TW201318240A - Light emitting device, display device, and illumination device - Google Patents

Light emitting device, display device, and illumination device Download PDF

Info

Publication number
TW201318240A
TW201318240A TW101132599A TW101132599A TW201318240A TW 201318240 A TW201318240 A TW 201318240A TW 101132599 A TW101132599 A TW 101132599A TW 101132599 A TW101132599 A TW 101132599A TW 201318240 A TW201318240 A TW 201318240A
Authority
TW
Taiwan
Prior art keywords
light
electrode
layer
barrier
emitting device
Prior art date
Application number
TW101132599A
Other languages
Chinese (zh)
Inventor
Mitsuhiro Koden
Yoshimasa Fujita
Hisanori Bessho
Ayataka Endo
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011257961A external-priority patent/JP2014225328A/en
Priority claimed from JP2012035470A external-priority patent/JP2014225329A/en
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201318240A publication Critical patent/TW201318240A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Abstract

A light emitting device includes a light-transmitting substrate, first and second electrodes which are laminated on one surface of the substrate in this order, an organic light emitting layer formed between the first and second electrodes, and a first bank which partitions at least the first electrode in a predetermined region. The first bank includes a light-reflective material.

Description

發光裝置、顯示裝置、及照明裝置 Illuminating device, display device, and lighting device

本發明係關於一種對有機發光層施加電壓而使其發光之發光裝置,及具備該發光裝置之顯示裝置、照明裝置。 The present invention relates to a light-emitting device that applies a voltage to an organic light-emitting layer to emit light, and a display device and an illumination device including the light-emitting device.

本申請案係基於2011年9月12日於日本提出申請之日本專利特願2011-198500號、2011年11月25日於日本提出申請之日本專利特願2011-257961號、及2012年2月21日於日本提出申請之日本專利特願2012-35470號並主張優先權,將其內容引用於此。 This application is based on Japanese Patent Application No. 2011-198500, filed on September 12, 2011 in Japan, and Japanese Patent Application No. 2011-257961, filed on November 25, 2011 in Japan, and February 2012. Japanese Patent Application No. 2012-35470, filed on Sep. 21, the entire entire entire entire entire entire entire entire entire content

近年來,隨著社會之高度資訊化,平板顯示器之需求正在提高。作為平板顯示器,例如可列舉:非自發光型液晶顯示器(LCD,Liquid Crystal Display)、自發光型電漿顯示器(PDP,Plasma Display Panel)、無機電致發光(無機EL(Electro Luminescence))顯示器、有機電致發光(以下亦稱作「有機EL」或「有機LED」)顯示器等。 In recent years, with the high level of informationization in society, the demand for flat panel displays is increasing. Examples of the flat panel display include a non-self-luminous liquid crystal display (LCD), a PDP (Plasma Display Panel), and an inorganic EL (Electro Luminescence) display. Organic electroluminescence (hereinafter also referred to as "organic EL" or "organic LED") displays.

該等平板顯示器中,尤其是有機EL(有機發光二極體(Organic light emitting diode))顯示器等使用有機發光層之發光元件由於薄型、廣視野角等優點而作為可成為下一代顯示器之主流之候補技術受到關注。 Among these flat panel displays, a light-emitting element using an organic light-emitting layer, such as an organic EL (Organic Light Emitting Diode) display, can be a mainstream of next-generation displays due to its advantages such as a thin shape and a wide viewing angle. Alternate technology is receiving attention.

又,近年來,就低電力消耗化、環境適應性等觀點而言,LED(Light Emitting Diode)、有機電致發光(以下亦稱作「有機EL」或「有機LED」)等新的照明技術代替先前之白熾燈或螢光燈而受到關注。 In recent years, new lighting technologies such as LED (Light Emitting Diode) and organic electroluminescence (hereinafter also referred to as "organic EL" or "organic LED" have been proposed from the viewpoints of low power consumption and environmental adaptability. It has received attention instead of the previous incandescent or fluorescent lamps.

於上述發光元件中,重要的是控制發光色使其成為所期望之顏色,作為實現其之手段,不僅控制發光元件之發光色,而且藉由組合彩色濾光片或螢光體等波長轉換層而進行發光色之控制之方法亦為有效之手段。 In the above light-emitting element, it is important to control the luminescent color to have a desired color, and as a means for realizing the luminescent color of the illuminating element, and by combining a wavelength conversion layer such as a color filter or a phosphor. The method of controlling the illuminating color is also an effective means.

例如於應用於全彩顯示器之情形時,一般而言需要R(紅色)、G(綠色)、B(藍色)各色。已知於基板上分塗該等RGB各色之像素之方法、於白色發光之元件上組合RGB之彩色濾光片之方法、於藍色發光之元件上組合螢光體之方法等。於各方法中,可組合彩色濾光片或螢光體等波長轉換層而進行發光色之控制。再者,彩色濾光片或螢光體均具有對射入至該等上之光的波長光譜進行轉換之功能,因此以下稱作波長轉換層。 For example, when applied to a full color display, generally, R (red), G (green), and B (blue) colors are required. A method of separating the pixels of the RGB colors on the substrate, a method of combining the RGB color filters on the white light-emitting elements, a method of combining the phosphors on the blue light-emitting elements, and the like are known. In each method, a wavelength conversion layer such as a color filter or a phosphor may be combined to control the luminescent color. Furthermore, the color filter or the phosphor has a function of converting the wavelength spectrum of the light incident on the light, and is hereinafter referred to as a wavelength conversion layer.

例如,於在基板上分塗RGB各色之像素之方法中,藉由於RGB各色之發光部分組合彩色濾光片而獲得色純度之提高、外光反射之抑制等效果。於在白色發光之元件上組合RGB之彩色濾光片之方法、在藍色發光之元件上組合螢光體之方法中,具有無需於各像素上分塗RGB而生產性良好地製作全彩顯示器之優點。 For example, in a method of separately coating pixels of RGB colors on a substrate, an effect of improving color purity and suppressing external light reflection is obtained by combining color filters of light-emitting portions of RGB colors. In a method of combining RGB color filters on a white light-emitting element and a method of combining phosphors on a blue light-emitting element, it is possible to produce a full-color display with good productivity without applying RGB to each pixel. The advantages.

又,於應用於照明之情形時,一般而言要求白色,為了根據照明對象而使波長光譜或色調成為所期望者,組合彩色濾光片或螢光體等波長轉換層之方法可謂有效之手段。尤其是為了提高顯色性、於植物工場等中實現特定發光光譜等,組合彩色濾光片或螢光體等波長轉換層之方法可謂有效之手段。 Further, when applied to illumination, white is generally required, and in order to make the wavelength spectrum or color tone desired according to the illumination target, a method of combining a wavelength conversion layer such as a color filter or a phosphor is an effective means. . In particular, in order to improve color rendering properties, to achieve a specific luminescence spectrum in a plant factory or the like, a method of combining a wavelength conversion layer such as a color filter or a phosphor is an effective means.

就有機EL而言,殘留有發光效率較低、消耗電力較大、壽命較短、可靠性較低等課題。發光效率通常以ηΦ(ext)(External Quantum Efficiency)=ηext×ηΦ=ηext×γ×ηr×Φf表示。此處,ηΦ(ext)為外部量子效率,ηext為外部光提取效率,ηΦ為內部量子效率,γ為載波平衡,ηr為激子生成概率,Φf為螢光量子產率。 In the organic EL, there are problems such as low luminous efficiency, large power consumption, short life, and low reliability. The luminous efficiency is usually expressed by ηΦ(ext)(External Quantum Efficiency)=ηext×ηΦ=ηext×γ×ηr×Φf. Here, ηΦ(ext) is the external quantum efficiency, ηext is the external light extraction efficiency, ηΦ is the internal quantum efficiency, γ is the carrier balance, ηr is the exciton generation probability, and Φf is the fluorescence quantum yield.

近年來,隨著材料之進步,內部量子效率確實地提高,尤其是隨著利用三重態之磷光材料之進展而獲得大幅度改善。然而,另一方面,光提取效率作為較大之課題而殘留。於有機EL元件中,由於所使用之有機發光層、透明電極層、玻璃基板等之折射率大於空氣,故而就基於斯奈爾定律之全反射條件而言,無法高效地提取光。所提取出之光之量通常為15~30%左右,大部分光未射出至外部而損失。 In recent years, with the advancement of materials, the internal quantum efficiency has indeed improved, especially with the progress of the use of triplet phosphorescent materials. However, on the other hand, light extraction efficiency remains as a major problem. In the organic EL device, since the refractive index of the organic light-emitting layer, the transparent electrode layer, and the glass substrate to be used is larger than that of air, it is impossible to extract light efficiently based on the total reflection condition of Snell's law. The amount of light extracted is usually about 15 to 30%, and most of the light is not emitted to the outside and is lost.

又,於在有機EL發光部分組合彩色濾光片或螢光體等波長轉換層之情形時,自彩色濾光片或螢光體等波長轉換層中高效率地提取光之方面成為課題。 In the case where a wavelength conversion layer such as a color filter or a phosphor is combined in the organic EL light-emitting portion, it is a problem to efficiently extract light from a wavelength conversion layer such as a color filter or a phosphor.

對於上述課題,例如於專利文獻1中,揭示有於透明導電層之與發光層相反之面上設置折射率於1.01~1.3之範圍的低折射率層之發明。 In the above-mentioned problem, for example, Patent Document 1 discloses an invention in which a low refractive index layer having a refractive index in the range of 1.01 to 1.3 is provided on a surface of the transparent conductive layer opposite to the light-emitting layer.

又,於專利文獻2中,揭示有於透明電極層與透光性基板之間設置在包含低折射率材料之基質樹脂中擴散有使光散射之粒子的浸出光擴散層之發明。 Further, Patent Document 2 discloses an invention in which a light-diffusion layer in which a light-scattering particle is diffused and dispersed in a matrix resin containing a low refractive index material between a transparent electrode layer and a light-transmitting substrate is disclosed.

又,於專利文獻3中,揭示有於提取光之側之基板面上 設置包含多個微小粒子的光提取層之發明。 Further, in Patent Document 3, a substrate surface on the side where light is extracted is disclosed. An invention is provided in which a light extraction layer containing a plurality of minute particles is provided.

進而,於專利文獻4中,揭示有藉由將像素設為凹狀構造而提高光提取效率之發明。 Further, Patent Document 4 discloses an invention in which the light extraction efficiency is improved by making the pixel have a concave structure.

於專利文獻5中,揭示有藉由於像素之側面設置反射層而提高光提取效率之發明。 Patent Document 5 discloses an invention in which light extraction efficiency is improved by providing a reflective layer on the side surface of a pixel.

於專利文獻6中,揭示有於組合螢光體層與有機EL發光部而成之有機EL元件中在螢光體層之側面設置反射膜之發明。 Patent Document 6 discloses an invention in which a reflective film is provided on a side surface of a phosphor layer in an organic EL device in which a phosphor layer and an organic EL light-emitting portion are combined.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2002-278477號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2002-278477

[專利文獻2]日本專利特開2004-296437號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2004-296437

[專利文獻3]日本專利特開2011-108395號公報 [Patent Document 3] Japanese Patent Laid-Open Publication No. 2011-108395

[專利文獻4]日本專利特開2011-009017號公報 [Patent Document 4] Japanese Patent Laid-Open No. 2011-009017

[專利文獻5]日本專利特開2010-009793號公報 [Patent Document 5] Japanese Patent Laid-Open Publication No. 2010-009793

[專利文獻6]日本專利特開平11-329726號公報 [Patent Document 6] Japanese Patent Laid-Open No. Hei 11-329726

於上述專利文獻1~4所揭示之發明中,雖然可提高光提取效率,但光提取效率之提高效果有限。即,完全未形成針對如下情況之對策:光經由有機發光層或電極而沿著面方向傳播並射出至外部之光減少。 In the inventions disclosed in the above Patent Documents 1 to 4, although the light extraction efficiency can be improved, the effect of improving the light extraction efficiency is limited. That is, there is no countermeasure against the fact that light that propagates in the surface direction via the organic light-emitting layer or the electrode and emits to the outside is reduced.

例如有機發光層之典型之折射率為1.8左右,絕緣層(障壁)之典型之折射率為1.5~1.8左右,作為透明電極層之ITO (Indium Tin Oxides,氧化銦錫)之典型之折射率為2.1~2.2左右,因此由於與低折射率層(折射率1.0~1.3左右)之折射率差而導致於與低折射率層之界面上發生全反射之成分較多。該發生全反射之成分經由有機發光層、絕緣層、透明電極層等而沿著面方向傳播,未射出至外部而損失。 For example, a typical refractive index of an organic light-emitting layer is about 1.8, and a typical refractive index of an insulating layer (barrier) is about 1.5 to 1.8. ITO as a transparent electrode layer. (Indium Tin Oxides, indium tin oxide) has a typical refractive index of about 2.1 to 2.2, so it is caused by a difference in refractive index with a low refractive index layer (about 1.0 to 1.3 refractive index) at the interface with the low refractive index layer. There are many components that cause total reflection. The component that causes total reflection propagates in the plane direction via the organic light-emitting layer, the insulating layer, the transparent electrode layer, or the like, and is not emitted to the outside and is lost.

將透明電極層劃分成有機發光層之各像素區域之絕緣層(障壁)先前包含聚甲基丙烯酸甲酯、聚醯亞胺等高分子材料或SiO2等無機材料,色調為透明或黑色。因此,沿面方向擴散之光於絕緣層(障壁)為黑色之情形時由該絕緣層所吸收而損失。又,於絕緣層(障壁)為透明(透光性)之情形時,光經由該絕緣層而向鄰接之有機發光層或透明電極層傳播而損失。 The insulating layer (barrier) which divides the transparent electrode layer into each pixel region of the organic light-emitting layer previously contains a polymer material such as polymethyl methacrylate or polyimine or an inorganic material such as SiO 2 , and the color tone is transparent or black. Therefore, the light diffused in the plane direction is absorbed by the insulating layer and lost when the insulating layer (barrier) is black. Further, when the insulating layer (barrier) is transparent (transparent), light is transmitted to the adjacent organic light-emitting layer or the transparent electrode layer via the insulating layer and is lost.

又,於專利文獻5及6中,揭示有藉由於發光部分之側面形成反射膜而提高光提取效率之技術,進而於專利文獻6中,揭示有作為反射膜而含有包含金屬粉、金屬粒子或白色顏料之樹脂,但存在構造上、製程上之課題。 Further, Patent Literatures 5 and 6 disclose a technique for improving the light extraction efficiency by forming a reflective film on the side surface of the light-emitting portion, and Patent Document 6 discloses that the conductive film contains metal powder, metal particles, or White pigment resin, but there are problems in structure and process.

於專利文獻5之技術中,由於側面之反射膜為導電性,故而必需於反射膜上進而設置絕緣層,製程變得複雜。並且,由於形成有反射膜之部分為相對於基板而傾斜之間隔壁側面,故而不僅生產時之製程控制性較困難,而且若考慮用以形成圖案之曝光位置對準範圍等,則存在像素開口部變小之課題。若像素開口部變小,則為了獲得作為顯示器之所期望之亮度,必需提高像素開口部之發光亮度。 In the technique of Patent Document 5, since the reflection film on the side surface is electrically conductive, it is necessary to further provide an insulating layer on the reflection film, which complicates the process. Further, since the portion where the reflective film is formed is the side of the partition wall which is inclined with respect to the substrate, not only the process controllability at the time of production is difficult, but also the pixel opening is present in consideration of the exposure position alignment range for forming a pattern or the like. The subject of the ministry. When the pixel opening portion is small, in order to obtain a desired brightness as a display, it is necessary to increase the light emission luminance of the pixel opening portion.

於專利文獻6之技術中,揭示有於螢光體層之側面形成 反射膜之技術,含有包含金屬粉、金屬粒子或白色顏料之樹脂作為反射膜之技術,但對於將該技術應用於有機EL發光部分之方面未作任何揭示或暗示。又,若欲將該技術應用於有機EL發光部而於有機發光部之側面形成反射膜,則產生構造上、製程上之課題。 In the technique of Patent Document 6, it is disclosed that the side surface of the phosphor layer is formed. The technique of a reflective film, which contains a resin containing metal powder, metal particles or white pigment as a reflective film, is not disclosed or suggested for the application of the technique to the organic EL light-emitting portion. Further, if the technique is applied to the organic EL light-emitting portion and the reflective film is formed on the side surface of the organic light-emitting portion, the problem of structure and process is caused.

首先,有機EL之發光部分所使用之有機材料對於水分、氧、溶劑等之耐性極弱,就製程方面而言極難於該有機EL發光部分之側面形成反射膜。又,該技術存在如下課題:不論於有機EL之各像素上分離形成發光層之情形時,或者於使發光層於各像素上分離並於整面形成之構造中,均無法應用。進而,於考慮由來自有機EL發光部之光導波所引起之光損失時,亦必需考慮來自電極等發光部分以外之導波,但於專利文獻6中,對於該等未作任何揭示或暗示。 First, the organic material used in the light-emitting portion of the organic EL is extremely weak against moisture, oxygen, solvent, and the like, and it is extremely difficult to form a reflective film on the side surface of the organic EL light-emitting portion in terms of process. Further, this technique has no problem in that it is not applicable to the case where the light-emitting layer is formed separately on each pixel of the organic EL, or the structure in which the light-emitting layer is separated on each pixel and formed on the entire surface. Further, when considering the light loss caused by the optical waveguide from the organic EL light-emitting portion, it is necessary to consider a guided wave other than the light-emitting portion such as an electrode. However, Patent Document 6 does not disclose or suggest any such.

本發明之態樣係鑒於上述情況而成者,其目的在於提供一種使自有機發光層發出之光高效地向外部射出並可高亮度地發光之發光裝置、顯示裝置、及照明裝置。 In view of the above, an object of the present invention is to provide a light-emitting device, a display device, and an illumination device that efficiently emit light emitted from an organic light-emitting layer to the outside and emit light with high luminance.

本發明之若干態樣係提供如下所示之發光裝置、顯示裝置、及照明裝置。 Several aspects of the present invention provide a light-emitting device, a display device, and a lighting device as shown below.

本發明之一態樣中之發光裝置具備透光性基板、依序積層於上述基板之一面上之第一電極及第二電極、形成於上述第一電極及上述第二電極之間的有機發光層、及將至少上述第一電極劃分成特定區域之障壁,上述第一障壁包含具有光反射性之材料。 A light-emitting device according to an aspect of the present invention includes a light-transmitting substrate, a first electrode and a second electrode sequentially laminated on one surface of the substrate, and an organic light-emitting layer formed between the first electrode and the second electrode And a barrier that divides at least the first electrode into a specific region, wherein the first barrier comprises a material having light reflectivity.

上述第二電極可包含具有遮光性之材料。 The second electrode may include a material having a light blocking property.

又,上述第一電極可包含具有透光性之材料。 Further, the first electrode may include a material having light transmissivity.

上述第一障壁可包含白色材料。 The first barrier wall may comprise a white material.

又,上述第一障壁所含之上述材料可為進而具有光擴散性之材料。 Further, the material contained in the first barrier rib may be a material having further light diffusibility.

上述第一障壁可包含樹脂、及分散於上述樹脂中之微細之光反射性粒子。 The first barrier rib may include a resin and fine light-reflecting particles dispersed in the resin.

又,上述光反射性粒子之粒徑可為200 nm~5 μm。 Further, the light-reflective particles may have a particle diameter of 200 nm to 5 μm.

上述第一障壁包含第二障壁、第三障壁、及光反射膜,上述第二障壁係形成於上述基板上,上述光反射膜覆蓋上述第二障壁,上述第三障壁覆蓋上述光反射膜,上述第三障壁可包含具有透光性之材料。 The first barrier rib includes a second barrier rib, a third barrier rib, and a light reflecting film. The second barrier rib is formed on the substrate, the light reflecting film covers the second barrier rib, and the third barrier rib covers the light reflecting film. The third barrier may comprise a material that is translucent.

上述第二障壁可為黑色。 The second barrier wall may be black.

上述第三障壁所含之上述材料可進而具有光散射性。 The above material contained in the third barrier rib may further have light scattering properties.

