TW201435158A - 帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法 - Google Patents

帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法 Download PDF

Info

Publication number
TW201435158A
TW201435158A TW103109189A TW103109189A TW201435158A TW 201435158 A TW201435158 A TW 201435158A TW 103109189 A TW103109189 A TW 103109189A TW 103109189 A TW103109189 A TW 103109189A TW 201435158 A TW201435158 A TW 201435158A
Authority
TW
Taiwan
Prior art keywords
sapphire
ribbon
batch
strip
grown
Prior art date
Application number
TW103109189A
Other languages
English (en)
Inventor
Marc Ouellette
Joseph M Collins
John Walter Locher
Guilford L Mack
Abbie M Jennings
Jan J Buzniak
Christopher D Jones
Original Assignee
Saint Gobain Ceramics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Ceramics filed Critical Saint Gobain Ceramics
Publication of TW201435158A publication Critical patent/TW201435158A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • Y10T117/1044Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die] including means forming a flat shape [e.g., ribbon]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明係指向於一種以限邊薄片續填生長法(EFG)形成多個帶狀藍寶石之設備以及方法。本發明更進一步係指向於複數個同時生長而成之帶狀藍寶石,其具有例如低尺寸變異性以及可除去於一批量中同時生長而成之多個帶狀藍寶石之間的孔隙等特性。

