TW201349562A - Method of manufacturing solid illuminating structure - Google Patents

Method of manufacturing solid illuminating structure Download PDF

Info

Publication number
TW201349562A
TW201349562A TW101117776A TW101117776A TW201349562A TW 201349562 A TW201349562 A TW 201349562A TW 101117776 A TW101117776 A TW 101117776A TW 101117776 A TW101117776 A TW 101117776A TW 201349562 A TW201349562 A TW 201349562A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
sacrificial layer
semiconductor
emitting
Prior art date
Application number
TW101117776A
Other languages
Chinese (zh)
Other versions
TWI493755B (en
Inventor
dong-xing Wu
rui-hua Hong
Chun-Ting Pan
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW101117776A priority Critical patent/TWI493755B/en
Publication of TW201349562A publication Critical patent/TW201349562A/en
Application granted granted Critical
Publication of TWI493755B publication Critical patent/TWI493755B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A method of manufacturing solid illuminating structure comprises steps: firstly forming a sacrificial layer, in which gallium nitride series material is unable to epitaxially grow, on the first substrate, removing a portion of the sacrificial layer to obtain a patterned sacrificial layer structure; then forming a first semiconductor structure composed of gallium nitride series material from a preset region of the first substrate through epitaxial growing toward the three-dimensional direction growth, upwardly forming a second semiconductor layer from the first semiconductor structure through epitaxial growing toward horizontal growth at faster speed, and upwardly growing a luminous crystal layer from the second semiconductor layer while supplying electricity, removing the sacrificial layer to form an etching channel after joining the second substrate with the surface of the luminous crystal layer, and then obtaining a solid illuminating structure connecting the second substrate and the luminous crystal layer after removing the first substrate and the second semiconductor layer via the etching channel.

Description

固態發光結構的製造方法 Method for manufacturing solid state light emitting structure

本發明是有關於一種半導體結構的製造方法,特別是指一種固態發光結構的製造方法。 The present invention relates to a method of fabricating a semiconductor structure, and more particularly to a method of fabricating a solid state light emitting structure.

近年來,固態的發光元件如發光二極體(Light Emitting Diode,下稱LED)迅速地發展於各光源領域上,特別是高亮度光源的應用,像是背光模組的光源而漸漸取代傳統的冷陰極管,但在增加LED發光功率的同時需兼顧的是LED固態發光結構的散熱效果,由於藍寶石(Sapphire)基板的導電性、導熱性均不佳,對於LED整體發光效率的提高是不利的,因此衍生了去除用以磊晶成長的藍寶石基板而以另一基板取代以製得供後續使用的固態發光結構的方法。 In recent years, solid-state light-emitting elements such as Light Emitting Diodes (LEDs) have rapidly developed in the field of various light sources, especially the application of high-brightness light sources, such as the light source of backlight modules, which gradually replaced the traditional ones. Cold cathode tube, but in addition to increasing the LED light-emitting power, it is necessary to take into account the heat dissipation effect of the LED solid-state light-emitting structure. Since the conductivity and thermal conductivity of the sapphire substrate are not good, it is disadvantageous for the improvement of the overall luminous efficiency of the LED. Thus, a method of removing a sapphire substrate for epitaxial growth and replacing it with another substrate to produce a solid-state light-emitting structure for subsequent use is derived.

最早製作替換基板的固態發光結構的方法是先在一藍寶石基板上磊晶成長一由氮化鎵系(GaN base)半導體材料構成的發光晶體層,該發光晶體層能將所輸入的電能轉換成光能後釋出光子而發光。 The first method for fabricating a solid-state light-emitting structure for replacing a substrate is to first epitaxially grow a luminescent layer of a GaN-based semiconductor material on a sapphire substrate, and the luminescent layer can convert the input electrical energy into After the light energy releases the photons and emits light.

然後在該發光晶體層相反於該藍寶石基板的表面接合上一功能性基板。 A functional substrate is then bonded to the surface of the luminescent crystal layer opposite to the sapphire substrate.

接著,利用雷射剝離技術(Laser Lift Off)使得該發光晶體層與該藍寶石基板彼此分離,但此種方法不僅對於該發光晶體層的破壞較大,雷射能量、時間的控制也不簡單,需要極佳的精準度與機台能力以降低對該發光晶體層的 影響。 Then, the illuminating crystal layer and the sapphire substrate are separated from each other by a laser lift off technique, but the method not only has a large damage to the luminescent crystal layer, but also the control of laser energy and time is not simple. Requires excellent precision and machine capability to reduce the layer of luminescent crystals influences.

參閱圖1、2,因此,為了改善對磊晶晶格的破壞,目前所提出的固態發光結構製造方法如下所述。 Referring to Figures 1 and 2, therefore, in order to improve the destruction of the epitaxial lattice, the currently proposed solid-state light-emitting structure fabrication method is as follows.

先提供一由藍寶石構成的晶圓11;接著在該晶圓11上形成一具有多數分隔散布的孔洞121且以二氧化矽(SiO2)為材料的犧牲層12,該等孔洞121貫穿至該晶圓11表面而使該晶圓11表面部份裸露顯現。 First, a wafer 11 made of sapphire is provided; then a sacrificial layer 12 having a plurality of spaced apart holes 121 and made of cerium oxide (SiO 2 ) is formed on the wafer 11, and the holes 121 are penetrated thereto. The surface of the wafer 11 exposes the surface portion of the wafer 11.

