TW201337189A - Single-axis fixed rotation angle sun tracking device and control method - Google Patents

Single-axis fixed rotation angle sun tracking device and control method Download PDF

Info

Publication number
TW201337189A
TW201337189A TW101106995A TW101106995A TW201337189A TW 201337189 A TW201337189 A TW 201337189A TW 101106995 A TW101106995 A TW 101106995A TW 101106995 A TW101106995 A TW 101106995A TW 201337189 A TW201337189 A TW 201337189A
Authority
TW
Taiwan
Prior art keywords
time
solar
electronic clock
sun
control device
Prior art date
Application number
TW101106995A
Other languages
Chinese (zh)
Other versions
TWI451054B (en
Inventor
Bin-Juine Huang
yin-cheng Huang
Po-Chien Hsu
Guan-Yu Chen
Li-Tu Wu
Jong-Fu Yeh
Original Assignee
Bin-Juine Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bin-Juine Huang filed Critical Bin-Juine Huang
Priority to TW101106995A priority Critical patent/TWI451054B/en
Publication of TW201337189A publication Critical patent/TW201337189A/en
Application granted granted Critical
Publication of TWI451054B publication Critical patent/TWI451054B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

An object of the present invention is to provide a single-axis fixed rotation angle sun tracking device and a control method having low failure rate, low cost, and extended service life. The technical solution comprises a support post that is composed of a vertical bar and a horizontal bar; a fixture frame capable adjusting rotation angle; a solar cell; an electric extendable push rod that is composed of a motor, an extendable bar, and a transmission gear set; and a microprocessor control device. The horizontal bar is mounted, at a central portion thereof, to a top end of the vertical bar at an angle. The motor is mounted at one side of the extendable bar, and is coupled to a lower end of the extendable bar via the transmission gear train for driving the extendable bar to extend/retract. The extendable bar has a top end that is coupled to a corresponding side of the fixture frame. The transmission gear set has a lower end that is pivoted to a corresponding side of the vertical bar. With the motor being powered, the transmission gear set is driven to operate for driving the extendable bar to extend/retract, so as to further rotate the fixture frame to adjust the angle thereof, such that the solar cell carried on the fixture frame can be set to face the sun.

Description

單軸固定轉動角度追蹤太陽的裝置與控制方法Device and control method for tracking sun by single axis fixed rotation angle

本發明是涉及一種單軸固定轉動角度追蹤太陽的裝置與控制方法。The invention relates to a device and a control method for tracking the sun by a single axis fixed rotation angle.

傳統太陽光發電系統之架設,其太陽電池主要是以一組固定型支架固定於地面進行發電,太陽電池的受光面面向正南方,與水平面的夾角通常設定與裝設地點的緯度相同。In the erection of the traditional solar power generation system, the solar cells are mainly fixed on the ground by a set of fixed brackets for power generation. The light receiving surface of the solar battery faces the south, and the angle with the horizontal plane is usually set to be the same as the latitude of the installation location.

由於太陽在一天之中會從東方的天空,移向西方,因此固定型的太陽光發電系統,一天之中只有正午一段時間,太陽光可正射在太陽電池上。Since the sun moves from the eastern sky to the west during the day, the fixed solar power system has only a midday of the day, and the sun can be incident on the solar cell.

因此太陽電池只有在正射的時段,才能產生最大的發電量,其它時段則因為太陽斜射,發電量降低。Therefore, the solar cell can generate the maximum amount of power generation only during the ortho period, and the other period is because the sun is oblique, and the power generation is reduced.

要提升太陽電池發電效率,有人採用追蹤太陽運動的裝置,來使太陽電池隨時正對太陽。To improve the efficiency of solar cell power generation, some people use a device that tracks the movement of the sun to make the solar cell face the sun at any time.

雖然透過此種應用方式,可以提高整體的發電量,但相對而言,也增加了系統的複雜度與成本,也會消耗一部份電力,要用於做為追蹤太陽的動力。Although this kind of application can increase the overall power generation, it also increases the complexity and cost of the system, and also consumes a part of the power, which is used as the power to track the sun.

許多精密太陽追蹤裝置,為採雙軸式設計,將裝設太陽電池的轉動平台,分成南北向與東西向兩個轉軸,分別進行轉動,並藉由一太陽感測器,利用回授控制技術,控制其南北與東西兩個方向的轉動動作,可以精準追蹤太陽。Many precision sun tracking devices are designed for dual-axis design. The rotating platform of the solar cell will be divided into two north-south and east-west rotating shafts for rotation, and a solar sensor will be used to control the feedback technology. Control the rotation of the north and south and the east and west directions to accurately track the sun.

但是,此種雙軸追蹤機構非常複雜,故障率高、追蹤太陽時馬達耗電大、成本也很高,很難推廣。However, such a two-axis tracking mechanism is very complicated, and the failure rate is high. When the sun is being tracked, the motor consumes a large amount of electricity and the cost is high, which is difficult to promote.

為改善傳統固定式太陽光發電系統,以及雙軸式精密太陽追蹤裝置之缺失,本發明人創作出一種少數個固定轉動角度[簡稱:固定角度]的單軸追蹤太陽光發電裝置,如專利文獻1及圖1所示,為一種太陽能發電裝置(100),包含:一太陽能電池支架(10);一太陽能電池(20),為固設於該太陽能電池支架(10)上;一驅動馬達(30),為驅動該太陽能電池支架(10)用以旋轉調整該太陽能電池(20)之一定位方向;一可調角度平台(40),為與該太陽能電池支架(10)固定設置、用以調整該太陽能電池(20)之一水平仰角角度;一太陽能電池支撐柱(50),為用以支撐該太陽能電池支架(10)與該可調角度平台(40),其中該太陽能電池支撐柱(50)更包含一套筒(501)固定於該太陽能電池支撐柱(50)上;以及一追蹤感測器(60),為設置於該太陽能電池(20)上,其中該追蹤感測器(60)為包含一第一感光元件(601)、一第二感光元件(602)與一擋光板(603)設置於其間,且該擋光板(603)之高度約為該第一感光元件(601)與該第二感光元件(602)中心至該擋光板(603)之底部距離之cot25°倍。In order to improve the traditional fixed solar power generation system and the lack of a two-axis precision solar tracking device, the inventors have created a single fixed-axis rotation angle [abbreviation: fixed angle] single-axis tracking solar power generation device, such as patent documents 1 and FIG. 1 is a solar power generation device (100) comprising: a solar cell holder (10); a solar cell (20) fixed to the solar cell holder (10); and a driving motor ( 30), in order to drive the solar cell holder (10) for rotationally adjusting a positioning direction of the solar cell (20); an adjustable angle platform (40) is fixedly disposed with the solar cell holder (10) for Adjusting a horizontal elevation angle of the solar cell (20); a solar cell support column (50) for supporting the solar cell holder (10) and the adjustable angle platform (40), wherein the solar cell support column ( 50) further comprising a sleeve (501) fixed to the solar cell support column (50); and a tracking sensor (60) disposed on the solar cell (20), wherein the tracking sensor ( 60) for containing a first photosensitive element (60) 1) a second photosensitive element (602) and a light blocking plate (603) are disposed therebetween, and the height of the light blocking plate (603) is about the first photosensitive element (601) and the second photosensitive element (602) The center to the bottom of the light barrier (603) is 25 times cot.

而前述太陽電池支架(10)更包含有支架(101);該可調角度平台(40),則更包含一旋轉軸(401);一配合驅動馬達(30)、用來帶動整個支架(101)轉動的傳動齒輪(402);以及一刻度盤(403)。The solar battery bracket (10) further includes a bracket (101); the adjustable angle platform (40) further includes a rotating shaft (401); and a mating driving motor (30) for driving the entire bracket (101) a rotating transmission gear (402); and a dial (403).