Description

帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法
本發明係指向於帶狀藍寶石以及用於(尤其以限邊薄片續填生長法(EFG))形成多個帶狀藍寶石之設備以及方法。
藍寶石晶體係使用於多種應用中。例如,帶狀藍寶石可使用於各種具有高要求性、高效率之商業應用,如行動電話之晶圓以及螢幕保護。對於帶狀藍寶石之進一步的改良方面一尤其於產生複數個同時生長而成且具有改良的尺寸穩定變異性之帶狀藍寶石方面,有其需要。
5‧‧‧設備
7‧‧‧帶狀晶體
10‧‧‧熔體源
20‧‧‧模具
22‧‧‧模具頂端
24、25、27、29‧‧‧模具開口
28‧‧‧側表面
30‧‧‧第一區
32‧‧‧第二區
50‧‧‧熱反射遮板
52‧‧‧第一表面
54‧‧‧第二表面
55‧‧‧垂直熱遮板
100‧‧‧帶狀藍寶石
實施例係以實例加以解說,但不限於所附圖式所繪示者。
第1圖包括根據本發明之一實施例之EFG設備之圖解。
第2圖包括根據本發明之另一實施例之EFG設備中模具排列之圖解。
第3圖包括一帶狀藍寶石之圖解。
第4圖包括於一實例中(批量A)所產生之一批藍寶石之影像。
第5圖包括於一實例中(批量B)所產生之一批藍寶石之影像。
第6圖包括於一實例中(批量C)所產生之一批藍寶石之影像。
具有技藝者應瞭解的是,圖式中元件之繪示係以簡單且清楚說明為目的,而並非依照實際尺寸。例如,為增加對於本發明實施例的理解,可能將圖式中的某些元件相對於其他元件於尺寸加以誇示。
下文中的敘述配合圖式係提供協助瞭解本文中所揭示與教示者。下文中的討論將會集焦於具體實施方式與實施例之教示,然此聚焦討論僅供協助對於所教示內容之敘述,而不應解釋為對所教示內容之範疇或應用性之限制。然而,根據本申請案所揭示與教示內容,其他實施例亦可使用。
於本文中所使用,術語「C-面藍寶石」係指實質上呈平面之單晶藍寶石,其C軸係實質垂直於(±10度)該材料之主要呈平面的表面。通常,該C軸自該主要呈平面的表面之偏移係少於約1度。
於本文中所使用,術語「A-面藍寶石」係指實質上呈平面之單晶藍寶石,其A軸係實質垂直於(±10度)該材料之主要呈平面的表面。通常,該A軸自該主要呈平面的表面之偏移係少於約1度。
於本文中所使用,術語「R-面藍寶石」係指實質上呈平面之單晶藍寶石,其R軸係實質垂直於(±10度)該材料之主要呈平面的表面。通常,該R軸自該主要呈平面的表面之偏移係少於約1度。
於本文中所提及於藍寶石內之每一晶面,於所屬領域中皆為習知者。可以瞭解的是,如本文中所使用,當提及一片狀晶體相對於一特定平面之特定方位時,應包括該參考平面相對於另一平面傾斜之所有的偏離角度或誤差角度、斜切或類似之方位。例如,通常較佳希望產生具有一般A面或C面方位之片狀晶體,但亦包括朝向M面之所期待之傾斜以及斜切角度在內。據此,例如「A-面」或「C-面」等詞組之使用,包括作為一般參考平面且具有任何所期待之斜切或誤差角度方位之平面。
下表中係顯示藍寶石常見晶面之米勒指標以及d間距(晶格間距):
如本文中所使用,詞組「外帶狀體」、「外模具」、「外帶狀藍寶石」、「外帶狀晶體」以及類似者係包括除最內四個帶狀體外(假如同時生長而成之帶狀體的總數為偶數時)或除最內五個帶狀體外(假如同時生長而成之帶狀體的總數為奇數時)之所有帶狀體。例如,於構型以同時生長10或11個帶狀體之EFG(限邊薄片續填生長法)設備中,外帶狀體將包括每一側最外三個帶狀體。同樣地,於另一例中,於構型以同時生長6或7個帶狀體之EFG設備中,外帶狀體將包括每一側最外一個帶狀體。
術語「包括」、「包括有」、「包含」、「包含有」、「具」、「具有」或任何其他的同義者,其涵義係涵蓋非排他性之內含。例如,當一種製程、方法、物件或設備 包括一系列的特徵時,其並非僅限於這些特徵,而可包括其他未明白列出或為該製程、方法、物件或設備所固有之特徵。此外,除非另有明確指出相反之涵義外,「或」係意指具包含性之「或」,而非指具排他性之「或」。例如,下列解釋中任一者皆可滿足條件A或B之定義:A為真(或存在)且B為假(或不存在),A為假(或不存在)且B為真(或存在),以及A與B皆為真(或存在)。
此外,「一」係用來描述本文中的元件以及組成部份,但其於使用上僅為了方便,以便給予本發明範圍之普遍意義。此敘述應解釋為包括一者或至少一者;而於單數表述上,除另有解釋,亦應包括複數的含意;反之亦然。例如,當於本文中敘述一單一物件時,可以多個物件取代該單一物件。同樣地,當於本文中敘述多個物件時,亦可以單一物件取代該多個物件。
除非另有定義,所有於本文中所使用之科技以及科學術語皆具有與本發明所屬技術領域之普通技藝者所通常瞭解之相同含意。材料、方法以及實例皆僅用於解說而並非意欲作為限制。於本文中未敘述之關於具體材料或處理過程之許多細節,係為習知者,而可於晶體(尤其是藍寶石晶體)領域內之教課書或其他來源獲得。
以下揭示內容係敘述用以形成複數個同時產生且彼此具有一致特性之帶狀藍寶石之設備以及方法。例如,至今為止尚未可知如何形成多個帶狀藍寶石,尤其是如何形成彼此之間具有一致特性之至少六個帶狀藍寶石,更尤其是 如本文中所描述之外帶狀體。經下文所述實施例將可更清楚地瞭解以上概念,但這些實施例僅解說而非限制本發明之範圍。
第1圖係繪示根據本發明之第一方面之一種以限邊薄片續填生長法(EFG)生長複數個帶狀晶體7(尤其是帶狀藍寶石晶體)之設備5。如第1圖所示,該設備5可包括一熔體源10、複數個與該熔體源10相連通之模具20、鄰近該複數個模具之複數個第一區30以及一熱反射遮板50。該熱反射遮板50可相對於一水平面成角度地加以設置。該水平面係指與該模具頂端之垂直延伸的二側表面28相互垂直之平面。如本文中所使用,與該水平面呈角度設置之熱反射遮板包括除與該水平面垂直與平行外之所有方位。
於某些實施例中,該熱反射遮板50可設置為鄰近該模具頂端22以及該第一區30兩者之至少一部份。該熱反射遮板50可包括朝向該模具之一第一表面52以及正對該第一表面52之一第二表面54。該熱反射遮板50可構型用以將與該熱反射遮板之第一表面52接觸之熱能,導向(或反射)至一低溫區,例如於該第一區30上方之一第二區32。將自該第一區30發散之熱反射至一低溫區,相對於一具有與該模具頂端之側表面平行之熱遮板之設備,可增加該模具上方之第一區30內之熱梯度。如此,該熱反射遮板可構型用以控制反射熱於一側面方向以及一垂直方向之一第一熱梯度。相較於此,當熱遮板與該水平面垂直(或平行於該模具頂端之側表面)時,其將會使大部份的熱沿著側面方向反射,而無法控 制反射熱於垂直方向之熱梯度。藉由使該熱遮板相對於該水平面呈角度地設置,可使不少的發散熱被反射至與其發散方向不同之區。
如本文中所使用,「熱梯度」係指該帶狀晶體於一EFG生長設備內之二位置間之一距離上溫度的平均變化。該二位置間之距離係於該單一藍寶石晶體於製造過程中前進之直線上測量而得。例如,於一EFG技術,於該設備內之一第一位置與該設備內之第二位置之間的溫度差異可為攝氏50度。熱梯度之單位可為例如「度/每公分」或「度/每英吋」。若未具體指明,該溫度變化係自一較高的溫度至一較低的溫度,而該藍寶石晶體則循此梯度自該第一位置移動至該第二位置。於特定實施例中,該第一熱梯度可沿著該成形表面延伸至少約10mm、至少約20mm、至少約30mm、至少約50mm或甚至至少約100mm之距離。
此外,於鄰近該第一熱梯度處可設有一第二熱梯度。該第二熱梯度可較該第一熱梯度更遠離該模具之開口。於特定實施例中,該第二熱梯度可少於該第一熱梯度。例如,當帶狀藍寶石成形時,其於第一區30內可較於第二區32內更快速地被冷卻,因此於該第二區32內之第二熱梯度係少於該第一區30內之第一熱梯度。
請再次參見第1圖,該複數個模具中每一者皆可具有一模具開口24。該模具開口24所具有之寬度可為至少約101.6mm、至少約152.4mm、至少約203.2mm或甚至至少約304.8mm。此外,於某些實施例中,該模具開口24所具有之 厚度可為至少約0.3mm、至少約0.5mm、至少約1.0mm、至少約2.0mm或甚至至少約2.5mm。該模具開口24之尺寸可決定穿越該模具開口之所成形帶狀體之所期待的尺寸(寬度與厚度)。本發明之一獨有的優點在於能夠形成在模具開口24以及於同一EFG生長設備5內所同時形成之帶狀藍寶石7中每一者之平均厚度之間具有較低變異性之帶狀藍寶石。例如,於特定實施例中,該外帶狀體(以及甚至同時產生之帶狀體中每一者)之平均厚度與該模具開口之厚度的比例可為至少約0.95:1。