接著磊晶成長一由III族氮化物所構成的緩衝層13,因為該由二氧化矽所構成的犧牲層12其晶格與該氮化鎵系半導體材料晶體的晶格不匹配,故在該犧牲層12的表面無法形成磊晶,而是利用橫向長晶技術(Epitaxial Lateral Overgrowth,ELOG)由該犧牲層12的孔洞121中所裸露出的藍寶石晶圓11表面磊晶成長而向上形成該具有平整表面的緩衝層13。 Then, epitaxial growth of a buffer layer 13 composed of a group III nitride is performed because the crystal lattice of the sacrificial layer 12 composed of cerium oxide does not match the crystal lattice of the gallium nitride-based semiconductor material crystal. The surface of the sacrificial layer 12 cannot be epitaxially formed, but is formed by epitaxial growth of the surface of the sapphire wafer 11 exposed in the hole 121 of the sacrificial layer 12 by Epitaxial Lateral Overgrowth (ELOG). A buffer layer 13 that flattens the surface.

再由該緩衝層13的表面向上以氮化鎵系半導體材料磊晶形成一發光晶體層14,然後將一基板15接合於該發光晶體層14相反於該晶圓11的表面。 Further, a light-emitting crystal layer 14 is epitaxially formed on the surface of the buffer layer 13 by a gallium nitride-based semiconductor material, and then a substrate 15 is bonded to the surface of the light-emitting crystal layer 14 opposite to the wafer 11.

繼之,先以第一次蝕刻移除該犧牲層12而令該晶圓11僅以該緩衝層13部份結構(原形成於該等孔洞121的柱狀部份)與其相連接,再施以第二次蝕刻使該藍寶石晶圓11分離,接著蝕刻移除該緩衝層13後得到連接於該基板15上的發光晶體層14而製得現有的固態發光結構。 Then, the sacrificial layer 12 is removed by the first etching to connect the wafer 11 with only the partial structure of the buffer layer 13 (the columnar portion originally formed in the holes 121). The sapphire wafer 11 is separated by a second etching, and then the buffer layer 13 is removed by etching to obtain a light-emitting crystal layer 14 connected to the substrate 15 to obtain an existing solid-state light-emitting structure.

以上述方式可以改善雷射剝離技術對磊晶結構的破壞,以及降低操作雷射的技術成本,因此,發明人以此方法 為基礎進行研究,開發出磊晶品質更佳、製程成本更低的固態發光結構的製造方法。 In the above manner, the damage of the epitaxial structure by the laser stripping technique can be improved, and the technical cost of operating the laser can be reduced. Therefore, the inventor uses this method. Based on the research, a method for manufacturing a solid-state light-emitting structure with better epitaxial quality and lower process cost was developed.

因此,本發明之目的,即在提供一種磊晶品質更佳的固態發光結構的製造方法。 Accordingly, it is an object of the present invention to provide a method of fabricating a solid state light emitting structure having better epitaxial quality.

於是,本發明固態發光結構的製造方法,包含以下九個步驟。 Thus, the method of fabricating the solid state light emitting structure of the present invention comprises the following nine steps.

步驟(A)於一第一基板上形成一令氮化鎵系材料無法磊晶成長的犧牲層。 In the step (A), a sacrificial layer in which the gallium nitride-based material cannot be epitaxially grown is formed on a first substrate.

步驟(B)移除該犧牲層的部分層體使得該第一基板的一預定區域裸露而得到一圖案化的犧牲層結構。 Step (B) removing a portion of the layer of the sacrificial layer such that a predetermined region of the first substrate is exposed to obtain a patterned sacrificial layer structure.

步驟(C)以朝向三維(3D)方向成長的磊晶生長方式自該第一基板的預定區域磊晶成長一由氮化鎵系材料構成的第一半導體結構。 The step (C) epitaxially grows a first semiconductor structure made of a gallium nitride-based material from a predetermined region of the first substrate in an epitaxial growth mode that grows in a three-dimensional (3D) direction.

步驟(D)於磊晶成長過程中控制氮化鎵系材料沿該第一半導體結構表面的側向磊晶成長速度大於磊晶成長增厚速度,而自該第一半導體結構向上以近似朝向二維(2D)方向磊晶生長形成一由氮化鎵系材料構成的第二半導體層。 Step (D) controlling the lateral epitaxial growth rate of the gallium nitride-based material along the surface of the first semiconductor structure during the epitaxial growth process is greater than the epitaxial growth thickening speed, and the upward direction from the first semiconductor structure is approximately two The epitaxial growth in the dimension (2D) direction forms a second semiconductor layer composed of a gallium nitride-based material.

步驟(E)由該氮化鎵系的第二半導體層向上成長一由氮化鎵系材料構成並在供電時發光的發光晶體層。 In the step (E), the gallium nitride-based second semiconductor layer is grown upward by a light-emitting crystal layer composed of a gallium nitride-based material and emitting light upon power supply.

步驟(F)在該發光晶體層相反於該第一基板的表面接合上一第二基板。 Step (F) bonding a second substrate to the surface of the luminescent crystal layer opposite to the first substrate.

步驟(G)移除該圖案化的犧牲層結構而令該第一基板 僅以該預定區域與該第一半導體結構相接觸而連接於該第一半導體結構上。 Step (G) removing the patterned sacrificial layer structure to make the first substrate The first semiconductor structure is connected only to the predetermined region in contact with the first semiconductor structure.

步驟(H)移除該第一基板使該第一基板與該第一半導體結構相分離。 Step (H) removing the first substrate separates the first substrate from the first semiconductor structure.

步驟(I)蝕刻移除該第二半導體層,使該發光晶體層的表面裸露,而製得該具有第二基板與位於該第二基板上的發光晶體層的固態發光結構。 Step (I) etching removes the second semiconductor layer to expose the surface of the luminescent crystal layer, thereby producing the solid-state light-emitting structure having the second substrate and the luminescent crystal layer on the second substrate.

本發明固態發光結構的製造方法的目的及解決其技術問題還可採用於下技術措施進一步實現。 The object of the method for manufacturing the solid-state light-emitting structure of the present invention and solving the technical problems thereof can also be further realized by the following technical measures.

