TW201344924A - Negative electrode structure of concentrator photovoltaic - Google Patents

Negative electrode structure of concentrator photovoltaic Download PDF

Info

Publication number
TW201344924A
TW201344924A TW101114360A TW101114360A TW201344924A TW 201344924 A TW201344924 A TW 201344924A TW 101114360 A TW101114360 A TW 101114360A TW 101114360 A TW101114360 A TW 101114360A TW 201344924 A TW201344924 A TW 201344924A
Authority
TW
Taiwan
Prior art keywords
negative electrode
layer
electrode structure
photoelectric conversion
conversion unit
Prior art date
Application number
TW101114360A
Other languages
Chinese (zh)
Other versions
TWI464886B (en
Inventor
guo-jun Huang
chun-wen Guo
zheng-da Wu
Qi-Bang Zhang
Original Assignee
Advanced Wireless Semiconductor Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Wireless Semiconductor Company filed Critical Advanced Wireless Semiconductor Company
Priority to TW101114360A priority Critical patent/TW201344924A/en
Publication of TW201344924A publication Critical patent/TW201344924A/en
Application granted granted Critical
Publication of TWI464886B publication Critical patent/TWI464886B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A negative electrode structure of a concentrator photovoltaic is disclosed. The concentrator photovoltaic comprises a photoelectric conversion unit for converting optical energy into electric energy. The negative electrode structure comprises: a diffusion layer, an adhesion layer, a conductive layer, and a protective layer, which are listed in order from close to the photoelectric conversion unit. In addition, the conductive layer is made of silver and the protective layer is made of aluminum. Because the aluminum of the protective layer does not react with the silver of the conductive layer, the negative electrode structure has a lower surface roughness after annealing, thereby avoiding abnormal wire bonding problems during packaging. In addition, the lower surface roughness can increase the bonding force between the negative electrode structure and gold wires to increase the manufacturing yield. Moreover, the lower price of aluminum may further reduce the manufacturing costs.

Description

聚光型太陽能電池的負電極結構Negative electrode structure of concentrating solar cell

本發明是有關於一種電極結構,特別是指一種聚光型太陽能電池的負電極結構。The present invention relates to an electrode structure, and more particularly to a negative electrode structure of a concentrating solar cell.

參閱圖1,一般由三五族化合物材料製成的聚光型太陽能電池1,其結構主要包含:一個用於將光能轉換成電能的光電轉換單元11,以及設置在該光電轉換單元11之相反兩側的一個負電極12與一個正電極13。該負電極12包括由下往上依序堆疊的一個擴散層121、一個附著層122,以及一個導電層123,其中該導電層123的材料例如銀,而且為了避免銀暴露在空氣中被氧化而影響該導電層123的導電性,通常在該導電層123上還會再覆蓋一層保護層124,該保護層124的材料例如金。Referring to Fig. 1, a concentrating solar cell 1 generally made of a tri-five compound material, the structure of which mainly comprises: a photoelectric conversion unit 11 for converting light energy into electric energy, and a photoelectric conversion unit 11 disposed therein One negative electrode 12 and one positive electrode 13 on opposite sides. The negative electrode 12 includes a diffusion layer 121, an adhesion layer 122, and a conductive layer 123 which are sequentially stacked from bottom to top, wherein the material of the conductive layer 123 is, for example, silver, and in order to prevent silver from being exposed to oxidation in the air. The conductivity of the conductive layer 123 is affected. Usually, the conductive layer 123 is further covered with a protective layer 124. The material of the protective layer 124 is, for example, gold.