參見第2圖,其係繪示一實施例中模具開口25、27、29於一EFG設備內之排列。如圖所示,複數個模具可經排列而使該複數個模具開口25、27、29之至少一者相對於該複數個模具開口25、27、29之另一者位於不同的高度。例如,該外模具之模具開口25可高於該內模具之模具開口29。此外,最內側的模具可具有該複數個模具開口25、27、29中位置最低的模具開口29。於某些實施例中,最外側模具開口所具有的高度可比與其最接近之相鄰模具開口27高度高至少約0.254mm、至少約1.27mm、至少約2.54mm或甚至至少約3.81mm。
此外,該複數個模具中每一者於一水平方向上可與一鄰近模具間隔不超過609.6mm、不超過508mm、不超過406.4mm、不超過約304.8mm,不超過約254mm、不超過約203.2mm、不超過約152.4mm、不超過約127mm、不超過約101.6mm、不超過約76.2mm、不超過約50.8mm、不超 過約25.4mm、不超過約19.05mm、不超過約12.7mm或甚至不超過約6.35mm。該間隔距離係自一模具頂端之中央至一相鄰模具頂端中央之間所量側者。
再次參見第1圖,該垂直熱遮板可設置於遠離該呈角度設置之熱反射遮板50之位置。於某些實施例中,該EFG設備可同時包括一垂直熱遮板55以及該呈角度設置之熱反射遮板50。於其他實施例中,可只出現該呈角度設置之熱反射遮板50。
於某些實施例中,該熱反射遮板50可與該水平面具有一角度α,其不小於約1度、不小於約2度、不小於約3度、不小於約4度、不小於約5度、不小於約10度、不小於約15度、不小於約20度、不小於約25度、不小於約30度、不小於約35度、不小於約40度、不小於約45度、不小於約50度、不小於約55度、不小於約60度、不小於約65度、不小於約70度、不小於約75度、不小於約80度或甚至不小於約85度。於另一些實施例中,該熱反射遮板可與該水平面具有一角度α,其不超過約88度、不超過約85度、不超過約80度、不超過約75度或甚至不超過約70度。於再一些實施例中,該熱反射遮板可具有在本文中所敘述之最大與最小值之範圍內之角度α。
該熱反射遮板50可由任何可於該EFG設備內操控熱輻射流動之材料所構成。於某些實施例中,該熱反射遮板50可由金屬構成,例如耐火金屬。
第3圖係繪示一帶狀藍寶石100。該帶狀藍寶石 100包括一長度L、一寬度W以及一厚度T。該長度可大於或等於該寬度。該長度以及該寬度可大於厚度。可以瞭解的是,所述帶狀體中一者或多者之尺寸值係包括長度、寬度、厚度、厚度變化等,且其係對於「原始狀態的」帶狀體測量而得,除非另有所指,所謂原始狀態即指在完成諸如研磨或拋光等操作之前的狀態。此外,可以瞭解的是,所述帶狀體中一者或多者之尺寸值所包括的長度、寬度、厚度、厚度變化等,其於本文敘述中係以全寬部份進行測量而得。如本文所使用者,該「全寬度」係指當該帶狀體之寬度達到該模具寬度之95%範圍內。
於某些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之寬度可為至少約101.6mm、至少約152.4mm、至少約203.2mm或甚至至少約304.8mm。於另一些實施例中,本文中所敘述之一帶狀藍寶石或甚至每一同時產生之帶狀藍寶石,所具有之寬度可不超過約2540mm、不超過約1219.2mm、不超過約914.4mm、不超過約762mm、不超過約609.6mm或甚至不超過約457.2mm。於再一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至每一同時產生之帶狀藍寶石,可具有介於本文中所敘述之最大值與最小值間之範圍內之寬度。
於另一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之長度可為至少約152.4mm、至少約304.8mm、至少約 609.6mm、至少約762mm、至少約914.4mm、至少約1066.8mm或甚至至少約1219.2mm。於另一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之長度可不超過約5080mm、不超過約3810mm或甚至不超過約2540mm。於再一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,可具有介於本文中所敘述之最大值與最小值間之範圍內之長度。
於再一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之平均厚度可為至少約0.1mm、至少約0.5mm、至少約0.8mm、至少約1mm、至少約1.3mm、至少約1.5mm、至少約1.7mm、至少約2.0mm或甚至至少約2.3mm。於另一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之平均厚度可不超過約100mm、不超過約75mm、不超過約50mm、不超過約35mm、不超過約25mm、不超過約15mm、不超過約10mm或甚至不超過約5mm。此外,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,可具有介於本文中所敘述之最大值與最小值間之範圍內之平均厚度。如本文中所使用,「平均厚度」係指以具有在全寬度部份於每平方英吋所進行之測量之厚度映射中測量所得之所有厚度之平均厚度。尤其,該厚度之測量以及該厚度映射之產生,可經由為所屬領域內標準測量之超音波測量加 以達成。
再者,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之總厚度變化(TTV)係不超過2mm、不超過1.8mm、不超過1.6mm、不超過1.4mm、不超過1.2mm、不超過1.0mm、不超過0.8mm、不超過0.7mm、不超過0.6mm、不超過約0.5mm、不超過約0.4mm或甚至不超過約0.3mm。總厚度變化係經由將一帶狀體之最大厚度減去一帶狀體之最小厚度而得。如本文中所使用,一帶狀體之最小厚度以及最大厚度皆可由超音波測量法決定,其係以每平方英吋測量一次作為區間。於特定實施例中,該TTV可為前文所述者,且若存在有任何孔隙,該孔隙內以及周圍的厚度測量值並不包括於該TTV之測定內。換言之,為達計算TTV之目的,該最小厚度可為最小非零之厚度值。於該等實施例中,為達計算TTV之目的,於該厚度映射內所測定任何為零之測量值皆不用作為最小厚度。
此外,本發明之一具體優點在於能夠同時形成複數個藍寶石以及外帶狀體、至少六個帶狀體或甚至所有同時產生之複數個帶狀藍寶石,其具有如前所述之總厚度變化(TTV)。此等特徵可經由所有複數個同時形成帶狀藍寶石中每一者之間的總厚度變化之變異值加以量化。該總厚度變化之變異值可由下列方程式確定:VTTV=((TTVi-TTVAVG)/(TTVAVG))*100%
其中VTTV代表總厚度變化之變異值;TTVi表示所關注帶狀藍寶石之總厚度變化,且TTVAVG表示於一批量中所有同 時產生之帶狀藍寶石之總厚度變化之平均值。又,每一總厚度變化的測量是經由將一帶狀體之最大厚度減去最小厚度值而測得。於特定實施例中,總厚度變化之變異性可不超過約±50%、不超過±40%、不超過±30%、不超過±15%、不超過約±10%、不超過約±7%、不超過約±5%、不超過約±3%或甚至不超過約±2%。
於另一些實施例中,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之最大低位厚度(或最小厚度)為至少約2.0mm、至少約1.8mm、至少約1.6mm、至少約1.4mm、至少約1.2mm、至少約1.0mm、至少約0.8mm、至少約0.7mm、至少約0.6mm或甚至至少約0.5mm。於特定實施例,本文中所敘述之一帶狀藍寶石以及甚至至少六個或甚至全部同時產生之帶狀藍寶石,所具有之最大低位厚度為至少高於約1.0mm,且尤其於更特定之實施例中,其為至少約0.5mm。該最大低位厚度係指在測量區中整個帶狀藍寶石所測量到的最低厚度。該最大低位厚度係經由用於厚度測量之標準技術而加以測量,例如測徑器、降測儀、測微計或超音波。此外,本發明之另一具體優點在於能夠同時形成複數個帶狀藍寶石,其以及外帶狀體以及甚至所有的複數個帶狀藍寶石具有如前文所述之最大低位厚度。當最大低位厚度為0時,則表示於該帶狀體中存在有孔隙。