本發明之一態樣中之發光裝置可進而於上述基板與上述第一電極之間包含折射率低於上述基板之低折射率層。 The light-emitting device according to an aspect of the present invention may further include a low refractive index layer having a lower refractive index than the substrate between the substrate and the first electrode.

本發明之一態樣中之發光裝置可進而具有配置於上述基板與上述第一電極之間的波長轉換層。 The light-emitting device of one aspect of the present invention may further have a wavelength conversion layer disposed between the substrate and the first electrode.

又,本發明之一態樣中之發光裝置於上述波長轉換層之側面具備第二障壁,上述第二障壁可包含具有光反射性之材料。 Moreover, the light-emitting device according to an aspect of the present invention includes a second barrier rib on a side surface of the wavelength conversion layer, and the second barrier rib may include a material having light reflectivity.

本發明之一態樣中之發光裝置可於上述基板與上述波長轉換層之間、上述基板與第一電極之間中的任意一者或兩者進而包含折射率低於上述基板之低折射率層。 The light-emitting device of one aspect of the present invention may further comprise a refractive index lower than a refractive index of the substrate between the substrate and the wavelength conversion layer, or between the substrate and the first electrode. Floor.

本發明之其他態樣中之顯示裝置配置有上述各項之發光裝置、及針對上述發光裝置而控制上述發光裝置之發光之驅動部。 A display device according to another aspect of the present invention includes the above-described light-emitting device and a driving unit that controls light emission of the light-emitting device with respect to the light-emitting device.

本發明之進而另一態樣中之照明裝置配置有上述各項之發光裝置、及針對上述發光裝置而控制上述發光裝置之發光之驅動部。 In another aspect of the invention, the illumination device includes the above-described light-emitting device and a driving unit that controls the light-emitting of the light-emitting device with respect to the light-emitting device.

根據本發明之態樣,可提供一種高發光效率(高亮度)之發光裝置、顯示裝置、及照明裝置。 According to an aspect of the present invention, a light-emitting device, a display device, and a lighting device having high luminous efficiency (high luminance) can be provided.

以下,參照圖式對本發明之態樣之發光裝置、顯示裝置、及電子機器之一實施形態進行說明。再者,以下所示之實施形態係為了更佳地理解發明之主旨而具體說明者,只要無特別指定,則並不限定本發明之態樣。又,為了使本發明之態樣之特徵易於理解,以下說明中所使用之圖式存在方便起見而將成為主要部位之部分放大顯示之情況,各構成要素之尺寸比率等未必與實際情況相同。 Hereinafter, an embodiment of a light-emitting device, a display device, and an electronic device according to aspects of the present invention will be described with reference to the drawings. In addition, the embodiment shown below is specifically described in order to better understand the gist of the invention, and the aspect of the invention is not limited unless otherwise specified. In addition, in order to make the features of the aspect of the present invention easy to understand, the drawings used in the following description may be enlarged in part for convenience, and the dimensional ratios of the respective constituent elements may not be the same as the actual conditions. .

(發光裝置:第一實施形態) (Light-emitting device: First embodiment)

圖1係表示第一實施形態之發光裝置之概略剖面圖。 Fig. 1 is a schematic cross-sectional view showing a light-emitting device of a first embodiment.

發光裝置10具有透光性基板11、第一電極(下部電極)12、第二電極(上部電極)13、及有機發光層14。第一電極(下部電極)12、第二電極(上部電極)13依序積層於基板11之一面11a上。有機發光層14形成於第一電極12及第二電極13之間。 The light-emitting device 10 has a light-transmitting substrate 11, a first electrode (lower electrode) 12, a second electrode (upper electrode) 13, and an organic light-emitting layer 14. The first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 are sequentially laminated on one surface 11a of the substrate 11. The organic light emitting layer 14 is formed between the first electrode 12 and the second electrode 13.

又,於基板11之一面11a上形成有將第一電極12劃分成複數個特定區域之障壁(絕緣層)15。上述障壁15係例如與有機發光層14之相當於1像素之區域對應,將第一電極12劃分成複數個區域,使劃分之第一電極12彼此相互電性絕緣。 Further, a barrier (insulating layer) 15 for dividing the first electrode 12 into a plurality of specific regions is formed on one surface 11a of the substrate 11. The barrier rib 15 corresponds to, for example, a region corresponding to one pixel of the organic light-emitting layer 14, and divides the first electrode 12 into a plurality of regions, so that the divided first electrodes 12 are electrically insulated from each other.

作為製作製程,例如可使用如下製程等:於基板11上形成第一電極(下部電極)12,其後形成障壁15,進而形成有機發光層14、第二電極(上部電極)13。有機EL所使用之材料對於水分、氧等之耐性極弱,因此較佳為於形成有機發光層14之前、即形成第一電極(下部電極)12及障壁15後進行充分之脫水步驟(烘烤步驟、真空乾燥步驟等)。 As the manufacturing process, for example, a first electrode (lower electrode) 12 is formed on the substrate 11, and a barrier 15 is formed thereafter, and an organic light-emitting layer 14 and a second electrode (upper electrode) 13 are formed. Since the material used for the organic EL is extremely resistant to moisture, oxygen, and the like, it is preferable to perform a sufficient dehydration step (baking) before forming the organic light-emitting layer 14, that is, after forming the first electrode (lower electrode) 12 and the barrier 15 Step, vacuum drying step, etc.).

基板11包含透光性材料、例如玻璃、透明樹脂等。作為具體例,可使用於液晶顯示器等中頻繁使用之厚度0.7 mm之玻璃基板。 The substrate 11 contains a light transmissive material such as glass, a transparent resin, or the like. As a specific example, a glass substrate having a thickness of 0.7 mm which is frequently used in a liquid crystal display or the like can be used.

第一電極(下部電極)12只要為透明電極即可,例如使用ITO(Indium-tin-oxide,氧化銦錫)、或ZnO(Zinc oxide,氧化鋅)等。第一電極12之厚度例如為100 nm左右。再者,第一電極12通常為陽極,亦可設為陰極,於該情形時,使用低工作函數之材料。又,為了降低配線電阻等,亦可並設輔助配線。輔助配線可由例如Al、Ag、Ta、Ti、Ni等金屬材料所形成。 The first electrode (lower electrode) 12 may be a transparent electrode, and for example, ITO (Indium-tin-oxide) or ZnO (Zinc oxide) may be used. The thickness of the first electrode 12 is, for example, about 100 nm. Further, the first electrode 12 is usually an anode or a cathode, and in this case, a material having a low work function is used. Further, in order to reduce wiring resistance and the like, auxiliary wiring may be provided in combination. The auxiliary wiring may be formed of a metal material such as Al, Ag, Ta, Ti, Ni, or the like.

第一電極(下部電極)12係藉由障壁(絕緣層)15而劃分成複數個特定區域。於將本實施形態之發光裝置用作顯示裝置(有機EL顯示器)之情形時,只要將第一電極(下部電 極)12劃分成相當於1像素之每個區域即可。 The first electrode (lower electrode) 12 is divided into a plurality of specific regions by a barrier (insulating layer) 15. In the case where the light-emitting device of the present embodiment is used as a display device (organic EL display), it is only necessary to use the first electrode (the lower electrode) The pole 12 is divided into each region corresponding to one pixel.

第二電極(上部電極)13存在為遮光性之情況及為透光性之情況。於第二電極(上部電極)13為遮光性或反射性等非透光性之情形時,成為所謂底部發光型發光裝置。又,於第二電極(上部電極)13為透光性之情形時,成為雙面發光型發光裝置。第二電極13通常形成陰極,於為非透光性之情形時,可使用LiF/Al、MgAg/Al、Ba/Al、Ca/Ag等。又,於為透光性之情形時,可使用LiF/ITO、MgAg/IZO Indium Zinc Oxide,氧化銦錫)等。再者,亦可將第二電極(上部電極)13設為陽極,於該情形時,可較佳地使用工作函數較高之材料、例如ITO等。 The second electrode (upper electrode) 13 may be in a light-shielding property or a light-transmitting property. When the second electrode (upper electrode) 13 is non-transmissive such as light-shielding property or reflective property, it is a so-called bottom-emission type light-emitting device. Moreover, when the second electrode (upper electrode) 13 is translucent, it becomes a double-sided light-emitting type light-emitting device. The second electrode 13 usually forms a cathode, and in the case of being non-translucent, LiF/Al, MgAg/Al, Ba/Al, Ca/Ag, or the like can be used. Further, in the case of light transmittance, LiF/ITO, MgAg/IZO Indium Zinc Oxide, indium tin oxide or the like can be used. Further, the second electrode (upper electrode) 13 may be an anode. In this case, a material having a high work function such as ITO or the like can be preferably used.

除該等以外,亦可使用各種公知之電極材料作為形成第一電極12及第二電極13之電極材料。於為陽極之情形時,就更高效地向有機發光層14注入電洞之觀點而言,作為透明電極材料,可列舉:工作函數為4.5 eV以上之金(Au)、鉑(Pt)、鎳(Ni)等金屬,及包含銦(In)與錫(Sn)之氧化物(ITO)、錫(Sn)之氧化物(SnO2)、包含銦(In)與鋅(Zn)之氧化物(IZO)等。 In addition to these, various well-known electrode materials can be used as the electrode material for forming the first electrode 12 and the second electrode 13. In the case of the anode, in order to inject a hole into the organic light-emitting layer 14 more efficiently, as the transparent electrode material, gold (Au), platinum (Pt), and nickel having a working function of 4.5 eV or more are mentioned. a metal such as (Ni), and an oxide (ITO) containing indium (In) and tin (Sn), an oxide (SnO 2 ) of tin (Sn), and an oxide containing indium (In) and zinc (Zn) ( IZO) and so on.

又,作為形成陰極之電極材料,就更高效地向有機發光層14注入電子之觀點而言,可列舉:工作函數為4.5 eV以下之鋰(Li)、鈣(Ca)、鈰(Ce)、鋇(Ba)、鋁(Al)等金屬,或含有該等金屬之Mg:Ag合金、Li:Al合金等合金。 Further, as an electrode material for forming a cathode, in order to inject electrons into the organic light-emitting layer 14 more efficiently, lithium (Li), calcium (Ca), cesium (Ce) having a working function of 4.5 eV or less can be cited. A metal such as barium (Ba) or aluminum (Al) or an alloy such as Mg:Ag alloy or Li:Al alloy containing the metals.

第一電極12及第二電極13可使用上述材料並藉由EB(electron-beam,電子束)蒸鍍法、濺鍍法、離子電鍍 法、電阻加熱蒸鍍法等公知之方法而形成,但本發明並不限定於該等形成方法。又,視需要亦可藉由光刻法、雷射剝離法而使所形成之電極圖案化,亦可藉由與蔽蔭遮罩組合而直接形成經圖案化之電極。其膜厚較佳為50 nm以上。於膜厚未達50 nm之情形時,配線電阻變高,故而有引起驅動電壓之上升之虞。 The first electrode 12 and the second electrode 13 can use the above materials and are subjected to EB (electron-beam) evaporation, sputtering, ion plating. A known method such as a method or a resistance heating vapor deposition method is used, but the present invention is not limited to these formation methods. Further, the formed electrode may be patterned by photolithography or laser lift-off as needed, or the patterned electrode may be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance becomes high, so that the driving voltage is increased.

有機發光層(有機EL發光體)14藉由施加於第一電極12與第二電極13之間的電壓而發出特定波段之光。有機發光層(有機EL發光體)14可為單層,通常亦可包含複數層,例如可使用α-NPD(N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine,N,N'-二(萘-1-基)-N,N'-二苯基-聯苯胺)與Alq3(Aluminium tris(quinolin-8-olate),三(8-羥基喹啉)鋁)之積層膜等。又,亦存在於作為陽極之第一電極(下部電極)12與作為陰極之第二電極(上部電極)13之間形成包含電洞注入層、電洞傳輸層、發光層、電洞阻擋層、電子傳輸層、電子注入層等的多層有機發光層之情況。 The organic light-emitting layer (organic EL light-emitting body) 14 emits light of a specific wavelength band by a voltage applied between the first electrode 12 and the second electrode 13. The organic light-emitting layer (organic EL light-emitting body) 14 may be a single layer, and usually may also include a plurality of layers, for example, α-NPD (N, N'-di(naphthalene-1-yl)-N, N'-diphenylbenzidine, may be used. N,N'-bis(naphthalen-1-yl)-N,N'-diphenyl-benzidine) and Alq3 (Aluminium tris (quinolin-8-olate), tris(8-hydroxyquinoline)aluminum) Laminated film, etc. Further, a hole injection layer, a hole transport layer, a light-emitting layer, and a hole barrier layer are formed between the first electrode (lower electrode) 12 as an anode and the second electrode (upper electrode) 13 as a cathode. The case of a multilayer organic light-emitting layer such as an electron transport layer or an electron injection layer.

除該等層以外,亦正在對併用MoO3層、C60層、含富勒烯層、含量子點層等各種層之情況進行積極研究,自不待言,該等均可應用本實施形態。使用含量子點層之發光元件係稱作QLED(Quantum-dotlight-emitting diode,量子點發光二極體)。又,亦可使用積層發光區域之所謂串聯構造。第一電極12與第二電極13之間所配置之層的膜厚通常各層為數10 nm左右。當然,目前尚未發明之發光元件、未被普遍認知之發光元件等只要為採取本實施形態之構成 者,則自不待言均可應用本實施形態之技術。 In addition to these layers, active research is being carried out on the use of various layers such as MoO 3 layer, C 60 layer, fullerene layer, and content sub-dot layer, and it is needless to say that these embodiments can be applied. . A light-emitting element using a content sub-dot layer is called a QLED (Quantum-dot light-emitting diode). Further, a so-called series structure of a laminated light-emitting region can also be used. The film thickness of the layer disposed between the first electrode 12 and the second electrode 13 is usually about 10 nm in each layer. Of course, the light-emitting element that has not been invented at present, the light-emitting element that has not been generally recognized, and the like can be applied to the embodiment of the present embodiment as long as the configuration of the present embodiment is adopted.

作為有機發光層14之層構造之具體例,可列舉下述構成,但本實施形態並不限定於該等。 Specific examples of the layer structure of the organic light-emitting layer 14 include the following configurations, but the present embodiment is not limited thereto.

(1)有機發光層 (1) Organic light-emitting layer

(2)電洞傳輸層/有機發光層 (2) hole transport layer / organic light-emitting layer

(3)有機發光層/電子傳輸層 (3) Organic light-emitting layer/electron transport layer

(4)電洞傳輸層/有機發光層/電子傳輸層 (4) Hole transport layer / organic light-emitting layer / electron transport layer

(5)電洞注入層/電洞傳輸層/有機發光層/電子傳輸層 (5) Hole injection layer/hole transmission layer/organic light-emitting layer/electron transport layer

(6)電洞注入層/電洞傳輸層/有機發光層/電子傳輸層/電子注入層 (6) Hole injection layer/hole transmission layer/organic light-emitting layer/electron transport layer/electron injection layer

(7)電洞注入層/電洞傳輸層/有機發光層/電洞阻擋層/電子傳輸層 (7) Hole injection layer/hole transmission layer/organic light-emitting layer/hole blocking layer/electron transport layer

(8)電洞注入層/電洞傳輸層/有機發光層/電洞阻擋層/電子傳輸層/電子注入層 (8) Hole injection layer/hole transmission layer/organic light-emitting layer/hole blocking layer/electron transport layer/electron injection layer

(9)電洞注入層/電洞傳輸層/電子阻擋層/有機發光層/電洞阻擋層/電子傳輸層/電子注入層 (9) Hole injection layer/hole transmission layer/electron barrier layer/organic light-emitting layer/hole barrier layer/electron transport layer/electron injection layer

此處,有機發光層、電洞注入層、電洞傳輸層、電洞阻擋層、電子阻擋層、電子傳輸層及電子注入層之各層可為單層構造,亦可為多層構造。 Here, each of the organic light-emitting layer, the hole injection layer, the hole transport layer, the hole barrier layer, the electron blocking layer, the electron transport layer, and the electron injection layer may have a single layer structure or a multilayer structure.

有機發光層14可僅包含以下所例示之有機發光材料,亦可包含發光性之摻雜劑與主體材料之組合,可任意地包含電洞傳輸材料、電子傳輸材料、添加劑(施體、受體等)等,又,亦可為使該等材料分散於高分子材料(黏合用樹脂)或無機材料中之構成。就發光效率及壽命之觀點而 言,較佳為使發光性摻雜劑分散於主體材料中而成者。 The organic light-emitting layer 14 may include only the organic light-emitting material exemplified below, and may also include a combination of a light-emitting dopant and a host material, and may optionally include a hole transport material, an electron transport material, and an additive (donor, acceptor). Alternatively, the material may be dispersed in a polymer material (adhesive resin) or an inorganic material. From the point of view of luminous efficiency and longevity In other words, it is preferred to disperse the luminescent dopant in the host material.

作為有機發光材料,可使用有機發光層用之公知之發光材料。上述發光材料分為低分子發光材料、高分子發光材料等,以下例示該等具體之化合物,但本實施形態並不限定於該等材料。又,上述發光材料亦可分為螢光材料、磷光材料等,就低電力消耗化之觀點而言,較佳為使用發光效率較高之磷光材料。 As the organic light-emitting material, a known light-emitting material for an organic light-emitting layer can be used. The above-mentioned luminescent material is classified into a low molecular luminescent material, a polymer luminescent material, etc., and the specific compounds are exemplified below, but the present embodiment is not limited to these materials. Further, the luminescent material may be classified into a fluorescent material or a phosphorescent material, and from the viewpoint of low power consumption, it is preferred to use a phosphorescent material having a high luminous efficiency.

此處,以下例示具體之化合物,但本實施形態並不限定於該等材料。 Here, specific compounds are exemplified below, but the present embodiment is not limited to these materials.

作為發光層中任意含有之發光性摻雜劑,可使用有機發光層用之公知之摻雜材料。作為上述摻雜材料,例如作為紫外發光材料,可列舉:對聯四苯、3,5,3,5-四-第三丁基六苯、3,5,3,5-四-第三丁基-對五苯等螢光發光材料等。作為藍色發光材料,可列舉:苯乙烯衍生物等螢光發光材料,雙[(4,6-二氟苯基)-吡啶-N,C2']吡啶甲醯合銥(III)(FIrpic)、雙(4',6'-二氟苯基吡啶)四(1-吡唑基)硼酸銥(III)(FIr6)等磷光發光有機金屬錯合物等。 As the luminescent dopant which is optionally contained in the light-emitting layer, a known dopant material for the organic light-emitting layer can be used. As the above dopant material, for example, as the ultraviolet light-emitting material, p-tetraphenyl, 3,5,3,5-tetra-t-butylhexabenzene, 3,5,3,5-tetra-t-butyl group can be cited. - Fluorescent materials such as p-pentene. Examples of the blue light-emitting material include a fluorescent material such as a styrene derivative, and bis[(4,6-difluorophenyl)-pyridine-N,C2']pyridinecarboxamide (III) (FIrpic). A phosphorescent organic metal complex such as bis(4',6'-difluorophenylpyridine)tetrakis(1-pyrazolyl)borate (III) (FIr 6 ).

又,作為使用摻雜劑時之主體材料,可使用有機EL用之公知之主體材料。作為上述主體材料,可列舉:上述低分子發光材料、高分子發光材料,4,4'-雙(咔唑)聯苯、9,9-二(4-二咔唑-苄基)茀(CPF,9,9-di(4-dicarbazole-benzyl)fluorene)、3,6-雙(三苯基矽烷基)咔唑(mCP)、(PCF(Phenyl Chloroformate,氯甲酸苯酯))等咔唑衍生物,4-(二苯基磷酸基)-N,N-二苯基苯胺(HM-A1)等苯胺衍生物,1,3-雙(9- 苯基-9H-茀-9-基)苯(mDPFB,1,3-bis(9-phenyl-9H-fluorene-9-yl)benzene)、1,4-雙(9-苯基-9H-茀-9-基)苯(pDPFB,1,4-bis(9-phenyl-9H-fluorene-9-yl)benzene)等茀衍生物等。 Further, as a host material when a dopant is used, a known host material for organic EL can be used. Examples of the host material include the above-mentioned low molecular light-emitting material and polymer light-emitting material, 4,4′-bis(carbazole)biphenyl, 9,9-bis(4-dicarbazole-benzyl)fluorene (CPF). , 9,9-di(4-dicarbazole-benzyl)fluorene), 3,6-bis(triphenylphosphonyl)carbazole (mCP), (PCF (Phenyl Chloroformate)) An aniline derivative such as 4-(diphenylphosphoryl)-N,N-diphenylaniline (HM-A1), 1,3-double (9- Phenyl-9H-fluoren-9-yl)benzene (mDPFB, 1,3-bis(9-phenyl-9H-fluorene-9-yl)benzene), 1,4-bis(9-phenyl-9H-oxime) -9-yl)benzene (pDPFB, 1,4-bis(9-phenyl-9H-fluorene-9-yl)benzene) and the like.

