronic materials
TWI597318B (en) Curable composition containing semiconductor nanoparticles, cured article, optical material and electronic material
JP6245742B2 (en) Semiconductor nanoparticle-containing curable composition, cured product, optical material and electronic material
KR101937665B1 (en) Composition for forming a quantum dot layer, Quantum dot film, Backlight unit, and Liquid crystal display
TWI465466B (en) Hardened composition and hardened product thereof
TWI486390B (en) Curable composition and cured material of the same
TWI513751B (en) A hardened composition, a hardened product, an optical material, and an optical lens
CN104080815B (en) Solidification compound and its purposes
TWI639627B (en) Hollow particles and uses thereof
WO2018128144A1 (en) Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer
TWI627190B (en) Hollow particle and use thereof
CN102245645A (en) Hardening composition and hardened product of same
CN103370342A (en) Curable composition and cured substance thereof
JP5018025B2 (en) Surface-modified zirconium oxide particle dispersion and transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
JP2023036714A (en) hollow particle dispersion
WO2015186521A1 (en) Curable composition, cured product, optical material and electronic material containing semiconductor nanoparticles
TWI805881B (en) Photocurable composition for imprint
JP2011110455A (en) Coated film and composition
TW201412896A (en) Active energy ray-curable composition and film using the same
JP2021162863A (en) Light conversion ink composition, color filter, and image display device
TW201235393A (en) Curable composition and cured object obtained therefrom
JP2009040832A (en) Transparent resin composition and optical member using the same