於另外的實施例中,本文中所敘述之一帶狀藍寶石以及甚至每一個同時形成之帶狀藍寶石,所具有自平面偏 離之標準差係為不大於2mm、不大於1.8mm、不大於1.6mm、不大於1.4mm、不大於1.2mm、不大於1.0mm、不大於0.8mm、不大於0.7mm、不大於0.6mm、不大於約0.5mm、不大於約0.4mm或甚至不大於約0.3mm。所述偏離平面之標準差係指在該帶狀藍寶石中偏離其平面方位之測量結果。該偏離平面之標準差可利用測量厚度之技術加以測量,例如測徑器、降測儀、測微計或超音波。此外,本發明之另一具體優點在於能夠同時形成複數個帶狀藍寶石,其以及外帶狀體以及甚至所有的複數個帶狀藍寶石具有如前文所述偏離平面之標準差。
本發明之一具體優點在於能夠同時形成複數個帶狀藍寶石,其中該複數個帶狀藍寶石中每一者以及尤其該外帶狀體係實質上不含孔隙。如本文中所使用,「孔隙」係指在單一帶狀晶體內之缺損,其中在該帶狀體內存在有間隙或小孔。此外,如本文中所使用,「實質上不含孔隙」係指於一單一帶狀晶體內,藍寶石於晶體之所有寬度上沒有不連續處;換言之,該晶體所具有之厚度係大於0。至今為止,如何同時形成複數個帶狀藍寶石且該等帶狀藍寶石中每一者皆實質上不含孔隙仍屬未知。例如(將於後文中實例部分詳加描述),當將額外的模具加入習知EFG設備中,於外模具上所產生之帶狀晶體將具有實質的孔隙以及不一致的尺寸穩定度。不欲受到理論之限制,一般相信,在習知的EFG生長設備內,於外帶狀體之溫度以及熱梯度係與內帶狀體不同。此等於帶狀體間之熱梯度的不一致據信可能產生諸如孔隙以及 於總厚度變化上之變異等缺點,於外帶狀體更是如此。據此,於本文中所敘述之某些實施例中,每一個同時形成之帶狀藍寶石可實質上不含孔隙,且於特定實施例中,該外帶狀體、至少六個帶狀體或甚至所有同時產生之帶狀體皆可實質上不含孔隙。
根據本發明之另一實施例,一種同時形成複數個帶狀藍寶石之方法可包括:提供一具有複數個模具之EFG設備;將該複數個帶狀體(尤其對於在該複數個模具中每一者上之帶狀藍寶石)結晶化;以及將該複數個帶狀藍寶石冷卻。將該複數個帶狀藍寶石冷卻可包括:於鄰近該模具之一第一區內控制一第一熱梯度,以及於較該第一區更遠離該模具之一第二區內控制一第二熱梯度。該第二熱梯度可低於該第一熱梯度,藉此該帶狀體於該第一區內可比於第二區內更快地被冷卻。於該第一或第二區之熱梯度可部分地以一熱反射遮板加以控制。於某些實施例中,如前文中所述,該熱反射遮板可相對於該水平面呈角度地加以設置。
本發明之一具體優點在於能夠控制該第一以及第二熱梯度(更重要的是該第一熱梯度),藉此該等熱梯度得以一致或在該複數個帶狀藍寶石之間具有低變異性。例如,於一習知EFG生長設備中,尚無法使該第一熱梯度經控制而使於同時形成之帶狀藍寶石中每一者之每一第一熱梯度皆大於約1.5℃/cm、大於約2℃/cm、大於約3℃/cm、大於約5℃/cm、10℃/cm、大於約20℃/cm、大於約50℃/cm、大於約100℃./cm、大於約200℃/cm、大於約500℃/cm或甚至 大於約1000℃/cm。
於特定實施例中,該等帶狀藍寶石於該第一區中可具有至少約10分鐘之停留時間。如本文中所使用,「停留時間」係指該帶狀體於該EFG設備內一區所停留的時間長度。如前文所述,該第一區係介於該模具開口以及該第二區之間。
於一EFG設備,自該模具上之熔融與經結晶物「拉動」該複數個帶狀體以形成該等帶狀體。該等帶狀體自該熔融物被拉動之速率係稱作為拉動速率。於某些實施例中,該複數個帶狀體中每一者之拉動速率可彼此相同或有至少一者不同。於特定實施例中,該等帶狀藍寶石被拉動之速率可為0.5cm/hr、1.0cm/hr、1.5cm/hr、2.0cm/hr、2.5cm/hr、至少5cm/hr或甚至至少10cm/hr。
如本文中所使用,「展開」或「經展開」係指於結晶化以及冷卻過程中形成該帶狀晶體之寬度尺寸。不欲受到理論之限制,一般相信,對於熱梯度之控制可部份控制該帶狀晶體之展開。本發明之一具體優點在於可使同一批量中的複數個帶狀藍寶石中每一者接達到一致的展開寬度。
此外於某些實施例中,該方法可包括控制該複數個帶狀晶體之展開長度,藉以使該複數個帶狀晶體所具有之最大展開長度的變異性不大於約25%、不大於約20%、不大於約18%、不大於約15%、不大於約10%或甚至不大於約5%。如本文中所使用,「展開長度」係指晶種與該全長部分之間的距離。最大展開長度變異性係由以下方程式加以決定: SLVMAX=((SLMAX-SLMIN)/((SLMAX+SLMIN)/2))*100%其中SLVMAX係指最大展開長度變異性;SLMAX係指於同一批量中所產生之複數個帶狀藍寶石中之一者的最大展開長度;而SLMIN係指於同一批量中所產生之複數個帶狀藍寶石中之一者的最小展開長度。本發明之一具體優點在於能夠使同一批量內所產生之複數個帶狀藍寶石之間獲得一致的展開長度。
根據某些實施例,由本文所述方法所產生之複數個帶狀藍寶石可具有本文中所描述的特徵,例如前述之總厚度變化、總厚度變化之變異性、最大低位厚度、偏離平面之標準差等。本發明之一具體優點在於能使同時形成之複數個帶狀藍寶石中每一者皆具有本文所述之特徵。尤其,本文所述之方法可用於同時產生至少3、至少4、至少5、至少6、至少7、至少8、至少9、至少10、至少11、至少12、至少13、至少14、至少15或甚至至少16個帶狀藍寶石,其中所述帶狀體中每一者皆具有本文所述之特徵。此外,某些實施例中,本文所述之方法可供於同一生長設備中同時產生不超過50、不超過25或甚至不超過20個之帶狀藍寶石。
實際上,於過去尚無法使於同一生長設備中同時產生之六個或更多的藍寶石薄片中每一者皆具有如本文中所述之尺寸穩定性。據此,本文中所述之某些實施例係指向於產生六個或更多的帶狀體,其中該六個或更多的帶狀體中至少六者係具有本文中所述之特徵,例如總厚度變化以及總厚度變化之變異性。
此外,本發明之實施例進一步指向一批帶狀藍寶石。如本文中所使用,一「批」係指於相同生長設備中共同(同時地)形成之帶狀藍寶石。例如,一批可包括至少3、至少4、至少5、至少6、至少7、至少8、至少9、至少10、至少11、至少12、至少13、至少14、至少15或甚至至少16個於相同生長設備中同時形成之帶狀藍寶石。此外,於某些實施例中,一批可包括不超過50、不超過25或甚至不超過20個於相同生長設備中同時形成之帶狀藍寶石。
於特定實施例中,於該批量中之每一帶狀藍寶石皆可達到本文中所述之特徵,例如總厚度變化、總厚度變化之變異性、最大低位厚度、偏離平面之標準差、實質上不含孔隙等。本發明之一具體優點在於於一批量中所形成之帶狀藍寶石中之每一者皆具有本文所述之特徵。
本文中所敘述之帶狀藍寶石可經進一步加工而形成許多種不同的產品。於特定實施例中,該等帶狀藍寶石可經切割而形成晶圓,尤其是形成一批晶圓。如本文中所使用,一「批晶圓」係指自共同形成之帶狀藍寶石所形成之複數個晶圓。此外,於另一些實施例中,一發光裝置可由該晶圓所形成,或複數個發光裝置可由該批晶圓所形成。
於再一些實施例中,用於行動電話之保護螢幕可由本文中所敘述之帶狀藍寶石所形成。關於形成該保護螢幕方面,可依照所屬領域中已知的的任何方法達成。
於甚至另一些實施例中,一種可透射可見光譜之光線的透明窗亦可由本文所述之帶狀藍寶石所形成。
該EFG設備,以及自其所產生之帶狀藍寶石可具有任何所期待之晶向。於某些實施例中,該等帶狀藍寶石可具有與帶狀藍寶石之主要表面實質上垂直之一C-軸、一A-軸、一R-軸、一M-軸、一N-軸或一S-軸軸向。於某些特定實施例中,該等帶狀藍寶石可具有與帶狀藍寶石之主要表面實質上垂直之一C-軸、一A-軸或一R-軸軸向。於特定實施例中,該等帶狀藍寶石具有與帶狀藍寶石之主要表面實質上垂直之一C-軸軸向。於其他特定實施例中,該等帶狀藍寶石具有與帶狀藍寶石之主要表面實質上垂直之一A-軸軸向。該晶向可經由以下方式決定:將具有已知與一模具開口之縱走軸實質上垂直之軸向之晶種播種於一熔融固定物中。因此,所形成之帶狀體將具有與帶狀藍寶石之主要表面實質上垂直之相對應的軸向。
實例 實例1:
產生三批C-面帶狀藍寶石以及一批A-面帶狀體。第一批(批量A;C-面)係以第1圖所示之EFG生長設備(除垂直熱遮板之外)產生。第二批(批量B;C-面)係以第1圖所示之EFG生長設備產生,該生長設備具有相對於該水平面呈62度角設置之熱遮板。第三批(批量C;C-面)係以產生批量B之EFG生長設備產生,但所使用之設備具有下列不同處:將最外模具之高度降低0.635mm,且將鄰近該最外模具之模具的高度升高0.635mm。第四批(批量D;A-面) 係以產生批量C之EFG設備產生,所使用之設備具有下列不同處:使用定向於A-面之晶種生長一A-面片狀體。每一設備係構型為具有10個模具者,且每次運作後皆產生一批10個C-面或A-面之帶狀藍寶石。於其他關於生長方面之條件參數,除為適於A-面生長所作的一些小調整外,其餘皆相同。
對於前述批量中之每一者,皆將坩堝以及模具加熱至該模具頂端之溫度高於攝氏2100度為止。將片狀氧化鋁經由一管體載入該坩堝內,該管體係延伸出該冶爐之外部且經由一惰性氣體(例如氬氣)加以保護。一旦當熔融物之水平面約高於該模具高度之一半時,便將一具有與該生長方向垂直之一C-軸(或於A-面時之A-軸)軸向之晶種降下至該模具頂端。將該模具之溫度降低,且將該晶種以27.94mm/hr之速率垂直地自該模具拉開。將溫度控制為質量之函數。一旦當該晶體達到全寬時,將該溫度保持恆定直至達到所期待之長度為止。
測量於該等批量之帶狀藍寶石中之每一者的各種特徵,可得到以下結果:
於前文中表1所列對於厚度之測量以及數值中之每一者,均係由一所產生的厚度映射所決定。為產生該厚度映射,該帶狀體係於每一平方英吋進行厚度之測量,且如前文中詳細敘述以及可為所屬技術領域具有普通技藝者所可瞭解者,將測量結果映射於該帶狀體之一影像上。上表顯示,批量C具有最佳的結果,即對於該等C-面帶狀藍寶石之間可達到最一致的尺寸控制。批量D顯示,如同自使用批量A之模具構型之A-面帶狀體所可獲得之類似結果,對於用於批量C之模具的改變對於A-面帶狀體亦有其助益。
於圖頁上係列有該等C-面帶狀藍寶石中每一者之照片,以顯示該等帶狀體之尺寸以及所產生帶狀體中每一者之厚度映射。第4圖係為顯示批量A所產生之帶狀體中每一者之照片;第5圖係為顯示批量B所產生之帶狀體中每一者之照片;第6圖係為顯示批量C所產生之帶狀體中每一者之照片。於批量A之外模具中可明顯見到孔隙;但於批量B或C之帶狀體中,則沒有孔隙存在。
實例2:
將用於批量C以及D之相同設備以及方法用於具有16個模具之EFG生長設備中。當同時生長16個片狀藍寶石時,於該等片狀藍寶石(尤其是外片狀藍寶石)中,出現有於批量C以及D所產生之結果。
許多型態以及實施例皆有可能,下文中將敘述這些型態以及實施例之部分。於閱讀說明書後,具有技藝者將 可瞭解到,這些型態以及實施例僅用於解說而並非限制本發明之範疇。實施例係與下文所列項目中之一者或多者相符。
項目1、一種設備,供以限邊薄片續填生長法(EFG)形成一帶狀藍寶石,所述設備包括一相對於一水平面呈角度地設置之熱反射遮板,其中所述熱反射遮板係構型以控制反射熱於一側面方向以及一垂直方向之熱梯度。
項目2、一種設備,供同時形成至少六個帶狀藍寶石,其中所述至少六個帶狀藍寶石中至少六者係實質上不含孔隙。
項目3、一種設備,供同時形成至少六個帶狀藍寶石,其中所述至少六個帶狀藍寶石中至少六者所具有之平均寬度為至少101.6毫米。
項目4、一種設備,供形成一帶狀藍寶石,該設備包括:一熔體源;一模具,其係鄰近於該熔體源;一第一區,其係鄰近於該模具之一開口;以及一熱反射遮板,其係鄰近於該模具之至少一部份以及該第一區之至少一部份,其中該熱反射遮板包括一朝向該模具之第一表面以及一正對該第一表面之第二表面,其中該熱反射遮板係構型以將與該熱反射遮板之第一表面接觸之熱能導向至一低溫區。
項目5、一種設備,供同時形成包括藍寶石之至少六個帶狀體,該設備包括: 一熔體源;至少六個模具,其係鄰近於該熔體源,其中每一模具具有一長度以及一寬度;至少三個第一區,其分別鄰近於至少三個模具之開口,其中該至少三個第一區具有與該模具開口之寬度與厚度相對應之一寬度以及一厚度,且其中該至少三個第一區中每一者橫跨其第一區之厚度具有一第一熱梯度,且其中該至少三個第一熱梯度中每一者所具有的溫度梯度為至少1.5℃/分。
項目6、一種同時形成至少六個包括藍寶石之帶狀體之方法,該方法包括:將位於至少六個模具上之至少六個帶狀體結晶化,以及將該至少六個帶狀晶體於一鄰近於該至少六個模具之第一區進行冷卻,其中該冷卻包括控制橫跨該至少六個帶狀晶體厚度之熱梯度,藉以於冷卻結束後,使該至少六個帶狀體中每一者之總厚度變化不超過5%。
項目7、一種同時形成至少六個包括藍寶石之帶狀體之方法,該方法包括:使該至少六個帶狀體於至少六個模具上結晶化,以及控制該等帶狀藍寶石中每一者之展開長度,藉此該至少六個帶狀體中至少六者之最大展開長度變異性 係不超過25%。
項目8、一批至少六個以限邊薄片續填生長法(EFG)同時生長之帶狀藍寶石,其中該以EFG生長之至少六個帶狀藍寶石中至少六者所具有的總厚度變化係不超過10%。
項目9、一批至少六個以EFG同時生長之帶狀藍寶石,其中於該批量中以EFG生長之至少六個帶狀藍寶石中至少六者係實質上不含孔隙。
項目10、一批至少六個以EFG同時生長之帶狀藍寶石,其中於該批量中以EFG生長之至少六個帶狀藍寶石中至少六者所具有之最大展開長度變異性係不超過約20%。
項目11、一批至少六個以EFG同時生長之帶狀藍寶石,其中於該批量中以EFG生長之至少六個帶狀藍寶石中至少六者所具有之平均寬度為至少101.6mm。
項目12、一種自構型用以同時產生至少六個帶狀藍寶石之EFG生長設備內之一外模具生長而成之帶狀藍寶石,其中自該外模具生長而成之帶狀藍寶石所具有之厚度變化,係為與該自外模具生長之帶狀藍寶石同時產生之帶狀藍寶石中每一者之平均厚度之10%內。
項目13、一種自構型用以同時產生至少八個帶狀晶體之EFG生長設備內之一外模具生長而成之帶狀晶體,其中該帶狀晶體係實質上不含孔隙。
項目14、一種自一外帶狀藍寶石晶體切割而得之晶圓,該外帶狀藍寶石晶體係與至少六個帶狀藍寶石晶體同時生長而成。
項目15、一種發光裝置,其係由項目14所述之藍寶石晶圓製成。
項目16、一種用於行動裝置之藍寶石保護螢幕,其係自一同時與至少六個帶狀晶體同時生長而成之外帶狀晶體所形成。
項目17、前述項目中任一項所述之設備、方法、批量或帶狀體,其中該帶狀晶體所具有之平均寬度為至少約101.6mm、至少約152.4mm、至少約203.2mm或甚至至少約304.8mm。
項目18、前述項目中任一項所述之設備、方法、帶狀體或批量,其中該帶狀晶體所具有之平均長度為至少約152.4mm、至少約304.8mm、至少約609.6mm或甚至至少約762mm。
項目19、前述項目中任一項所述之設備或方法,其中該熱反射遮板係相對於一形成平面呈角度地設置。
項目20、前述項目中任一項所述之設備、方法、帶狀體或批量,其中該一或多個帶狀藍寶石所具有之平均厚度為至少約0.1mm、至少約0.5mm、至少約0.8mm、至少約1mm、至少約1.3mm、至少約1.5mm、至少約1.7mm、至少約2.0mm或甚至至少約2.3mm。
項目21、前述項目中任一項所述之設備、方法、帶狀體或批量,其中該一或多個帶狀藍寶石所具有之平均厚度不超過約100mm、不超過約75mm、不超過約50mm、不超過約35mm、不超過約25mm、不超過約15mm、不超過約10mm 或甚至不超過約5mm。
項目22、前述項目中任一項所述之設備、方法、帶狀體或批量,其中每一帶狀藍寶石所具有之總厚度變化係不超過2mm、不超過1.8mm、不超過1.6mm、不超過1.4mm、不超過1.2mm、不超過1.0mm、不超過0.8mm、不超過0.7mm、不超過0.6mm、不超過約0.5mm、不超過約0.4mm或甚至不超過約0.3mm。
項目23、前述項目中任一項所述之設備、方法、帶狀體或批量,其中每一帶狀藍寶石所具有之總厚度變化(TTV)係不超過2mm、不超過1.8mm、不超過1.6mm、不超過1.4mm、不超過1.2mm、不超過1.0mm、不超過0.8mm、不超過0.7mm、不超過0.6mm、不超過約0.5mm、不超過約0.4mm或甚至不超過約0.3mm,且其中該TTV係於不含任何孔隙之情況下測得。
項目24、前述項目中任一項所述之設備、方法、帶狀體或批量,其中所有同時形成之帶狀體之間的總厚度變化之變異性可不超過約±50%、不超過±40%、不超過±30%、不超過±15%、不超過約±10%、不超過約±7%、不超過約±5%、不超過約±3%或甚至不超過約±2%。
項目25、前述項目中任一項所述之設備、方法、帶狀體或批量,其中每一帶狀藍寶石之最大低位厚度為至少約2.0mm、至少約1.8mm、至少約1.6mm、至少約1.4mm、至少約1.2mm、至少約1.0mm、至少約0.8mm、至少約0.7mm、至少約0.6mm或甚至至少約0.5mm。