為了更高效地自電極注入電荷(電洞、電子)並向發光層傳輸(注入)電荷(電洞、電子),將電荷注入傳輸層分為電荷注入層(電洞注入層、電子注入層)與電荷傳輸層(電洞傳輸層、電子傳輸層),電荷注入傳輸層可僅包含以下所例示之電荷注入傳輸材料,亦可任意包含添加劑(施體、受體等)等,亦可為使該等材料分散於高分子材料(黏合用樹脂)或無機材料中之構成。 In order to more efficiently inject charges (holes, electrons) from the electrodes and transfer (inject) charges (holes, electrons) to the light-emitting layer, the charge injection transport layer is divided into charge injection layers (hole injection layers, electron injection layers). And the charge transport layer (the hole transport layer, the electron transport layer), the charge injection transport layer may include only the charge injection transport material exemplified below, and may optionally contain an additive (such as a donor, a receptor, etc.), or may be These materials are dispersed in a polymer material (adhesive resin) or an inorganic material.

作為電荷注入傳輸材料,可使用有機發光層用之公知之電荷傳輸材料。上述電荷注入傳輸材料分為電洞注入傳輸材料及電子注入傳輸材料,以下例示該等具體之化合物,但本實施形態並不限定於該等材料。 As the charge injection transport material, a known charge transport material for an organic light-emitting layer can be used. The charge injection transport material is classified into a hole injection transport material and an electron injection transport material. The specific compounds are exemplified below, but the present embodiment is not limited to these materials.

作為電洞注入電洞傳輸材料,例如可列舉:氧化釩(V2O5)、氧化鉬(MoO3)等氧化物,無機p型半導體材料,卟啉化合物,N,N'-雙(3-甲基苯基)-N,N'-雙(苯基)-聯苯胺(TPD,N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine)、N,N'-二(萘-1-基)-N,N'-二苯基-聯苯胺(NPD)等芳香族三級胺化合物,腙化合物,喹吖啶酮化合物,苯乙烯基胺化合物等低分子材料;聚苯胺(PANI,polyaniline)、聚苯胺-樟腦磺酸(PANI-CSA(Camphorsulfonic acid))、聚(3,4-二氧乙基噻吩)/聚苯乙烯磺酸(PEDOT(poly(3,4-ethylenedioxythiophene))/ PSS(poly(styrene-4-sulfonate)))、聚(三苯胺)衍生物(Poly-TPD)、聚乙烯基咔唑(PVCz,polyvinylcarbazole)、聚(對苯乙炔)(PPV,poly(p-phenylene vinylene))、聚(對萘乙炔)(PNV,poly(p-naphthalene vinylene))等高分子材料等。 Examples of the hole injecting hole transporting material include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ), inorganic p-type semiconductor materials, porphyrin compounds, and N, N'-double (3). -Methylphenyl)-N,N'-bis(phenyl)-benzidine (TPD, N, N'-Bis(3-methylphenyl)-N, N'-bis(phenyl)-benzidine), N, Aromatic tertiary amine compounds such as N'-bis(naphthalen-1-yl)-N,N'-diphenyl-benzidine (NPD), hydrazine compounds, quinacridone compounds, styrylamine compounds, etc. Molecular materials; polyaniline (PANI, polyaniline), polyaniline-camphorsulfonic acid (PANI-CSA (Camphorsulfonic acid)), poly(3,4-dioxyethylthiophene) / polystyrenesulfonic acid (PEDOT (poly( 3,4-ethylenedioxythiophene))/ PSS(poly(styrene-4-sulfonate)), poly(triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVCz, polyvinylcarbazole), poly(p-phenylacetylene) (PPV, poly(p-phenylene vinylene), poly(p-naphthalene vinylene) (PNV, poly(p-naphthalene vinylene)) and other polymer materials.

又,就更高效地自陽極注入及傳輸電洞之方面而言,作為用作電洞注入層之材料,較佳為使用最高佔有分子軌道(HOMO,Highest Occupied Molecular Orbital)之能階低於電洞傳輸層所使用之電洞注入傳輸材料的材料,作為電洞傳輸層,較佳為使用電洞之移動率高於電洞注入層所使用之電洞注入傳輸材料的材料。 Further, as a material for the hole injection layer, it is preferable to use the highest energy occupying layer (HOMO, Highest Occupied Molecular Orbital) lower than the electric power in terms of the anode injection and the transmission hole. The material used for the hole transport layer is injected into the material of the transport material. As the hole transport layer, it is preferable to use a material having a mobility higher than that of the hole injection transport material used in the hole injection layer.

又,為了進一步提高電洞之注入及傳輸性,較佳為於上述電洞注入傳輸材料中摻雜受體。作為受體,可使用有機發光層用之公知之受體材料。以下例示該等具體之化合物,但本實施形態並不限定於該等材料。 Further, in order to further improve the injection and transportability of the hole, it is preferable to dope the dopant in the hole injection transport material. As the acceptor, a known acceptor material for an organic light-emitting layer can be used. The specific compounds are exemplified below, but the present embodiment is not limited to these materials.

作為受體材料,可列舉:Au、Pt、W、Ir、POCl3、AsF6、Cl、Br、I、氧化釩(V2O5)、氧化鉬(MoO3)等無機材料;TCNQ(7,7,8,8-tetracyanoquinodimethane,7,7,8,8,-四氰對醌二甲烷)、TCNQF4(Tetrafluorotetracyanoquinodimethane,四氟四氰對醌二甲烷)、TCNE(Tetracyanoethylene,四氰乙烯)、HCNB(Hexacyanobutadiene,六氰丁二烯)、DDQ(Dichloro Dicyane Benzoquinone,二氯二氰苯醌)等具有氰基之化合物,TNF(2,4,7-trinitro-9-fluorenone,三硝基茀酮)、DNF(2,7-dinitro-9-fluorenone,二硝基茀酮)等具有硝基之化合物,四氟苯醌、四氯苯醌、四溴苯醌等有機 材料。 Examples of the acceptor material include inorganic materials such as Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), and molybdenum oxide (MoO 3 ); TCNQ (7) , 7,8,8-tetracyanoquinodimethane, 7,7,8,8,-tetracyanoquinone dimethane), TCNQF 4 (Tetrafluorotetracyanoquinodimethane, tetrafluorotetracyanoquinone dimethane), TCNE (Tetracyanoethylene, tetracyanoethylene), Compounds with cyano group such as HCNB (Hexacyanobutadiene, hexacyanobutadiene), DDQ (Dichloro Dicyane Benzoquinone), TNF (2,4,7-trinitro-9-fluorenone, trinitrofluorenone) ), a compound having a nitro group such as DNF (2,7-dinitro-9-fluorenone, dinitrofluorenone), an organic material such as tetrafluorophenylhydrazine, tetrachlorophenylhydrazine or tetrabromophenylhydrazine.

其中,TCNQ、TCNQF4、TCNE、HCNB、DDQ等具有氰基之化合物可更有效地增加載子濃度,因此更佳。 Among them, a compound having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB or DDQ can increase the carrier concentration more effectively, and thus is more preferable.

作為電子注入電子傳輸材料,例如可列舉:作為n型半導體之無機材料,二唑衍生物、***衍生物、二氧化硫吡衍生物、苯醌衍生物、萘醌衍生物、蒽醌衍生物、聯苯醌衍生物、茀酮衍生物、苯并二呋喃衍生物等低分子材料,聚(二唑)(Poly-OXZ,Poly-oxadiazole)、聚苯乙烯衍生物(PSS)等高分子材料。尤其是作為電子注入材料,尤其可列舉:氟化鋰(LiF)、氟化鋇(BaF2)等氟化物,氧化鋰(Li2O)等氧化物等。 As the electron injecting electron transporting material, for example, an inorganic material which is an n-type semiconductor can be cited. Diazole derivatives, triazole derivatives, sulfur dioxide Low molecular materials such as derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthracene derivatives, biphenyl hydrazine derivatives, anthrone derivatives, benzodifuran derivatives, poly( Polymer materials such as oxadiazole (Poly-OXZ, Poly-oxadiazole) and polystyrene derivatives (PSS). In particular, examples of the electron injecting material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).

就更高效地自陰極注入及傳輸電子之方面而言,作為用作電子注入層之材料,較佳為使用最低未占分子軌道(LUMO,Lower Unoccupied Molecular Orbital)之能階高於電子傳輸層所使用之電子注入傳輸材料的材料,作為用作電子傳輸層之材料,較佳為使用電子之移動率高於電子注入層所使用之電子注入傳輸材料的材料。 In terms of more efficient injection and transport of electrons from the cathode, as a material for the electron injecting layer, it is preferable to use a lower unoccupied molecular orbital (LUMO) having a higher energy level than the electron transporting layer. As the material for the electron transporting layer to be used, as the material for the electron transporting layer, it is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used in the electron injecting layer.

又,為了進一步提高電子之注入及傳輸性,較佳為於上述電子注入傳輸材料中摻雜施體。作為施體,可使用有機發光層用之公知之施體材料。以下例示該等具體之化合物,但本實施形態並不限定於該等材料。 Further, in order to further improve the injection and transportability of electrons, it is preferable to dope the above-described electron injecting and transporting material. As the donor, a known donor material for the organic light-emitting layer can be used. The specific compounds are exemplified below, but the present embodiment is not limited to these materials.

作為施體材料,有如下者:鹼金屬,鹼土金屬,稀土類元素,Al、Ag、Cu、In等無機材料;苯胺類,苯二胺類,聯苯胺類(N,N,N',N'-四苯基聯苯胺、N,N'-雙-(3-甲基苯 基)-N,N'-雙-(苯基)-聯苯胺、N,N'-二(萘-1-基)-N,N'-二苯基-聯苯胺等),三苯胺類(三苯胺、4,4',4"-三(N,N-二苯基-胺基)-三苯胺、4,4',4"-三(N-3-甲基苯基-N-苯基-胺基)-三苯胺、4,4',4"-三(N-(1-萘基)-N-苯基-胺基)-三苯胺等)、三苯基二胺類(N,N'-二-(4-甲基-苯基)-N,N'-二苯基-1,4-苯二胺)等於骨架中含有芳香族三級胺之化合物,菲、芘、苝、蒽、稠四苯、稠五苯等縮合多環化合物(其中,縮合多環化合物可具有取代基),TTF(tetrathiafulvalene,四硫富瓦烯)類,二苯并呋喃,酚噻,咔唑等有機材料。其中,尤其是於骨架中含有芳香族三級胺之化合物、縮合多環化合物、鹼金屬可更有效地增加載子濃度,因此更佳。 As the donor material, there are the following: alkali metal, alkaline earth metal, rare earth element, inorganic materials such as Al, Ag, Cu, In; aniline, phenylenediamine, benzidine (N, N, N', N '-Tetraphenylbenzidine, N,N'-bis-(3-methylphenyl)-N,N'-bis-(phenyl)-benzidine, N,N'-di(naphthalene-1- (), N, N'-diphenyl-benzidine, etc.), triphenylamines (triphenylamine, 4,4',4"-tris(N,N-diphenyl-amino)-triphenylamine, 4 , 4',4"-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine, 4,4',4"-tris(N-(1-naphthyl)-N -phenyl-amino)-triphenylamine, etc., triphenyldiamine (N,N'-di-(4-methyl-phenyl)-N,N'-diphenyl-1,4- Phenylenediamine) is equivalent to a compound containing an aromatic tertiary amine in the skeleton, a condensed polycyclic compound such as phenanthrene, anthracene, anthracene, anthracene, fused tetraphenyl or fused pentabenzene (wherein the condensed polycyclic compound may have a substituent), TTF (tetrathiafulvalene, tetrathiafulvalene), dibenzofuran, phenolthiophene , carbazole and other organic materials. Among them, a compound containing an aromatic tertiary amine in the skeleton, a condensed polycyclic compound, or an alkali metal is more preferable because it can increase the carrier concentration more effectively.

發光層、電洞傳輸層、電子傳輸層、電洞注入層及電子注入層等有機發光層可使用使上述材料溶解、分散於溶劑中而成之有機發光層形成用之塗佈液並藉由利用旋轉塗佈法、浸塗法、刮刀法、噴出塗佈法、噴塗法等塗佈法、或噴墨法、凸版印刷法、凹版印刷法、絲網印刷法、微凹版塗佈法等印刷法等之公知之濕式製程而形成,亦可將上述材料藉由電阻加熱蒸鍍法、電子束(EB,Electron-Beam)蒸鍍法、分子束磊晶(MBE,Molecular Beam Epitaxy)法、濺鍍法、有機氣相沈積(OVPD,organic vapor phase deposition)法等公知之乾式製程、或藉雷射轉印法等而形成。再者,於藉由濕式製程形成有機發光層之情形時,有機發光層形成用之塗佈液亦可包含調平劑、黏度調整劑等用以調整塗佈液之物性之添加劑。 The organic light-emitting layer such as the light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer can be formed by using a coating liquid for forming an organic light-emitting layer in which the material is dissolved and dispersed in a solvent. Printing by a spin coating method, a dip coating method, a doctor blade method, a spray coating method, a spray coating method, or the like, or an inkjet method, a letterpress printing method, a gravure printing method, a screen printing method, a micro gravure coating method, or the like It is formed by a known wet process such as a method, and the above materials may be subjected to a resistance heating vapor deposition method, an electron beam (EB, Electron-Beam) vapor deposition method, or a molecular beam epitaxy (MBE) method. It is formed by a known dry process such as a sputtering method, an organic vapor phase deposition (OVPD) method, or a laser transfer method. Further, in the case where the organic light-emitting layer is formed by a wet process, the coating liquid for forming the organic light-emitting layer may further contain an additive for adjusting the physical properties of the coating liquid such as a leveling agent or a viscosity modifier.

構成上述有機發光層14之各層之膜厚通常為1 nm~1000 nm左右,較佳為10 nm~200 nm。若膜厚未達10 nm,則無法獲得原本所需之物性(電荷之注入特性、傳輸特性、封閉特性)。又,有產生由塵土等異物引起之像素缺陷之虞。又,若膜厚超過200 nm,則有因有機發光層之電阻成分而引起驅動電壓之上升並導致消耗電力之上升之虞。 The film thickness of each of the layers constituting the organic light-emitting layer 14 is usually from about 1 nm to about 1000 nm, preferably from 10 nm to 200 nm. If the film thickness is less than 10 nm, the physical properties (charge injection characteristics, transport characteristics, and sealing characteristics) which are originally required cannot be obtained. In addition, there are defects in pixels caused by foreign matter such as dust. Moreover, when the film thickness exceeds 200 nm, the driving voltage rises due to the resistance component of the organic light-emitting layer, and the power consumption increases.

將第一電極(下部電極)12劃分成複數個特定區域(例如像素)之障壁(絕緣層)15包含至少具有光反射性之材料。作為具有光反射性之材料,較佳為使用色調為白色之材料。進而,亦較佳為使用除光反射性以外亦具有光擴散性之材料。於為照明裝置等之情形時,上述區域可為1個,亦可形成複數個區域。 The barrier (insulating layer) 15 that divides the first electrode (lower electrode) 12 into a plurality of specific regions (for example, pixels) contains a material having at least light reflectivity. As the material having light reflectivity, a material having a white color tone is preferably used. Further, it is also preferred to use a material having light diffusibility in addition to light reflectivity. In the case of a lighting device or the like, the area may be one or a plurality of areas may be formed.

於僅具有光反射性之情形時,所提取之光之分佈根據障壁側面相對於基板之角度或障壁之形狀而較大地變化,因此為了獲得所期望之光分佈,亦必需將障壁側面相對於基板之角度或障壁之形狀控制為適當者。相對於此,若障壁除光反射性以外亦具有白色性、光散射性,則於障壁上反射之光之方向擴大,因此所提取之光之分佈並那麼依存於障壁側面相對於基板之角度或障壁之形狀,而易獲得自然之發光分佈。 In the case of only light reflectivity, the distribution of the extracted light varies greatly depending on the angle of the barrier side with respect to the substrate or the shape of the barrier. Therefore, in order to obtain a desired light distribution, it is necessary to face the barrier side with respect to the substrate. The angle or the shape of the barrier is controlled as appropriate. On the other hand, if the barrier has whiteness and light scattering properties in addition to the light reflectivity, the direction of the light reflected on the barrier is enlarged, so that the distribution of the extracted light is then dependent on the angle of the side of the barrier relative to the substrate or The shape of the barrier is easy to obtain a natural distribution of light.

作為一例,例如可利用日本專利特開2007-322546號公報、日本專利特開2008-211036號公報、日本專利特開2011-66267號公報等所揭示之高反射率之白色阻焊劑而形成障壁(絕緣層)15。或者,使TiO2等粒子分散於聚醯亞胺 系或丙烯酸系等感光性樹脂中而賦予光反射性、光散射性、白色性等功能之方法亦為有效之方法。又,亦可使用含有銀(Ag)等具有反射性之金屬之樹脂而形成障壁15。 For example, a high-reflectance white solder resist disclosed in Japanese Patent Laid-Open Publication No. Hei. No. 2007-322546, Japanese Patent Laid-Open No. Hei. No. Hei. Insulation layer) 15. Alternatively, a method in which particles such as TiO 2 are dispersed in a photosensitive resin such as polyimide or acrylic to impart functions such as light reflectivity, light scattering property, and whiteness is also effective. Further, the barrier 15 may be formed using a resin containing a reflective metal such as silver (Ag).

障壁(絕緣層)15係以特定之圖案形成於透光性基板11之一面11a上。為了使障壁15以特定之形狀圖案化,可應用如下方法等半導體製造步驟或液晶面板製造步驟等中所使用之公知之製造方法:使用光微影法使於光感光性樹脂中添加氧化鈦粒子等而成者圖案化之方法;將於樹脂中添加氧化鈦粒子等而成者形成於整個面上,於其上形成光阻圖案,將添加有氧化鈦粒子之樹脂層蝕刻成特定之圖案的方法。 The barrier (insulating layer) 15 is formed on one surface 11a of the light-transmitting substrate 11 in a specific pattern. In order to pattern the barrier rib 15 in a specific shape, a known manufacturing method used in a semiconductor manufacturing step, a liquid crystal panel manufacturing step, or the like, such as a method of adding titanium oxide particles to a photo-sensitive resin by photolithography, can be applied. A method of patterning the original; a titanium oxide particle or the like is added to the resin, and a photoresist pattern is formed thereon, and a resin layer to which the titanium oxide particles are added is etched into a specific pattern. method.

關於障壁15之膜厚,例如1 μm~5 μm為大致適當之範圍,可根據目的而選定適當之膜厚。例如亦可使用100 nm~數10 μm之高度之障壁,於任一情形時均可獲得本實施形態之效果。 The film thickness of the barrier 15 is, for example, 1 μm to 5 μm in a substantially suitable range, and an appropriate film thickness can be selected depending on the purpose. For example, a barrier of a height of 100 nm to 10 μm can be used, and the effect of this embodiment can be obtained in either case.

於藉由障壁15反射自有機發光層14發出之光之前,反覆進行全反射,每次全反射時均產生光損失之情況欠佳,因此相互鄰接之障壁15彼此之間隔(開口直徑)較佳為不過大。鄰接之障壁15彼此之間隔為50 mm、20 mm、10 mm、5 mm、1 mm、500 μm、100 μm、50 μm、20 μm等。 Before the light emitted from the organic light-emitting layer 14 is reflected by the barrier 15 , the total reflection is repeated, and the light loss is poor in each total reflection. Therefore, the barriers 15 adjacent to each other (opening diameter) are preferably spaced apart from each other. Not too big. Adjacent barriers 15 are spaced from each other by 50 mm, 20 mm, 10 mm, 5 mm, 1 mm, 500 μm, 100 μm, 50 μm, 20 μm, and the like.