該負電極12的製作過程,通常是利用真空鍍膜方式沈積金屬薄膜,其中,在蒸鍍完該導電層123之後,需要將該保護層124覆蓋在該導電層123的表面以防止銀氧化,後續還必須進行250~350℃左右的金屬退火(metal anneal)之熱處理,目的在於使該負電極12之擴散層121內的元素擴散到該光電轉換單元11內,藉此降低接觸電阻。The negative electrode 12 is formed by depositing a metal thin film by vacuum coating. After the conductive layer 123 is evaporated, the protective layer 124 needs to be covered on the surface of the conductive layer 123 to prevent silver oxidation. It is also necessary to perform a metal anneal heat treatment at about 250 to 350 ° C for the purpose of diffusing elements in the diffusion layer 121 of the negative electrode 12 into the photoelectric conversion unit 11, thereby reducing the contact resistance.

當該負電極12製作完成後,則必須利用打線機在該負電極12的表面打上金導線,目的在於透過金導線將該光電轉換單元11的電能往外傳輸。After the negative electrode 12 is completed, a gold wire must be applied to the surface of the negative electrode 12 by a wire bonding machine for the purpose of transmitting the electrical energy of the photoelectric conversion unit 11 through the gold wire.

然而在退火處理時,覆蓋在該導電層123表面的保護層124的金會朝該導電層123擴散,同時位於該導電層123表面的部分晶粒則相對浮出於該保護層124之外,因此在退火後,會使得該負電極12的表面變得粗糙,如此會對打線作業造成影響,原因如下。However, during the annealing process, gold of the protective layer 124 covering the surface of the conductive layer 123 is diffused toward the conductive layer 123, and a portion of the crystal grains located on the surface of the conductive layer 123 are relatively floating outside the protective layer 124. Therefore, after annealing, the surface of the negative electrode 12 is roughened, which may affect the wire bonding operation for the following reasons.

當光照射在該聚光型太陽能電池1上時,該光電轉換單元11可以讓光進入而將光能轉換成電能,該負電極12則會將光線反射而形成亮線,此時該光電轉換單元11與該負電極12的亮暗對比明顯,因此打線機即是藉由所述亮線來判讀該負電極12的位置,而能準確地將金導線打在該負電極12上。When the light is irradiated on the concentrating solar cell 1, the photoelectric conversion unit 11 can allow light to enter and convert the light energy into electrical energy, and the negative electrode 12 reflects the light to form a bright line, and the photoelectric conversion is performed at this time. The brightness and darkness of the unit 11 and the negative electrode 12 are conspicuous, so that the wire bonding machine can determine the position of the negative electrode 12 by the bright line, and the gold wire can be accurately hit on the negative electrode 12.

然而該負電極12在退火後表面變得粗糙,容易造成入射光的漫射,因而降低反射亮度,使該負電極12與該光電轉換單元11的亮暗對比度降低,進而使得打線機無法準確地判讀該負電極12的位置,如此就無法順利地將金導線打在該負電極12上,並且該負電極12粗糙的表面也會降低該負電極12與金導線的結合力,因而造成該聚光型太陽能電池1的製造良率不佳。此外,由於金價日亦增高,以金做為保護層124的材料還會增加生產成本。However, the surface of the negative electrode 12 becomes rough after annealing, which easily causes diffusion of incident light, thereby reducing the reflection brightness, and lowering the contrast between the negative electrode 12 and the photoelectric conversion unit 11, thereby making the wire bonding machine inaccurately The position of the negative electrode 12 is interpreted, so that the gold wire cannot be smoothly wound on the negative electrode 12, and the rough surface of the negative electrode 12 also reduces the bonding force between the negative electrode 12 and the gold wire, thereby causing the aggregation. The manufacturing yield of the light type solar cell 1 is not good. In addition, as gold prices increase, the use of gold as a protective layer 124 will increase production costs.

因此,本發明之目的,即在提供一種能降低電極的表面粗糙度,使封裝打線過程較為順利,並且能提升製造良率、降低生產成本的聚光型太陽能電池的負電極結構。Therefore, an object of the present invention is to provide a negative electrode structure of a concentrating solar cell which can reduce the surface roughness of the electrode, make the package wire bonding process smoother, and improve the manufacturing yield and the production cost.