關於的動作原理,請參照第二圖,追蹤感測器(60)安裝於太陽能電池(20)旁邊,並與太陽能電池(20)為同一平面,擋光板(603)將第一感光元件(601)與該第二感光元件(602)分隔開來,其中第一感光元件(601)安置在相對於擋光板(603)的東側,第二感光元件(602)則安置在擋光板(603)的西側。For the principle of operation, please refer to the second figure. The tracking sensor (60) is installed beside the solar cell (20) and is in the same plane as the solar cell (20), and the light blocking plate (603) will be the first photosensitive element (601). Separating from the second photosensitive element (602), wherein the first photosensitive element (601) is disposed on the east side with respect to the light blocking plate (603), and the second photosensitive element (602) is disposed on the light blocking plate (603) West side.

當太陽從擋光板(603)的東側移向西側時,擋光板(603)的陰影將從西側移向東側。When the sun moves from the east side to the west side of the light blocking plate (603), the shadow of the light blocking plate (603) moves from the west side to the east side.

直到擋光板(603)的陰影遮蔽到第一感光元件(601),則啟動驅動馬達(30),帶動傳動齒輪(402)轉動一固定角度,使太陽能電池支架(10)向西轉動到達下一個定位。Until the shadow of the light blocking plate (603) is shielded to the first photosensitive element (601), the driving motor (30) is activated to drive the transmission gear (402) to rotate at a fixed angle, so that the solar battery holder (10) rotates westward to the next one. Positioning.

上述習知技術為以一個馬達,控制裝置對太陽作東西方向的追蹤,配合太陽位置,使太陽電池固定機構,由東向西轉動,分別停駐於少數個特定的固定角度。The above-mentioned conventional technology uses a motor and a control device to track the direction of the sun in the east and west, and cooperates with the position of the sun to rotate the solar cell fixing mechanism from east to west, and respectively park at a certain fixed angle.

經由發明人的太陽能光學仔細分析計算,如果採用三個固定角度的話,最佳的三個特定角度分別是:Through careful analysis of the inventor's solar optics, if three fixed angles are used, the best three specific angles are:

[1]上午時段太陽能電池(20)停駐於面向東方50度的位置;[1] In the morning, the solar cell (20) is parked at a position 50 degrees east;

[2]中午時段太陽能電池(20)停駐於面向垂直正上方的0度位置;[2] At noon, the solar cell (20) is parked at a position of 0 degrees directly above the vertical;

[3]下午時段則太陽能電池(20)停駐於面向西方50度的位置。[3] In the afternoon, the solar cell (20) is parked at a position 50 degrees west.

如圖3所示,當太陽移動時,追蹤感測器(60)的擋光板(603),其所產生的陰影,會隨太陽入射角度改變,當陰影遮蔽靠東側的第一感光元件(601)時,表示太陽位置偏西方,此時會透過一控制電路,觸動追蹤機構,往西方下一個定位轉動,並利用一裝設於特定位置的定位開關,停止轉動達到固定停駐角度目的。As shown in FIG. 3, when the sun moves, the shadow of the light barrier (603) of the tracking sensor (60) changes with the angle of incidence of the sun, and when the shadow shields the first photosensitive element on the east side (601) When it indicates that the sun is in the west, it will touch the tracking mechanism through a control circuit to the next position in the west, and use a positioning switch installed at a specific position to stop the rotation and achieve a fixed parking angle.

反之亦然,當當陰影遮蔽靠西側的第二感光元件(602)時,表示太陽位置偏東方,此時會透過一控制電路,觸動追蹤機構,往東方下一個定位轉動。Vice versa, when the shadow shields the second photosensitive element (602) on the west side, it indicates that the sun position is eastward. At this time, the tracking mechanism is touched through a control circuit to rotate to the next position in the east.

專利文獻1:國內專利公告I304657號「具三角度追蹤陽光之太陽能發電裝置/PHOTOVOLTAIC POWER GENERATING APPARATUS THREE-POSITION TRACKING」,2008/年12月21日公告。Patent Document 1: Domestic Patent Publication No. I304657 "Photovoltaic Solar Energy Generator / PHOTOVOLTAIC POWER GENERATING APPARATUS THREE-POSITION TRACKING", announced on December 21, 2008.

由於太陽光發電系統需求的使用壽命,在戶外環境下,至少要有25年,可靠度要求極為嚴苛,因此前述專利文獻1,仍然存在著下列問題點:Due to the service life demand of the solar power generation system, in the outdoor environment, it must be at least 25 years, and the reliability requirements are extremely severe. Therefore, the aforementioned Patent Document 1 still has the following problems:

1.採用追蹤感測器(60)來感測是否對準太陽,其必須安裝於太陽能電池(20)旁邊,此種設置方式,會增加結構設計與安裝複雜度。1. A tracking sensor (60) is used to sense alignment with the sun, which must be installed next to the solar cell (20). This arrangement increases structural design and installation complexity.

2.追蹤感測器(60)採用光感測元件、以及附設的電子偵測電路,在戶外使用的故障率很高,成本也高。2. The tracking sensor (60) uses a light sensing component and an attached electronic detection circuit, and has a high failure rate and high cost in outdoor use.

3.採用一裝設於特定位置的定位開關,來停止驅動馬達(30)轉動,達到固定停駐角度,使得暴露於戶外的定位開關,容易老化與故障,或信號傳輸不良而控制失靈。3. A positioning switch installed at a specific position is used to stop the rotation of the driving motor (30) to achieve a fixed parking angle, so that the positioning switch exposed to the outdoor is prone to aging and malfunction, or the signal transmission is poor and the control fails.

4.採用驅動馬達(30)與傳動齒輪(402)配合的傳動機構,在戶外使用時容易故障。4. The transmission mechanism that cooperates with the transmission gear (402) by the drive motor (30) is easy to malfunction when used outdoors.

有鑑於此,如何在避免掉故障率高、容易控制失靈等問題的前提下,同時降低結構設計與安裝的複雜度,以降低成本,便於推廣應用,便成為本發明欲改進的目的。In view of this, how to reduce the complexity of structural design and installation while reducing the complexity of structural design and installation to avoid cost and facilitate popularization and application is the object of the present invention.

本發明目的在於提供一種低故障率、成本低、使用壽命長之單軸固定轉動角度追蹤太陽的裝置與控制方法。The object of the present invention is to provide a device and a control method for tracking the sun with a single-axis fixed rotation angle with low failure rate, low cost and long service life.

為解決前述問題及達到本發明的目的,本發明的技術手段,關於裝置方面,是這樣實現的:為一種單軸固定轉動角度追蹤太陽裝置,其特徵在於包括:一由直桿(11)和橫桿(12)組成的支撐柱(1);一中央與該橫桿(12)樞接、可調轉動角度的固定架(2);一設於該固定架(2)頂表面處的太陽電池(3);一由馬達(41)、伸縮桿(42)、和傳動齒輪組(43)所組成的電動式伸縮推桿(4);及一與該電動式伸縮推桿(4)電連接的微處理控制裝置(5);該橫桿(12)為以中央部,呈一角度設置於該直桿(11)頂端處;該馬達(41)為設於該伸縮桿(42)的一側、其轉軸透過傳動齒輪組(43)與該伸縮桿(42)底端連接、以供驅使該伸縮桿(42)伸縮作動,而該伸縮桿(42)的頂端、為與該固定架(2)對應側樞連接,又該傳動齒輪組(43)的底端、為與該直桿(11)對應側樞接;利用馬達(41)通電來使傳動齒輪組(43)作動,帶動伸縮桿(42)產生伸縮動作,進而轉動固定架(2)、來調整其角度,使得固定架(2)上的太陽電池(3),可以面向太陽。In order to solve the foregoing problems and achieve the object of the present invention, the technical means of the present invention is implemented in terms of a device: a uniaxial fixed rotation angle tracking solar device, comprising: a straight rod (11) and a support column (1) composed of a cross bar (12); a fixed frame (2) pivotally connected to the cross bar (12) and adjustable in rotation angle; and a sun disposed at a top surface of the fixing frame (2) a battery (3); an electric telescopic push rod (4) composed of a motor (41), a telescopic rod (42), and a transmission gear set (43); and a motor with the electric telescopic push rod (4) a connected micro-processing control device (5); the crossbar (12) is disposed at an upper end of the straight rod (11) at an angle; the motor (41) is disposed on the telescopic rod (42) One side and a rotating shaft thereof are connected to the bottom end of the telescopic rod (42) through a transmission gear set (43) for driving the telescopic rod (42) to expand and contract, and the top end of the telescopic rod (42) is opposite to the fixing frame (2) corresponding to the side pivot connection, the bottom end of the transmission gear set (43) is pivotally connected to the corresponding side of the straight rod (11); the motor (41) is energized to actuate the transmission gear set (43) to drive Stretch Rod (42) to produce a telescopic operation, and further rotation of the holder (2), to adjust the angle, so that the solar cell holder (3) on (2), may face the sun.