於使障壁15具有光散射性之情形時,較佳為使微細之光反射性粒子分散於構成障壁15之樹脂中。光反射性粒子之粒徑較佳為200 nm~5 μm。藉此,障壁15可具有光反射性,並且亦可具有使光之反射方向變得無規之光散射性。 When the barrier 15 is light-scattering, it is preferable to disperse fine light-reflecting particles in the resin constituting the barrier 15 . The particle diameter of the light-reflective particles is preferably from 200 nm to 5 μm. Thereby, the barrier 15 can have light reflectivity, and can also have light scattering properties that cause the direction of reflection of light to become random.

又,障壁15亦發揮防止第一電極(下部電極)12之邊緣部分之漏電的作用。即,於在第一電極12上形成有機發光層14之情形時,於第一電極12之端面上有機發光層14之膜厚變薄。因此,於第一電極12與第二電極13之間易發生短路。藉由將障壁15配置於上述區域,可防止短路。於該情形時,障壁15成為通常稱作邊緣罩、或絕緣層等之構成物。 Further, the barrier 15 also functions to prevent leakage of the edge portion of the first electrode (lower electrode) 12. That is, in the case where the organic light-emitting layer 14 is formed on the first electrode 12, the film thickness of the organic light-emitting layer 14 is thinned on the end surface of the first electrode 12. Therefore, a short circuit easily occurs between the first electrode 12 and the second electrode 13. By arranging the barrier rib 15 in the above region, it is possible to prevent a short circuit. In this case, the barrier rib 15 is a constituent generally referred to as an edge cover or an insulating layer.

又,於藉由噴墨等濕式製程而形成有機發光層14之情形時,障壁15亦防止於基板11所具有之像素區域塗佈之液體流向鄰接之像素區域。為了進一步提高上述功能,亦較佳為對障壁15進而實施賦予撥液性之處理。 Further, in the case where the organic light-emitting layer 14 is formed by a wet process such as inkjet, the barrier 15 prevents the liquid applied to the pixel region of the substrate 11 from flowing to the adjacent pixel region. In order to further improve the above functions, it is also preferable to carry out a treatment for imparting liquid repellency to the barrier ribs 15.

對如上所述之構成之發光裝置之作用進行說明。 The action of the light-emitting device having the above configuration will be described.

如圖1所示,若於發光裝置10之第一電極(下部電極)12與第二電極(上部電極)13之間施加特定電壓值之電壓,則藉由利用注入至有機發光層14中之電子與電洞之再結合所產生之激子(exciton)而使有機發光層14發光。 As shown in FIG. 1, when a voltage of a specific voltage value is applied between the first electrode (lower electrode) 12 and the second electrode (upper electrode) 13 of the light-emitting device 10, it is injected into the organic light-emitting layer 14 by using The organic light-emitting layer 14 emits light by exciton generated by recombination of electrons and holes.

有機發光層14所發出之光(激發光)之中,沿朝向透明之第一電極(下部電極)12之方向射出之光F1透過第一電極12及透明之基板11而射出至外部。 Among the light (excitation light) emitted from the organic light-emitting layer 14, the light F1 emitted in the direction toward the transparent first electrode (lower electrode) 12 passes through the first electrode 12 and the transparent substrate 11 and is emitted to the outside.

又,有機發光層14所發出之光(激發光)之中,沿朝向非透光性第二電極(上部電極)13之方向射出之光F2於第二電極13之表面反射,再次透過有機發光層14並透過第一電極12及透明之基板11而射出至外部。 Further, among the light (excitation light) emitted from the organic light-emitting layer 14, the light F2 emitted in the direction toward the non-transmissive second electrode (upper electrode) 13 is reflected on the surface of the second electrode 13, and is again transmitted through the organic light. The layer 14 is transmitted through the first electrode 12 and the transparent substrate 11 to the outside.

另一方面,有機發光層14所發出之光(激發光)之中,沿 面擴展方向(與積層方向垂直之方向)射出之光F3射入障壁15。射入障壁15之光由於障壁15包含具有光反射性之材料,故而使所射入之光反射,且較佳為使其擴散。並且,障壁15所反射之光F3亦透過第一電極12及基板11而射出至外部。 On the other hand, among the light (excitation light) emitted by the organic light-emitting layer 14, The light F3 emitted from the surface expansion direction (the direction perpendicular to the lamination direction) is incident on the barrier rib 15. Since the light entering the barrier 15 includes a material having light reflectivity, the light that is incident on the barrier 15 reflects the light incident and is preferably diffused. Further, the light F3 reflected by the barrier 15 is also transmitted to the outside through the first electrode 12 and the substrate 11.

如此,根據本實施形態之發光裝置10,由於障壁15具有光反射性,故而朝向障壁15射出之光F3不會被障壁15吸收或於障壁15內導波而損失。並且,朝向障壁15射出之光F3經障壁15反射而自基板11射出至外部,藉此可大幅度提高光提取效率。 As described above, according to the light-emitting device 10 of the present embodiment, since the barrier 15 has light reflectivity, the light F3 emitted toward the barrier 15 is not absorbed by the barrier 15 or guided by the barrier 15 and is lost. Further, the light F3 emitted toward the barrier 15 is reflected by the barrier 15 and emitted from the substrate 11 to the outside, whereby the light extraction efficiency can be greatly improved.

即,先前之發光裝置之構想係藉由有機發光層之折射率或散射性、或形狀之控制而提高光提取效率,相對於此,於本實施形態中,將有機發光層所發出之光封閉於由障壁15所圍成之區域內而使光不沿著障壁15之方向傳播。藉由上述構成,可將光之射出僅限定於欲提取光之方向,於不損失光之情況下高效地提取。藉此,與先前已知之發光裝置相比,可大幅度提高光提取效率。 That is, the concept of the conventional light-emitting device is to improve the light extraction efficiency by controlling the refractive index or scattering property or shape of the organic light-emitting layer. In contrast, in the present embodiment, the light emitted by the organic light-emitting layer is enclosed. Light is not propagated in the direction of the barrier 15 in the area surrounded by the barrier 15 . According to the above configuration, the light emission can be limited only to the direction in which the light is to be extracted, and can be efficiently extracted without losing light. Thereby, the light extraction efficiency can be greatly improved as compared with the previously known light-emitting device.

再者,障壁15更佳為包含如下材料:該材料必需具有光反射性,進而具有漫反射性、散射性而並非單向反射。與單向反射相比,漫反射、散射者使射入障壁15之光朝無規之方向反射,因此進一步提高光之提取效率。 Further, the barrier 15 preferably further comprises a material which is required to have light reflectivity and thus diffuse reflectivity and scattering without being unidirectionally reflected. Compared with the one-way reflection, the diffuse reflection and the scatterer reflect the light incident on the barrier rib 15 in a random direction, thereby further improving the light extraction efficiency.

又,配置障壁15之位置理想而言較佳為由障壁15覆蓋以特定形狀圖案化之第一電極(下部電極)12之周邊全部。然而,即便障壁15僅覆蓋其一部分,亦可獲得光提取效率之 提高效果。其中,相對於第一電極(下部電極)12之周邊長度,例如於僅對1%之長度配置光反射性障壁之情形時,光自剩餘之99%之長度部分沿面擴展方向導波而損失,光提取效率之提高效果有限。 Further, it is preferable that the position of the barrier rib 15 is disposed so as to cover all of the periphery of the first electrode (lower electrode) 12 patterned in a specific shape by the barrier rib 15. However, even if the barrier 15 covers only a part of it, light extraction efficiency can be obtained. Improve the effect. In the case where the light-reflective barrier is disposed only for the length of the first electrode (lower electrode) 12, for example, when the light-reflective barrier is disposed for only 1% of the length, the light is guided from the remaining 99% of the length in the surface expansion direction and is lost. The effect of improving light extraction efficiency is limited.

關於有機發光層14所發出之光沿面擴展方向導波而擴散、或者經光反射性障壁15反射而自基板11側被提取之問題,係與配置有障壁15之長度相對於第一電極12之周邊長度的比率有關。例如若假設未使用光反射性障壁之情形時之光提取效率為25%,則損失部分成為75%。若障壁15之配置長度相對於第一電極12之周邊長度的比率為10%,則以概算計可提取約7.5%之光,合計光提取效率成為32.5%,相對於未形成光反射性障壁15之情形時之提取效率25%,效率提高約30%。 The problem that the light emitted from the organic light-emitting layer 14 is diffused in the surface expansion direction or is reflected by the light-reflective barrier 15 and extracted from the substrate 11 side is the length of the barrier 15 and the first electrode 12 The ratio of the length of the perimeter is related. For example, if the light extraction efficiency is 25% in the case where the light reflective barrier is not used, the loss portion becomes 75%. If the ratio of the arrangement length of the barrier ribs 15 to the peripheral length of the first electrode 12 is 10%, about 7.5% of the light can be extracted by the estimated amount, and the total light extraction efficiency is 32.5%, with respect to the non-light reflective barrier 15 being formed. In the case of the case, the extraction efficiency is 25%, and the efficiency is increased by about 30%.

然而,若配置有障壁15之長度相對於第一電極12之周邊長度的比率為1%,則光提取最大僅提高0.75%,合計光提取效率僅為25.75%。其相對於未設置光反射性障壁15之情形時之光提取效率25%,僅改善3%,所獲得之效果非常小。 However, if the ratio of the length of the barrier rib 15 to the peripheral length of the first electrode 12 is 1%, the light extraction is increased by only 0.75% at the maximum, and the total light extraction efficiency is only 25.75%. The light extraction efficiency is 25% with respect to the case where the light-reflective barrier 15 is not provided, and only 3% is improved, and the effect obtained is extremely small.

就上述觀點而言,配置有障壁15之長度相對於第一電極(下部電極)12之周邊長度的比率理想而言為100%,若為約5%以上,則獲得相應之光提取效率之提高效果。 From the above viewpoints, the ratio of the length of the barrier 15 disposed to the peripheral length of the first electrode (lower electrode) 12 is desirably 100%, and if it is about 5% or more, the corresponding light extraction efficiency is improved. effect.

於障壁15之配置長度相對於第一電極12之周邊長度的比率為5%之情形時,藉由光反射性障壁15所提取之光最大為3.75%(75%×5%),合計成為27.75%。其相對於未設置光 反射性障壁15之情形時之光提取效率25%而提高15%,可謂有意義之改善。 When the ratio of the arrangement length of the barrier 15 to the peripheral length of the first electrode 12 is 5%, the light extracted by the light-reflective barrier 15 is at most 3.75% (75% × 5%), which is 27.75 in total. %. Relative to the unset light In the case of the reflective barrier 15, the light extraction efficiency is increased by 15% by 25%, which is a significant improvement.

其中,由於實質上存在其他構成部之光損失、或由基板11內之導波所引起之損失等,故而較佳為配置有光反射性障壁15之長度相對於第一電極12之周邊長度的比率較佳為50%以上,尤佳為設為100%。 However, since the light loss of the other components or the loss due to the guided waves in the substrate 11 is substantially present, it is preferable to arrange the length of the light-reflective barrier 15 with respect to the peripheral length of the first electrode 12. The ratio is preferably 50% or more, and particularly preferably 100%.

關於將配置有障壁15之長度相對於第一電極12之周邊長度的比率設為多少之問題,例如可根據使障壁15圖案化時之形狀而決定。 The problem of the ratio of the length of the barrier 15 disposed to the peripheral length of the first electrode 12 is determined, for example, according to the shape when the barrier 15 is patterned.

若於通常情況下考慮,則利用障壁15覆蓋第一電極12之所有周邊毫不困難,若亦考慮抑制第二電極13與第一電極12之間的漏電、及防止利用濕式製程形成之情形時塗佈液流向鄰接像素之觀點,則較佳為利用光反射性障壁15覆蓋第一電極(下部電極)12之所有周邊。 If it is considered in the usual case, it is not difficult to cover all the periphery of the first electrode 12 by the barrier rib 15, and it is also considered to suppress the leakage between the second electrode 13 and the first electrode 12 and prevent the formation by the wet process. When the coating liquid flows toward the adjacent pixels, it is preferable to cover all the periphery of the first electrode (lower electrode) 12 by the light reflective barrier 15 .

又,為了確保可靠性,發光裝置10較佳為利用適當之方法將周圍密封。密封之方法可使用公知之方法等。例如可列舉:使用罐密封與乾燥劑之方法、使用蓋封玻璃與乾燥劑之方法、玻璃料密封、以抑制透濕性之膜與玻璃貼合之方法等。 Further, in order to ensure reliability, the light-emitting device 10 is preferably sealed by a suitable method. A known method or the like can be used for the method of sealing. For example, a method of using a can seal and a desiccant, a method of sealing a glass and a desiccant, a method of sealing a glass frit, a method of bonding a film for suppressing moisture permeability, and a glass may be mentioned.

(發光裝置:第二實施形態) (Light-emitting device: second embodiment)

圖2係表示第二實施形態之發光裝置之概略剖面圖。 Fig. 2 is a schematic cross-sectional view showing a light-emitting device of a second embodiment.

發光裝置20具有透光性基板21、第一電極(下部電極)22、第二電極(上部電極)23、及有機發光層24。第一電極(下部電極)22、第二電極(上部電極)23依序積層於基板 21之一面21a上。有機發光層24形成於第一電極22及第二電極23之間。又,於基板21之一面21a上形成有將第一電極22劃分成複數個特定區域的光反射性障壁(絕緣層)25。 The light-emitting device 20 has a light-transmitting substrate 21, a first electrode (lower electrode) 22, a second electrode (upper electrode) 23, and an organic light-emitting layer 24. The first electrode (lower electrode) 22 and the second electrode (upper electrode) 23 are sequentially laminated on the substrate 21 on one side 21a. The organic light emitting layer 24 is formed between the first electrode 22 and the second electrode 23. Further, a light reflective barrier (insulating layer) 25 that divides the first electrode 22 into a plurality of specific regions is formed on one surface 21a of the substrate 21.

本實施形態之有機發光層24之構成與第一實施形態之有機發光層14不同。其他構成與第一實施形態相同,因此省略其說明。 The configuration of the organic light-emitting layer 24 of the present embodiment is different from that of the organic light-emitting layer 14 of the first embodiment. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

並且,於該實施形態中,例如將有機發光層24分隔成各像素而形成。即,於第一實施形態中,有機發光層14係覆蓋障壁15而形成為連續層(參照圖1),於第二實施形態中,有機發光層24係由障壁25之上部(第二電極側)分隔而分割成複數個。藉此,可將於有機發光層24中傳播而向面擴展方向傳播之光遮斷,進一步提高光提取效率。 Further, in this embodiment, for example, the organic light-emitting layer 24 is formed by dividing each pixel into pixels. That is, in the first embodiment, the organic light-emitting layer 14 is formed as a continuous layer by covering the barrier 15 (see FIG. 1). In the second embodiment, the organic light-emitting layer 24 is formed by the upper portion of the barrier 25 (second electrode side). ) Separated into multiples. Thereby, light propagating in the organic light-emitting layer 24 and propagating in the surface expansion direction can be blocked, and the light extraction efficiency can be further improved.

(發光裝置:第三實施形態) (Light-emitting device: third embodiment)

圖3係表示第三實施形態之發光裝置之概略剖面圖。 Fig. 3 is a schematic cross-sectional view showing a light-emitting device of a third embodiment.

發光裝置30具有透光性基板31、第一電極(下部電極)32、第二電極(上部電極)33、及有機發光層34。第一電極(下部電極)32、第二電極(上部電極)33依序積層於基板31之一面31a上。有機發光層34形成於該第一電極32及第二電極33之間。又,於基板31之一面31a上形成有將第一電極32、及有機發光層34劃分成複數個特定區域的光反射性障壁(絕緣層)35。 The light-emitting device 30 has a light-transmitting substrate 31, a first electrode (lower electrode) 32, a second electrode (upper electrode) 33, and an organic light-emitting layer 34. The first electrode (lower electrode) 32 and the second electrode (upper electrode) 33 are sequentially laminated on one surface 31a of the substrate 31. The organic light-emitting layer 34 is formed between the first electrode 32 and the second electrode 33. Further, a light-reflective barrier (insulating layer) 35 that divides the first electrode 32 and the organic light-emitting layer 34 into a plurality of specific regions is formed on one surface 31a of the substrate 31.

本實施形態之有機發光層34之構成與第一實施形態之有機發光層14不同。其他構成與第一實施形態相同,因此省略其說明。 The configuration of the organic light-emitting layer 34 of the present embodiment is different from that of the organic light-emitting layer 14 of the first embodiment. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於該實施形態中,有機發光層34例如由障壁35劃分成各像素。即,於第一實施形態中,有機發光層14覆蓋障壁15而形成為連續層(參照圖1),於第三實施形態中,有機發光層24由障壁35劃分成複數個。藉此,可將於有機發光層24中傳播而向面擴展方向傳播之光遮斷,且自有機發光層24之側剖面(厚度方向之剖面)射出之光亦可由光反射性障壁35反射,可進一步提高光提取效率。 In this embodiment, the organic light-emitting layer 34 is divided into pixels by, for example, the barrier ribs 35. That is, in the first embodiment, the organic light-emitting layer 14 is formed as a continuous layer by covering the barrier rib 15 (see FIG. 1). In the third embodiment, the organic light-emitting layer 24 is divided into a plurality of barrier ribs 35. Thereby, the light propagating in the organic light-emitting layer 24 and propagating in the surface expansion direction can be blocked, and the light emitted from the side cross section (the cross section in the thickness direction) of the organic light-emitting layer 24 can also be reflected by the light-reflective barrier 35. The light extraction efficiency can be further improved.

再者,於該等第二實施形態或第三實施形態中,作為將有機發光層24、34之形成區域限定於特定範圍內而形成之方法,例如只要適當採用使用藉由遮罩蒸鍍法、噴墨法、印刷等之濕式法的分塗,LITI(Laser Induced Thermal Imaging,雷射誘導熱成像)、LIPS(laser Induced Pattern wise Sublimation,雷射誘導圖案昇華)等使用雷射之方法,光漂白法等方法即可。 In the second embodiment or the third embodiment, the method of forming the regions in which the organic light-emitting layers 24 and 34 are formed within a specific range is, for example, a mask evaporation method. Laser coating, printing, etc., wet coating, LITI (Laser Induced Thermal Imaging), LIPS (laser Induced Pattern wise Sublimation), etc. A photobleaching method or the like can be used.

(發光裝置:第四實施形態) (Light-emitting device: fourth embodiment)

圖4係表示第四實施形態之發光裝置之概略剖面圖。 Fig. 4 is a schematic cross-sectional view showing a light-emitting device of a fourth embodiment.

發光裝置40具有透光性基板41、低折射率層46、第一電極(下部電極)42、第二電極(上部電極)43、及有機發光層44。低折射率層46、第一電極(下部電極)42、第二電極(上部電極)43依序積層於基板41之一面41a上。有機發光層44形成於第一電極42及第二電極43之間。又,於低折射率層46之一面上形成有將第一電極42劃分成複數個特定區域的光反射性障壁(絕緣層)45。 The light-emitting device 40 has a light-transmitting substrate 41, a low refractive index layer 46, a first electrode (lower electrode) 42, a second electrode (upper electrode) 43, and an organic light-emitting layer 44. The low refractive index layer 46, the first electrode (lower electrode) 42, and the second electrode (upper electrode) 43 are sequentially laminated on one surface 41a of the substrate 41. The organic light-emitting layer 44 is formed between the first electrode 42 and the second electrode 43. Further, a light reflective barrier (insulating layer) 45 that divides the first electrode 42 into a plurality of specific regions is formed on one surface of the low refractive index layer 46.