於是,本發明聚光型太陽能電池的負電極結構,該聚光型太陽能電池包含一個用於將光能轉換成電能的光電轉換單元,而該負電極結構包含:由鄰近而遠離該光電轉換單元而設置的一個擴散層、一個附著層、一個導電層,以及一個保護層,並且該導電層的材料為銀而該保護層的材料為鋁。Thus, the negative electrode structure of the concentrating solar cell of the present invention, the concentrating solar cell comprises a photoelectric conversion unit for converting light energy into electrical energy, and the negative electrode structure comprises: being adjacent to and away from the photoelectric conversion unit And a diffusion layer, an adhesion layer, a conductive layer, and a protective layer are disposed, and the material of the conductive layer is silver and the material of the protective layer is aluminum.

本發明之有益功效在於:由於該保護層的鋁不會與該導電層的銀發生反應,因此該負電極結構在退火後表面粗糙度較低,進而可避免在封裝時產生的打線異常等等的問題,同時表面粗糙度較低亦可增加該負電極結構與金導線的結合力,故能提升製造良率。此外,因為鋁的價格相對於以往使用金的保護層便宜而可大幅降低製造成本。The beneficial effect of the invention is that since the aluminum of the protective layer does not react with the silver of the conductive layer, the surface roughness of the negative electrode structure after annealing is low, thereby avoiding wire abnormalities generated during packaging, etc. The problem, at the same time, the lower surface roughness can also increase the bonding force between the negative electrode structure and the gold wire, so that the manufacturing yield can be improved. In addition, since the price of aluminum is lower than that of the protective layer using gold in the past, the manufacturing cost can be greatly reduced.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

參閱圖2,本發明負電極結構3之一較佳實施例為一個聚光型太陽能電池2的元件之一,本實施例聚光型太陽能電池2是以砷化鎵(GaAs)電池為例,但不限於此,例如也可以為其它三五族材料所製成的電池。該聚光型太陽能電池2還包含一個用於將光能轉換成電能的光電轉換單元21,以及一個設置在該光電轉換單元21上的正電極22。Referring to FIG. 2, a preferred embodiment of the negative electrode structure 3 of the present invention is one of the components of a concentrating solar cell 2. The concentrating solar cell 2 of the present embodiment is a gallium arsenide (GaAs) battery. However, it is not limited thereto, and for example, it may be a battery made of other three or five materials. The concentrating solar cell 2 further includes a photoelectric conversion unit 21 for converting light energy into electric energy, and a positive electrode 22 disposed on the photoelectric conversion unit 21.

該光電轉換單元21包括由下往上依序堆疊設置的一個基板211、一個p型半導體層212、一個n型半導體層213,以及一個歐姆接觸層(ohmic contact layer)214。當上述各層體堆疊形成該光電轉換單元21後,該光電轉換單元21包括一個第一面215,以及一個相反於該第一面215的第二面216。在本實施例中,該第一面215為該歐姆接觸層214的頂面,同時也是該光電轉換單元21的入光面,而該第二面216為該基板211的底面。The photoelectric conversion unit 21 includes a substrate 211, a p-type semiconductor layer 212, an n-type semiconductor layer 213, and an ohmic contact layer 214 which are sequentially stacked from bottom to top. After the respective layer bodies are stacked to form the photoelectric conversion unit 21, the photoelectric conversion unit 21 includes a first face 215 and a second face 216 opposite to the first face 215. In this embodiment, the first surface 215 is the top surface of the ohmic contact layer 214, and is also the light incident surface of the photoelectric conversion unit 21, and the second surface 216 is the bottom surface of the substrate 211.