根據上述的單軸固定轉動角度追蹤太陽裝置,所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5)為與該太陽電池(3)電連接,以接受太陽電池(3)端電壓信號變化,並依照絕對電壓法,來判斷日出時間(tsunrise)與日落時間(tsunset),並換算成太陽午時(tsol,n),然後定期進行前述電子時鐘(51)之當前時間(tclk)的修正。Tracking the solar device according to the above-mentioned single-axis fixed rotation angle, the micro-processing control device (5) having an electronic clock (51) therein, and the original setting of the electronic clock (51) is a standard time (t std ); The micro-processing control device (5) is electrically connected to the solar cell (3) to receive a change in the voltage signal of the solar cell (3), and to determine the sunrise time (t sunrise ) and the sunset according to the absolute voltage method. The time (t sunset ) is converted into solar noon (t sol,n ), and then the current time (t clk ) of the aforementioned electronic clock (51) is periodically corrected.

根據上述的單軸固定轉動角度追蹤太陽裝置,所述微處理控制裝置(5)中、更包含有一位置控制器(52);而所述馬達(41)之轉軸處、更裝置有一能供感測轉動角度用的轉動位置感測器(6);前述位置控制器(52),其能依據內部所設定的三角度轉動時間(tR),開始啟動電動式伸縮推桿(4),控制轉動,並依照其內部所設定的轉動位置設定值(VR),與前述轉動位置感測器(6)所回授實際轉動位置,進行比較後,該位置控制器(52)能根據誤差量,來改變對電動式伸縮推桿(4)的驅動大小,直到精準控制為止。Tracking the solar device according to the uniaxial fixed rotation angle described above, the micro-processing control device (5) further includes a position controller (52); and the rotating shaft of the motor (41) has a sense of supply a rotational position sensor (6) for measuring a rotation angle; the position controller (52) capable of starting the electric telescopic push rod (4) according to an internally set three-angle rotation time (t R ), and controlling Rotating and according to the internal rotational position setting value (V R ), compared with the actual rotational position fed back by the rotational position sensor (6), the position controller (52) can be based on the error amount. To change the drive size of the electric telescopic push rod (4) until it is precisely controlled.

根據上述的單軸固定轉動角度追蹤太陽裝置,所述位置控制器(52),其是為一PID控制器;所述轉動位置感測器(6),其是為一轉動式電阻。The solar device is tracked according to the uniaxial fixed rotation angle described above, the position controller (52), which is a PID controller, and the rotational position sensor (6), which is a rotary resistor.

根據上述的單軸固定轉動角度追蹤太陽裝置,所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能將當地天文及/或氣象台所提供的每日真太陽時偏差量(EST),輸入微處理控制裝置(5)內,以進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+每日真太陽時偏差量(EST)。Tracking the solar device according to the above-mentioned single-axis fixed rotation angle, the micro-processing control device (5) having an electronic clock (51) therein, and the original setting of the electronic clock (51) is a standard time (t std ); The micro-processing control device (5) can input the daily true solar time deviation (EST) provided by the local astronomy and/or weather station into the micro-processing control device (5) for electronic clock (51). The current time (t clk ) is corrected to make it true sun (t tst ), and the correction formula is as follows: true solar time (t tst ) = standard time (t std ) + daily true solar time deviation (EST) .

根據上述的單軸固定轉動角度追蹤太陽裝置,所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能以太陽時差公式取得一太陽時差值(V),定期進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+太陽時差值(V)+4[標準時間之經度(Lst)-當地之經度(Lloc)]。Tracking the solar device according to the above-mentioned single-axis fixed rotation angle, the micro-processing control device (5) having an electronic clock (51) therein, and the original setting of the electronic clock (51) is a standard time (t std ); The micro-processing control device (5) is capable of obtaining a solar time difference (V) by the solar time difference formula, and periodically correcting the current time (t clk ) of the electronic clock (51) to make it a true solar time ( t tst ), the correction formula is as follows: true solar time (t tst ) = standard time (t std ) + solar time difference (V) + 4 [standard time longitude (L st ) - local longitude (L loc )] .

關於方法方面,是這樣實現的:為一種單軸固定轉動角度追蹤太陽的控制方法,其特徵在於:所述微處理控制裝置(5)之絕對電壓法的運作流程步驟,如下所示為:Regarding the method aspect, the method for controlling the sun for a single-axis fixed rotation angle is characterized in that the operational flow steps of the absolute voltage method of the micro-processing control device (5) are as follows:

第一步驟:設定一基本電壓值(Vo);First step: setting a basic voltage value (V o );

第二步驟:偵測太陽電池(3)端電壓變化值(Vpv);The second step: detecting the voltage change value (V pv ) of the solar cell (3) terminal;

第三步驟:日出時間判斷,當端電壓變化值(Vpv)由低值[<基本電壓值(Vo)]升高至超過基本電壓值(Vo)時,即為日出時間(tsunrise),記錄下電子時鐘(51)當前所顯示的當前時間(tclk);The third step: at sunrise time, when the terminal voltage change value (V pv ) is raised from the low value [<basic voltage value (V o )) to exceed the basic voltage value (V o ), it is the sunrise time ( Tsunrise), record the current time (t clk ) currently displayed by the electronic clock (51);

第四步驟:日落時間判斷,當端電壓變化值(Vpv)由高值(>Vo值)降至小於基本電壓值(Vo)時,即為日落時間(tsunset),記錄下電子時鐘(51)當前所顯示的時間;The fourth step: the sunset time judges that when the terminal voltage change value (V pv ) is reduced from the high value (>V o value) to less than the basic voltage value (V o ), it is the sunset time (t sunset ), and the electron is recorded. The time currently displayed by the clock (51);

第五步驟:計算太陽午時(tsol,n),公式為:太陽午時(tsol,n)=[日出時間(tsunrise)+日落時間(tsunset)]/2;The fifth step: calculate the solar noon (t sol, n ), the formula is: sun noon (t sol, n ) = [sunrise time (t sunrise ) + sunset time (t sunset )] / 2;

第六步驟:比較太陽午時(tsol,n)與時鐘午時(tclk,n),求得誤差值(△terr),公式為:誤差值(△terr)=太陽午時(tsol,n)-時鐘午時(tclk,n);The sixth step: comparing the solar noon (t sol, n ) with the clock noon (t clk, n ), and obtaining the error value (Δt err ), the formula is: error value (Δt err ) = sun noon (t sol, n )-clock noon (t clk,n );

第七步驟:當誤差量(△terr)之絕對值,大於至少一容許值時,立即進行電子時鐘(51)之當前時間(tclk)的更正,公式為:當前時間(tclk)轉為當前太陽午時(tsol)=當前時間(tclk)+誤差量(△terr)。The seventh step: when the absolute value of the error amount (Δt err ) is greater than at least one allowable value, the correction of the current time (t clk ) of the electronic clock ( 51 ) is immediately performed, and the formula is: the current time (t clk ) It is the current solar noon (t sol ) = current time (t clk ) + error amount (Δt err ).