較佳的,該步驟(C)中控制長晶時間令該由第一基板的預定區域成長的第一半導體結構包括多數對應於該圖案化的犧牲層結構且彼此分隔不相連的塊體。 Preferably, the first semiconductor structure grown in the predetermined region of the first substrate in the step (C) is controlled to include a plurality of blocks corresponding to the patterned sacrificial layer structure and not separated from each other.

較佳的,該步驟(G)以濕蝕刻方式移除該圖案化的犧牲層結構而使該第一半導體結構的多數塊體與該第一基板之間形成多數蝕刻通道。 Preferably, the step (G) removes the patterned sacrificial layer structure by wet etching to form a plurality of etching channels between the majority of the bulk of the first semiconductor structure and the first substrate.

較佳的,該步驟(B)所移除該犧牲層的部分層體個別獨立成群而使形成的該圖案化的犧牲層結構成網格狀進而界定出多數彼此分離的晶粒區。 Preferably, the partial layers of the sacrificial layer removed in the step (B) are individually grouped separately to form the patterned sacrificial layer structure into a grid shape to define a plurality of grain regions separated from each other.

較佳的,該步驟(C)於該第一基板對應於該等晶粒區分別磊晶成長多數彼此分隔的第一塊體層而構成該第一半導體結構;該步驟(D)自該等第一塊體層向上磊晶形成多數彼此分隔並具有平坦表面的第二塊體而構成該第二半導體層;該步驟(E)分別自每一第二塊體的平坦表面向上成長一發光晶體塊而令多數彼此分隔的發光晶體塊共同構成該發光 晶體層。 Preferably, in the step (C), the first substrate is formed by epitaxially growing a plurality of first bulk layers separated from each other corresponding to the first crystal regions; the step (D) is from the first Forming a bulk layer upwardly to form a plurality of second bodies separated from each other and having a flat surface to form the second semiconductor layer; and step (E) respectively growing a light-emitting crystal block from a flat surface of each of the second blocks Having a plurality of light-emitting crystal blocks separated from each other to form the light Crystal layer.

較佳的,該步驟(A)是選自以下所成的群組為材料形成該犧牲層:氧化矽、氮化矽、氧化鋅,及此等之一組合。 Preferably, the step (A) is a material selected from the group consisting of cerium oxide, tantalum nitride, zinc oxide, and the like.

較佳的,該步驟(H)中是以濕蝕刻方式移除該第一基板而使該第一基板與該第一半導體結構分離。 Preferably, in the step (H), the first substrate is removed by wet etching to separate the first substrate from the first semiconductor structure.

較佳的,該步驟(A)是選擇藍寶石晶圓作為該第一基板,並用氧化矽材料形成該犧牲層,且該步驟(G)是用氫氟酸蝕刻移除該圖案化的犧牲層結構,及該步驟(H)是用氫氧化鉀蝕刻移除該第一基板。 Preferably, the step (A) is selecting a sapphire wafer as the first substrate, and forming the sacrificial layer with a yttrium oxide material, and the step (G) is to remove the patterned sacrificial layer structure by hydrofluoric acid etching. And the step (H) is to remove the first substrate by etching with potassium hydroxide.

本發明之功效在於:在磊晶過程中分別以朝三維方向磊晶成長該第一半導體結構,再以朝二維方向、即側向磊晶成長速度大於磊晶成長增厚速度磊晶成長第二半導體層而大幅降低磊晶晶格的缺陷數量,並利用製程中形成的犧牲層結構的圖案界定幫助製程速率的改善而快速、大量製作磊晶品質更佳的固態發光結構。 The effect of the invention is that the first semiconductor structure is epitaxially grown in a three-dimensional direction in the epitaxial process, and the epitaxial growth is further increased in a two-dimensional direction, that is, a lateral epitaxial growth rate is greater than an epitaxial growth thickening speed. The second semiconductor layer greatly reduces the number of defects of the epitaxial lattice, and utilizes the pattern of the sacrificial layer structure formed in the process to define a solid-state light-emitting structure that facilitates the improvement of the process rate and rapidly and efficiently produces a better epitaxial quality.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之二個較佳實施例的詳細說明中,將可清楚的呈現。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention.

在本發明被詳細描述之前,要注意的是,在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖3,本發明固態發光元件結構的製造方法之一第一較佳實施例,是先如圖4所示,在一適於氮化鎵系(GaN base)材料磊晶的第一基板2上沉積形成一令氮化鎵系材料 無法磊晶成長的犧牲層30,一般來說,該第一基板2的材料選擇是晶格與氮化鎵系材料較為匹配的藍寶石(Sapphire)所構成,而該犧牲層30選自於常見的材料如氧化矽、氮化矽、氧化鋅等,在本例中則是以二氧化矽(SiO2)作為該犧牲層的材料。 Referring to FIG. 3, a first preferred embodiment of a method for fabricating a solid-state light-emitting device according to the present invention is as shown in FIG. 4, a first substrate 2 suitable for epitaxy of a GaN base material. The upper deposition layer forms a sacrificial layer 30 in which the gallium nitride-based material cannot be epitaxially grown. Generally, the material selection of the first substrate 2 is formed by a sapphire having a lattice matching with a gallium nitride-based material. The sacrificial layer 30 is selected from common materials such as cerium oxide, cerium nitride, zinc oxide, etc., in this case, cerium oxide (SiO 2 ) is used as the material of the sacrificial layer.