本實施形態之發光裝置40於具有低折射率層46之方面與 第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 40 of the present embodiment has a low refractive index layer 46 and The first embodiment is different. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於該實施形態中,於基板41與第一電極(下部電極)42之間形成折射率低於基板41之低折射率層46。低折射率層之折射率較佳為低於基板之折射率,理想的是與空氣之折射率相同,最佳為1.0。 In this embodiment, a low refractive index layer 46 having a lower refractive index than the substrate 41 is formed between the substrate 41 and the first electrode (lower electrode) 42. The refractive index of the low refractive index layer is preferably lower than the refractive index of the substrate, and is desirably the same as the refractive index of air, and is preferably 1.0.

藉由形成上述低折射率層46,可進一步提高光提取效率。即,於假設空氣(外氣)之折射率為1.0、基板41之折射率為1.5時,於未設置低折射率層46之情形時,自有機發光層發出之光自基板直接進入至空氣(外氣)界面,但由於基板與空氣(外氣)之界面上之折射率差,自法線偏離之角度大於42°之光發生全反射。 By forming the above-described low refractive index layer 46, the light extraction efficiency can be further improved. That is, when the refractive index of the air (outer gas) is 1.0 and the refractive index of the substrate 41 is 1.5, when the low refractive index layer 46 is not provided, the light emitted from the organic light-emitting layer directly enters the air from the substrate ( External air) interface, but due to the difference in refractive index at the interface between the substrate and the air (outer air), the light from the normal deviation angle greater than 42° is totally reflected.

相對於此,如圖4所示,例如於設置折射率為1.2之低折射率層46之情形時,於基板41與空氣(外氣)之界面上,自法線偏離之角度大於53°之光發生全反射,但發生反射之光由光反射性障壁45等反射而被提取至外部之可能性提高。即便於圖4所示之實施形態中,於基板41與空氣(外氣)之界面上,自法線偏離之角度為42°~53°之光發生全反射而未被提取,但就自有機發光層44發出之光之角度而言,僅42°~53°之光未被提取,藉由形成低折射率層46而產生之光提取效率之提高效果較大。 On the other hand, as shown in FIG. 4, for example, when the low refractive index layer 46 having a refractive index of 1.2 is provided, the angle from the normal line is greater than 53° at the interface between the substrate 41 and the air (outside air). The light is totally reflected, but the light that is reflected is reflected by the light-reflective barrier 45 or the like and is extracted to the outside. That is, in the embodiment shown in FIG. 4, at the interface between the substrate 41 and the air (outside air), the light which is deviated from the normal angle of 42° to 53° is totally reflected and is not extracted, but is self-organized. In the angle of the light emitted from the light-emitting layer 44, only light of 42° to 53° is not extracted, and the effect of improving the light extraction efficiency by forming the low refractive index layer 46 is large.

再者,關於圖4所示之構成中之厚度,自有機發光層44至第一電極42與低折射率層46之界面為止的距離約為100 nm~數10 μm左右,自第一電極42與低折射率層46之界面 至基板41與空氣(外氣)之界面為止的距離為0.5 mm~0.7 mm。 Further, regarding the thickness in the configuration shown in FIG. 4, the distance from the organic light-emitting layer 44 to the interface between the first electrode 42 and the low refractive index layer 46 is about 100 nm to several 10 μm, from the first electrode 42. Interface with low refractive index layer 46 The distance from the interface between the substrate 41 and the air (outer air) is 0.5 mm to 0.7 mm.

再者,於未設置光反射性障壁而僅形成低折射率層46之情形時,於第一電極42與低折射率層46之界面跳回之光反覆進行單向反射而於面擴展方向上擴散,光提取效率並未那麼提高。因此,藉由組合使用光反射性障壁45與低折射率層46,可獲得光提取效率之大幅度之提高效果。 Further, when the light reflective barrier is not provided and only the low refractive index layer 46 is formed, the light jumped back at the interface between the first electrode 42 and the low refractive index layer 46 is unidirectionally reflected in the plane expansion direction. Diffusion, light extraction efficiency is not so improved. Therefore, by using the light-reflective barrier 45 and the low-refractive-index layer 46 in combination, a large effect of improving the light extraction efficiency can be obtained.

(發光裝置:第五實施形態) (Light-emitting device: fifth embodiment)

圖5係表示第五實施形態之發光裝置之概略剖面圖。 Fig. 5 is a schematic cross-sectional view showing a light-emitting device of a fifth embodiment.

發光裝置50具有透光性基板51、低折射率層56、第一電極(下部電極)52、第二電極(上部電極)53、及有機發光層54。低折射率層56、第一電極(下部電極)52、第二電極(上部電極)53依序積層於基板51之一面51a上。有機發光層54形成於該第一電極52及第二電極53之間。又,於低折射率層56之一面上形成有將第一電極52、及有機發光層54劃分成複數個特定區域的光反射性障壁(絕緣層)55。 The light-emitting device 50 has a light-transmitting substrate 51, a low refractive index layer 56, a first electrode (lower electrode) 52, a second electrode (upper electrode) 53, and an organic light-emitting layer 54. The low refractive index layer 56, the first electrode (lower electrode) 52, and the second electrode (upper electrode) 53 are sequentially laminated on one surface 51a of the substrate 51. The organic light emitting layer 54 is formed between the first electrode 52 and the second electrode 53. Further, a light reflective barrier (insulating layer) 55 that divides the first electrode 52 and the organic light-emitting layer 54 into a plurality of specific regions is formed on one surface of the low refractive index layer 56.

本實施形態之發光裝置50於有機發光層54之構成、及具有低折射率層56之方面與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。再者,低折射率層56之構成與第四實施形態相同。 The light-emitting device 50 of the present embodiment is different from the first embodiment in the configuration of the organic light-emitting layer 54 and the low refractive index layer 56. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted. Further, the configuration of the low refractive index layer 56 is the same as that of the fourth embodiment.

於該實施形態中,有機發光層54由障壁55劃分成例如各像素。即,於第四實施形態中,有機發光層44覆蓋障壁45而形成為連續層(參照圖4),於第五實施形態中,有機發光層54由障壁55劃分成複數個。藉此,可將於有機發光層54 中傳播而向面擴展方向傳播之光遮斷,且自有機發光層54之側剖面(厚度方向之剖面)射出之光亦可由光反射性障壁55反射,可於形成低折射率層56之同時進一步提高光提取效率。 In this embodiment, the organic light-emitting layer 54 is divided by the barrier 55 into, for example, individual pixels. That is, in the fourth embodiment, the organic light-emitting layer 44 is formed as a continuous layer by covering the barrier ribs 45 (see FIG. 4). In the fifth embodiment, the organic light-emitting layer 54 is divided into a plurality of barrier ribs 55. Thereby, the organic light-emitting layer 54 can be The light propagating in the direction of the surface expansion is interrupted, and the light emitted from the side cross section (the cross section in the thickness direction) of the organic light-emitting layer 54 can also be reflected by the light-reflective barrier 55, and the low refractive index layer 56 can be formed simultaneously. Further improve light extraction efficiency.

(發光裝置:第六實施形態) (Light-emitting device: sixth embodiment)

圖6係表示第一實施形態之發光裝置之概略剖面圖。 Fig. 6 is a schematic cross-sectional view showing a light-emitting device of the first embodiment.

發光裝置310具備透光性基板311、波長轉換層315、透光性第一電極(下部電極)312、有機發光層314、第二電極(上部電極)313、及障壁317。波長轉換層315、透光性第一電極(下部電極)312、有機發光層314、及第二電極(上部電極)313依序積層於基板311之一面311a上。障壁317係以至少與沿積層方向擴散之有機發光層314之側面相接之方式配置。上述障壁317包含具有光反射性之材料。 The light-emitting device 310 includes a light-transmitting substrate 311, a wavelength conversion layer 315, a translucent first electrode (lower electrode) 312, an organic light-emitting layer 314, a second electrode (upper electrode) 313, and a barrier 317. The wavelength conversion layer 315, the translucent first electrode (lower electrode) 312, the organic light-emitting layer 314, and the second electrode (upper electrode) 313 are sequentially laminated on one surface 311a of the substrate 311. The barrier 317 is disposed so as to be in contact with at least a side surface of the organic light-emitting layer 314 which is diffused in the stacking direction. The barrier 317 described above includes a material having light reflectivity.

本實施形態之發光裝置310於具有波長轉換層315之方面與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 310 of the present embodiment is different from the first embodiment in that it has the wavelength conversion layer 315. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

障壁317係以劃分例如有機發光層314之相當於1像素之區域之方式形成。於為照明裝置等之情形時,上述區域可僅為1個,亦可形成複數個區域。 The barrier 317 is formed to divide, for example, an area corresponding to one pixel of the organic light-emitting layer 314. In the case of a lighting device or the like, the area may be only one or a plurality of areas may be formed.

作為製作製程,例如可使用如下製程等:於基板311上形成波長轉換層315,繼而形成第一電極(下部電極)12,其後形成障壁317,進而形成有機發光層314、第二電極(上部電極)313。有機EL所使用之材料對於水分、氧等之耐性極弱,因此較佳為於形成有機發光層314前、即形成第一 電極(下部電極)312及障壁317後進行充分之脫水步驟(烘烤步驟、真空乾燥步驟等)。 As the manufacturing process, for example, a process such as forming a wavelength conversion layer 315 on the substrate 311, and then forming a first electrode (lower electrode) 12, and then forming a barrier 317, thereby forming an organic light-emitting layer 314 and a second electrode (upper portion) may be used. Electrode) 313. Since the material used for the organic EL is extremely weak against moisture, oxygen, and the like, it is preferable to form the first before the organic light-emitting layer 314 is formed. After the electrode (lower electrode) 312 and the barrier 317, a sufficient dehydration step (baking step, vacuum drying step, etc.) is performed.

又,亦較佳為於波長轉換層315與第一電極(下部電極)312之間***層間膜、平坦化膜、第二基板等中之任一者或該等全部。 Further, it is preferable to insert either or both of the interlayer film, the planarization film, the second substrate, and the like between the wavelength conversion layer 315 and the first electrode (lower electrode) 312.

波長轉換層315可由彩色濾光片、螢光體等所形成。 The wavelength conversion layer 315 can be formed of a color filter, a phosphor, or the like.

於利用彩色濾光片構成波長轉換層315之情形時,彩色濾光片可使用液晶顯示器等中通常所使用之彩色濾光片材料而製作。又,於彩色濾光片中添加散射性粒子等而對彩色濾光片賦予散射性之情況,由於通過彩色濾光片後之光分佈成為各向同性,因此較佳。 In the case where the wavelength conversion layer 315 is formed by a color filter, the color filter can be produced using a color filter material which is generally used in a liquid crystal display or the like. Further, when a color filter is added with scattering particles or the like to impart scattering property to the color filter, the light distribution after passing through the color filter is isotropic, which is preferable.

於以螢光體層之形式構成波長轉換層315之情形時,可藉由螢光體與高分子樹脂之混合體等而形成。作為螢光體,可使用無機螢光體、有機螢光體、有機/無機混合螢光體、量子點螢光體等。又,作為螢光體,亦可包含主體-客體型等複數種材料。 When the wavelength conversion layer 315 is formed in the form of a phosphor layer, it may be formed by a mixture of a phosphor and a polymer resin. As the phosphor, an inorganic phosphor, an organic phosphor, an organic/inorganic hybrid phosphor, a quantum dot phosphor, or the like can be used. Further, the phosphor may include a plurality of materials such as a host-guest type.

又,作為波長轉換層315,亦較佳為將螢光體層與彩色濾光片層重疊而積層。通常係以使所發出之光首先射入螢光體層,螢光體層所發出之光通過彩色濾光片而射出至外部之方式積層。於該情形時,彩色濾光片層兼具將波長光譜調整為適當者之作用、及抑制外光反射之作用。 Further, as the wavelength conversion layer 315, it is preferable to laminate the phosphor layer and the color filter layer. Usually, the emitted light is first incident on the phosphor layer, and the light emitted from the phosphor layer is laminated to the outside through the color filter. In this case, the color filter layer serves to adjust the wavelength spectrum to an appropriate one and suppress the reflection of external light.

進而,亦較佳為於螢光體層與彩色濾光片層之任一者上重疊黑矩陣層而積層。又,亦較佳為於螢光體層與彩色濾光片層之積層膜上重疊黑矩陣層而積層。於該等情形時, 黑矩陣層具有抑制外光反射之效果,有利於提高明室環境下之對比度。 Further, it is also preferable to laminate a black matrix layer on either of the phosphor layer and the color filter layer. Further, it is also preferable to laminate a black matrix layer on the laminated film of the phosphor layer and the color filter layer. In such cases, The black matrix layer has the effect of suppressing the reflection of external light, which is advantageous for improving the contrast in a bright room environment.

對如上所述之構成之發光裝置310之作用進行說明。 The action of the light-emitting device 310 configured as described above will be described.

如圖6所示,若於發光裝置310之第一電極(下部電極)312與第二電極(上部電極)313之間施加特定電壓值之電壓,則藉由利用注入至有機發光層314中之電子與電洞之再結合所產生之激子(exciton)而使有機發光層314發光。 As shown in FIG. 6, if a voltage of a specific voltage value is applied between the first electrode (lower electrode) 312 and the second electrode (upper electrode) 313 of the light-emitting device 310, it is injected into the organic light-emitting layer 314 by using The organic light-emitting layer 314 emits light by exciton generated by recombination of electrons and holes.

有機發光層314所發出之光(激發光)之中,沿朝向透明之第一電極(下部電極)312之方向射出之光透過第一電極312而射入波長轉換層315。 Among the light (excitation light) emitted from the organic light-emitting layer 314, light emitted in a direction toward the transparent first electrode (lower electrode) 312 passes through the first electrode 312 and enters the wavelength conversion layer 315.

又,有機發光層314所發出之光(激發光)中,沿朝向非透光性第二電極(上部電極)313之方向射出之光於第二電極313之表面反射,再次透過有機發光層314並透過第一電極312而射入波長轉換層315。 Further, in the light (excitation light) emitted from the organic light-emitting layer 314, light emitted in a direction toward the non-transmissive second electrode (upper electrode) 313 is reflected on the surface of the second electrode 313, and is again transmitted through the organic light-emitting layer 314. The wavelength conversion layer 315 is incident through the first electrode 312.

另一方面,有機發光層314所發出之光(激發光)之中,沿面擴展方向(與積層方向垂直之方向)射出之光射入障壁317。射入障壁317之光由於障壁317包含具有光反射性之材料,故而使所射入之光反射、且較佳為使其擴散。並且,經障壁317反射之光亦透過第一電極312而射入波長轉換層315。 On the other hand, among the light (excitation light) emitted from the organic light-emitting layer 314, light emitted in the plane spreading direction (direction perpendicular to the stacking direction) enters the barrier 317. Since the light entering the barrier 317 includes a material having light reflectivity, the light incident on the barrier 317 reflects and preferably diffuses the incident light. Further, the light reflected by the barrier 317 is also transmitted through the first electrode 312 to the wavelength conversion layer 315.

其次,說明光射入波長轉換層315後之情況。 Next, the case where light is incident on the wavelength conversion layer 315 will be described.

於波長轉換層315為無特別之光散射性功能之彩色濾光片之情形時,射入波長轉換層315之光之波長光譜發生變化,行進方向僅產生基本上基於折射率差之行進方向變 化,光通過基板311而射出至外部。 In the case where the wavelength conversion layer 315 is a color filter having no special light scattering function, the wavelength spectrum of the light incident on the wavelength conversion layer 315 changes, and the traveling direction only changes the traveling direction based on the refractive index difference. The light is emitted to the outside through the substrate 311.

另一方面,於波長轉換層315為螢光體、或具有光散射功能之彩色濾光片之情形時,來自波長轉換層315之光沿各種方向前進。其中,進入基板311側之光經由基板311而射出至外部。 On the other hand, in the case where the wavelength conversion layer 315 is a phosphor or a color filter having a light scattering function, light from the wavelength conversion layer 315 advances in various directions. Among them, light entering the side of the substrate 311 is emitted to the outside via the substrate 311.

進入基板311之相反方向之光經非透光性第二電極(上部電極)313之表面反射,再次透過波長轉換層315及基板311而射出至外部。又,射出至面擴展方向(與積層方向垂直之方向)之光之一部分射入障壁317。射入障壁317之光由於障壁317包含具有光反射性之材料,故而使所射入之光反射、且較佳為使其擴散。並且,由障壁317反射之光亦透過波長轉換層315及基板311而射出至外部。 Light that enters the opposite direction of the substrate 311 is reflected by the surface of the non-transmissive second electrode (upper electrode) 313, passes through the wavelength conversion layer 315 and the substrate 311 again, and is emitted to the outside. Further, a part of the light that is emitted to the plane extending direction (the direction perpendicular to the lamination direction) is incident on the barrier 317. Since the light entering the barrier 317 includes a material having light reflectivity, the light incident on the barrier 317 reflects and preferably diffuses the incident light. Further, the light reflected by the barrier 317 is also transmitted through the wavelength conversion layer 315 and the substrate 311 to be emitted to the outside.

(發光裝置:第七實施形態) (Light-emitting device: seventh embodiment)

圖7係表示第二實施形態之發光裝置之概略剖面圖。 Fig. 7 is a schematic cross-sectional view showing a light-emitting device of a second embodiment.

發光裝置320具備透光性基板321、波長轉換層325、透光性第一電極(下部電極)322、第二電極(上部電極)323、有機發光層324、及障壁327。波長轉換層325、透光性第一電極(下部電極)322、及第二電極(上部電極)323依序積層於該基板321之一面321a上。有機發光層324形成於第一電極322及第二電極323之間。障壁327至少配置於有機發光層324之側面。上述障壁327包含具有光反射性之材料。 The light-emitting device 320 includes a light-transmitting substrate 321 , a wavelength conversion layer 325 , a translucent first electrode (lower electrode) 322 , a second electrode (upper electrode) 323 , an organic light-emitting layer 324 , and a barrier 327 . The wavelength conversion layer 325, the translucent first electrode (lower electrode) 322, and the second electrode (upper electrode) 323 are sequentially laminated on one surface 321a of the substrate 321 . The organic light emitting layer 324 is formed between the first electrode 322 and the second electrode 323. The barrier 327 is disposed at least on the side of the organic light-emitting layer 324. The barrier 327 described above includes a material having light reflectivity.

本實施形態之發光裝置320於具有波長轉換層325之方面、及有機發光層324之構成與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 320 of the present embodiment differs from the first embodiment in that it has the wavelength conversion layer 325 and the organic light-emitting layer 324. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

並且,於該實施形態中,將有機發光層324分隔成例如各像素而形成。即,於第六實施形態中,有機發光層314覆蓋障壁317而形成為連續層(參照圖6),於第七實施形態中,有機發光層324由障壁327之上部(第二電極側)分隔而分割成複數個。藉此,可將於有機發光層324中傳播而向面擴展方向傳播之光遮斷,進一步提高光提取效率。 Further, in this embodiment, the organic light-emitting layer 324 is formed by, for example, dividing each pixel. That is, in the sixth embodiment, the organic light-emitting layer 314 is formed as a continuous layer by covering the barrier 317 (see FIG. 6). In the seventh embodiment, the organic light-emitting layer 324 is separated from the upper portion (second electrode side) of the barrier 327. And divided into multiples. Thereby, light propagating in the organic light-emitting layer 324 and propagating in the surface expansion direction can be blocked, and the light extraction efficiency can be further improved.

(發光裝置:第八實施形態) (Light-emitting device: eighth embodiment)

圖8係表示第三實施形態之發光裝置之概略剖面圖。 Fig. 8 is a schematic cross-sectional view showing a light-emitting device of a third embodiment.

發光裝置330具有透光性基板(第一基板)331、波長轉換層335、層間膜338、透光性第二基板339、第一電極(下部電極)332、有機發光層334、第二電極(上部電極)333、及障壁337。波長轉換層335、層間膜338、透光性第二基板339、第一電極(下部電極)332、有機發光層334、及第二電極(上部電極)333依序積層於該基板331之一面331a上。障壁337至少配置於波長轉換層335及有機發光層334兩者之側面。上述障壁337包含具有光反射性之材料。 The light-emitting device 330 has a light-transmitting substrate (first substrate) 331, a wavelength conversion layer 335, an interlayer film 338, a light-transmitting second substrate 339, a first electrode (lower electrode) 332, an organic light-emitting layer 334, and a second electrode ( Upper electrode 333, and barrier 337. The wavelength conversion layer 335, the interlayer film 338, the light transmissive second substrate 339, the first electrode (lower electrode) 332, the organic light emitting layer 334, and the second electrode (upper electrode) 333 are sequentially laminated on one surface 331a of the substrate 331. on. The barrier 337 is disposed at least on the side of both the wavelength conversion layer 335 and the organic light-emitting layer 334. The barrier 337 described above includes a material having light reflectivity.