該光電轉換單元21的基板211為p型鍺基板(Ge substrate),該p型半導體層212的材料為p型砷化鎵(GaAs),該n型半導體層213與該歐姆接觸層214的材料皆為n型砷化鎵(GaAs)。此外,該光電轉換單元21也可以為多組pn接面的結構,並且利用不同能隙(energy gap)的材料形成多組pn接面,各個接面是依照能隙由小到大向上堆疊設置,而能有效地吸收與轉換不同波段的太陽光譜,藉此提高光線利用率。因此本發明實施時不須限制該光電轉換單元21的具體結構、層體數量與材料,因為可以視實際的需求而增添不同功能的膜層,故在實施上不以本實施例所揭露的形式為限,由於該光電轉換單元21非本發明改良之重點,不再詳述。The substrate 211 of the photoelectric conversion unit 21 is a p-type germanium substrate (Ge substrate), and the material of the p-type semiconductor layer 212 is p-type gallium arsenide (GaAs), and the material of the n-type semiconductor layer 213 and the ohmic contact layer 214 All are n-type gallium arsenide (GaAs). In addition, the photoelectric conversion unit 21 may also be a structure of a plurality of sets of pn junctions, and a plurality of sets of pn junctions are formed by using materials of different energy gaps, and the respective junctions are stacked up according to the energy gap from small to large. It can effectively absorb and convert the solar spectrum of different wavelength bands, thereby improving light utilization. Therefore, the specific structure, the number of layers and the material of the photoelectric conversion unit 21 are not limited in the implementation of the present invention, because the film layers with different functions can be added according to actual needs, so the implementation is not in the form disclosed in the embodiment. To be limited, since the photoelectric conversion unit 21 is not the focus of the improvement of the present invention, it will not be described in detail.

該正電極22即為該聚光型太陽能電池2的p側電極,設置在該光電轉換單元21之第二面216上,其材料可選自導電材料,此外,該正電極22可以為單層結構亦可為多層結構,然而在實施上依需求而定,不須限制,由於該正電極22非本發明改良之重點,不再詳述。The positive electrode 22 is a p-side electrode of the concentrating solar cell 2, and is disposed on the second surface 216 of the photoelectric conversion unit 21, and the material thereof may be selected from a conductive material. Further, the positive electrode 22 may be a single layer. The structure may also be a multi-layer structure, however, depending on the requirements, it is not necessary to be limited. Since the positive electrode 22 is not the focus of the improvement of the present invention, it will not be described in detail.

本實施例之負電極結構3即為該聚光型太陽能電池2的n側電極,設置在該光電轉換單元21之第一面215上,並包括由鄰近而遠離該第一面215而設置的一個擴散層31、一個附著層32、一個隔絕層33、一個導電層34,以及一個保護層35。而該擴散層31具有一個鄰近該第一面215的第一擴散部311,以及一個位於該第一擴散部311與該附著層32之間的第二擴散部312。The negative electrode structure 3 of the embodiment is an n-side electrode of the concentrating solar cell 2, disposed on the first surface 215 of the photoelectric conversion unit 21, and is disposed adjacent to and away from the first surface 215. A diffusion layer 31, an adhesion layer 32, an isolation layer 33, a conductive layer 34, and a protective layer 35. The diffusion layer 31 has a first diffusion portion 311 adjacent to the first surface 215 and a second diffusion portion 312 between the first diffusion portion 311 and the adhesion layer 32.

在本實施例中,該擴散層31之第一擴散部311的厚度為5~80nm,其材料為鈀(Pd),而該第二擴散部312的厚度為5~80nm,其材料為鍺(Ge)。該附著層32的厚度為5~80nm,其材料為鈦(Ti)。該隔絕層33的厚度為5~80nm,其材料為鉑(Pt)、鈀(Pd)、鎳(Ni),或此等之一組合。該導電層34的厚度為1500~8000nm,其材料為銀(Ag),並且為整個負電極結構3中最主要的導電層體所在,因此其厚度較厚。該保護層35的厚度為5~200nm,其材料為鋁(Al)。In this embodiment, the first diffusion portion 311 of the diffusion layer 31 has a thickness of 5 to 80 nm, and the material thereof is palladium (Pd), and the second diffusion portion 312 has a thickness of 5 to 80 nm, and the material is 锗 ( Ge). The adhesion layer 32 has a thickness of 5 to 80 nm and is made of titanium (Ti). The insulating layer 33 has a thickness of 5 to 80 nm and is made of platinum (Pt), palladium (Pd), nickel (Ni), or a combination thereof. The conductive layer 34 has a thickness of 1500-8000 nm, and the material thereof is silver (Ag), and is the most important conductive layer body in the entire negative electrode structure 3, so the thickness thereof is thick. The protective layer 35 has a thickness of 5 to 200 nm and is made of aluminum (Al).