配合參閱圖5,接著移除該犧牲層30的部分層體使得該第一基板2的一預定區域21裸露而得到一圖案化的犧牲層結構31,詳細地說,本例中是先在該犧牲層30表面利用微影技術(photolithography)形成預定圖形的光阻,再利用蝕刻技術(Etching)配合具有預定圖形的光阻移除該犧牲層30的部分層體,最後再去除剩餘的光阻便得到如圖所示的圖案化的犧牲層結構31。 Referring to FIG. 5, the partial layer of the sacrificial layer 30 is removed to expose a predetermined region 21 of the first substrate 2 to obtain a patterned sacrificial layer structure 31. In detail, in this example, The surface of the sacrificial layer 30 is formed by photolithography to form a photoresist of a predetermined pattern, and then a portion of the layer of the sacrificial layer 30 is removed by etching (Etching) with a photoresist having a predetermined pattern, and finally the remaining photoresist is removed. A patterned sacrificial layer structure 31 as shown is obtained.

參閱圖6、7,以氮化鎵系材料由該第一基板2裸露的預定區域21開始進行磊晶,特別的是,於磊晶成長過程中控制氮化鎵系材料先以朝向三維(3D)方向成長的磊晶生長方式並控制生長時間而向上形成一具有多數彼此分隔且不相連的塊體41所組成的第一半導體結構4,因為與該第一基板2的接觸面積有限,故由該第一基板2的預定區域21與第一半導體結構4交界處所衍伸的晶格缺陷(Defect)將減少;接著如圖7所示重新控制磊晶成長參數,使氮化鎵系材料沿該第一半導體結構4的每一塊體41表面的側向磊晶成長速度大於磊晶成長增厚速度(主要成二維(2D)方向的生長),亦即橫向長晶技術(Epitaxial Lateral Overgrowth,ELOG),而自該第一半導體結構4向上磊晶形成一由氮化 鎵系材料構成且具有一遠離該第一基板2且平坦的表面的第二半導體層5。 Referring to FIGS. 6 and 7, the gallium nitride-based material is subjected to epitaxy from a predetermined region 21 where the first substrate 2 is exposed, and in particular, the gallium nitride-based material is controlled to face three-dimensionally in the epitaxial growth process (3D). a directionally growing epitaxial growth mode and controlling the growth time to form a first semiconductor structure 4 having a plurality of blocks 41 that are separated from each other and not connected, because the contact area with the first substrate 2 is limited, The lattice defect of the predetermined region 21 of the first substrate 2 and the junction of the first semiconductor structure 4 will be reduced; then the epitaxial growth parameter is re-controlled as shown in FIG. 7, so that the gallium nitride-based material is along the The lateral epitaxial growth rate of the surface of each block 41 of the first semiconductor structure 4 is greater than the epitaxial growth thickening rate (mainly in two-dimensional (2D) direction growth), that is, Epitaxial Lateral Overgrowth (ELOG) And epitaxially epitaxially forming from the first semiconductor structure 4 by nitridation The gallium-based material is composed of a second semiconductor layer 5 having a flat surface away from the first substrate 2.

該第二半導體層5因為是由與該第一半導體結構4所構成的相同材料繼而以該第一半導體結構4為基底進行磊晶形成,所以可降低該第二半導體層5中由該第一半導體結構4延伸上來的晶格缺陷,且又利用橫向長晶技術更可進一步地減少缺陷的數量,因此,當如圖8所示續而在該缺陷少的第二半導體層5向上磊晶形成一由氮化鎵系材料構成並在供電時發光的發光晶體層6時,該發光晶體層6的磊晶品質將更為改善,對於後續供發光元件使用時的發光效率亦會有直接的幫助。 Since the second semiconductor layer 5 is epitaxially formed by the same material as the first semiconductor structure 4 and then the first semiconductor structure 4 is formed, the first semiconductor layer 5 can be reduced by the first The semiconductor structure 4 extends lattice defects, and the lateral crystal growth technique further reduces the number of defects. Therefore, when the semiconductor layer 5 having few defects is elongated, the epitaxial formation is performed as shown in FIG. When the luminescent crystal layer 6 is composed of a gallium nitride-based material and emits light during power supply, the epitaxial quality of the luminescent crystal layer 6 is further improved, and the luminous efficiency of the subsequent illuminating element can be directly assisted. .

參閱圖9,在該發光晶體層6相反於該第一基板2的表面接合上一第二基板7,該第二基板7的材料主要選自於導電性、導熱性佳的物質以滿足發光元件的散熱需求及改善電流壅塞等問題,而此為業界所周知的知識且非本發明之重點所在,故不對此多加細述。 Referring to FIG. 9, a second substrate 7 is bonded to the surface of the luminescent crystal layer 6 opposite to the first substrate 2. The material of the second substrate 7 is mainly selected from materials having good conductivity and thermal conductivity to satisfy the illuminating element. The need for heat dissipation and the improvement of current congestion, etc., are well-known knowledge in the industry and are not the focus of the present invention, so it will not be described in detail.

配合參閱圖10,接合上該第二基板7之後,首先移除該圖案化的犧牲層結構31,本例中是以氫氟酸(HF)溶液蝕刻掉該由二氧化矽所構成的圖案化的犧牲層結構31,而令該第一基板2與該第一半導體結構4連接的部份僅剩由該預定區域21向上成長的第一半導體結構4的部份,並在移除掉該圖案化的犧牲層結構31後的空間形成多數彼此相連通的蝕刻通道800。 Referring to FIG. 10, after the second substrate 7 is bonded, the patterned sacrificial layer structure 31 is first removed. In this example, the patterning composed of cerium oxide is etched by a hydrofluoric acid (HF) solution. The sacrificial layer structure 31 is such that the portion of the first substrate 2 connected to the first semiconductor structure 4 has only a portion of the first semiconductor structure 4 grown upward from the predetermined region 21, and the pattern is removed. The space behind the sacrificial layer structure 31 forms an etched channel 800 that is in communication with each other.