本實施形態之發光裝置330於具有波長轉換層325、層間膜338、透光性第二基板339之方面與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 330 of the present embodiment is different from the first embodiment in that it includes the wavelength conversion layer 325, the interlayer film 338, and the light-transmitting second substrate 339. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於該第八實施形態中,使用層間膜338、透光性第二基板339,但亦可省略該等層間膜338、第二基板339中之任一者或兩者。 In the eighth embodiment, the interlayer film 338 and the light-transmissive second substrate 339 are used, but either or both of the interlayer film 338 and the second substrate 339 may be omitted.

又,於該第八實施形態中,有機發光層334覆蓋障壁337而形成為連續層,但亦可將有機發光層334分隔成各像素 而形成。 Further, in the eighth embodiment, the organic light-emitting layer 334 is formed as a continuous layer by covering the barrier 337, but the organic light-emitting layer 334 may be partitioned into pixels. And formed.

於第八實施形態中,於有機發光層334與波長轉換層335兩者之側面配置有光反射性障壁337,因此就光提取效率之觀點而言,優於第六實施形態、第七實施形態。 In the eighth embodiment, since the light-reflective barrier 337 is disposed on both sides of the organic light-emitting layer 334 and the wavelength conversion layer 335, it is superior to the sixth embodiment and the seventh embodiment in terms of light extraction efficiency. .

作為第八實施形態之製作製程,例如可於基板331上依序積層膜或構造物,亦可利用如下方法製作:於基板331上形成障壁337與波長轉換層335,另一方面,於第二基板339上形成第一電極(下部電極)332、有機發光層334、及第二電極(上部電極)333,貼合基板(第一基板)331與第二基板339。 As a manufacturing process of the eighth embodiment, for example, a film or a structure may be laminated on the substrate 331, or the barrier 337 and the wavelength conversion layer 335 may be formed on the substrate 331, and the second layer may be formed on the substrate 331. A first electrode (lower electrode) 332, an organic light-emitting layer 334, and a second electrode (upper electrode) 333 are formed on the substrate 339, and the substrate (first substrate) 331 and the second substrate 339 are bonded.

(發光裝置:第九實施形態) (Light-emitting device: ninth embodiment)

圖9係表示第九實施形態之發光裝置之概略剖面圖。 Fig. 9 is a schematic cross-sectional view showing a light-emitting device of a ninth embodiment.

第九實施形態中之發光裝置340具備透光性基板(第一基板)341、波長轉換層345、層間膜348、透光性第二基板349、第一電極(下部電極)342、有機發光層344、第二電極(上部電極)343、及障壁347。波長轉換層345、層間膜348、透光性第二基板349、第一電極(下部電極)342、有機發光層344、及第二電極(上部電極)343依序積層於基板341之一面341a上。障壁347至少配置於波長轉換層345及有機發光層344兩者之側面。上述障壁347包含具有光反射性之材料。 The light-emitting device 340 according to the ninth embodiment includes a light-transmitting substrate (first substrate) 341, a wavelength conversion layer 345, an interlayer film 348, a light-transmissive second substrate 349, a first electrode (lower electrode) 342, and an organic light-emitting layer. 344, a second electrode (upper electrode) 343, and a barrier 347. The wavelength conversion layer 345, the interlayer film 348, the light transmissive second substrate 349, the first electrode (lower electrode) 342, the organic light-emitting layer 344, and the second electrode (upper electrode) 343 are sequentially laminated on one surface 341a of the substrate 341. . The barrier 347 is disposed at least on the side of both the wavelength conversion layer 345 and the organic light-emitting layer 344. The barrier 347 described above includes a material having light reflectivity.

本實施形態之發光裝置340於具有波長轉換層315、層間膜348、及透光性第二基板349之方面與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 340 of the present embodiment is different from the first embodiment in that it includes the wavelength conversion layer 315, the interlayer film 348, and the light-transmitting second substrate 349. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於第九實施形態中,將波長轉換層345分隔成例如各像素而形成。即,於第八實施形態中,波長轉換層335覆蓋障壁337而形成為連續層(參照圖8),於第九實施形態中,波長轉換層345由障壁347之上部(第二電極側)分隔而分割成複數個。藉此,可將於波長轉換層345中傳播而向面擴展方向傳播之光遮斷,進一步提高光提取效率。 In the ninth embodiment, the wavelength conversion layer 345 is formed by, for example, dividing each pixel. That is, in the eighth embodiment, the wavelength conversion layer 335 is formed as a continuous layer by covering the barrier 337 (see Fig. 8). In the ninth embodiment, the wavelength conversion layer 345 is separated by the upper portion (second electrode side) of the barrier 347. And divided into multiples. Thereby, light propagating in the wavelength conversion layer 345 and propagating in the surface expansion direction can be blocked, and the light extraction efficiency can be further improved.

於第九實施形態中,以使用層間膜348、透光性第二基板349之形態進行說明,但亦可省略該等層間膜348、透光性第二基板349中之任一者或兩者。 In the ninth embodiment, the interlayer film 348 and the light transmissive second substrate 349 are used. However, either or both of the interlayer film 348 and the light transmissive second substrate 349 may be omitted. .

又,於第九實施形態中,有機發光層344覆蓋障壁347而形成為連續層,但亦可將有機發光層344分隔成各像素而形成。 Further, in the ninth embodiment, the organic light-emitting layer 344 is formed as a continuous layer by covering the barrier 347, but may be formed by dividing the organic light-emitting layer 344 into pixels.

於第九實施形態中,於有機發光層344與波長轉換層345兩者之側面配置有光反射性障壁347,因此就光提取效率之觀點而言,優於第六實施形態、第七實施形態。 In the ninth embodiment, since the light-reflective barrier 347 is disposed on both sides of the organic light-emitting layer 344 and the wavelength conversion layer 345, it is superior to the sixth embodiment and the seventh embodiment in terms of light extraction efficiency. .

又,作為第九實施形態之製作製程,例如可於基板341上依序積層膜或構造物,亦可利用如下方法製作:於基板341上形成障壁347與波長轉換層345,另一方面,於第二基板349上形成第一電極(下部電極)342、有機發光層344、及第二電極(上部電極)343,貼合基板(第一基板)341與第二基板349。 Further, as a manufacturing process of the ninth embodiment, for example, a film or a structure may be laminated on the substrate 341, or a barrier 347 and a wavelength conversion layer 345 may be formed on the substrate 341, and on the other hand, A first electrode (lower electrode) 342, an organic light-emitting layer 344, and a second electrode (upper electrode) 343 are formed on the second substrate 349, and the substrate (first substrate) 341 and the second substrate 349 are bonded.

再者,於上述第八實施形態或第九實施形態中,作為將有機發光層334、344、及波長轉換層335、345之形成區域限定於特定範圍內而形成之方法,例如只要適當採用如下 方法即可:使用藉由遮罩蒸鍍法、噴墨法、印刷等之濕式法的分塗,LITI(Laser Induced Thermal Imaging,雷射誘導熱成像)、LIPS(laser Induced Pattern wise Sublimation,雷射誘導圖案昇華)等使用雷射之方法,光漂白法等。 Further, in the eighth embodiment or the ninth embodiment, the method of forming the regions in which the organic light-emitting layers 334 and 344 and the wavelength conversion layers 335 and 345 are formed within a specific range is, for example, suitably employed as follows. The method may be: using a wet coating method such as a mask vapor deposition method, an inkjet method, or a printing method, LITI (Laser Induced Thermal Imaging), and LIPS (laser Induced Pattern wise Sublimation) Laser-induced bleaching method, etc., using a laser method, etc.

又,於藉由噴墨等濕式製程而形成有機發光層334、344之情形時,障壁337、347防止於基板331、341所具有之像素區域塗佈之液體流向鄰接之像素區域。為了進一步提高上述功能,亦較佳為對障壁337、347進而實施賦予撥液性之處理。 Further, when the organic light-emitting layers 334 and 344 are formed by a wet process such as inkjet, the barrier 337 and 347 prevent the liquid applied to the pixel regions of the substrates 331 and 341 from flowing to the adjacent pixel regions. In order to further improve the above functions, it is also preferable to carry out a treatment for imparting liquid repellency to the barrier ribs 337 and 347.

(發光裝置:第十實施形態) (Light-emitting device: tenth embodiment)

圖10係表示第五實施形態之發光裝置之概略剖面圖。 Fig. 10 is a schematic cross-sectional view showing a light-emitting device of a fifth embodiment.

第五實施形態之發光裝置350具備透光性基板351、波長轉換層355、第一電極(下部電極)352、有機發光層354、第二電極(上部電極)353、及障壁357。波長轉換層355、第一電極(下部電極)352、有機發光層354、及第二電極(上部電極)353依序積層於基板351之一面351a上。障壁357至少配置於波長轉換層355及有機發光層354兩者之側面。上述障壁357包含具有光反射性之材料。 The light-emitting device 350 according to the fifth embodiment includes a light-transmitting substrate 351, a wavelength conversion layer 355, a first electrode (lower electrode) 352, an organic light-emitting layer 354, a second electrode (upper electrode) 353, and a barrier 357. The wavelength conversion layer 355, the first electrode (lower electrode) 352, the organic light-emitting layer 354, and the second electrode (upper electrode) 353 are sequentially laminated on one surface 351a of the substrate 351. The barrier 357 is disposed at least on the side of both the wavelength conversion layer 355 and the organic light-emitting layer 354. The barrier 357 described above includes a material having light reflectivity.

本實施形態之發光裝置310於具有波長轉換層315之方面與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 310 of the present embodiment is different from the first embodiment in that it has the wavelength conversion layer 315. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於該第十實施形態中,成為波長轉換層355、第一電極352、及有機發光層354覆蓋障壁357而形成為連續層之構成。 In the tenth embodiment, the wavelength conversion layer 355, the first electrode 352, and the organic light-emitting layer 354 are covered with the barrier 357 to form a continuous layer.

再者,於第十實施形態中,亦可進而於波長轉換層355與第一電極352之間***層間膜。 Furthermore, in the tenth embodiment, an interlayer film may be further interposed between the wavelength conversion layer 355 and the first electrode 352.

(發光裝置:第十一實施形態) (Light-emitting device: eleventh embodiment)

圖11係表示第十一實施形態之發光裝置之概略剖面圖。 Fig. 11 is a schematic cross-sectional view showing a light-emitting device of an eleventh embodiment.

第十一實施形態之發光裝置360具備透光性基板361、波長轉換層365、第一電極(下部電極)362、有機發光層364、第二電極(上部電極)363、及障壁367。波長轉換層365、第一電極(下部電極)362、有機發光層364、及第二電極(上部電極)363依序積層於該基板361之一面361a上。障壁367至少配置於波長轉換層365及有機發光層365兩者之側面。上述障壁367包含具有光反射性之材料。 The light-emitting device 360 of the eleventh embodiment includes a light-transmitting substrate 361, a wavelength conversion layer 365, a first electrode (lower electrode) 362, an organic light-emitting layer 364, a second electrode (upper electrode) 363, and a barrier 367. The wavelength conversion layer 365, the first electrode (lower electrode) 362, the organic light-emitting layer 364, and the second electrode (upper electrode) 363 are sequentially laminated on one surface 361a of the substrate 361. The barrier 367 is disposed at least on the side of both the wavelength conversion layer 365 and the organic light-emitting layer 365. The barrier 367 described above includes a material having light reflectivity.

本實施形態之發光裝置360於具有波長轉換層365之方面、及有機發光層364之構成與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The configuration of the light-emitting device 360 of the present embodiment having the wavelength conversion layer 365 and the organic light-emitting layer 364 is different from that of the first embodiment. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於上述第十一實施形態中,進而亦可於波長轉換層365與第一電極362之間***層間膜。 In the eleventh embodiment, an interlayer film may be interposed between the wavelength conversion layer 365 and the first electrode 362.

於第十一實施形態中,將波長轉換層365、第一電極362、及有機發光層364例如分隔成各像素而形成。即,於第十實施形態中,波長轉換層355、第一電極352、及有機發光層354覆蓋障壁357而形成為連續層(參照圖10),於第十一實施形態中,波長轉換層365、第一電極362、及有機發光層364由障壁367之上部(第二電極側)分隔而分割成複數個。藉此,可將於波長轉換層365、第一電極362、及有機發光層364中傳播而向面擴展方向傳播之光遮斷,進一 步提高光提取效率。 In the eleventh embodiment, the wavelength conversion layer 365, the first electrode 362, and the organic light-emitting layer 364 are formed by, for example, dividing each pixel. That is, in the tenth embodiment, the wavelength conversion layer 355, the first electrode 352, and the organic light-emitting layer 354 are formed as a continuous layer by covering the barrier 357 (see FIG. 10). In the eleventh embodiment, the wavelength conversion layer 365 The first electrode 362 and the organic light-emitting layer 364 are partitioned into a plurality of portions by the upper portion (second electrode side) of the barrier 367. Thereby, the light propagating in the wavelength conversion layer 365, the first electrode 362, and the organic light-emitting layer 364 can be blocked in the direction of surface expansion, and further Steps improve light extraction efficiency.

又,於第十一實施形態中,波長轉換層365、第一電極362、及有機發光層364由障壁367分隔,亦可使該三者中之兩者或僅一者覆蓋障壁367而形成為連續層。 Further, in the eleventh embodiment, the wavelength conversion layer 365, the first electrode 362, and the organic light-emitting layer 364 are partitioned by the barrier 367, or two or only one of the three may be formed to cover the barrier 367. Continuous layer.

(發光裝置:第十二實施形態) (Light-emitting device: twelfth embodiment)

圖12係表示第十二實施形態之發光裝置之概略剖面圖。 Fig. 12 is a schematic cross-sectional view showing a light-emitting device of a twelfth embodiment.

第十二實施形態之發光裝置370具備透光性基板371、波長轉換層375、第一電極(下部電極)372、有機發光層374、第二電極(上部電極)373、及障壁377。波長轉換層375、第一電極(下部電極)372、有機發光層374、及第二電極(上部電極)373依序積層於基板371之一面371a上。障壁377至少配置於波長轉換層375及有機發光層374兩者之側面。上述障壁377包含具有光反射性之材料。 The light-emitting device 370 of the twelfth embodiment includes a light-transmitting substrate 371, a wavelength conversion layer 375, a first electrode (lower electrode) 372, an organic light-emitting layer 374, a second electrode (upper electrode) 373, and a barrier 377. The wavelength conversion layer 375, the first electrode (lower electrode) 372, the organic light-emitting layer 374, and the second electrode (upper electrode) 373 are sequentially laminated on one surface 371a of the substrate 371. The barrier 377 is disposed at least on the side of both the wavelength conversion layer 375 and the organic light-emitting layer 374. The barrier 377 described above includes a material having light reflectivity.

本實施形態之發光裝置370於具有波長轉換層375之方面、及有機發光層374之構成與第一實施形態不同。其他構成與第一實施形態相同,因此省略其說明。 The light-emitting device 370 of the present embodiment differs from the first embodiment in that it has the wavelength conversion layer 375 and the organic light-emitting layer 374. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於第十二實施形態中,亦可進而於波長轉換層375與第一電極372之間***層間膜。 In the twelfth embodiment, an interlayer film may be further interposed between the wavelength conversion layer 375 and the first electrode 372.

於第十二實施形態中,波長轉換層375、第一電極(下部電極)372、有機發光層374、第二電極373雖然覆蓋整個面而形成,但為由障壁377分隔成各區域或各像素之方式。用以實現其之方法多種多樣,作為現實之方法,係將光反射性障壁377如圖12所示般形成為倒錐形狀之方法。藉由將障壁377形成為倒錐形狀,波長轉換層375、第一電極 (下部電極)372、有機發光層374、及第二電極373自然地產生段割,自波長轉換層375、有機發光層374發出之光朝向基板371側,就光提取效率之方面而言較佳。 In the twelfth embodiment, the wavelength conversion layer 375, the first electrode (lower electrode) 372, the organic light-emitting layer 374, and the second electrode 373 are formed to cover the entire surface, but are partitioned into regions or pixels by the barrier 377. The way. There are various methods for realizing the same, and as a practical method, the light reflective barrier 377 is formed into an inverted tapered shape as shown in FIG. The wavelength conversion layer 375 and the first electrode are formed by forming the barrier 377 into an inverted cone shape. The (lower electrode) 372, the organic light-emitting layer 374, and the second electrode 373 are naturally cut, and the light emitted from the wavelength conversion layer 375 and the organic light-emitting layer 374 is directed toward the substrate 371 side, which is preferable in terms of light extraction efficiency. .

(發光裝置:第十三實施形態) (Light-emitting device: thirteenth embodiment)

圖13A~圖13D係表示第八實施形態之發光裝置之概略剖面圖。 13A to 13D are schematic cross-sectional views showing a light-emitting device of an eighth embodiment.

該實施形態之發光裝置380a~380d具備波長轉換層385、第一電極(下部電極)382、有機發光層384、第二電極(上部電極)383、及配置於有機發光層384之側面之3障壁87。上述障壁387包含具有光反射性之材料。並且,於基板381與波長轉換層385之間、或基板381與第一電極(下部電極)382之間形成折射率低於基板381之低折射率層386。該低折射率層386之折射率較佳為低於基板381之折射率,理想而言最佳為折射率1.0。 The light-emitting devices 380a to 380d of this embodiment include a wavelength conversion layer 385, a first electrode (lower electrode) 382, an organic light-emitting layer 384, a second electrode (upper electrode) 383, and a barrier rib disposed on the side surface of the organic light-emitting layer 384. 87. The barrier 387 described above includes a material having light reflectivity. Further, a low refractive index layer 386 having a lower refractive index than the substrate 381 is formed between the substrate 381 and the wavelength conversion layer 385 or between the substrate 381 and the first electrode (lower electrode) 382. The refractive index of the low refractive index layer 386 is preferably lower than the refractive index of the substrate 381, and is preferably preferably a refractive index of 1.0.

以下,於圖13A~圖13D中表示低折射率層之形成例,但本實施形態並不限於此。 Hereinafter, an example of formation of the low refractive index layer is shown in FIGS. 13A to 13D, but the embodiment is not limited thereto.

圖13A係表示相對於圖6所示之發光裝置,進而於基板381與波長轉換層385之間形成有折射率低於基板381之低折射率層386的發光裝置380a。 Fig. 13A shows a light-emitting device 380a having a lower refractive index layer 386 having a lower refractive index than the substrate 381 formed between the substrate 381 and the wavelength conversion layer 385 with respect to the light-emitting device shown in Fig. 6.

圖13B係表示相對於圖8所示之發光裝置,進而於基板381與波長轉換層385之間形成有折射率低於基板381之低折射率層386的發光裝置380b。 Fig. 13B shows a light-emitting device 380b formed with a lower refractive index layer 386 having a lower refractive index than the substrate 381 between the substrate 381 and the wavelength conversion layer 385 with respect to the light-emitting device shown in Fig. 8.

圖13C係表示相對於圖9所示之發光裝置,進而於基板(第一基板)381與波長轉換層385之間、及第二基板389與第 一電極382之間分別形成有折射率低於基板381或第二基板389之低折射率層386的發光裝置380c。 13C shows the light-emitting device shown in FIG. 9, further between the substrate (first substrate) 381 and the wavelength conversion layer 385, and the second substrate 389 and the A light-emitting device 380c having a lower refractive index lower than the substrate 381 or the second substrate 389 is formed between the electrodes 382, respectively.

圖13D係表示相對於圖12所示之發光裝置,進而於基板381與波長轉換層385之間形成有折射率低於基板381之低折射率層386的發光裝置380d。 Fig. 13D shows a light-emitting device 380d having a lower refractive index layer 386 having a lower refractive index than the substrate 381 formed between the substrate 381 and the wavelength conversion layer 385 with respect to the light-emitting device shown in Fig. 12.