本實施例的負電極結構3在製作時,通常是利用真空鍍膜方式沈積金屬薄膜,其中,在蒸鍍完該負電極結構3的導電層34之後,接著將該保護層35覆蓋在該導電層34上。後續再對該聚光型太陽能電池2進行250~350℃左右的退火處理,使該第一擴散部311的鈀與第二擴散部312的鍺擴散到該光電轉換單元21的歐姆接觸層214內,藉此降低歐姆接觸電阻。In the fabrication of the negative electrode structure 3 of the present embodiment, a metal thin film is usually deposited by vacuum coating, wherein after the conductive layer 34 of the negative electrode structure 3 is evaporated, the protective layer 35 is then covered on the conductive layer. 34. Subsequently, the concentrating solar cell 2 is annealed at a temperature of about 250 to 350 ° C, and the palladium of the first diffusion portion 311 and the ytterbium of the second diffusion portion 312 are diffused into the ohmic contact layer 214 of the photoelectric conversion unit 21 . Thereby, the ohmic contact resistance is lowered.

本實施例在該附著層32與該導電層34之間設置該隔絕層33,是因為鉑、鈀與鎳的原子擴散能力較低而具有較佳的擴散阻擋特性,藉此將該附著層32與該導電層34間隔開來,以阻止在退火處理時該附著層32的鈦和該導電層34的銀之間相互擴散與反應,如此可增加該導電層34的附著性而不會剝離。In this embodiment, the insulating layer 33 is disposed between the adhesion layer 32 and the conductive layer 34 because platinum, palladium and nickel have low atomic diffusion ability and have better diffusion barrier properties, whereby the adhesion layer 32 is provided. The conductive layer 34 is spaced apart to prevent mutual diffusion and reaction between the titanium of the adhesion layer 32 and the silver of the conductive layer 34 during the annealing process, so that the adhesion of the conductive layer 34 can be increased without peeling off.

而本實施例之所以選擇鋁做為該保護層35的材料,是因為鋁不會與銀反應,所以在退火處理時,該保護層35的鋁不會擴散至該導電層34內,該保護層35仍覆蓋在該導電層34上並填補在分佈於該導電層34的表面的晶粒之間。其中,鋁氧化後會在該保護層35的表面生成一層氧化鋁(Al2O3)薄膜,而氧化鋁緻密的特性可以阻止氧分子繼續往該保護層35之內部擴散,故能有效防止該負電極結構3之內部膜層氧化而達到保護之功效。In the present embodiment, aluminum is selected as the material of the protective layer 35 because aluminum does not react with silver, so that aluminum of the protective layer 35 does not diffuse into the conductive layer 34 during annealing treatment. Layer 35 is still overlying the conductive layer 34 and fills between the grains distributed over the surface of the conductive layer 34. Wherein, aluminum is oxidized to form a film of aluminum oxide (Al 2 O 3 ) on the surface of the protective layer 35, and the dense property of the alumina prevents the oxygen molecules from continuing to diffuse into the interior of the protective layer 35, thereby effectively preventing the The inner film of the negative electrode structure 3 is oxidized to achieve the protection effect.