1.本發明中,為解決專利文獻1的種種問題,在控制方面,摒棄外露之驅動馬達(30)與傳動齒輪(402)的傳動機構,改採一簡易式的電動式伸縮推桿(4),並採附著於馬達(41)之轉軸上、為轉動式電阻的轉動位置感測器(6),來偵測太陽電池(3)轉動角度[位置]。1. In the present invention, in order to solve various problems of Patent Document 1, in terms of control, the transmission mechanism of the exposed drive motor (30) and the transmission gear (402) is discarded, and a simple electric telescopic push rod is adopted. And adopting a rotational position sensor (6) attached to the rotating shaft of the motor (41) as a rotary resistor to detect the rotation angle [position] of the solar cell (3).

2.本發明中,放棄採用光感測元件製成的追蹤感測器(60),而採用一電子時鐘[IC timer](51)來提供時間,在固定時間進行轉動;利用回授控制轉動到預定位置。2. In the present invention, the tracking sensor (60) made of the light sensing element is discarded, and an electronic clock [IC timer] (51) is used to provide time to rotate at a fixed time; Go to the scheduled location.

3.本發明中,為使電子時鐘(51)所顯示的當前時間(tclk),代表實際太陽位置,透過運算,將當前時間(tclk)修正為真太陽時(ttst);3. In the present invention, in order to make the current time (t clk ) displayed by the electronic clock (51), representing the actual sun position, through the operation, the current time (t clk ) is corrected to true solar time (t tst );

4.本發明中,所有控制動作,皆經由一微處理控制裝置(5)與軟體來完成,能將整體的動作,更有效的精確控制。4. In the present invention, all control actions are performed by a micro-processing control device (5) and software, and the overall action can be more accurately and accurately controlled.

以下依據圖面所示的實施例詳細說明如後:如圖4所示為本發明的立體示意圖,如圖5所示為本發明的立體分解示意圖,如圖6所示為實際所偵測的太陽電池端電壓變化圖,如圖7所示為本發明的控制流程方塊示意圖,如圖8所示為本發明的立體實施示意圖。The following is a detailed description of the following embodiments of the present invention: FIG. 4 is a perspective view of the present invention, and FIG. 5 is a perspective exploded view of the present invention, as shown in FIG. FIG. 7 is a schematic diagram of a control flow of the present invention, and FIG. 8 is a schematic perspective view of the present invention.

圖中揭示出,為一種單軸固定轉動角度追蹤太陽裝置,其特徵在於包括:一由直桿(11)和橫桿(12)組成的支撐柱(1);一中央與該橫桿(12)樞接、可調轉動角度的固定架(2);一設於該固定架(2)頂表面處的太陽電池(3);一由馬達(41)、伸縮桿(42)、和傳動齒輪組(43)所組成的電動式伸縮推桿(4);及一與該電動式伸縮推桿(4)電連接的微處理控制裝置(5);該橫桿(12)為以中央部,呈一角度設置於該直桿(11)頂端處;該馬達(41)為設於該伸縮桿(42)的一側、其轉軸透過傳動齒輪組(43)與該伸縮桿(42)底端連接、以供驅使該伸縮桿(42)伸縮作動,而該伸縮桿(42)的頂端、為與該固定架(2)對應側樞連接,又該傳動齒輪組(43)的底端、為與該直桿(11)對應側樞接;利用馬達(41)通電來使傳動齒輪組(43)作動,帶動伸縮桿(42)產生伸縮動作,進而轉動固定架(2)、來調整其角度,使得固定架(2)上的太陽電池(3),可以面向太陽。The figure discloses a uniaxial fixed rotation angle tracking solar device, characterized by comprising: a support column (1) consisting of a straight rod (11) and a cross rod (12); a center and the cross rod (12) a pivoting, adjustable angle of rotation of the holder (2); a solar cell (3) disposed at the top surface of the holder (2); a motor (41), a telescopic rod (42), and a transmission gear An electric telescopic push rod (4) composed of a group (43); and a micro-processing control device (5) electrically connected to the electric telescopic push rod (4); the cross bar (12) is at a central portion An angle is disposed at a top end of the straight rod (11); the motor (41) is disposed on one side of the telescopic rod (42), and the rotating shaft thereof transmits through the transmission gear set (43) and the bottom end of the telescopic rod (42) Connected to drive the telescopic rod (42) to expand and contract, and the top end of the telescopic rod (42) is pivotally connected to the corresponding side of the fixed frame (2), and the bottom end of the transmission gear set (43) is The shaft is connected to the corresponding side of the straight rod (11); the motor (41) is energized to actuate the transmission gear set (43), and the telescopic rod (42) is caused to rotate, and then the fixing frame (2) is rotated to adjust the angle thereof. To make the holder (2) The solar cell (3) can face the sun.

其中,上述微處理控制裝置(5)是由一微處理器電路所製成,更能包括一接收太陽電池(3)端電壓信號的輸入埠[圖中未揭示],一驅動電動式伸縮推桿(4)的電輸出埠[圖中未揭示],一接收推桿內部馬達轉軸上之轉動位置感測器(6)的信號輸入埠[圖中未揭示],及一附於微處理控制裝置(5)內的分析軟體(7)。Wherein, the above-mentioned micro-processing control device (5) is made of a microprocessor circuit, and can further comprise an input 接收 [not disclosed] for receiving a voltage signal of the solar cell (3), and a driving electric telescopic push The electric output of the rod (4) 埠 [not disclosed], a signal input 转动 [not disclosed in the figure] of the rotational position sensor (6) on the inner motor shaft of the push rod, and a micro control control Analytical software (7) in device (5).

其次,透過此種設置,有別於專利文獻1,摒棄外露之驅動馬達(30)與傳動齒輪(402)的傳動機構,改採一簡易式的電動式伸縮推桿(4),並採附著於馬達(41)之轉軸上、為轉動式電阻的轉動位置感測器(6),來偵測太陽電池(3)轉動角度[位置],能更精確的運作,讓太陽電池(3)發揮出最大的發電效率。Secondly, with this arrangement, unlike the patent document 1, the drive mechanism of the exposed drive motor (30) and the transmission gear (402) is discarded, and a simple electric telescopic push rod (4) is adopted and attached. On the rotating shaft of the motor (41), it is a rotary position sensor (6) for detecting the rotation angle [position] of the solar cell (3), which can operate more accurately and let the solar battery (3) play. The largest power generation efficiency.

上述中,所述微處理控制裝置(5),其內含有一電子時鐘(51)[IC timer],而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5)為與該太陽電池(3)電連接,以接受太陽電池(3)端電壓信號變化,並依照絕對電壓法,來判斷日出時間(tsunrise)與日落時間(tsunset),並換算成太陽午時(tsol,n),然後定期進行前述電子時鐘(51)之當前時間(tclk)的修正。In the above, the microprocessor control device (5) includes an electronic clock (51) [IC timer], and the original setting of the electronic clock (51) is a standard time (t std ); and the micro processing The control device (5) is electrically connected to the solar cell (3) to receive a change in the voltage signal of the solar cell (3), and to determine the sunrise time (t sunrise ) and the sunset time (t sunset ) according to the absolute voltage method. and converted to solar noon (t sol, n), and then periodically modifying the electronic timepiece (51) between the current time (t clk) a.

其中,透過此種控制方式,能有效的解決電子時鐘(51)誤差的問題,讓本發明能更效率的運作。Among them, through this control method, the problem of the error of the electronic clock (51) can be effectively solved, and the present invention can operate more efficiently.