再來是以酸液進行另一次的濕蝕刻步驟移除該第一基 板2,本例中以溫度70℃~150℃的氫氧化鉀(KOH)溶液透過該等蝕刻通道800增加蝕刻液與該第一半導體結構4與該第一基板2連接部份的接觸面積、進一步提高蝕刻效率而令該第一基板2加速被蝕刻分離。 Then another acid etching step is performed to remove the first base. The plate 2, in this example, a potassium hydroxide (KOH) solution having a temperature of 70 ° C to 150 ° C is passed through the etching channels 800 to increase the contact area between the etching liquid and the connecting portion of the first semiconductor structure 4 and the first substrate 2, The etching efficiency is further increased to accelerate the separation of the first substrate 2 by etching.

參閱圖11,接下來的步驟是蝕刻移除該第二半導體層,使該發光晶體層的表面裸露,詳細地說,利用蝕刻吃掉該第一半導體結構4與第二半導體層5後製得該具有導熱、導電性佳的第二基板7與位於該第二基板7上的發光晶體層6的固態發光結構。 Referring to FIG. 11, the next step is to etch and remove the second semiconductor layer to expose the surface of the luminescent crystal layer, in detail, after the first semiconductor structure 4 and the second semiconductor layer 5 are eaten by etching. The solid-state light-emitting structure of the second substrate 7 having good thermal conductivity and conductivity and the luminescent crystal layer 6 on the second substrate 7.

本發明先以成3D方向磊晶生長的步驟在該第一基板2的預定區域21形成具有該等分隔的塊體41的第一半導體結構4,第一次降低氮化鎵系材料與該藍寶石構成的第一基板2之間衍伸的晶格缺陷;接著再以成2D方向磊晶生長的步驟在該等塊體41的表面形成晶格缺陷更低的第二半導體層5;最後在以相同的氮化鎵系材料在該晶格缺陷低的第二半導體層5上形成用以發光的發光晶體層6,除了晶格常數極為匹配外亦大幅減少了由磊晶開始成長處所殘留延伸的晶格缺陷,因此該發光晶體層6的品質將得到很大的改善;除此之外,由該圖案化的犧牲層結構31的定義而造成的彼此連通的蝕刻通道800更是令蝕刻效率進一步地提升而改善整體製程效率。 The present invention first forms a first semiconductor structure 4 having the equally spaced blocks 41 in a predetermined region 21 of the first substrate 2 by a step of epitaxial growth in the 3D direction, and first reduces the gallium nitride-based material and the sapphire. a lattice defect which is formed between the first substrate 2; and then a step of epitaxial growth in the 2D direction to form a second semiconductor layer 5 having a lower lattice defect on the surface of the blocks 41; The same gallium nitride-based material forms a light-emitting crystal layer 6 for emitting light on the second semiconductor layer 5 having a low lattice defect, and the lattice constant is extremely matched, and the residual extension from the growth of the epitaxial crystal is greatly reduced. Lattice defects, so the quality of the luminescent crystal layer 6 will be greatly improved; in addition, the etching channels 800 which are connected to each other by the definition of the patterned sacrificial layer structure 31 further improve the etching efficiency. Improve the overall process efficiency.

參閱圖3、圖12、圖13,本發明固態發光元件結構的製造方法之一第二較佳實施例與該第一較佳實施例相似,特別之處在於所移除該犧牲層30的部分層體個別獨立成群 而使形成的該圖案化的犧牲層結構31成網格狀進而界定出多數彼此分離的晶粒區310。 Referring to FIG. 3, FIG. 12 and FIG. 13, a second preferred embodiment of the method for fabricating the solid-state light-emitting device structure of the present invention is similar to the first preferred embodiment, in particular, the portion of the sacrificial layer 30 is removed. Individually grouped The patterned sacrificial layer structure 31 is formed in a grid shape to define a plurality of die regions 310 separated from each other.

配合參閱圖14,在以3D磊晶方向並控制時間進行晶體成長多數對應於該圖案化的犧牲層結構31且彼此分隔不相連的塊體41時,藉由該無法磊晶生長氮化鎵系材料的犧牲層結構31的限制而使得所述塊體41分別對應於該等晶粒區310而構成多數彼此分隔的第一塊體層410,而該等第一塊體層410共同構成該第一半導體結構4。 Referring to FIG. 14, when the crystal growth is performed in the 3D epitaxial direction and the control time, most of the blocks 41 corresponding to the patterned sacrificial layer structure 31 are separated from each other, the gallium nitride system cannot be epitaxially grown. The sacrificial layer structure 31 of the material is restricted such that the blocks 41 respectively correspond to the die regions 310 to form a plurality of first bulk layers 410 separated from each other, and the first bulk layers 410 together constitute the first semiconductor Structure 4.

接著自該等第一塊體層410以橫向長晶技術且控制磊晶時間朝遠離該第一基板2的方向磊晶形成多數彼此分隔並具有平坦表面的第二塊體51而構成該第二半導體層5;藉由該無法磊晶生長氮化鎵系材料的犧牲層結構31的圖案定義,令該第二半導體層5可由磊晶成長時自然形成彼此分離的多數第二塊體51、進而自動定義出後續所需的晶粒大小,因此續而進行後續發光晶體層6的磊晶時,也能由該等第二塊體51的平坦表面分別向上成長為多數彼此分隔的發光晶體塊61而構成該發光晶體層6,而再接合上第二基板7並繼而實施如該第一較佳實施例中犧牲層結構31的移除、第一基板2與該第一半導體結構4、第二半導體層5的移除等步驟,最後如圖15所示在該第二基板7上形成該具有多數分隔設置的發光晶體塊61的發光晶體層6。 Forming the second semiconductor body 51 from the first bulk layer 410 in a direction of the epitaxial growth and controlling the epitaxial time away from the first substrate 2 to form a plurality of second bulk bodies 51 separated from each other and having a flat surface. Layer 5; by the pattern definition of the sacrificial layer structure 31 capable of epitaxial growth of the gallium nitride-based material, the second semiconductor layer 5 can naturally form a plurality of second blocks 51 separated from each other by epitaxial growth, and then automatically The subsequent required grain size is defined, so that when the epitaxial crystallization of the subsequent luminescent crystal layer 6 is continued, the flat surfaces of the second dies 51 can be grown upward into a plurality of luminescent crystal blocks 61 separated from each other. Forming the luminescent crystal layer 6, and then bonding the second substrate 7 and then performing the removal of the sacrificial layer structure 31 as in the first preferred embodiment, the first substrate 2 and the first semiconductor structure 4, the second semiconductor The step of removing the layer 5 and the like, finally forming the light-emitting crystal layer 6 having the plurality of spaced-apart light-emitting crystal blocks 61 on the second substrate 7 as shown in FIG.