參閱圖3、4,圖3為以往使用金作為保護層而製作出的負電極(以下稱比較例),圖4為本實施例的負電極結構3。由於比較例的保護層的金容易擴散到其銀導電層中,使得各個晶粒的尺寸差異較大,造成較大的粗糙度。相對於比較例而言,本實施例在退火完成之後,該負電極結構3表面所分佈的晶粒的粒徑較小,並且各晶粒之間的尺寸較接近,因此相對於比較例而言,本實施例的負電極結構3的表面粗糙度較低。3 and 4, FIG. 3 shows a negative electrode (hereinafter referred to as a comparative example) produced by using gold as a protective layer, and FIG. 4 is a negative electrode structure 3 of the present embodiment. Since the gold of the protective layer of the comparative example easily diffuses into the silver conductive layer, the difference in size of each of the crystal grains is large, resulting in a large roughness. With respect to the comparative example, after the annealing is completed, the particle size of the crystal grains distributed on the surface of the negative electrode structure 3 is small, and the sizes between the crystal grains are relatively close, so that relative to the comparative example The surface roughness of the negative electrode structure 3 of the present embodiment is low.

參閱圖5、6,分別為比較例與本實施例的負電極結構3。相對於比較例而言,由於本實施例的負電極結構3的表面粗糙度降低,因此光照射到該負電極結構3表面而漫射的機會亦較低,故該負電極結構3將光反射的亮度得以提升,而該負電極結構3與該光電轉換單元21的亮暗對比也較為明顯,所以當本實施例的聚光型太陽能電池2在封裝打線時,打線機能夠準確地判讀該負電極結構3的位置,而可順利地將金導線打在該負電極結構3上,同時因為該負電極結構3的表面粗糙度較低,更可增進該負電極結構3與金導線的結合力,所以能提升製造的良率。此外,鋁的價格相對於金便宜,故還能大幅降低製造成本。Referring to Figures 5 and 6, the negative electrode structure 3 of the comparative example and the present embodiment, respectively. With respect to the comparative example, since the surface roughness of the negative electrode structure 3 of the present embodiment is lowered, the light is irradiated onto the surface of the negative electrode structure 3 and the chance of diffusion is also low, so that the negative electrode structure 3 reflects light. The brightness of the negative electrode structure 3 and the photoelectric conversion unit 21 are also relatively obvious. Therefore, when the concentrating solar cell 2 of the present embodiment is wound in the package, the wire bonding machine can accurately interpret the negative. The position of the electrode structure 3 can smoothly strike the gold wire on the negative electrode structure 3, and at the same time, because the surface roughness of the negative electrode structure 3 is low, the bonding force between the negative electrode structure 3 and the gold wire can be enhanced. , so it can improve the manufacturing yield. In addition, the price of aluminum is cheaper than gold, so it can significantly reduce manufacturing costs.

綜上所述,本發明將該保護層35由鋁材料製成,由於鋁在退火時不會與該導電層34的銀發生反應,因此本發明的負電極結構3表面粗糙度較低而可避免封裝打線過程發生異常等問題,並可增加該負電極結構3與金導線的結合力,進而能提升製造良率,同時,鋁的價格較便宜而還可大幅降低製造成本,故能達成本發明之目的。In summary, the protective layer 35 of the present invention is made of an aluminum material. Since the aluminum does not react with the silver of the conductive layer 34 during annealing, the surface roughness of the negative electrode structure 3 of the present invention is low. It avoids problems such as abnormality in the process of packaging wire bonding, and can increase the bonding force between the negative electrode structure 3 and the gold wire, thereby improving the manufacturing yield. At the same time, the price of aluminum is relatively low and the manufacturing cost can be greatly reduced, so that the present invention can be achieved. The purpose of the invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

