TW201416327A - 奈米銀線之製備方法 - Google Patents

奈米銀線之製備方法 Download PDF

Info

Publication number
TW201416327A
TW201416327A TW101138047A TW101138047A TW201416327A TW 201416327 A TW201416327 A TW 201416327A TW 101138047 A TW101138047 A TW 101138047A TW 101138047 A TW101138047 A TW 101138047A TW 201416327 A TW201416327 A TW 201416327A
Authority
TW
Taiwan
Prior art keywords
solution
nano silver
acid
silver
aqueous solution
Prior art date
Application number
TW101138047A
Other languages
English (en)
Inventor
Hsiang-An Feng
Chung-Hung Chang
Hsin-Fang Chang
Pei-Chen Huang
Original Assignee
Niching Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niching Ind Corp filed Critical Niching Ind Corp
Priority to TW101138047A priority Critical patent/TW201416327A/zh
Priority to US13/763,043 priority patent/US9079250B2/en
Publication of TW201416327A publication Critical patent/TW201416327A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes

Abstract

本發明之主要目的係在提供一種奈米銀線之製備方法,係以醛類衍生物作為還原劑,將正一價之銀鹽於有機促進劑的存在下還原成奈米銀線,其步驟包括:(A)提供包含有機促進劑以及醛類衍生物之水溶液,加熱水溶液後加入酸類,反應形成第一溶液;(B)加入具正一價之銀鹽水溶液至第一溶液,反應完成後得到奈米銀線之產物。

Description

奈米銀線之製備方法
本發明係關於一種奈米銀線之製備方法,尤指一種使用水作為溶劑,以及醛類衍生物作為還原劑之奈米銀線製備方法。
奈米級的銀材料,由於表面積大幅提升,其所具有的特殊性質,可被廣泛地用在各種領域,例如高導電性奈米銀塗料、奈米銀觸媒、以及高抗菌性奈米銀殺菌劑等等。在光電材料中,透明導電薄膜為光電元件中不可或缺的材料,而現階段的光電產品所使用的透明導電薄膜大多為氧化銦錫薄膜(ITO),不過考量到未來銦礦短缺及軟性電子應用的問題,許多新興導電材料迅速的崛起,如奈米碳管、石墨烯及金屬奈米線等。其中,奈米銀線目前具有以下之製備方法:模板合成法、零維奈米結構自組裝法、光還原法、熱還原法、固-液相界面反應法、晶種合成法、以及多元醇合成法。
目前製備奈米銀線之技術主要係由多元醇合成法製備,其製備過程必須使用大量的有機溶劑,並使用貴重金屬作為催化劑,如鈀、以及鉑金屬等,且必須於高溫狀態(>160℃)下進行反應,故目前奈米銀線製備方法不適合大量製造,其製備成本也相對昂貴,不利於工業上的量產。
因此,目前急需一種新的奈米銀線製備方法,取代先前製備方法中作為還原劑之有機溶劑,以及作為催化劑之 貴重金屬,以達成降低製備成本,符合環保要求之製程,並且利於大量生產。
本發明之主要目的係在提供一種奈米銀線之製備方法,係以醛類衍生物作為還原劑,將正一價之銀鹽於有機促進劑的存在下還原成奈米銀線,其步驟包括:(A)提供包含有機促進劑以及醛類衍生物之水溶液,加熱水溶液後加入酸類,反應形成第一溶液;(B)加入具正一價之銀鹽水溶液至第一溶液,反應完成後得奈米銀線之產物。
如上述奈米銀線之製備方法中,步驟(A)中,有機促進劑係為聚乙烯吡咯烷酮,其分子量範圍係在20000~50000之間,其濃度範圍係在0.05~1 M之間,較佳為0.1~0.5 M之間;醛類衍生物係為含碳數1~20之醛類,如甲醛、乙醛、糠醛、3,4,5-三甲氧基苯甲醛等,其濃度範圍係在0.01~1 M間,較佳為0.03~0.07 M之間,更佳為0.05~0.07 M之間;而酸類係為硝酸、鹽酸、或硫酸,其濃度範圍係在0.001~0.01 M之間,較佳為0.002~0.007 M之間,更佳為0.003~0.005 M之間。此外,步驟(A)中,加熱水溶液係加熱至70℃至120℃,較佳為80~100℃;反應時間係為1~10分鐘,較佳為1~5分鐘。
如上述奈米銀線之製備方法中,步驟(B)中,正一價之銀鹽係為硝酸銀;反應時間係為1~6小時,較佳為2~5小時。
本發明之奈米銀線之製備方法係使用水作為溶劑,製程相較於習知製備方法環保,且具有低溫製程,以及反應速率快之優點,適合大量生產製造,並且相對環保。
<實施例一>
取一三頸瓶將聚乙烯吡咯烷酮(分子量為30000)27克以及148毫升的水加入三頸瓶中,混合並加熱至85℃後再加入三聚甲醛0.3克、並緩慢滴入0.1 mL的硝酸,反應3分鐘,於反應後,將1.6 M之硝酸銀水溶液46 mL緩緩滴入三頸瓶中,於85℃下進行反應5小時後降溫,利用沉降法加入酒精或水將聚乙烯吡咯烷酮移除以得到奈米銀線,並於電子顯微鏡下觀察,得線寬約為94~223 nm,長度約16~25μm之奈米銀線,其形態如圖1所示。
<實施例二>
取一三頸瓶將聚乙烯吡咯烷酮(分子量為30000)27.5克以及148毫升的水加入三頸瓶中,混合並加熱至85℃後,再加入糠醛2.6克並緩慢滴入0.1 mL的硝酸,反應3分鐘,於反應後,將1.5 M之硝酸銀水溶液50 mL緩緩滴入三頸瓶中,於85℃下進行反應三小時後降溫,利用沉降法加入酒精或水將聚乙烯吡咯烷酮移除以得到奈米銀線,於電子顯微鏡下觀察,得線寬約為240~360 nm,長度約6~12μm之奈米銀線。
<實施例三>
取一三頸瓶將聚乙烯吡咯烷酮(分子量為30000)28克以及150毫升的乙醇混合並加熱至85℃後,再將使用10毫升預溶解之3,4,5-三甲氧基苯甲醛5.3克加入三頸瓶中,並緩慢滴入0.1 mL的硝酸,反應3分鐘,於反應後,將1.5 M之硝 酸銀水溶液50 mL緩緩滴入三頸瓶中,進行反應三小時後降溫,利用沉降法加入酒精或水將聚乙烯吡咯烷酮移除以得到奈米銀線,於電子顯微鏡下觀察,得線寬約為150~300 nm,長度約9~48μm之奈米銀線。
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。
圖1係利用電子顯微鏡觀察本發明實施例1之奈米銀線型態。