項目26、前述項目中任一項所述之設備或方法,其中該熱反射遮板與一形成平面所形成之一角度係不超過約85度、不超過約80度、不超過約75度或甚至不超過約70度。
項目27、前述項目中任一項所述之設備或方法,其中該熱反射遮板所形成之一角度係不少於約1度、不少於約2度、不少於約3度、不少於約4度、不少於約5度、不少於約10度、不少於約15度、不少於約20度、不少於約25度、不少於約30度、不少於約35度、不少於約40度、不少於約45度、不少於約50度、不少於約55度或甚至不少於約60度。
項目28、前述項目中任一項所述之設備或方法,其中該熱反射遮板包括一金屬,尤其是一耐熱金屬。
項目29、前述項目中任一項所述之設備或方法,其中該熱反射遮板係設置為使自該第一區側向發散之熱能的一大部份被反射至一低溫區。
項目30、前述項目中任一項所述之設備或方法,其中該熱反射遮板係設置於鄰近該第一區之位置。
項目31、前述項目中任一項所述之設備或方法,其中該第一熱梯度沿著該形成平面延伸之一距離為至少約1cm、至少約2cm、至少約3cm、至少約5cm或甚至至少約10cm。
項目32、前述項目中任一項所述之設備或方法,更包括一鄰近於該第一熱梯度之第二熱梯度,其中該第二熱梯度係較該第一熱梯度更遠離該模具開口,且其中該第二熱梯度係少於該第一熱梯度。
項目33、前述項目中任一項所述之設備或方法,其中該 模具開口所具有之寬度為至少25.4mm、至少50.8mm、至少76.2mm、至少101.6mm、至少152.4mm或甚至至少203.2mm。
項目34、前述項目中任一項所述之設備或方法,其中該模具開口所具有之厚度為至少0.3mm、至少0.6mm、至少0.75mm、至少約1mm、至少約1.5mm、至少約2mm、至少約2.5mm、至少約2.8mm、至少約3mm或甚至至少約3.5mm。
項目35、前述項目中任一項所述之設備或方法,其中該帶狀藍寶石與該模具開口厚度之比例為至少約0.95:1。
項目36、前述項目中任一項所述之方法,其中於該第一區中該帶狀藍寶石上一特定點之停留時間為至少10分鐘。
項目37、前述項目中任一項所述之方法,更包括將該帶狀藍寶石以至少0.5cm/hr、至少1.0cm/hr、至少1.5cm/hr、至少2.5cm/hr、至少5cm/hr或甚至至少10cm/hr之速率拉動。
項目38、前述項目中任一項所述之設備或方法,其中該等外模具開口係設置為較於該外模具開口間之至少一模具開口為高。
項目39、前述項目中任一項所述之設備或方法,其中至少一模具開口係設置於與其他模具開口不同之高度。
項目40、前述項目中任一項所述之設備、方法、批量或帶狀體,其中該一或多個帶狀藍寶石係具有與帶狀藍寶石之主要表面實質上垂直之一C-軸、一A-軸、一M-軸或一R-軸軸向。
項目41、前述項目中任一項所述之設備、方法、批量或帶狀體,其中該一或多個帶狀藍寶石係具有與該帶狀藍寶石之主要表面實質上垂直之一C-軸軸向。
項目42、前述項目中任一項所述之方法,更包括將一具有與一模具開口之一縱向軸實質上垂直之一A-軸、一C-軸、一M-軸或一R-軸軸向之晶種,播種於一熔融固定物中;且其中該帶狀藍寶石具有與該帶狀藍寶石之主要表面實質上垂直之相對應的一A-軸、一C-軸、一M-軸或一R-軸軸向。
項目43、前述項目中任一項所述之方法,更包括將一具有與一模具開口之一縱向軸實質上垂直之一C-軸軸向之晶種,播種於一或多個熔融固定物中;且其中該一或多個帶狀藍寶石具有與該一或多個帶狀藍寶石之主要表面實質上垂直之相對應的一C-軸軸向。
項目44、一批至少六個以EFG同時生長之帶狀藍寶石,其中該以EFG生長之至少六個帶狀藍寶石中至少六者所具有之總厚度變化不超過10%。
項目45、一批至少六個以EFG同時生長之帶狀藍寶石,其中該批量之帶狀藍寶石中至少六者係實質上不含孔隙。
項目46、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之平均寬度為至少約101.6mm。
項目47、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之平均長度為至少約152.4mm。
項目48、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之平均厚度係介於自約0.1mm至約100mm之範圍內。
項目49、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之總厚度變化(TTV)係不超過2mm。
項目50、前述項目中任一項所述之批量,其中該批量自外模具同時生長之二帶狀藍寶石所具有之總厚度變化(TTV)係不超過1.2mm。
項目51、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之總厚度變化(TTV)係不超過2mm,且其中該總厚度變化係於不包括任何孔隙之情況下測得。
項目52、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之總厚度變化(TTV)係不超過1.2mm,且其中該總厚度變化係於不包括任何孔隙之情況下測得。
項目53、前述項目中任一項所述之批量,其中所有同時形成的帶狀體間之總厚度變化的變異性係不超過約±50%。
項目54、前述項目中任一項所述之批量,其中所有同時形成的帶狀體間之總厚度變化的變異性係不超過約±10%。
項目55、前述項目中任一項所述之批量,其中該至少六個以EFG生長的帶狀藍寶石中至少六者中每一者所具有之總厚度變化係不超過5%。
項目56、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之最大低位厚度為至少約1mm。
項目57、前述項目中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之最大低位厚度為至少約0.5mm。
項目58、前述項目中任一項所述之批量,其中該批量之一或多個帶狀藍寶石係具有與該帶狀藍寶石之主要表面垂直之一C-軸、一A-軸、一M-軸或一R-軸。
項目59、前述項目中任一項所述之批量,其中所述一或多個帶狀藍寶石具有與該帶狀藍寶石之主要表面垂直之一A-軸軸向。
項目60、前述項目中任一項所述之批量,其中該批量包括至少8個帶狀藍寶石。
項目61、前述項目中任一項所述之批量,其中該批量包括至少10個帶狀藍寶石。
項目62、一種帶狀藍寶石,其係自構型以同時產生至少六個帶狀藍寶石之一EFG生長設備中之一外模具生長而成,其中自該外模具生長之帶狀藍寶石所具有之厚度變異,係為與該自外模具生長的帶狀藍寶石同時產生之每一內帶狀藍寶石之平均厚度的10%範圍內。
項目63、項目62所述之帶狀藍寶石,其中自一外模具生長之帶狀藍寶石係實質上不含孔隙。
應注意到,並非所有前述一般性描述或實例中之 所有活動皆為必要,一特定活動之某部分可能並非必要,且除前述之外,另可增加其他一種或多種活動。此外,所列活動之順序並非必然為其所實施的順序。
於前文中已述及特定實施例之效益、其他優點以及問題之解決方法。然而,該等效益、優點、問題的解決方法以及可帶來效益、優點、問題的解決方法之任何技術特徵,不應被解釋為任何或所有權利請求項之關鍵、必要或主要技術特徵。
說明書以及本文中所敘述對於實施例之解說的目的在於對於不同實施例之結構提供一般性的瞭解。說明書以及前述解說並非意圖用於對使用本文中所述之結構與方法之設備以及系統的所有原件與特徵提供徹底以及全面性之說明。個別的實施例亦可彼此組合而提供於一單一實施例中,且反之亦然;而為使說明簡要而描述於一單一實施例脈絡中之各種特徵,亦可分別或以部分組合形式提供。此外,於範圍中所宣稱之參考值包括該範圍內每個數值。在閱讀過本說明書後,對於具有技藝者而言,許多其他的實施例亦將成為顯然易見者。其他實施例亦可被使用且自本發明所衍生,例如在不偏離本發明之範疇下,可作結構之替換、邏輯之替代或其他改變。據此,本發明揭示內容應被視為說明性質而非限制性質。
5‧‧‧設備
7‧‧‧帶狀晶體
10‧‧‧熔體源
20‧‧‧模具
22‧‧‧模具頂端
24‧‧‧模具開口
28‧‧‧側表面
30‧‧‧第一區
32‧‧‧第二區
50‧‧‧熱反射遮板
52‧‧‧第一表面
54‧‧‧第二表面
55‧‧‧垂直熱遮板