2...聚光型太陽能電池2. . . Concentrating solar cell

21...光電轉換單元twenty one. . . Photoelectric conversion unit

211...基板211. . . Substrate

212...p型半導體層212. . . P-type semiconductor layer

213...n型半導體層213. . . N-type semiconductor layer

214...歐姆接觸層214. . . Ohmic contact layer

215...第一面215. . . First side

216...第二面216. . . Second side

22...正電極twenty two. . . Positive electrode

3...負電極結構3. . . Negative electrode structure

31...擴散層31. . . Diffusion layer

311...第一擴散部311. . . First diffusion

312...第二擴散部312. . . Second diffusion

32...附著層32. . . Adhesion layer

33...隔絕層33. . . Insulation

34...導電層34. . . Conductive layer

35...保護層35. . . The protective layer

圖1是一般聚光型太陽能電池之一側視示意圖;1 is a side view showing one of general concentrating solar cells;

圖2是一側視示意圖,顯示本發明聚光型太陽能電池的負電極結構之一較佳實施例與一聚光型太陽能電池的關係;2 is a side elevational view showing the relationship between a preferred embodiment of the negative electrode structure of the concentrating solar cell of the present invention and a concentrating solar cell;

圖3是以往使用金作為保護層而製作出的負電極(以下稱比較例)以掃描式電子顯微鏡(SEM)拍下的俯視圖片;3 is a plan view of a negative electrode (hereinafter referred to as a comparative example) produced by using gold as a protective layer by a scanning electron microscope (SEM);

圖4是該較佳實施例以掃描式電子顯微鏡拍下的俯視圖片;Figure 4 is a top view of the preferred embodiment taken with a scanning electron microscope;

圖5是該比較例以光學顯微鏡拍下的俯視圖片;及Figure 5 is a top view of the comparative example taken with an optical microscope; and

圖6是該較佳實施例以光學顯微鏡拍下的俯視圖片。Figure 6 is a top view of the preferred embodiment taken with an optical microscope.

2...聚光型太陽能電池2. . . Concentrating solar cell

21...光電轉換單元twenty one. . . Photoelectric conversion unit

211...基板211. . . Substrate

212...p型半導體層212. . . P-type semiconductor layer

213...n型半導體層213. . . N-type semiconductor layer

214...歐姆接觸層214. . . Ohmic contact layer

215...第一面215. . . First side

216...第二面216. . . Second side

22...正電極twenty two. . . Positive electrode

3...負電極結構3. . . Negative electrode structure

31...擴散層31. . . Diffusion layer

311...第一擴散部311. . . First diffusion

312...第二擴散部312. . . Second diffusion

32...附著層32. . . Adhesion layer

33...隔絕層33. . . Insulation

34...導電層34. . . Conductive layer

35...保護層35. . . The protective layer

Claims (5)

一種聚光型太陽能電池的負電極結構,該聚光型太陽能電池包含一個用於將光能轉換成電能的光電轉換單元,而該負電極結構包含:由鄰近而遠離該光電轉換單元而設置的一個擴散層、一個附著層、一個導電層,以及一個保護層,並且該導電層的材料為銀而該保護層的材料為鋁。A negative electrode structure of a concentrating solar cell, the concentrating solar cell comprising a photoelectric conversion unit for converting light energy into electrical energy, and the negative electrode structure comprises: being disposed adjacent to and away from the photoelectric conversion unit A diffusion layer, an adhesion layer, a conductive layer, and a protective layer, and the material of the conductive layer is silver and the material of the protective layer is aluminum. 依據申請專利範圍第1項所述之聚光型太陽能電池的負電極結構,其中,該擴散層具有一個鄰近該光電轉換單元的第一擴散部,以及一個位於該第一擴散部與該附著層之間的第二擴散部,該第一擴散部的材料為鈀,而該第二擴散部的材料為鍺。The negative electrode structure of the concentrating solar cell of claim 1, wherein the diffusion layer has a first diffusion portion adjacent to the photoelectric conversion unit, and one of the first diffusion portion and the adhesion layer A second diffusion portion between the material of the first diffusion portion is palladium and the material of the second diffusion portion is ruthenium. 依據申請專利範圍第2項所述之聚光型太陽能電池的負電極結構,其中,該附著層的材料為鈦。The negative electrode structure of the concentrating solar cell according to claim 2, wherein the material of the adhesion layer is titanium. 依據申請專利範圍第1項所述之聚光型太陽能電池的負電極結構,還包含一個設置在該附著層與該導電層之間的隔絕層,該隔絕層的材料為鉑、鈀、鎳,或此等之一組合。The negative electrode structure of the concentrating solar cell of claim 1, further comprising an insulating layer disposed between the adhesive layer and the conductive layer, the insulating layer is made of platinum, palladium or nickel. Or a combination of these. 依據申請專利範圍第1項至第4項中任一項所述之聚光型太陽能電池的負電極結構,其中,該保護層的厚度為5~200nm。The negative electrode structure of the concentrating solar cell according to any one of claims 1 to 4, wherein the protective layer has a thickness of 5 to 200 nm.
TW101114360A 2012-04-23 2012-04-23 Negative electrode structure of concentrator photovoltaic TW201344924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101114360A TW201344924A (en) 2012-04-23 2012-04-23 Negative electrode structure of concentrator photovoltaic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101114360A TW201344924A (en) 2012-04-23 2012-04-23 Negative electrode structure of concentrator photovoltaic