Claims (12)

  1. 一種奈米銀線之製備方法,其步驟包括:(A)提供包含一有機促進劑以及一醛類衍生物之水溶液,加熱該水溶液後加入一酸類,反應形成一第一溶液;(B)加入一具正一價之銀鹽水溶液至該第一溶液,反應完成後得一奈米銀線之產物。
  2. 如申請專利範圍第1項所述之方法,其步驟(A)中,該有機促進劑係為聚乙烯吡咯烷酮。
  3. 如申請專利範圍第2項所述之方法,其步驟(A)中,該聚乙烯吡咯烷酮之分子量係於20000至50000之間。
  4. 如申請專利範圍第1項所述之方法,其步驟(A)中,該有機促進劑之濃度係為0.05至1 M。
  5. 如申請專利範圍第1項所述之方法,其步驟(A)中,該醛類衍生物係為含碳數1至20之醛類。
  6. 如申請專利範圍第1項所述之方法,其步驟(A)中,該醛類衍生物係為至少一選自甲醛、乙醛、糠醛、以及3,4,5-三甲氧基苯甲醛所組成之群組。
  7. 如申請專利範圍第1項所述之方法,其步驟(A)中,該醛類衍生物之濃度係為0.01至1 M。
  8. 如申請專利範圍第1項所述之方法,其中,該酸類係至少一選自硝酸、鹽酸、以及硫酸所組成之群組。
  9. 如申請專利範圍第1項所述之方法,其步驟(A)中,加熱該水溶液係加熱至70℃至120℃。
  10. 如申請專利範圍第1項所述之方法,其步驟(A)中,該反應時間係為1至10分鐘。
  11. 如申請專利範圍第1項所述之方法,其步驟(B)中,該正一價之銀鹽係為硝酸銀。
  12. 如申請專利範圍第1項所述之方法,其步驟(B)中,該反應時間係為1至6小時。
TW101138047A 2012-10-16 2012-10-16 奈米銀線之製備方法 TW201416327A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101138047A TW201416327A (zh) 2012-10-16 2012-10-16 奈米銀線之製備方法
US13/763,043 US9079250B2 (en) 2012-10-16 2013-02-08 Method of preparing silver nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101138047A TW201416327A (zh) 2012-10-16 2012-10-16 奈米銀線之製備方法