Claims (15)

  1. 一批同時以限邊薄片續填生長法(EFG)生長之至少六個帶狀藍寶石,其中所述以EFG生長之至少六個帶狀藍寶石中至少六者之總厚度變化不超過10%。
  2. 一批同時以EFG生長之至少六個帶狀藍寶石,其中該批量之帶狀藍寶石中至少六者實質上不含孔隙。
  3. 如前述申請專利範圍中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之平均寬度係為至少約101.6毫米。
  4. 如前述申請專利範圍中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之平均厚度係介於約0.1毫米至約100毫米之範圍內。
  5. 如前述申請專利範圍中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之總厚度變化(TTV)係不超過2毫米。
  6. 如前述申請專利範圍中任一項所述之批量,其中於該批量中自外模具生長之二帶狀藍寶石所具有之總厚度變化(TTV)係不超過1.2毫米。
  7. 如前述申請專利範圍中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之總厚度變化(TTV)係不超過2毫米,且其中該總厚度變化係於不包括任何孔隙之情況下決定。
  8. 如前述申請專利範圍中任一項所述之批量,其中同時形成之全部帶狀藍寶石之間的總厚度變化之變異性係不大於約±50%。
  9. 如前述申請專利範圍中任一項所述之批量,其中以EFG生長之至少六個帶狀藍寶石中至少六者之每一者所具有之總厚度變化係不超過5%。
  10. 如前述申請專利範圍中任一項所述之批量,其中該批量之帶狀藍寶石中至少六者所具有之最大低位厚度係為至少約1毫米。
  11. 如前述申請專利範圍中任一項所述之批量,其中該批量中一或多個帶狀藍寶石係具有與該帶狀藍寶石之主要表面實質上垂直之一C軸、一A軸、一M軸或一R軸軸向。
  12. 如前述申請專利範圍中任一項所述之批量,其中所述一或多個帶狀藍寶石係具有與該帶狀藍寶石之主要表面實質上垂直之一A軸軸向。
  13. 如前述申請專利範圍中任一項所述之批量,其中所述批量包括至少八個帶狀藍寶石。
  14. 一種帶狀藍寶石,其係自一外模具生長,該外模具係位於一構型用以同時產生至少六個帶狀藍寶石之EFG生長設備,其中自該外模具生長之帶狀藍寶石所具有之厚度變化,係為與該帶狀藍寶石自該外模具同時生長產生之每一內帶狀藍寶石之平均厚度的10%範圍內。
  15. 如申請專利範圍第14項所述之帶狀藍寶石,其中自一外模具生長之帶狀藍寶石係實質上不含孔隙。
TW103109189A 2013-03-15 2014-03-13 帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法 TW201435158A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361791364P 2013-03-15 2013-03-15
US201361857988P 2013-07-24 2013-07-24