值得一提的是,如上所述,該等發光晶體塊61是依後續所需的發光晶粒大小定義而出,並藉由一開始的圖案化的犧牲層結構31界定自然形成,因此不需要如以往在整層 的發光晶體層上另外進行用微影、蝕刻等半導體技術將該發光晶體層分割以製造配合所需發光晶粒的大小並彼此分隔的發光晶體塊,所以,本發明之第二較佳實施例不僅減少了整體發光元件的製程步驟、提升製程效率且又降低了微影、蝕刻製程對該發光晶體層本身的破壞,對於後續製作發光元件的發光效率將能有所幫助。 It is worth mentioning that, as described above, the illuminating crystal blocks 61 are defined according to the subsequently required illuminating crystal grain size, and are naturally formed by the initial patterned sacrificial layer structure 31, so that it is not necessary As in the past The luminescent crystal layer is additionally subjected to semiconductor technology such as lithography or etching to divide the luminescent crystal layer to produce a luminescent crystal block that fits the size of the desired luminescent crystal grains and is separated from each other. Therefore, the second preferred embodiment of the present invention Not only the process steps of the overall light-emitting component are reduced, the process efficiency is improved, and the damage of the luminescent crystal layer itself by the lithography and the etching process is reduced, which can be helpful for the subsequent illuminating efficiency of the illuminating element.

綜上所述,本發明固態發光結構的製造方法藉由進行不同的磊晶製程的控制分別成長出該第一半導體結構與該第二半導體層以降低晶格缺陷而得到該磊晶品質良好的發光晶體層;以及該圖案化的犧牲層結構的圖案定義直接界定、圈限出多數分隔獨立的晶粒區,令該發光晶體層自動形成彼此獨立分離且相對應於後續發光晶粒使用的發光晶體塊更是提升了整體結構的製程效率、降低成本,對產業上的利用大有幫助且極具競爭力,故確實能達成本發明之目的。 In summary, the method for fabricating the solid-state light-emitting structure of the present invention grows the first semiconductor structure and the second semiconductor layer to reduce lattice defects by performing different epitaxial processes to obtain the epitaxial quality. a luminescent crystal layer; and a pattern definition of the patterned sacrificial layer structure directly defines and circles a plurality of separate independent grain regions, so that the luminescent crystal layer automatically forms luminescence independently of each other and corresponding to subsequent illuminating dies The crystal block improves the process efficiency of the overall structure and reduces the cost, and is greatly helpful to the industrial use and is highly competitive, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