再者,於該等圖13A~圖13D各自表示之發光裝置380a~380d中,於未設置光反射性障壁387而僅形成低折射率層386之情形時,於波長轉換層385與低折射率層386之界面、或第一電極382與低折射率層386之界面上跳回之光反覆進行單向反射而於面擴展方向上擴散,光提取效率並不那麼提高。因此,藉由組合使用光反射性障壁387與低折射率層386,可獲得光提取效率之大幅度之提高效果。 Further, in the light-emitting devices 380a to 380d respectively shown in FIGS. 13A to 13D, when the light-reflective barrier 387 is not provided and only the low-refractive-index layer 386 is formed, the wavelength conversion layer 385 and the low refractive index are used. The interface of the layer 386 or the light jumped back at the interface between the first electrode 382 and the low refractive index layer 386 is unidirectionally reflected and diffused in the plane spreading direction, so that the light extraction efficiency is not so improved. Therefore, by using the light-reflective barrier 387 and the low-refractive-index layer 386 in combination, a large effect of improving the light extraction efficiency can be obtained.

(發光裝置:第十四實施形態) (Light-emitting device: fourteenth embodiment)

圖32係表示第十四實施形態之發光裝置之概略剖面圖。 Figure 32 is a schematic cross-sectional view showing a light-emitting device of a fourteenth embodiment.

發光裝置410具有透光性基板411、第一電極(下部電極)422、第二電極(上部電極)423、及有機發光層424。第一電極(下部電極)422、第二電極(上部電極)223依序積層於基板21之一面21a上。有機發光層424形成於第一電極422及第二電極423之間。又,於基板421上形成有將第一電極422劃分成複數個特定區域的光反射性障壁(絕緣層)425。於第一電極422與基板411之間形成有輔助電極409。 The light-emitting device 410 has a light-transmitting substrate 411, a first electrode (lower electrode) 422, a second electrode (upper electrode) 423, and an organic light-emitting layer 424. The first electrode (lower electrode) 422 and the second electrode (upper electrode) 223 are sequentially laminated on one surface 21a of the substrate 21. The organic light emitting layer 424 is formed between the first electrode 422 and the second electrode 423. Further, a light reflective barrier (insulating layer) 425 that divides the first electrode 422 into a plurality of specific regions is formed on the substrate 421. An auxiliary electrode 409 is formed between the first electrode 422 and the substrate 411.

本實施形態之障壁425之構成與第一實施形態之障壁15不同。其他構成與第一實施形態相同,因此省略其說明。 The configuration of the barrier 425 of the present embodiment is different from that of the barrier 15 of the first embodiment. The other configuration is the same as that of the first embodiment, and thus the description thereof will be omitted.

於本實施形態中,障壁425包含障壁425a、障壁425b、及光反射膜425c。光反射膜425c係以覆蓋障壁425a之方式形成。障壁425b係以覆蓋光反射膜425c之方式形成。 In the present embodiment, the barrier 425 includes a barrier 425a, a barrier 425b, and a light reflecting film 425c. The light reflecting film 425c is formed to cover the barrier 425a. The barrier 425b is formed to cover the light reflecting film 425c.

障壁425a可為透明、白色、黑色中之任一顏色。於障壁425a為黑色之情形時,障壁425a亦可具備防止外光反射之功能。 The barrier 425a may be any of transparent, white, and black. When the barrier 425a is black, the barrier 425a may have a function of preventing external light from being reflected.

光反射膜425c例如可以包含銀(Ag)或鋁(Al)之方式形成。光反射膜425c亦可由與輔助電極409相同之材料所形成。再者,於本實施形態中,亦可不形成輔助電極409。因此,於未形成輔助電極409之情形時,可利用輔助電極409所使用之材料僅形成光反射膜425c。 The light reflecting film 425c may be formed, for example, in a form of silver (Ag) or aluminum (Al). The light reflecting film 425c may also be formed of the same material as the auxiliary electrode 409. Further, in the present embodiment, the auxiliary electrode 409 may not be formed. Therefore, when the auxiliary electrode 409 is not formed, only the light reflecting film 425c can be formed using the material used for the auxiliary electrode 409.

障壁425b具有透光性、光反射性、及/或光散射性。自有機發光層422射出並沿橫方向傳播之光可由光反射膜425c反射。為了改變光之行進方向而提高光之提取效率,較佳為障壁425b具有光散射性。又,若障壁425b覆蓋第一電極(下部電極)422之邊緣,則可防止第一電極(下部電極)422與第二電極(上部電極)423之短路,就良率提高之方面而言較佳。 The barrier 425b has light transmissivity, light reflectivity, and/or light scattering properties. Light emitted from the organic light-emitting layer 422 and propagating in the lateral direction may be reflected by the light-reflecting film 425c. In order to improve the light extraction efficiency in order to change the direction of light travel, it is preferable that the barrier 425b has light scattering properties. Further, if the barrier 425b covers the edge of the first electrode (lower electrode) 422, the short circuit between the first electrode (lower electrode) 422 and the second electrode (upper electrode) 423 can be prevented, which is preferable in terms of improvement in yield. .

(障壁之形狀例) (Example of the shape of the barrier)

障壁之形狀可設為各種形狀。圖16A~圖16E係表示障壁之形狀例之剖面圖。 The shape of the barrier can be set to various shapes. 16A to 16E are cross-sectional views showing examples of the shape of the barrier ribs.

於圖16A中,劃分基板101上所形成之第一電極(下部電極)102之障壁103係以成為上部變窄之梯形之方式形成。即,障壁103係以成為寬度自基板101開始朝向上部變窄之 剖面梯形之方式形成。 In FIG. 16A, the barrier rib 103 of the first electrode (lower electrode) 102 formed on the divided substrate 101 is formed in a trapezoidal shape in which the upper portion is narrowed. That is, the barrier rib 103 is narrowed from the beginning of the substrate 101 toward the upper portion. The profile is formed in a trapezoidal manner.

於圖16B中,劃分形成於基板101上之第一電極(下部電極)102之障壁104係以成為上部變寬之梯形之方式所形成。即,障壁104係以成為寬度自基板101開始朝向上部而變寬之剖面梯形之方式所形成。 In FIG. 16B, the barrier rib 104 which divides the first electrode (lower electrode) 102 formed on the substrate 101 is formed in a trapezoidal shape in which the upper portion is widened. In other words, the barrier ribs 104 are formed so as to have a trapezoidal shape having a width that widens from the substrate 101 toward the upper portion.

於圖16C中,劃分形成於基板101上之第一電極(下部電極)102之障壁105係以使上部成為半圓形或半橢圓形之方式形成。即,障壁105係以使剖面成為半圓形或半橢圓形之方式形成。 In FIG. 16C, the barrier 105 of the first electrode (lower electrode) 102 formed on the substrate 101 is formed such that the upper portion is semicircular or semi-elliptical. That is, the barrier rib 105 is formed in such a manner that the cross section is semicircular or semi-elliptical.

於圖16D中,劃分形成於基板101上之第一電極(下部電極)102之障壁106係以使上部成為半圓形、且頂部成為平坦面之方式形成。即,障壁106係以使剖面成為半圓形、且頂部成為平坦面之方式形成。 In FIG. 16D, the barrier rib 106 of the first electrode (lower electrode) 102 formed on the substrate 101 is formed such that the upper portion is semicircular and the top portion is a flat surface. That is, the barrier rib 106 is formed such that the cross section is semicircular and the top is a flat surface.

於圖16E中,劃分形成於基板101上之第一電極(下部電極)102之障壁107係以使上部成為三角形之方式形成。即,障壁107係以成為自基板90開始朝向上部而形成角之剖面三角形之方式形成。 In FIG. 16E, the barrier 107 partitioning the first electrode (lower electrode) 102 formed on the substrate 101 is formed such that the upper portion is triangular. In other words, the barrier rib 107 is formed so as to form a triangular cross section which is formed at an angle from the substrate 90 toward the upper portion.

該等障壁之形狀中,如圖16A、圖16C、圖16D、及圖16E般越接近光之射出側、即基板101側變得越寬之形狀具有使光更易射出之效果。上述效果亦對發光分佈造成影響,因此有利於應用於顯示裝置中之情形時之廣視野角化。就該廣視野角之觀點而言,最佳為圖16E所示之障壁107之形狀,另一方面,為了抑制重疊於障壁上而成膜之層於邊緣部分割裂,較佳為如圖16C、圖16D般障壁105、 106帶弧度之形狀。 As shown in FIG. 16A, FIG. 16C, FIG. 16D, and FIG. 16E, the shape of the barrier ribs is closer to the light emission side, that is, the shape in which the substrate 101 side becomes wider has an effect of making light more easily emitted. The above effects also affect the light emission distribution, and thus are advantageous for wide viewing angles when applied to a display device. From the viewpoint of the wide viewing angle, it is preferably the shape of the barrier rib 107 shown in FIG. 16E, and on the other hand, in order to suppress the layer formed by the superimposed barrier layer from being split at the edge portion, it is preferably as shown in FIG. 16C. Figure 16D is a barrier 105, 106 with the shape of the arc.

另一方面,作為較佳地用於被動驅動有機EL顯示裝置中之方法,形成如圖16B之倒錐形狀之障壁104,藉此,於將第二電極(上部電極)形成於整個面時,可於障壁104之邊緣部分產生段割而使第二電極(上部電極)形成為條紋狀。進而,於以個人使用為主要目的之有機EL顯示裝置中,圖16B之障壁104之構造對於縮小視野角而發揮防窺護目鏡之作用之方面亦有效。 On the other hand, as a method for preferably driving the organic EL display device passively, a barrier 104 having an inverted tapered shape as shown in FIG. 16B is formed, whereby when the second electrode (upper electrode) is formed on the entire surface, A segment cut may be formed at an edge portion of the barrier rib 104 to form a second electrode (upper electrode) in a stripe shape. Further, in the organic EL display device which is mainly used for personal use, the structure of the barrier rib 104 of FIG. 16B is also effective in reducing the viewing angle and functioning as an anti-spy goggle.

(障壁之構造例) (Structural example of barrier)

於上述各實施形態中,表示利用白色樹脂等光反射性之樹脂形成障壁本體之例,但障壁之構造並不限定於此。 In each of the above embodiments, the barrier body is formed of a light-reflective resin such as a white resin, but the structure of the barrier is not limited thereto.

圖17A~圖17F係表示用以對障壁賦予光反射性之構造例之剖面圖。 17A to 17F are cross-sectional views showing a structural example for imparting light reflectivity to a barrier.

於圖17A中,劃分形成於基板111上之第一電極(下部電極)112之障壁113係包含樹脂層113a、及光反射性金屬層113b。 In FIG. 17A, the barrier 113 which divides the first electrode (lower electrode) 112 formed on the substrate 111 includes a resin layer 113a and a light reflective metal layer 113b.

樹脂層113a為透明、光反射性、光散射性、白色或著色。於對各第一電極施加不同之電壓之情形時,樹脂層113a必需為絕緣性。其例如為於顯示器用途中將第一電極形成為各像素之情形,或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等。 The resin layer 113a is transparent, light reflective, light scattering, white or colored. When a different voltage is applied to each of the first electrodes, the resin layer 113a must be insulative. For example, in the case of a display application, the first electrode is formed as each pixel, or in the illumination application, an organic layer of a different luminescent color is disposed on each of the first electrodes to have a dimming effect.

另一方面,如只要均勻發光即可之通常之照明用途等情形般,於只要對所有第一電極施加相同之電壓即可之情形時,樹脂層113a無需為絕緣性。使樹脂層113a著色,尤其 是於黑色之情形時,兼具降低外光反射之效果,尤其是於顯示器用途等中有效。於樹脂層113a著色為紅、綠、藍等之情形時,自外部觀察可見到該色。其於照明用途等情形時,就設計性之觀點而言較佳。又,於樹脂層113a為光反射性、光散射性、白色等之情形時,於基板111或有機層等中傳播而沿橫方向擴散之光遇到樹脂層113a而改變方向,從而具有提高光被提取至基板111之外部之概率之效果。 On the other hand, as long as the same voltage is applied to all of the first electrodes as long as the light is uniformly emitted, the resin layer 113a need not be insulative. Coloring the resin layer 113a, especially In the case of black, it has the effect of reducing the reflection of external light, especially for display applications and the like. When the resin layer 113a is colored in red, green, blue, or the like, the color is observed from the outside. In the case of lighting use or the like, it is preferable from the viewpoint of design. In the case where the resin layer 113a is light-reflective, light-scattering, white, or the like, the light that propagates in the substrate 111 or the organic layer or the like and diffuses in the lateral direction encounters the resin layer 113a and changes direction, thereby improving light. The effect of the probability of being extracted to the outside of the substrate 111.

於圖17B中,劃分形成於基板111上之第一電極(下部電極)112之障壁114包含反射性金屬或樹脂層。並且,該障壁114係與第一電極112相隔地配置於第一電極(下部電極)112彼此之間。如於顯示器用途中將第一電極形成為各像素之情形、或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等般,即便於對各第一電極施加不同之電壓之情形時,即便障壁114為反射性金屬,只要為該構造,則可確保絕緣性。於障壁114為樹脂層之情形時,樹脂層為光反射性、光散射性或白色。樹脂層如於其他實施形態中所說明般,發揮使沿橫方向傳播之光反射而提高於正面方向提取光之概率的作用。 In FIG. 17B, the barrier 114 partitioning the first electrode (lower electrode) 112 formed on the substrate 111 includes a reflective metal or resin layer. Further, the barrier ribs 114 are disposed between the first electrodes (lower electrodes) 112 spaced apart from the first electrodes 112. For example, in the case where the first electrode is formed as each pixel in the display application, or in the case of illuminating the organic layer having different luminescent colors on each of the first electrodes, the dimming action is performed, and the like When the first electrode is applied with a different voltage, even if the barrier rib 114 is a reflective metal, as long as it has this structure, insulation can be ensured. In the case where the barrier rib 114 is a resin layer, the resin layer is light-reflective, light-scattering, or white. As described in the other embodiments, the resin layer functions to reflect the light propagating in the lateral direction and to increase the probability of extracting light in the front direction.

於圖17C中,劃分形成於基板111上之第一電極(下部電極)112之障壁115包含反射性金屬體115a、及覆蓋其之樹脂層115b。 In FIG. 17C, the barrier 115 partitioning the first electrode (lower electrode) 112 formed on the substrate 111 includes a reflective metal body 115a and a resin layer 115b covering the same.

樹脂層115b為透明、光反射性、光散射性、或白色。於樹脂層115b為透明之情形時,於裝置內沿橫方向傳播之光 由反射性金屬體115a反射而改變光之行進方向,因此光提取效率提高。又,於樹脂層115b為光反射性、光散射性、或白色之情形時,於裝置內沿橫方向傳播之光由樹脂層115b反射或散射,並且未由樹脂層115b反射或散射之光亦由反射性金屬體115a反射,因此光提取效率提高。 The resin layer 115b is transparent, light reflective, light scattering, or white. When the resin layer 115b is transparent, the light propagates in the device in the lateral direction. Reflected by the reflective metal body 115a changes the direction of travel of light, and thus the light extraction efficiency is improved. Further, when the resin layer 115b is light-reflective, light-scattering, or white, light propagating in the lateral direction in the device is reflected or scattered by the resin layer 115b, and light that is not reflected or scattered by the resin layer 115b is also Reflected by the reflective metal body 115a, the light extraction efficiency is improved.

於該形態中,反射性金屬體115a之上部亦可由樹脂層115b覆蓋,若考慮到光自該區域傳播之可能性,則較佳為以使樹脂層115b之上部之厚度變薄之方式形成。進而,亦較佳為未於該部分形成樹脂之形狀。如於顯示器用途中將第一電極形成為各像素之情形、或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等般,於對各第一電極施加不同之電壓之情形時,樹脂層115b必需為絕緣性。另一方面,如只要均勻發光即可之通常之照明用途等之情形般,於只要對所有第一電極施加相同之電壓即可之情形時,樹脂層115b無需為絕緣性。 In this embodiment, the upper portion of the reflective metal body 115a may be covered with the resin layer 115b, and it is preferable to form the upper portion of the resin layer 115b to be thinner in consideration of the possibility of light propagating from the region. Further, it is also preferable that the shape of the resin is not formed in the portion. For example, in the case where the first electrode is formed as each pixel in the display application, or in the case of illuminating the organic layer having different luminescent colors on each of the first electrodes, the dimming action is performed, etc. When a different voltage is applied to one electrode, the resin layer 115b must be insulative. On the other hand, as long as the same voltage is applied to all of the first electrodes as long as the light is uniformly emitted, the resin layer 115b need not be insulative.

於圖17D中,劃分形成於基板111上之第一電極(下部電極)112之障壁116包含反射性金屬體116a、覆蓋其之樹脂層116b,進而包含上部反射層116c。樹脂層116b為透明、光反射性、光散射性、或白色。於樹脂層116b為透明之情形時,於裝置內沿橫方向傳播之光由反射性金屬體116a、上部反射層116c反射而改變光之行進方向,因此光提取效率提高。又,於樹脂層116b為光反射性、光散射性、或白色之情形時,於裝置內沿橫方向傳播之光由樹脂層116b反射或散射,並且未由樹脂層116b反射或散射之光亦由反射性 金屬體116a、上部反射層116c反射,因此光提取效率提高。 In FIG. 17D, the barrier rib 116 that divides the first electrode (lower electrode) 112 formed on the substrate 111 includes a reflective metal body 116a, a resin layer 116b covering the same, and further includes an upper reflective layer 116c. The resin layer 116b is transparent, light reflective, light scattering, or white. When the resin layer 116b is transparent, the light propagating in the lateral direction in the apparatus is reflected by the reflective metal body 116a and the upper reflection layer 116c to change the traveling direction of the light, so that the light extraction efficiency is improved. Further, when the resin layer 116b is light-reflective, light-scattering, or white, light propagating in the lateral direction in the device is reflected or scattered by the resin layer 116b, and light that is not reflected or scattered by the resin layer 116b is also Reflective Since the metal body 116a and the upper reflection layer 116c are reflected, the light extraction efficiency is improved.

如於顯示器用途中將第一電極形成為各像素之情形、或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等般,於對各第一電極施加不同之電壓之情形時,樹脂層116b必需為絕緣性。另一方面,如只要均勻發光即可之通常之照明用途等情形般,於只要對所有第一電極施加相同之電壓即可之情形時,樹脂層116b無需為絕緣性。 For example, in the case where the first electrode is formed as each pixel in the display application, or in the case of illuminating the organic layer having different luminescent colors on each of the first electrodes, the dimming action is performed, etc. When a different voltage is applied to one electrode, the resin layer 116b must be insulative. On the other hand, as long as the same voltage is applied to all of the first electrodes as long as the light is uniformly emitted, the resin layer 116b need not be insulative.

於圖17E中,劃分形成於基板111上之第一電極(下部電極)112之障壁117包含覆蓋第一電極(下部電極)112之至少側面之反射性金屬層或樹脂層。並且,該障壁117係以覆蓋第一電極(下部電極)之邊緣之方式配置,覆蓋不同之第一電極112之障壁117彼此並不接觸。如於顯示器用途中將第一電極形成為各像素之情形、或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等般,即便於對各第一電極施加不同之電壓之情形時,即便障壁117為反射性金屬,只要為該構造,則可確保絕緣性。於障壁117為樹脂層之情形時,樹脂層為光反射性、光散射性或白色。樹脂層如於其他實施形態中所說明般,發揮使沿橫方向傳播之光反射而提高於正面方向提取光之概率的作用。 In FIG. 17E, the barrier 117 partitioning the first electrode (lower electrode) 112 formed on the substrate 111 includes a reflective metal layer or a resin layer covering at least a side surface of the first electrode (lower electrode) 112. Further, the barrier 117 is disposed to cover the edge of the first electrode (lower electrode), and the barrier 117 covering the different first electrodes 112 is not in contact with each other. For example, in the case where the first electrode is formed as each pixel in the display application, or in the case of illuminating the organic layer having different luminescent colors on each of the first electrodes, the dimming action is performed, and the like When the first electrode is applied with a different voltage, even if the barrier 117 is a reflective metal, as long as it has this structure, insulation can be ensured. When the barrier 117 is a resin layer, the resin layer is light-reflective, light-scattering, or white. As described in the other embodiments, the resin layer functions to reflect the light propagating in the lateral direction and to increase the probability of extracting light in the front direction.