Publications (1)

Publication Number Publication Date
TW201435158A true TW201435158A (zh) 2014-09-16

Family

ID=51528384

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103109189A TW201435158A (zh) 2013-03-15 2014-03-13 帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法
TW103109190A TWI529265B (zh) 2013-03-15 2014-03-13 以斜角熱遮板製造藍寶石薄片之裝置及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103109190A TWI529265B (zh) 2013-03-15 2014-03-13 以斜角熱遮板製造藍寶石薄片之裝置及方法

Country Status (6)

Country Link
US (2) US20140272413A1 (zh)
EP (2) EP2971276A4 (zh)
JP (2) JP2016516658A (zh)
CN (2) CN105189837A (zh)
TW (2) TW201435158A (zh)
WO (2) WO2014143955A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551089B2 (en) 2013-03-15 2017-01-24 Saint-Gobain Ceramics & Plastics, Inc. Sapphire sheets and apparatus and method for producing sapphire sheets with angled heat shields

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364647B2 (ja) * 2013-12-23 2018-08-01 アダマンド並木精密宝石株式会社 大型サファイアマルチ基板
CN106166792A (zh) 2015-10-16 2016-11-30 圣戈本陶瓷及塑料股份有限公司 具有复杂几何形状的透明陶瓷和其制造方法
JP6142208B1 (ja) * 2016-01-22 2017-06-07 並木精密宝石株式会社 ダイパック、サファイア単結晶育成装置、およびサファイア単結晶の育成方法
JP7061911B2 (ja) * 2018-03-30 2022-05-02 京セラ株式会社 単結晶体の製造方法および単結晶体製造装置
WO2019224830A1 (en) * 2018-05-24 2019-11-28 Guy Deutscher Fault current limiter
JP7477997B2 (ja) * 2019-03-25 2024-05-02 京セラ株式会社 サファイアリボンおよび単結晶リボン製造装置
US11713519B1 (en) * 2021-02-08 2023-08-01 Sapphire Systems, Inc. Integrated crucible and die system for sapphire sheet growing
US11713520B1 (en) * 2021-02-08 2023-08-01 Sapphire Systems, Inc. Targeted heat control system and method for integrated crucible and die system for sapphire sheet growing

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028059A (en) * 1975-12-18 1977-06-07 Tyco Laboratories, Inc. Multiple dies for ribbon
US4185076A (en) 1977-03-17 1980-01-22 Mobil Tyco Solar Energy Corporation Apparatus for controlled growth of silicon and germanium crystal ribbons
US4271129A (en) * 1979-03-06 1981-06-02 Rca Corporation Heat radiation deflectors within an EFG crucible
JPS5932429B2 (ja) * 1981-01-06 1984-08-08 工業技術院長 帯状シリコン結晶の製造装置
US4334948A (en) * 1981-02-23 1982-06-15 Rca Corporation Method of and apparatus for growing crystal ribbon
US4390505A (en) * 1981-03-30 1983-06-28 Mobil Solar Energy Corporation Crystal growth apparatus
US4402786A (en) * 1981-09-01 1983-09-06 Mobil Solar Energy Corporation Adjustable heat shield assembly
JP2720262B2 (ja) 1992-10-26 1998-03-04 科学技術振興事業団 単結晶引上げ装置
JP3808135B2 (ja) 1996-06-13 2006-08-09 コマツ電子金属株式会社 単結晶製造装置
US5922127A (en) * 1997-09-30 1999-07-13 Memc Electronic Materials, Inc. Heat shield for crystal puller
JPH11209193A (ja) 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd 単結晶引き上げ装置
JP2001270797A (ja) * 2000-03-28 2001-10-02 Wacker Nsce Corp シリコン単結晶製造装置
JP2003327495A (ja) 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd 晶癖面サファイヤ板材及びその製造方法
JP2005255463A (ja) * 2004-03-11 2005-09-22 Sumitomo Metal Mining Co Ltd サファイア基板とその製造方法
US7348076B2 (en) 2004-04-08 2008-03-25 Saint-Gobain Ceramics & Plastics, Inc. Single crystals and methods for fabricating same
EP1774069B1 (en) 2004-08-05 2010-07-14 Amosov, Vladimir Iljich Apparatus for growing single crystals from melt
CN200981899Y (zh) 2006-08-25 2007-11-28 俞鹤庆 用以生长成型单晶氧化铝瓷的导模结构
US8152921B2 (en) * 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
CA2663382C (en) * 2006-09-22 2012-04-24 Saint-Gobain Ceramics & Plastics, Inc. C-plane sapphire method and apparatus
UA98314C2 (ru) 2006-12-28 2012-05-10 Сейнт-Гобейн Серамикс Энд Пластик, Инк. Сапфирные подложки и процессы их изготовления
US7682452B2 (en) 2007-04-09 2010-03-23 Sapphire Systems Inc. Apparatus and methods of growing void-free crystalline ceramic products
WO2009003008A1 (en) 2007-06-25 2008-12-31 Saint-Gobain Ceramics & Plastics, Inc. Methods of crystallographically reorienting single crystal bodies
US20090130415A1 (en) * 2007-11-21 2009-05-21 Saint-Gobain Ceramics & Plastics, Inc. R-Plane Sapphire Method and Apparatus
CN101665977B (zh) * 2009-09-21 2011-10-19 浙江碧晶科技有限公司 一种用于拉晶炉的热屏蔽装置
KR101263082B1 (ko) 2010-11-15 2013-05-09 주식회사 엘지실트론 사파이어 잉곳 성장장치
CN102560630A (zh) * 2012-01-12 2012-07-11 徐州协鑫光电科技有限公司 导模法同步生长多条晶体的热场及方法
CN202482487U (zh) * 2012-01-18 2012-10-10 鸿福晶体科技(安徽)有限公司 导模法晶体多模具生长装置
TW201435158A (zh) 2013-03-15 2014-09-16 Saint Gobain Ceramics 帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551089B2 (en) 2013-03-15 2017-01-24 Saint-Gobain Ceramics & Plastics, Inc. Sapphire sheets and apparatus and method for producing sapphire sheets with angled heat shields

Also Published As

Publication number Publication date
EP2971276A4 (en) 2016-11-23
JP2016516658A (ja) 2016-06-09
US20140311402A1 (en) 2014-10-23
JP2016516659A (ja) 2016-06-09
US20140272413A1 (en) 2014-09-18
US9551089B2 (en) 2017-01-24
EP2971276A1 (en) 2016-01-20
CN105189837A (zh) 2015-12-23
WO2014143966A1 (en) 2014-09-18
EP2971273A4 (en) 2016-11-16
CN105051266A (zh) 2015-11-11
TWI529265B (zh) 2016-04-11
EP2971273A1 (en) 2016-01-20
WO2014143955A1 (en) 2014-09-18
TW201443300A (zh) 2014-11-16

Similar Documents

Publication Publication Date Title
TW201435158A (zh) 帶狀藍寶石以及用以產生複數個具有改良尺寸穩定性之帶狀藍寶石之設備以及方法
JP5702931B2 (ja) 単結晶c−面サファイア材料の形成方法
TWI475136B (zh) R平面藍寶石之製法及裝置
EP2037012A1 (en) PROCESS FOR PRODUCING SUBSTRATE OF AlN CRYSTAL, METHOD OF GROWING AlN CRYSTAL, AND SUBSTRATE OF AlN CRYSTAL
JP2017095319A (ja) SiC単結晶インゴットの製造方法及びSiC単結晶インゴット並びにSiC単結晶ウェハ
US9605358B2 (en) Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP5991161B2 (ja) 炭化珪素基板および炭化珪素インゴット、ならびにこれらの製造方法
US20150090245A1 (en) Method and apparatus for processing sapphire
JP6025087B1 (ja) サファイアリボン
RU48999U1 (ru) Газодинамический кристаллизатор
JPWO2016147824A1 (ja) 炭化珪素単結晶の製造方法