Publications (2)

Publication Number Publication Date
TW201344924A true TW201344924A (en) 2013-11-01
TWI464886B TWI464886B (en) 2014-12-11

Family

ID=49990325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114360A TW201344924A (en) 2012-04-23 2012-04-23 Negative electrode structure of concentrator photovoltaic

Country Status (1)

Country Link
TW (1) TW201344924A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556977B (en) * 2008-04-11 2012-04-18 福建钧石能源有限公司 Film silicon photovoltaic device and manufacturing method, back electrode and photovoltaic component thereof
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
TW201101501A (en) * 2009-06-24 2011-01-01 Univ Nat Chunghsing Manufacturing method of solar cell
CN102339954B (en) * 2010-07-20 2014-05-07 海洋王照明科技股份有限公司 Solar cell and preparation method thereof

Also Published As

Publication number Publication date
TWI464886B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP2019195111A (en) Tandem solar cell and method for manufacturing the same
KR20070119702A (en) Solar cell
TW201424029A (en) Method for manufacturing crystalline silicon solar cell, method for manufacturing solar cell module, crystalline silicon solar cell, and solar cell module
JP2011003895A (en) Thin-film solar cell, and method of manufacturing the same
TWI630726B (en) Solar cell, solar cell module, method of manufacturing solar cell, and method of manufacturing solar cell module
TWI415280B (en) Light power device and manufacturing method thereof
TWI667877B (en) Method for measuring solar cell IV, IV measuring device for solar cell, manufacturing method of solar cell, manufacturing method of solar cell module, and solar cell module
US20160087134A1 (en) Solar cell apparatus and method of fabricating the same
JP6251719B2 (en) Thin-layer photovoltaic cell structure with mirror layer
WO2011027459A1 (en) Solar cell and method for manufacturing same
JP2014099613A (en) Solar battery and manufacturing method of the same
TW201344924A (en) Negative electrode structure of concentrator photovoltaic
JP5987127B1 (en) Photovoltaic power generation element and manufacturing method thereof
WO2010087312A1 (en) Thin film photoelectric conversion device and method for manufacturing same
JP6143520B2 (en) Crystalline silicon solar cell and manufacturing method thereof
KR101134730B1 (en) Solar cell apparatus and method of fabricating the same
TWM467181U (en) Solar cell with anti-reflection layer
TWI532205B (en) A Method for Fabricating Crystalline Silicon Solar Cell Having Local Rear Contacts and Passivation Layer and the Device
TW201344925A (en) Silver/aluminum concentrator photovoltaic positive electrode
TW201236178A (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP5935047B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JP2018190819A (en) Optical power generation element and manufacturing method thereof
TW201344923A (en) Metal stacking structure of negative electrode of concentrator photovoltaic
JPWO2016163168A1 (en) Photoelectric conversion element
JP6191995B2 (en) Solar cell module