其次,單軸固定轉動角度追蹤太陽的控制方法,其特徵在於:所述微處理控制裝置(5)之絕對電壓法的運作流程步驟,如下所示為:Secondly, the uniaxial fixed rotation angle tracking sun control method is characterized in that: the operation procedure of the absolute voltage method of the micro processing control device (5) is as follows:

第一步驟:設定一基本電壓值(Vo);First step: setting a basic voltage value (V o );

第二步驟:偵測太陽電池(3)端電壓變化值(Vpv);The second step: detecting the voltage change value (V pv ) of the solar cell (3) terminal;

第三步驟:日出時間判斷,當端電壓變化值(Vpv)由低值[<基本電壓值(Vo)]升高至超過基本電壓值(Vo)時,即為日出時間(tsunrise),記錄下電子時鐘(51)當前所顯示的當前時間(tclk);The third step: at sunrise time, when the terminal voltage change value (V pv ) is raised from the low value [<basic voltage value (V o )) to exceed the basic voltage value (V o ), it is the sunrise time ( t sunrise ), record the current time (t clk ) currently displayed by the electronic clock (51);

第四步驟:日落時間判斷,當端電壓變化值(Vpv)由高值(>Vo值)降至小於基本電壓值(Vo)時,即為日落時間(tsunset),記錄下電子時鐘(51)當前所顯示的時間;The fourth step: the sunset time judges that when the terminal voltage change value (V pv ) is reduced from the high value (>V o value) to less than the basic voltage value (V o ), it is the sunset time (t sunset ), and the electron is recorded. The time currently displayed by the clock (51);

第五步驟:計算太陽午時(tsol,n),公式為:太陽午時(tsol,n)=[日出時間(tsunrise)+日落時間(tsunset)]/2;The fifth step: calculate the solar noon (t sol, n ), the formula is: sun noon (t sol, n ) = [sunrise time (t sunrise ) + sunset time (t sunset )] / 2;

第六步驟:比較太陽午時(tsol,n)與時鐘午時(tclk,n),求得誤差值(△terr),公式為:誤差值(△terr)=太陽午時(tsol,n)-時鐘午時(tclk,n);The sixth step: comparing the solar noon (t sol, n ) with the clock noon (t clk, n ), and obtaining the error value (Δt err ), the formula is: error value (Δt err ) = sun noon (t sol, n )-clock noon (t clk,n );

第七步驟:當誤差量(△terr)之絕對值,大於至少一容許值時,立即進行電子時鐘(51)之當前時間(tclk)的更正,公式為:當前時間(tclk)轉為當前太陽午時(tsol)=當前時間(tclk)+誤差量(△terr)。The seventh step: when the absolute value of the error amount (Δt err ) is greater than at least one allowable value, the correction of the current time (t clk ) of the electronic clock ( 51 ) is immediately performed, and the formula is: the current time (t clk ) It is the current solar noon (t sol ) = current time (t clk ) + error amount (Δt err ).

其中,本發明需求之使用壽命為至少25年[在戶外],而一般電子時鐘(51)如IC時鐘,每天誤差量可達1秒以上,經長時期運轉後,十年會產生一小時以上的時間誤差,因此利用上述太陽時差運算結果來,將標準時間(tstd)修正的方法,也會跟著產生一小時以上的時間誤差。Among them, the service life of the invention is at least 25 years [outdoor], and the general electronic clock (51), such as the IC clock, can have an error of more than 1 second per day, and after a long period of operation, it will generate more than one hour in a decade. The time error, therefore, using the above solar time difference calculation result, the method of correcting the standard time (t std ) will also produce a time error of more than one hour.

有鑑於此,為同時解決因電子時鐘所設定的地區標準時間[(standard time]與太陽時間[solar time]產生誤差,以及電子時鐘(51)年久失準的問題,本發明利用偵測太陽電池之端電壓變化值(Vpv)以及一附於微處理控制裝置(5)內的分析軟體,於機器安裝完成並開始正常運轉時,將電子時鐘(51)所設定的當地之標準時間(tstd),定期修正成為真正反應太陽位置的太陽時間「真太陽時」,使得控制器可精準追蹤太陽。In view of this, in order to simultaneously solve the problem of the regional standard time set by the electronic clock [(standard time] and the solar time [solar time], and the electronic clock (51) is inaccurate, the present invention utilizes the detection of the sun. The terminal voltage change value (V pv ) of the battery and an analysis software attached to the microprocessor control device (5), when the machine is installed and starts normal operation, the local standard time set by the electronic clock (51) (t) Std ), regularly correcting the sun time "true sun time" that truly reflects the position of the sun, allowing the controller to accurately track the sun.

本發明利用分析太陽電池之端電壓變化,來找出日出與日落時間進而推算當前太陽午時(tsol),並將時鐘修正為真太陽時(ttst)。The invention utilizes the analysis of the terminal voltage variation of the solar cell to find the sunrise and sunset time and then calculate the current solar noon (t sol ) and correct the clock to the true sun (t tst ).

太陽電池(3)受太陽輻射照射時,產生電壓並輸出電流,因此在日出時刻,太陽電池(3)的端電壓會有驟升之現象,而在日落時,太陽電池的端電壓會有驟降之現象。When the solar cell (3) is exposed to solar radiation, it generates a voltage and outputs a current. Therefore, at sunrise time, the terminal voltage of the solar cell (3) may suddenly rise, and at sunset, the terminal voltage of the solar cell may have The phenomenon of sudden drop.

利用此一現象,可用來偵測日出時間(tsunrise)與日落時間(tsunset),其中間點便是太陽午時(tsol),將其與電子時鐘(51)的當前時間(tclk)做比對,如果誤差量(△terr)超過容許值範圍,便進行修正,使電子時鐘(51)顯現真太陽時(ttst)。Using this phenomenon, it can be used to detect the sunrise time (t sunrise ) and the sunset time (t sunset ), the middle point is the sun noon (t sol ), and the current time of the electronic clock (51) (t clk For comparison, if the error amount (Δt err ) exceeds the allowable value range, the correction is made so that the electronic clock (51) appears true sun (t tst ).

參見圖7,此一變化形態普遍存在於太陽光發電系統,並不因有無採用追日裝置,或採獨立型或市電併聯型系統設計或不同種類之太陽電池(3)而改變,此種利用太陽電池(3)之端電壓變化現象,來判斷日出與日落,並換算成太陽午時(tsol)的方法,故稱為「絕對電壓法」。Referring to Figure 7, this variation is ubiquitous in solar power generation systems, and is not changed by the use of a chasing device, or by a separate or mains parallel system design or a different type of solar cell (3). The solar cell (3) terminal voltage change phenomenon to determine the sunrise and sunset, and converted to the sun noon (t sol ) method, it is called the "absolute voltage method."

上述中,所述微處理控制裝置(5)中、更包含有一位置控制器(52);而所述馬達(41)之轉軸處、更裝置有一能供感測轉動角度用的轉動位置感測器(6);前述位置控制器(52),其能依據內部所設定的三角度轉動時間(tR),開始啟動電動式伸縮推桿(4),控制轉動,並依照其內部所設定的轉動位置設定值(VR),與前述轉動位置感測器(6)所回授實際轉動位置,進行比較後,該位置控制器(52)能根據誤差量,來改變對電動式伸縮推桿(4)的驅動大小,直到精準控制為止。In the above, the microprocessor control device (5) further includes a position controller (52); and the rotating shaft of the motor (41) further includes a rotational position sensing for sensing the rotation angle. The position controller (52) can start the electric telescopic push rod (4) according to the internally set three-angle rotation time (t R ), control the rotation, and set according to the inside thereof. The rotational position setting value (V R ) is compared with the actual rotational position fed back by the rotational position sensor (6), and the position controller (52) can change the electric telescopic push rod according to the error amount. (4) The drive size until precise control.

其中,透過此種運用,降低角度調整時所產生的誤差,在更精密控制的同時,也更不容易發生故障的現象。Among them, through such an application, the error caused by the angle adjustment is reduced, and the phenomenon of malfunction is less likely to occur at the same time as more precise control.

上述中,所述位置控制器(52),其是為一PID控制器;所述轉動位置感測器(6),其是為一轉動式電阻。In the above, the position controller (52) is a PID controller; the rotational position sensor (6) is a rotary resistor.

其中,PID控制器,是為比例-積分-微分控制器,由比例單元P、積分單元I和微分單元D組成,通過Kp,Ki和Kd三個參數的設定,主要適用於基本線性和動態特性不隨時間變化的系統,是一個在工業控制應用中常見的反饋迴路部件,能降低裝置的成本。Among them, the PID controller is a proportional-integral-derivative controller consisting of a proportional unit P, an integral unit I and a differential unit D. The three parameters of Kp, Ki and Kd are mainly applied to the basic linear and dynamic characteristics. A system that does not change over time is a feedback loop component that is common in industrial control applications and can reduce the cost of the device.