2‧‧‧第一基板 2‧‧‧First substrate

21‧‧‧預定表面 21‧‧‧Predetermined surface

30‧‧‧犧牲層 30‧‧‧sacrificial layer

31‧‧‧犧牲層結構 31‧‧‧ Sacrificial layer structure

310‧‧‧晶體區 310‧‧‧ crystal zone

4‧‧‧第一半導體結構 4‧‧‧First semiconductor structure

41‧‧‧塊體 41‧‧‧ Block

410‧‧‧第一塊體層 410‧‧‧First body layer

5‧‧‧第二半導體層 5‧‧‧Second semiconductor layer

51‧‧‧第二塊體 51‧‧‧Second body

6‧‧‧發光晶體層 6‧‧‧Lighting crystal layer

61‧‧‧發光晶體塊 61‧‧‧Lighting crystal blocks

7‧‧‧第二基板 7‧‧‧second substrate

800‧‧‧蝕刻通道 800‧‧‧etching channel

91‧‧‧步驟 91‧‧‧Steps

92‧‧‧步驟 92‧‧‧Steps

93‧‧‧步驟 93‧‧‧Steps

94‧‧‧步驟 94‧‧‧Steps

95‧‧‧步驟 95‧‧‧Steps

96‧‧‧步驟 96‧‧‧Steps

97‧‧‧步驟 97‧‧‧Steps

98‧‧‧步驟 98‧‧‧Steps

99‧‧‧步驟 99‧‧‧Steps

圖1是一剖面示意流程圖,說明目前的固態發光結構製造方法;圖2是一剖面示意流程圖,說明目前的固態發光結構製造方法; 圖3是一流程圖,說明本發明的固態發光結構製造方法的一第一較佳實施例;圖4是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖5是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖6是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖7是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖8是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖9是一剖面示意圖,說明該第一較佳實施例中的一步驟;圖10是一剖面示意流程圖,說明該第一較佳實施例中的一步驟;圖11是一剖面示意圖,說明該第一較佳實施例中所製得的固態發光結構;圖12是一立體示意圖,說明本發明的固態發光結構製造方法的一第二較佳實施例的一步驟;圖13是一剖面示意圖,說明圖12的局部剖面結構;圖14是一剖面示意流程圖,說明該第二較佳實施例中的製造過程;及圖15是一剖面示意圖,說明本發明第二較佳實施例所 製得的固態發光結構。 1 is a schematic flow chart showing a current solid-state light-emitting structure manufacturing method; and FIG. 2 is a schematic cross-sectional view showing a current solid-state light-emitting structure manufacturing method; 3 is a flow chart showing a first preferred embodiment of the method for fabricating a solid state light emitting structure of the present invention; FIG. 4 is a schematic cross-sectional view showing a step in the first preferred embodiment; FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a cross-sectional view showing a step in the first preferred embodiment; FIG. 7 is a cross-sectional view showing the first preferred embodiment. FIG. 8 is a cross-sectional view showing a step in the first preferred embodiment; FIG. 9 is a cross-sectional view showing a step in the first preferred embodiment; FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 11 is a cross-sectional view showing a solid state light emitting structure prepared in the first preferred embodiment; FIG. 12 is a perspective view showing the present embodiment; A step of a second preferred embodiment of the method for fabricating a solid state light emitting structure of the invention; FIG. 13 is a cross-sectional view showing a partial cross-sectional structure of FIG. 12; and FIG. 14 is a schematic cross-sectional view showing the second preferred embodiment. Manufacturing process And FIG. 15 is a schematic cross-sectional view showing the second preferred embodiment of the present invention The resulting solid state light emitting structure.

91‧‧‧步驟 91‧‧‧Steps

92‧‧‧步驟 92‧‧‧Steps

93‧‧‧步驟 93‧‧‧Steps

94‧‧‧步驟 94‧‧‧Steps

95‧‧‧步驟 95‧‧‧Steps

96‧‧‧步驟 96‧‧‧Steps

97‧‧‧步驟 97‧‧‧Steps

98‧‧‧步驟 98‧‧‧Steps

99‧‧‧步驟 99‧‧‧Steps

Claims (8)

一種固態發光結構的製造方法,包含:(A)於一第一基板上形成一令氮化鎵系材料無法磊晶成長的犧牲層;(B)移除該犧牲層的部分層體使得該第一基板的一預定區域裸露而得到一圖案化的犧牲層結構;(C)以朝向三維方向成長的磊晶生長方式自該第一基板的預定區域磊晶成長一由氮化鎵系材料構成的第一半導體結構;(D)於磊晶成長過程中控制氮化鎵系材料沿該第一半導體結構表面的側向磊晶成長速度大於磊晶成長增厚速度,而自該第一半導體結構向上磊晶形成一由氮化鎵系材料構成的第二半導體層;(E)由該氮化鎵系的第二半導體層的表面向上成長一由氮化鎵系材料構成並在供電時發光的發光晶體層;(F)在該發光晶體層相反於該第一基板的表面接合上一第二基板;(G)移除該圖案化的犧牲層結構而令該第一基板僅以該預定區域與該第一半導體結構相接觸而連接於該第一半導體結構上;(H)移除該第一基板使該第一基板與該第一半導體結構相分離;及(I)蝕刻移除該第二半導體層,使該發光晶體層的表面裸露,而製得該具有第二基板與位於該第二基板上的 發光晶體層的固態發光結構。 A method for fabricating a solid-state light-emitting structure, comprising: (A) forming a sacrificial layer on which a gallium nitride-based material cannot be epitaxially grown on a first substrate; and (B) removing a portion of the layer of the sacrificial layer such that the first layer a predetermined region of a substrate is exposed to obtain a patterned sacrificial layer structure; (C) is epitaxially grown from a predetermined region of the first substrate by epitaxial growth in a three-dimensional direction, and is formed of a gallium nitride-based material. a first semiconductor structure; (D) controlling a lateral epitaxial growth rate of the gallium nitride-based material along the surface of the first semiconductor structure during epitaxial growth is greater than an epitaxial growth thickening rate, and upward from the first semiconductor structure Epitaxial forming a second semiconductor layer made of a gallium nitride-based material; (E) growing a surface of the gallium nitride-based second semiconductor layer upward by a gallium nitride-based material and emitting light during power supply a crystal layer; (F) bonding a second substrate on the surface of the luminescent crystal layer opposite to the first substrate; (G) removing the patterned sacrificial layer structure such that the first substrate is only in the predetermined region The first semiconductor structure is in contact with Connected to the first semiconductor structure; (H) removing the first substrate to separate the first substrate from the first semiconductor structure; and (I) etching to remove the second semiconductor layer to make the luminescent crystal layer The surface is bare, and the second substrate is formed on the second substrate A solid state light emitting structure of a light emitting crystal layer. 依據申請專利範圍第1項所述之固態發光結構的製造方法,其中,該步驟(C)中控制長晶時間令該由第一基板的預定區域成長的第一半導體結構包括多數對應於該圖案化的犧牲層結構且彼此分隔不相連的塊體。 The method of manufacturing a solid-state light-emitting structure according to claim 1, wherein the controlling the crystal growth time in the step (C) causes the first semiconductor structure grown from the predetermined region of the first substrate to include a plurality of patterns corresponding to the pattern. The sacrificial layer structure and the blocks that are not connected to each other. 依據申請專利範圍第2項所述之固態發光結構的製造方法,其中,該步驟(G)以濕蝕刻方式移除該圖案化的犧牲層結構而使該第一半導體結構的多數塊體與該第一基板之間形成多數蝕刻通道。 The method for fabricating a solid state light emitting structure according to claim 2, wherein the step (G) removes the patterned sacrificial layer structure by wet etching to make a majority of the bulk of the first semiconductor structure A plurality of etching channels are formed between the first substrates. 依據申請專利範圍第1項所述之固態發光結構的製造方法,其中,該步驟(B)所移除該犧牲層的部分層體個別獨立成群而使形成的該圖案化的犧牲層結構成網格狀進而界定出多數彼此分離的晶粒區。 The method for manufacturing a solid-state light-emitting structure according to claim 1, wherein the portion of the layer of the sacrificial layer removed in the step (B) is individually grouped separately to form the patterned sacrificial layer into a structure. The grid shape in turn defines a plurality of grain regions that are separated from each other. 依據申請專利範圍第4項所述之固態發光結構的製造方法,其中,該步驟(C)於該第一基板對應於該等晶粒區分別磊晶成長多數彼此分隔的第一塊體層而構成該第一半導體結構;該步驟(D)自該等第一塊體層向上磊晶形成多數彼此分隔並具有平坦表面的第二塊體而構成該第二半導體層;該步驟(E)分別自每一第二塊體的平坦表面向上成長一發光晶體塊而令多數彼此分隔的發光晶體塊共同構成該發光晶體層。 The method for manufacturing a solid-state light-emitting structure according to claim 4, wherein the step (C) is performed by the first substrate corresponding to the first crystal regions of the first substrate, wherein the first bulk layers are separated by a plurality of mutually separated first bulk layers. The first semiconductor structure; the step (D) is upwardly epitaxially formed from the first bulk layers to form a plurality of second blocks separated from each other and having a flat surface to constitute the second semiconductor layer; the step (E) is respectively performed from each The flat surface of a second block grows upwardly into a light-emitting crystal block such that a plurality of light-emitting crystal blocks separated from each other together constitute the light-emitting crystal layer. 依據申請專利範圍第3項或第5項所述之固態發光結構的製造方法,其中,該步驟(A)是選自以下所成的群組為材料形成該犧牲層:氧化矽、氮化矽、氧化鋅,及此等 之一組合。 The method for manufacturing a solid-state light-emitting structure according to claim 3, wherein the step (A) is a material selected from the group consisting of: forming the sacrificial layer: yttrium oxide, tantalum nitride , zinc oxide, and so on One combination. 依據申請專利範圍第6項所述之固態發光結構的製造方法,其中,該步驟(H)中是以濕蝕刻方式移除該第一基板而使該第一基板與該第一半導體結構分離。 The method of manufacturing a solid-state light-emitting structure according to claim 6, wherein in the step (H), the first substrate is removed by wet etching to separate the first substrate from the first semiconductor structure. 依據申請專利範圍第7項所述之固態發光結構的製造方法,其中,該步驟(A)是選擇藍寶石晶圓作為該第一基板,並用氧化矽材料形成該犧牲層,且該步驟(G)是用氫氟酸蝕刻移除該圖案化的犧牲層結構,及該步驟(H)是用氫氧化鉀蝕刻移除該第一基板。 The method for manufacturing a solid-state light-emitting structure according to claim 7, wherein the step (A) is: selecting a sapphire wafer as the first substrate, and forming the sacrificial layer with a cerium oxide material, and the step (G) The patterned sacrificial layer structure is removed by hydrofluoric acid etching, and the step (H) is to remove the first substrate by etching with potassium hydroxide.
TW101117776A 2012-05-18 2012-05-18 Manufacturing method of solid state light emitting structure TWI493755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101117776A TWI493755B (en) 2012-05-18 2012-05-18 Manufacturing method of solid state light emitting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101117776A TWI493755B (en) 2012-05-18 2012-05-18 Manufacturing method of solid state light emitting structure