Publications (1)

Publication Number Publication Date
TW201416327A true TW201416327A (zh) 2014-05-01

Family

ID=50474166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101138047A TW201416327A (zh) 2012-10-16 2012-10-16 奈米銀線之製備方法

Country Status (2)

Country Link
US (1) US9079250B2 (zh)
TW (1) TW201416327A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397218B (zh) * 2020-11-18 2022-03-08 重庆文理学院 一种核壳结构的银@pvp纳米线薄膜电极及其制备方法
CN113649558B (zh) * 2021-07-08 2023-03-10 山东建邦胶体材料有限公司 一种纳米银线及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585349B2 (en) 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US7824466B2 (en) * 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
TW200724226A (en) 2005-12-22 2007-07-01 Univ Nat Tsing Hua High concentration of nano-silver gel solution and the manufacturing method thereof
TW200742732A (en) 2006-05-10 2007-11-16 Chein-Hung Hsu Method for producing ultra-fine nano precious metal solution
US8454721B2 (en) * 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
US20080064767A1 (en) * 2006-09-11 2008-03-13 National Tsing Hua University High-concentration nanoscale silver colloidal solution and preparing process thereof
US7922787B2 (en) 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
US8636823B2 (en) * 2009-09-26 2014-01-28 Ames Advanced Materials Corporation Silver ribbons, methods of their making and applications thereof
DE102010017706B4 (de) * 2010-07-02 2012-05-24 Rent-A-Scientist Gmbh Verfahren zur Herstellung von Silber-Nanodrähten

Also Published As

Publication number Publication date
US20140102255A1 (en) 2014-04-17
US9079250B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
Wang et al. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods
Yu et al. Catalytic synthesis and structural characteristics of high-quality tetrapod-like ZnO nanocrystals by a modified vapor transport process
Li et al. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%
Athauda et al. Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers
Mohanty et al. Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections
Gao et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery
Cho et al. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures
Yang et al. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries
Xi et al. Large-scale synthesis, growth mechanism, and photoluminescence of ultrathin Te nanowires
Yan et al. Template growth of ZnO nanorods and microrods with controllable densities
Dong et al. Morphology evolution of one-dimensional ZnO nanostructures towards enhanced photocatalysis performance
Qin et al. Formation of various morphologies of covellite copper sulfide submicron crystals by a hydrothermal method without surfactant
Wu et al. Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source
Liang et al. ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties
Liu et al. Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route: combined high gas sensing performance with enhanced optical properties
Santulli et al. Synthesis and characterization of one-dimensional Cr2O3 nanostructures
KR101369881B1 (ko) 은 나노와이어의 제조방법
Nouneh et al. Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches
Liu et al. Enhanced triethylamine sensing properties by designing an α-Fe2O3/α-MoO3 nanostructure directly grown on ceramic tubes
Cho et al. Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures
Lu et al. Synthesis and characterization of core− shell structural MWNT− zirconia nanocomposites
KR102053673B1 (ko) 금속 나노와이어의 제조 방법 및 금속 나노와이어, 및 은 나노와이어의 제조 방법 및 은 나노와이어
TW201516001A (zh) 奈米銀線的製備方法
Bae et al. ZnO nanotubes grown at low temperature using ga as catalysts and their enhanced photocatalytic activities
Zhu et al. Self-assembled 3D microflowery In (OH) 3 architecture and its conversion to In2O3