其次,轉動式電阻的應用,除了能有效的感測轉動之外,最重要的是,不易故障、十分耐用,且成本低。Secondly, the application of rotary resistors, in addition to being able to effectively sense the rotation, is most important, not easy to malfunction, very durable, and low in cost.

上述中,所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能將當地天文及/或氣象台所提供的每日真太陽時偏差量(EST),輸入微處理控制裝置(5)內,以進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+每日真太陽時偏差量(EST)。In the above, the microprocessor control device (5) has an electronic clock (51) therein, and the original setting of the electronic clock (51) is a standard time (t std ); and the microprocessor control device (5) ), which can input the daily true solar time deviation (EST) provided by the local astronomy and/or meteorological station into the micro-processing control device (5) to correct the current time (t clk ) of the electronic clock (51) To make it true sun (t tst ), the correction formula is as follows: true solar time (t tst ) = standard time (t std ) + daily true solar time deviation (EST).

其中,電子時鐘(51)通常設定為地區標準時間[standard time],可是在天文學上,「太陽時間(solar time)」係對應於真正太陽位置的時間,又稱「真太陽時」。Among them, the electronic clock (51) is usually set to the regional standard time [standard time], but in astronomy, "solar time" corresponds to the time of the real sun position, also known as "true sun time."

例如太陽午時就是指太陽正射的時間,然而為了使居住於同一地區的人們生活方便,人類訂定了各個地區的標準時間[standard time],以特定地球經度作為某一地區的標準時間,使得各地標準時間與太陽時間產生偏差,例如採用中原標準時間計時的新疆等中國邊疆地區,其太陽時間就比中原標準時間延後2小時,使得固定角度的單軸追蹤太陽光發電裝置如採用地區標準時間[standard time]計時來追蹤太陽,便會產生很大誤差。For example, the sun noon refers to the time when the sun is ortho. However, in order to make life convenient for people living in the same area, humans have set the standard time of each region, and the specific longitude of the earth is used as the standard time of a certain region. There is a deviation between the standard time and the solar time in various places. For example, in Xinjiang, China, such as the Central Plains standard time, the solar time is delayed by 2 hours than the Central Plains standard time, making the fixed-angle single-axis tracking solar power generation device adopt regional standards. Time [standard time] timing to track the sun will cause a lot of error.

為避免因電子時鐘所設定的地區標準時間[standard time]與太陽時間[solar time]產生誤差,故要透過上述的修正公式,來解決此問題。In order to avoid errors due to the regional standard time [solar time] set by the electronic clock and the solar time [solar time], the above correction formula is used to solve this problem.

上述中,所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能以太陽時差公式取得一太陽時差值(V),定期進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+太陽時差值(V)+4[標準時間之經度(Lst)-當地之經度(Lloc)]。In the above, the microprocessor control device (5) has an electronic clock (51) therein, and the original setting of the electronic clock (51) is a standard time (t std ); and the microprocessor control device (5) ), which can obtain a solar time difference (V) by the solar time difference formula, and periodically correct the current time (t clk ) of the electronic clock (51) to make it a true solar time (t tst ). The correction formula is as follows: true Sun time (t tst ) = standard time (t std ) + solar time difference (V) + 4 [standard time longitude (L st ) - local longitude (L loc )].

其中,由於地區標準時間[standard time]與太陽時間[solar time]的偏差量,隨季節變化,每日皆不同,為避免輸入大量每日真太陽時偏差量(EST)數據[365筆]於微處理控制裝置(5)中,造成不同地區應用上的不方便,也可利用經驗供式換算,例如:採用L.O.Lamm於1981年發表的太陽時的時差公式[equation of time/EQT](Solar Energy,Vol.26,p.465,1981),來獲得太陽時差值(V),來解決此問題。Among them, due to the variation of the regional standard time [solar time] and the solar time [solar time], it varies with the seasons, so as to avoid inputting a large amount of daily true solar time deviation (EST) data [365 pens] In the micro-processing control device (5), it is inconvenient to apply in different regions, and can also be converted by empirical supply. For example, the time difference formula of the solar time published by LOLamm in 1981 [equation of time/EQT] (Solar Energy, Vol. 26, p. 465, 1981), to obtain the solar time difference (V) to solve this problem.

其次,標準時間之經度(Lst)的單位是[degree];當地之經度(Lloc)的單位是[degree];太陽時差公式[equation of time/EQT]的單位是分鐘,每天不同,有正值也有負值;利用該公式計算的平均誤差為0.53秒,最大誤差3.6秒。Secondly, the longitude of standard time (L st) in units of [Degree]; local of longitude (L loc) in units of [Degree]; Sun difference equation [equation of time / EQT] in units of minutes, different every day, Positive values also have negative values; the average error calculated using this formula is 0.53 seconds and the maximum error is 3.6 seconds.

還有,只要將運算公式直接存於微處理控制裝置(5)中,使用時只要輸入標準時間之經度(Lst)和當地之經度(Lloc)於微處理控制裝置(5)之中,利用電子時鐘(51)提供的日期與時間,便可定期[每週、每月、或每季]透過前述公式的計算,獲得真太陽時(ttst),然後修正電子時鐘(51)。Further, as long as the calculation formula is directly stored in the microprocessor control device (5), the longitude (L st ) of the standard time and the local longitude (L loc ) are input into the microprocessor control device (5). Using the date and time provided by the electronic clock (51), the true solar time (t tst ) can be obtained periodically (weekly, monthly, or quarterly) by the calculation of the above formula, and then the electronic clock (51) is corrected.

綜合以上所述,能得知本發明透過電動式伸縮推桿(4)與微處理控制裝置(5)的應用,並透過絕對電壓法的使用,解決專利文獻1的問題,同時產生更優於專利文獻1的運作效果,讓本發明更具有應用、實用、功效與產業之利用性。In summary, the present invention can be applied to the application of the electric telescopic pusher (4) and the micro-processing control device (5), and solve the problem of the patent document 1 by using the absolute voltage method, and at the same time, it is better than the above. The operational effect of Patent Document 1 makes the present invention more practical, practical, effective, and industrially usable.

以上依據圖式所示的實施例詳細說明瞭本發明的構造、特徵及作用效果,由於符合新穎及進步性要件,遂爰依法提出發明專利申請;惟以上所述僅為本發明之較佳實施例,但本發明不以圖面所示限定實施範圍,因此舉凡與本發明意旨相符的修飾性變化,只要在均等範圍內都應涵屬於本發明專利範圍內。The structure, features and effects of the present invention are described in detail above based on the embodiments shown in the drawings. Since the novel and progressive requirements are met, the invention patent application is filed according to the law; however, the above description is only a preferred embodiment of the present invention. For example, the present invention is not limited by the scope of the invention, and modifications that are in accordance with the meaning of the present invention are intended to be within the scope of the invention as long as they are within the scope of the invention.