Publications (2)

Publication Number Publication Date
TW201349562A true TW201349562A (en) 2013-12-01
TWI493755B TWI493755B (en) 2015-07-21

Family

ID=50157567

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117776A TWI493755B (en) 2012-05-18 2012-05-18 Manufacturing method of solid state light emitting structure

Country Status (1)

Country Link
TW (1) TWI493755B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481062B (en) * 2007-10-05 2015-04-11 Delta Electronics Inc Manufacturing method of epitaxial substrate and light emitting diode apparatus and manufacturing method thereof
TWI398022B (en) * 2010-03-17 2013-06-01 Univ Nat Chunghsing Separation method of epitaxial substrate of photovoltaic element

Also Published As

Publication number Publication date
TWI493755B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
US8507357B2 (en) Method for lift-off of light-emitting diode substrate
US9000464B2 (en) Semiconductor structure for substrate separation and method for manufacturing the same
KR101077789B1 (en) Manufacturing method for LED display and LED display manufactured by the same
US8501582B2 (en) Semiconductor structure having low thermal stress and method for manufacturing thereof
JP4852755B2 (en) Method for manufacturing compound semiconductor device
JP2007305999A (en) MANUFACTURING METHOD FOR VERTICAL-STRUCTURE GaN-BASED LED DEVICE
KR20130035658A (en) Method for fabricating a substrate for light emitting diode device
US20110136324A1 (en) Semiconductor dice transfer-enabling apparatus and method for manufacturing transfer-enabling apparatus
JP2008047860A (en) Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
TWI398022B (en) Separation method of epitaxial substrate of photovoltaic element
CN101789476A (en) Method for manufacturing light-emitting diode chip
JP2009009978A (en) Compound semiconductor device and lighting apparatus using the same, and method of manufacturing compound semiconductor device
JP2012142580A (en) Method for fabricating light emitting diode chip
CN103000774B (en) Light-emitting diode substrate separation method
WO2012089074A1 (en) Method for manufacturing light emitting diode chip
KR20050062832A (en) Preparation of nitride semiconductor template for light emitter
KR100889569B1 (en) GaN-based Light Emitting Diode and method for fabricating the same
TWI493755B (en) Manufacturing method of solid state light emitting structure
KR101843154B1 (en) Method for separating epitaxial growth layer from growth substrate
US20130130420A1 (en) Method of laser lift-off for leds
TWI458129B (en) Light emitting diode chip structure and fabrication method thereof
KR20130105993A (en) Method for separating epitaxial growth layer from growth substrate and semiconductor device using the same
TW202107674A (en) Micro-led and micro-led manufacturing method
WO2009035219A2 (en) Gan-based light emitting diode and method for fabricating the same
JP2013012704A (en) Semiconductor manufacturing method