1...支撐柱1. . . Support column

11...直桿11. . . Straight rod

12...橫桿12. . . Crossbar

2...固定架2. . . Fixing frame

3...太陽電池3. . . Solar battery

4...電動式伸縮推桿4. . . Electric telescopic putter

41...馬達41. . . motor

42...伸縮桿42. . . Telescopic rod

43...傳動齒輪組43. . . Transmission gear set

5...微處理控制裝置5. . . Micro processing control device

51...電子時鐘51. . . Electronic clock

52...位置控制器52. . . Position controller

6...轉動位置感測器6. . . Rotary position sensor

7...分析軟體7. . . Analysis software

10...太陽能電池支架10. . . Solar battery bracket

20...太陽能電池20. . . Solar battery

30...驅動馬達30. . . Drive motor

40...可調角度平台40. . . Adjustable angle platform

401...旋轉軸401. . . Rotary axis

402...傳動齒輪402. . . Transmission gear

403...刻度盤403. . . Dial

50...太陽能電池支撐柱50. . . Solar cell support column

501...套筒501. . . Sleeve

60...追蹤感測器60. . . Tracking sensor

601...第一感光元件601. . . First photosensitive element

602...第二感光元件602. . . Second photosensitive element

603...擋光板603. . . Light barrier

tstd...標準時間t std . . . standard Time

tsunrise...日出時間t sunrise . . . Sunrise time

tsunset...日落時間t sunset . . . Sunset time

tsol,n...太陽午時t sol,n . . . Sun noon

tsol...當前太陽午時t sol . . . Current sun noon

tR...三角度轉動時間t R . . . Three-angle turning time

Vo...基本電壓值V o . . . Basic voltage value

Vpv...端電壓變化值V pv . . . Terminal voltage change value

VR...轉動位置設定值V R . . . Rotation position setting

圖1:習知單軸追蹤太陽光發電裝置的立體示意圖。Figure 1: A schematic perspective view of a conventional single-axis tracking solar power generation device.

圖2:習知單軸追蹤太陽光發電裝置之轉動位置感測器的部分放大立體示意圖。2 is a partially enlarged perspective view of a rotary position sensor of a conventional single-axis tracking solar power generation device.

圖3:習知單軸追蹤太陽光發電裝置的實施示意圖。Figure 3: Schematic diagram of a conventional single-axis tracking solar power generation device.

圖4:本發明的立體示意圖。Figure 4: A perspective view of the invention.

圖5:本發明的立體分解示意圖。Figure 5 is a perspective exploded view of the present invention.

圖6:實際所偵測的太陽電池端電壓變化圖。Figure 6: Actually detected solar cell terminal voltage change diagram.

圖7:本發明的控制流程方塊示意圖。Figure 7 is a block diagram showing the control flow of the present invention.

圖8:本發明的立體實施示意圖。Figure 8 is a schematic perspective view of the present invention.

1...支撐柱1. . . Support column

11...直桿11. . . Straight rod

12...橫桿12. . . Crossbar

2...固定架2. . . Fixing frame

3...太陽電池3. . . Solar battery

4...電動式伸縮推桿4. . . Electric telescopic putter

41...馬達41. . . motor

42...伸縮桿42. . . Telescopic rod

43...傳動齒輪組43. . . Transmission gear set

5...微處理控制裝置5. . . Micro processing control device

6...轉動位置感測器6. . . Rotary position sensor

Claims (7)

一種單軸固定轉動角度追蹤太陽裝置,其特徵在於包括:一由直桿(11)和橫桿(12)組成的支撐柱(1);一中央與該橫桿(12)樞接、可調轉動角度的固定架(2);一設於該固定架(2)頂表面處的太陽電池(3);一由馬達(41)、伸縮桿(42)、和傳動齒輪組(43)所組成的電動式伸縮推桿(4);及一與該電動式伸縮推桿(4)電連接的微處理控制裝置(5);該橫桿(12)為以中央部,呈一角度設置於該直桿(11)頂端處;該馬達(41)為設於該伸縮桿(42)的一側、其轉軸透過傳動齒輪組(43)與該伸縮桿(42)底端連接、以供驅使該伸縮桿(42)伸縮作動,而該伸縮桿(42)的頂端、為與該固定架(2)對應側樞連接,又該傳動齒輪組(43)的底端、為與該直桿(11)對應側樞接;利用馬達(41)通電來使傳動齒輪組(43)作動,帶動伸縮桿(42)產生伸縮動作,進而轉動固定架(2)、來調整其角度,使得固定架(2)上的太陽電池(3),可以面向太陽。A single-axis fixed rotation angle tracking solar device, comprising: a support column (1) consisting of a straight rod (11) and a cross rod (12); a central pivotal connection with the cross rod (12), adjustable a rotating angle fixing frame (2); a solar cell (3) disposed at a top surface of the fixing frame (2); a motor (41), a telescopic rod (42), and a transmission gear set (43) An electric telescopic push rod (4); and a micro-processing control device (5) electrically connected to the electric telescopic push rod (4); the cross bar (12) is disposed at an angle at a central portion a motor (41) is disposed on one side of the telescopic rod (42), and a shaft is coupled to the bottom end of the telescopic rod (42) through a transmission gear set (43) for driving the motor The telescopic rod (42) is telescopically actuated, and the top end of the telescopic rod (42) is pivotally connected to the corresponding side of the fixing frame (2), and the bottom end of the transmission gear set (43) is aligned with the straight rod (11) The corresponding side is pivotally connected; the motor (41) is energized to actuate the transmission gear set (43) to drive the telescopic rod (42) to produce a telescopic movement, and then the fixed bracket (2) is rotated to adjust the angle thereof so that the fixing frame (2) ) on the solar cell (3), To face the sun. 如請求項1所述的單軸固定轉動角度追蹤太陽裝置,其特徵在於:所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5)為與該太陽電池(3)電連接,以接受太陽電池(3)端電壓信號變化,並依照絕對電壓法,來判斷日出時間(tsunrise)與日落時間(tsunset),並換算成太陽午時(tsol,n),然後定期進行前述電子時鐘(51)之當前時間(tclk)的修正。The uniaxial fixed rotation angle tracking solar device according to claim 1, wherein the micro processing control device (5) includes an electronic clock (51), and the original setting of the electronic clock (51) Is the standard time (t std ); and the micro-processing control device (5) is electrically connected to the solar cell (3) to accept the voltage signal change of the solar cell (3) terminal, and judge the date according to the absolute voltage method. The time (t sunrise ) and the sunset time (t sunset ) are converted into solar noon (t sol, n ), and then the current time (t clk ) of the aforementioned electronic clock (51) is periodically corrected. 如請求項1所述的單軸固定轉動角度追蹤太陽裝置,其特徵在於:所述微處理控制裝置(5)中、更包含有一位置控制器(52);而所述馬達(41)之轉軸處、更裝置有一能供感測轉動角度用的轉動位置感測器(6);前述位置控制器(52),其能依據內部所設定的三角度轉動時間(tR),開始啟動電動式伸縮推桿(4),控制轉動,並依照其內部所設定的轉動位置設定值(VR),與前述轉動位置感測器(6)所回授實際轉動位置,進行比較後,該位置控制器(52)能根據誤差量,來改變對電動式伸縮推桿(4)的驅動大小,直到精準控制為止。The uniaxial fixed rotation angle tracking solar device according to claim 1, wherein the micro processing control device (5) further comprises a position controller (52); and the rotation shaft of the motor (41) The position and the device have a rotary position sensor (6) for sensing the rotation angle; and the position controller (52) can start the electric type according to the internally set three-angle rotation time (t R ). The telescopic push rod (4) controls the rotation and is compared with the rotational position setting value (V R ) set therein to compare with the actual rotational position of the rotational position sensor (6), and the position control is performed. The device (52) can change the driving size of the electric telescopic push rod (4) according to the error amount until precise control. 如請求項3所述的單軸固定轉動角度追蹤太陽裝置,其特徵在於:所述位置控制器(52),其是為一PID控制器;所述轉動位置感測器(6),其是為一轉動式電阻。The uniaxial fixed rotation angle tracking solar device according to claim 3, characterized in that: the position controller (52) is a PID controller; the rotational position sensor (6) is It is a rotary resistor. 如請求項1所述的單軸固定轉動角度追蹤太陽裝置,其特徵在於:所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能將當地天文及/或氣象台所提供的每日真太陽時偏差量(EST),輸入微處理控制裝置(5)內,以進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+每日真太陽時偏差量(EST)。The uniaxial fixed rotation angle tracking solar device according to claim 1, wherein the micro processing control device (5) includes an electronic clock (51), and the original setting of the electronic clock (51) The standard time (t std ); and the micro-processing control device (5), which can input the daily true solar time deviation (EST) provided by the local astronomy and/or meteorological station into the micro-processing control device (5) Internally, the current time (t clk ) of the electronic clock (51) is corrected to become true solar time (t tst ), and the correction formula is as follows: true solar time (t tst ) = standard time (t std ) + daily True solar time deviation (EST). 如請求項1所述的單軸固定轉動角度追蹤太陽裝置,其特徵在於:所述微處理控制裝置(5),其內含有一電子時鐘(51),而該電子時鐘(51)的原始設定為標準時間(tstd);而所述微處理控制裝置(5),其能以太陽時差公式取得一太陽時差值(V),定期進行電子時鐘(51)之當前時間(tclk)修正,使其成為真太陽時(ttst),修正公式如下:真太陽時(ttst)=標準時間(tstd)+太陽時差值(V)+4[標準時間之經度(Lst)-當地之經度(Lloc)]。The uniaxial fixed rotation angle tracking solar device according to claim 1, wherein the micro processing control device (5) includes an electronic clock (51), and the original setting of the electronic clock (51) The standard time (t std ); and the micro-processing control device (5), which can obtain a solar time difference (V) by the solar time difference formula, and periodically corrects the current time (t clk ) of the electronic clock ( 51 ) To make it true sun (t tst ), the correction formula is as follows: true solar time (t tst ) = standard time (t std ) + solar time difference (V) + 4 [standard time longitude (L st ) - Local longitude (L loc )]. 一種單軸固定轉動角度追蹤太陽的控制方法,其特徵在於:所述微處理控制裝置(5)之絕對電壓法的運作流程步驟,如下所示為:第一步驟:設定一基本電壓值(Vo);第二步驟:偵測太陽電池(3)端電壓變化值(Vpv);第三步驟:日出時間判斷,當端電壓變化值(Vpv)由低值[<基本電壓值(Vo)]升高至超過基本電壓值(Vo)時,即為日出時間(tsunrise),記錄下電子時鐘(51)當前所顯示的當前時間(tclk);第四步驟:日落時間判斷,當端電壓變化值(Vpv)由高值(>Vo值)降至小於基本電壓值(Vo)時,即為日落時間(tsunset),記錄下電子時鐘(51)當前所顯示的時間;第五步驟:計算太陽午時(tsol,n),公式為:太陽午時(tsol,n)=[日出時間(tsunrise)+日落時間(tsunset)]/2;第六步驟:比較太陽午時(tsol,n)與時鐘午時(tclk,n),求得誤差值(△terr),公式為:誤差值(△terr)=太陽午時(tsol,n)-時鐘午時(tclk,n);第七步驟:當誤差量(△terr)之絕對值,大於至少一容許值時,立即進行電子時鐘(51)之當前時間(tclk)的更正,公式為:當前時間(tclk)轉為當前太陽午時(tsol)=當前時間(tclk)+誤差量(△terr)。A single-axis fixed rotation angle tracking sun control method is characterized in that: the operation procedure of the absolute voltage method of the micro-processing control device (5) is as follows: the first step: setting a basic voltage value (V) o ); the second step: detecting the voltage change value (V pv ) of the solar cell (3); the third step: judging at sunrise time, when the terminal voltage change value (V pv ) is from a low value [< basic voltage value ( When V o )] rises above the basic voltage value (V o ), it is the sunrise time (t sunrise ), and the current time (t clk ) currently displayed by the electronic clock (51) is recorded; the fourth step: sunset Time judgment, when the terminal voltage change value (V pv ) is reduced from the high value (>V o value) to less than the basic voltage value (V o ), it is the sunset time (t sunset ), and the electronic clock (51) is recorded. The time displayed; the fifth step: calculate the solar noon (t sol, n ), the formula is: sun noon (t sol, n ) = [sunrise time (t sunrise ) + sunset time (t sunset )] / 2; The sixth step: comparing the solar noon (t sol, n ) with the clock noon (t clk, n ), and obtaining the error value (Δt err ), the formula is: error value (Δt err ) = Sun noon (t sol, n ) - clock noon (t clk, n ); seventh step: when the absolute value of the error amount (Δt err ) is greater than at least one allowable value, the current electronic clock (51) is immediately The correction of time (t clk ), the formula is: the current time (t clk ) is converted to the current sun noon (t sol ) = current time (t clk ) + error amount (Δt err ).
TW101106995A 2012-03-02 2012-03-02 Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun TWI451054B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101106995A TWI451054B (en) 2012-03-02 2012-03-02 Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101106995A TWI451054B (en) 2012-03-02 2012-03-02 Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun

Publications (2)

Publication Number Publication Date
TW201337189A true TW201337189A (en) 2013-09-16
TWI451054B TWI451054B (en) 2014-09-01

Family

ID=49627806

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106995A TWI451054B (en) 2012-03-02 2012-03-02 Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun

Country Status (1)

Country Link
TW (1) TWI451054B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459193A (en) * 2016-01-04 2020-07-28 耐克斯特拉克尔有限公司 Method for controlling direction of solar cell module with two photosensitive surfaces
CN113303234A (en) * 2021-05-31 2021-08-27 上海艳紫化工科技有限公司 Ecological breeding house

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI304657B (en) * 2006-06-02 2008-12-21 Radistar Corp Photovoltaic power generating apparatus three-position tracking
TWM375130U (en) * 2009-07-15 2010-03-01 Huang Yih Gear Industry Co Ltd Sun-tracking system device
TWI414736B (en) * 2010-02-02 2013-11-11 Herng Jiunn Liao One-axis solar tracker system and apparatus with wind lock devices
TWM400573U (en) * 2010-09-30 2011-03-21 Marvels Solar Co Ltd Sun-tracking frame for solar energy system
CN201936195U (en) * 2010-12-31 2011-08-17 刘建中 Dual-shaft sunlight tracking device
TWM409407U (en) * 2011-03-25 2011-08-11 Moteck Electric Corp Sun-tracking device of solar energy system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459193A (en) * 2016-01-04 2020-07-28 耐克斯特拉克尔有限公司 Method for controlling direction of solar cell module with two photosensitive surfaces
CN111459193B (en) * 2016-01-04 2023-11-17 耐克斯特拉克尔有限公司 Method for controlling the orientation of a solar module having two photosurfaces
CN113303234A (en) * 2021-05-31 2021-08-27 上海艳紫化工科技有限公司 Ecological breeding house

Also Published As

Publication number Publication date
TWI451054B (en) 2014-09-01

Similar Documents

Publication Publication Date Title
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
CN100368741C (en) Sun tracking device and method based on tracking posture feedback
TWI304657B (en) Photovoltaic power generating apparatus three-position tracking
US8973570B2 (en) System and method of tracking solar radiation
JP5061047B2 (en) PV system tracking system
KR200468300Y1 (en) an angle adjusting apparatus of a solar-cell module
Zhang et al. Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm
JP3177911U (en) Single-axis fixed tracking solar power generator with angle adjustment function
CN203689162U (en) Solar automatic tracking device
CN101943915A (en) Sunlight reflector closed-loop control system based on reference mirror and method thereof
KR20110054960A (en) Tracking photovoltaic system
JP4901837B2 (en) Solar tracking device
TWI451054B (en) Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun
CN203465601U (en) Solar energy tracker and novel flat homotaxial solar energy tracking system
CN102411375B (en) Method and system for accurately controlling sunlight reflection device
CN205193600U (en) Three -point fix solar energy automatic tracking apparatus and control system thereof
CN107329497B (en) Solar tracking implementation technology based on photosensitive resistance element
CN202331219U (en) Synchronous tracking rocker-type light focusing solar power station
CN102749932B (en) Sun-tracking control system and method for solar streetlamp
CN103455047B (en) Sun tracker and tracking
CN201374657Y (en) Sun direction sensing device
JP2005129574A (en) Sunlight tracking device
CN202600495U (en) Single-shaft fixed-rotation-angle-type sun-tracking solar power generating device
CN207197490U (en) A kind of meteorological observatory for detecting position of sun
CN101446489B (en) Sun position direction discerning device and use method thereof