於圖17F中,劃分形成於基板111上之第一電極(下部電極)112之障壁118包含樹脂體118a、及覆蓋該樹脂體118a之 反射性金屬體118b。 In FIG. 17F, the barrier rib 118 that divides the first electrode (lower electrode) 112 formed on the substrate 111 includes a resin body 118a and a resin body 118a. Reflective metal body 118b.

並且,反射性金屬體118b係以其下端不接觸第一電極(下部電極)112之方式形成,藉此確保相互鄰接之第一電極(下部電極)112彼此之絕緣性。 Further, the reflective metal body 118b is formed such that its lower end does not contact the first electrode (lower electrode) 112, thereby ensuring insulation between the adjacent first electrodes (lower electrodes) 112.

樹脂層118a為透明、光反射性、光散射性、或白色。於樹脂層118a為透明之情形時,於裝置內沿橫方向傳播之光由反射性金屬體118b反射而改變光之行進方向,因此光提取效率提高。於樹脂層118a為光反射性、光散射性、或白色之情形時,於裝置內沿橫方向傳播之光由樹脂層118a反射或散射,並且未由樹脂層118a反射或散射之光亦經反射性金屬體118b反射,因此光提取效率提高。 The resin layer 118a is transparent, light reflective, light scattering, or white. When the resin layer 118a is transparent, the light propagating in the lateral direction in the apparatus is reflected by the reflective metal body 118b to change the traveling direction of the light, so that the light extraction efficiency is improved. When the resin layer 118a is light-reflective, light-scattering, or white, light propagating in the lateral direction in the device is reflected or scattered by the resin layer 118a, and light that is not reflected or scattered by the resin layer 118a is also reflected. The metal body 118b reflects, so the light extraction efficiency is improved.

如於顯示器用途中將第一電極形成為各像素之情形、或於照明用途中於各第一電極上配置不同發光色之有機層而使其具有調光作用之情形等般,於對各第一電極施加不同之電壓之情形時,樹脂層118a必需為絕緣性。另一方面,如只要均勻發光即可之通常之照明用途等情形般,於只要對所有第一電極施加相同之電壓即可之情形時,樹脂層118a無需為絕緣性。 For example, in the case where the first electrode is formed as each pixel in the display application, or in the case of illuminating the organic layer having different luminescent colors on each of the first electrodes, the dimming action is performed, etc. When a different voltage is applied to one electrode, the resin layer 118a must be insulative. On the other hand, the resin layer 118a need not be insulating, as long as the same voltage is applied to all of the first electrodes as long as it is uniform illumination.

再者,於該等圖17A~圖17F所示之障壁之各構造例中,第一電極(下部電極)112係以直接接觸基板111之方式形成,亦較佳為進而於第一電極112與基板111之間形成上述實施形態四、五所示之低折射率層。 Further, in each of the structural examples of the barrier ribs shown in FIGS. 17A to 17F, the first electrode (lower electrode) 112 is formed to directly contact the substrate 111, and is preferably further connected to the first electrode 112. The low refractive index layers shown in the fourth and fifth embodiments described above are formed between the substrates 111.

(顯示裝置:第十五實施形態) (Display device: Fifteenth embodiment)

圖14係表示第十五實施形態之顯示裝置之概略剖面圖。 Figure 14 is a schematic cross-sectional view showing a display device of a fifteenth embodiment.

於該實施形態中,表示使發光裝置主動矩陣驅動之有機EL顯示裝置。有機EL顯示裝置(顯示裝置)60具備包含透光性基板61、第一電極(下部電極)62、第二電極(上部電極)63、有機發光層64、及光反射性障壁(絕緣層)65之發光裝置67。有機發光層64形成於第一電極62及第二電極63之間。光反射性障壁(絕緣層)65將第一電極62劃分成複數個特定區域。 In this embodiment, an organic EL display device in which an active matrix of a light-emitting device is driven is shown. The organic EL display device (display device) 60 includes a light-transmitting substrate 61, a first electrode (lower electrode) 62, a second electrode (upper electrode) 63, an organic light-emitting layer 64, and a light-reflective barrier (insulating layer) 65. Light emitting device 67. The organic light emitting layer 64 is formed between the first electrode 62 and the second electrode 63. The light reflective barrier (insulating layer) 65 divides the first electrode 62 into a plurality of specific regions.

又,於基板61與第一電極(下部電極)62之間形成有作為驅動部之一例之主動矩陣驅動元件(驅動部)70。於基板61上形成有閘極電極70a、閘極氧化膜68。於閘極氧化膜68上形成有活性層70d、源極電極70b、汲極電極70c,進而形成有層間絕緣膜69。於層間絕緣膜69上設有接觸孔,使汲極電極70c與第一電極62電性接合。主動矩陣驅動元件70包含閘極電極70a、閘極氧化膜68、源極電極70b、汲極電極70c及活性層70d等。 Further, an active matrix driving element (driving portion) 70 as an example of a driving portion is formed between the substrate 61 and the first electrode (lower electrode) 62. A gate electrode 70a and a gate oxide film 68 are formed on the substrate 61. An active layer 70d, a source electrode 70b, and a drain electrode 70c are formed on the gate oxide film 68, and an interlayer insulating film 69 is further formed. A contact hole is formed in the interlayer insulating film 69 to electrically connect the gate electrode 70c and the first electrode 62. The active matrix driving element 70 includes a gate electrode 70a, a gate oxide film 68, a source electrode 70b, a drain electrode 70c, an active layer 70d, and the like.

作為控制發光裝置67之發光之驅動部之一例的主動矩陣驅動元件(驅動部)70作為開關用途及驅動用途而發揮功能。上述主動矩陣驅動元件70可使用公知之材料、構造及形成方法而形成。 The active matrix drive element (drive unit) 70, which is an example of a drive unit that controls the light emission of the light-emitting device 67, functions as a switch application and a drive application. The active matrix driving element 70 described above can be formed using well-known materials, structures, and forming methods.

作為活性層70d之材料,例如可列舉:非晶矽(amorphous silicon)、多晶矽(polysilicon)、微晶矽、硒化鎘等無機半導體材料,氧化鋅、氧化銦-氧化鎵-氧化鋅等氧化物半導體材料,或聚噻吩衍生物、噻吩低聚物、聚(對苯乙炔)衍生物、稠四苯、稠五苯等有機半導體材料。 又,作為TFT之構造,例如可列舉:交錯型、逆交錯型、頂閘極型、共面型。 Examples of the material of the active layer 70d include inorganic semiconductor materials such as amorphous silicon, polysilicon, microcrystalline germanium, and cadmium selenide, and oxides such as zinc oxide and indium oxide-gallium oxide-zinc oxide. A semiconductor material, or an organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly(p-phenylacetylene) derivative, a condensed tetraphenyl, or a pentacene. Moreover, examples of the structure of the TFT include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.

作為活性層70d之形成方法,可列舉:(1)於藉由電漿誘導化學氣相沈積(PECVD,plasma-enhanced chemical vapor deposition)法所成膜之非晶矽中離子摻雜雜質的方法;(2)藉由使用矽烷(SiH4)氣體之減壓化學氣相沈積(LPCVD,Low Pressure Chemical Vapor Deposition)法形成非晶矽,藉由固相成長法使非晶矽結晶化而獲得多晶矽後,藉由離子植入法進行離子摻雜的方法;(3)藉由使用Si2H6氣體之LPCVD法或使用SiH4氣體之PECVD法形成非晶矽,藉由準分子雷射等雷射進行退火,使非晶矽結晶化而獲得多晶矽後,進行離子摻雜的方法(低溫製程);(4)藉由LPCVD法或PECVD法形成多晶矽層,於1000℃以上之溫度下進行熱氧化,藉此形成閘極絕緣膜,於其上形成n+多晶矽之閘極電極,其後進行離子摻雜的方法(高溫製程);(5)藉由噴墨法等形成有機半導體材料之方法;(6)獲得有機半導體材料之單晶膜之方法等。 As a method of forming the active layer 70d, (1) a method of ion doping impurities in an amorphous germanium formed by a plasma-induced chemical vapor deposition (PECVD) method; (2) An amorphous germanium is formed by a low pressure chemical vapor deposition (LPCVD) method using a decane (SiH 4 ) gas, and the amorphous germanium is crystallized by a solid phase growth method to obtain a polycrystalline germanium. a method of ion doping by ion implantation; (3) forming an amorphous germanium by LPCVD using Si 2 H 6 gas or PECVD using SiH 4 gas, by laser such as excimer laser After annealing, crystallizing the amorphous germanium to obtain polycrystalline germanium, performing ion doping (low temperature process); (4) forming a polycrystalline germanium layer by LPCVD or PECVD, and performing thermal oxidation at a temperature of 1000 ° C or higher. Thereby forming a gate insulating film, forming a gate electrode of n + polysilicon thereon, followed by ion doping (high temperature process); (5) a method of forming an organic semiconductor material by an inkjet method or the like; 6) Method for obtaining a single crystal film of an organic semiconductor material Wait.

閘極絕緣膜68可使用公知之材料而形成。例如可列舉:藉由PECVD法、LPCVD法等所形成之SiO2,或使多晶矽膜熱氧化而獲得之SiO2等。又,TFT之信號電極線、掃描電極線、共通電極線、第1驅動電極及第2驅動電極可使用公知之材料而形成,例如可列舉:鉭(Ta)、鋁(Al)、銅(Cu)等。 The gate insulating film 68 can be formed using a known material. For example, SiO 2 formed by a PECVD method, an LPCVD method, or the like, or SiO 2 obtained by thermally oxidizing a polycrystalline germanium film can be used. Further, the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT can be formed using a known material, and examples thereof include tantalum (Ta), aluminum (Al), and copper (Cu). )Wait.

層間絕緣膜69可使用公知之材料而形成,例如可列舉: 氧化矽(SiO2)、氮化矽(SiN、或Si2N4)、氧化鉭(TaO或Ta2O5)等無機材料,或丙烯酸樹脂、抗蝕劑材料等有機材料等。又,作為其形成方法,可列舉:化學氣相沈積(CVD)法、真空蒸鍍法等乾式製程,旋轉塗佈法等濕式製程。又,視需要亦可藉由光微影法等進行圖案化。 The interlayer insulating film 69 can be formed using a known material, and examples thereof include inorganic materials such as cerium oxide (SiO 2 ), cerium nitride (SiN or Si 2 N 4 ), and cerium oxide (TaO or Ta 2 O 5 ). Or an organic material such as an acrylic resin or a resist material. Further, examples of the method for forming the film include a dry process such as a chemical vapor deposition (CVD) method or a vacuum vapor deposition method, and a wet process such as a spin coating method. Further, it may be patterned by photolithography or the like as needed.

再者,於在基板61上形成主動矩陣驅動元件70之情形時,有於其表面形成凸凹,因該凸凹而導致發光裝置67產生例如像素電極之缺損、有機EL層之缺損、對向電極之斷線、像素電極與對向電極之短路、耐壓之降低等之虞。為了防止該等現象,亦可進而於層間絕緣膜69上設置平坦化膜。 Further, when the active matrix driving element 70 is formed on the substrate 61, a convexo-concave is formed on the surface thereof, and the light-emitting device 67 is caused to have defects such as a pixel electrode, a defect of the organic EL layer, and a counter electrode. Broken wire, short circuit of the pixel electrode and the counter electrode, reduction in withstand voltage, and the like. In order to prevent such a phenomenon, a planarizing film may be further provided on the interlayer insulating film 69.

上述平坦化膜可使用公知之材料而形成,例如可列舉:氧化矽、氮化矽、氧化鉭等無機材料,聚醯亞胺、丙烯酸樹脂、抗蝕劑材料等有機材料等。作為平坦化膜之形成方法,可列舉:CVD法、真空蒸鍍法等乾式製程,旋轉塗佈法等濕式製程,但本實施形態並不限定於該等材料及形成方法。又,平坦化膜可為單層構造,亦可為多層構造。 The planarizing film can be formed using a known material, and examples thereof include inorganic materials such as cerium oxide, cerium nitride, and cerium oxide, and organic materials such as polyimine, acrylic resin, and resist material. Examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum vapor deposition method, and a wet process such as a spin coating method. However, the present embodiment is not limited to these materials and a forming method. Further, the planarizing film may have a single layer structure or a multilayer structure.

又,於上述有機EL顯示裝置(顯示裝置)60上,亦可進而組合彩色濾光片、色轉換膜等。於與彩色濾光片組合之情形時,通常將發光色設為白色。又,於與色轉換膜組合之情形時,通常將發光色設為藍色。 Further, a color filter, a color conversion film, or the like may be further combined on the organic EL display device (display device) 60. In the case of combination with a color filter, the luminescent color is usually set to white. Further, in the case of combining with a color conversion film, the luminescent color is usually set to blue.

(顯示裝置:第十六實施形態) (Display device: Sixteenth embodiment)

圖15係表示第十六實施形態之顯示裝置之概略剖面圖。 Fig. 15 is a schematic cross-sectional view showing a display device of a sixteenth embodiment.

有機EL顯示裝置(顯示裝置)80具備包含透光性基板81、 低折射率層86、第一電極(下部電極)82、第二電極(上部電極)83、形成於該第一電極82及第二電極83之間的有機發光層84、及將第一電極82劃分成複數個特定區域之光反射性障壁(絕緣層)85的發光裝置87。 The organic EL display device (display device) 80 includes a light-transmitting substrate 81, a low refractive index layer 86, a first electrode (lower electrode) 82, a second electrode (upper electrode) 83, an organic light emitting layer 84 formed between the first electrode 82 and the second electrode 83, and a first electrode 82 A light-emitting device 87 that is divided into light-reflective barriers (insulating layers) 85 of a plurality of specific regions.

又,於基板81與第一電極(下部電極)82之間形成有作為驅動部之一例之主動矩陣驅動元件(驅動部)90。於基板81上形成有閘極電極90a、閘極氧化膜88。於閘極氧化膜88上形成有活性層90d、源極電極90b、汲極電極90c,進而形成有層間絕緣膜89。於層間絕緣膜89上設有接觸孔,使汲極電極90c與第一電極82電性接合。主動矩陣驅動元件90包含閘極電極90a、閘極氧化膜88、源極電極90b、汲極電極90c及活性層90d等。 Further, an active matrix driving element (driving portion) 90 as an example of a driving portion is formed between the substrate 81 and the first electrode (lower electrode) 82. A gate electrode 90a and a gate oxide film 88 are formed on the substrate 81. An active layer 90d, a source electrode 90b, and a drain electrode 90c are formed on the gate oxide film 88, and an interlayer insulating film 89 is further formed. A contact hole is formed in the interlayer insulating film 89 to electrically connect the gate electrode 90c and the first electrode 82. The active matrix driving element 90 includes a gate electrode 90a, a gate oxide film 88, a source electrode 90b, a drain electrode 90c, an active layer 90d, and the like.

該實施形態中,於基板81與第一電極(下部電極)82之間形成有折射率低於基板81之低折射率層86。低折射率層86較佳為具有如例如使自有機發光層84向低折射率材層86射入之入射光之臨界角變得小於自基板81射出至外部之出射光之臨界角的折射率。 In this embodiment, a low refractive index layer 86 having a lower refractive index than the substrate 81 is formed between the substrate 81 and the first electrode (lower electrode) 82. The low refractive index layer 86 preferably has a refractive index such that, for example, the critical angle of incident light incident from the organic light-emitting layer 84 toward the low refractive index material layer 86 becomes smaller than the critical angle of the outgoing light emitted from the substrate 81 to the outside. .

藉由形成上述低折射率層86,可進一步提高光提取效率。 By forming the above-described low refractive index layer 86, the light extraction efficiency can be further improved.

(顯示裝置:第十七實施形態) (Display device: Seventeenth embodiment)

圖18係表示本實施形態之顯示裝置之第一實施形態之概略剖面圖。 Fig. 18 is a schematic cross-sectional view showing a first embodiment of the display device of the embodiment.

於該實施形態中,表示使發光裝置主動矩陣驅動之有機EL顯示裝置。有機EL顯示裝置(顯示裝置)3100具備構成發 光裝置之各層,即透光性基板3101、低折射率層3106、波長轉換層3105、第一電極(下部電極)3102、有機發光層3104、第二電極(上部電極)3103、及至少配置於波長轉換層3105與有機發光層3104兩者之側面之障壁3107。上述障壁3107包含具有光反射性之材料。再者,低折射率層3106視需要亦可省略。 In this embodiment, an organic EL display device in which an active matrix of a light-emitting device is driven is shown. The organic EL display device (display device) 3100 has a configuration Each layer of the optical device, that is, the translucent substrate 3101, the low refractive index layer 3106, the wavelength conversion layer 3105, the first electrode (lower electrode) 3102, the organic light emitting layer 3104, the second electrode (upper electrode) 3103, and at least A barrier 3107 on the side of both the wavelength conversion layer 3105 and the organic light-emitting layer 3104. The barrier rib 3107 includes a material having light reflectivity. Further, the low refractive index layer 3106 may be omitted as needed.

又,於基板3101與第一電極(下部電極)3102之間形成有主動矩陣驅動元件3110。於基板3101上形成有構成主動矩陣驅動元件3110之閘極電極3111a、閘極氧化膜3112。於閘極氧化膜3112上形成有活性層3111d、源極電極3111b、汲極電極3111c,進而形成有層間絕緣膜3113。於層間絕緣膜3113上設有接觸孔3114,使汲極電極3111c與第一電極3102電性接合。主動矩陣驅動元件3110包含該等閘極電極3111a、閘極氧化膜3112、源極電極3111b、汲極電極3111c及活性層3111d等。 Further, an active matrix driving element 3110 is formed between the substrate 3101 and the first electrode (lower electrode) 3102. A gate electrode 3111a and a gate oxide film 3112 constituting the active matrix driving element 3110 are formed on the substrate 3101. An active layer 3111d, a source electrode 3111b, and a drain electrode 3111c are formed on the gate oxide film 3112, and an interlayer insulating film 3113 is further formed. A contact hole 3114 is formed in the interlayer insulating film 3113 to electrically connect the drain electrode 3111c and the first electrode 3102. The active matrix driving element 3110 includes the gate electrode 3111a, the gate oxide film 3112, the source electrode 3111b, the drain electrode 3111c, the active layer 3111d, and the like.

(顯示裝置:第十八實施形態) (Display device: Eighteenth embodiment)

圖19係表示第十八實施形態之顯示裝置之概略剖面圖。 Fig. 19 is a schematic cross-sectional view showing a display device of an eighteenth embodiment.

於該實施形態中,表示使發光裝置主動矩陣驅動之有機EL顯示裝置。有機EL顯示裝置(顯示裝置)3120具備透光性基板3121、低折射率層3126、波長轉換層3125、第一電極(下部電極)3122、有機發光層3124、第二電極(上部電極)3123、及至少配置於波長轉換層3125及有機發光層3124兩者之側面之障壁3127。上述障壁3127包含具有光反射性之材料。再者,低折射率層3126視需要亦可省略。 In this embodiment, an organic EL display device in which an active matrix of a light-emitting device is driven is shown. The organic EL display device (display device) 3120 includes a light-transmitting substrate 3121, a low refractive index layer 3126, a wavelength conversion layer 3125, a first electrode (lower electrode) 3122, an organic light-emitting layer 3124, and a second electrode (upper electrode) 3123. And a barrier 3127 disposed at least on a side of both the wavelength conversion layer 3125 and the organic light-emitting layer 3124. The barrier rib 3127 includes a material having light reflectivity. Further, the low refractive index layer 3126 may be omitted as needed.

又,於基板3121與第一電極(下部電極)3122之間形成有主動矩陣驅動元件3130。於基板3121上形成有閘極電極3131a、閘極氧化膜3132。於閘極氧化膜3132上形成有活性層3131d、源極電極3131b、汲極電極3131c,進而形成有層間絕緣膜3133。於層間絕緣膜3133上設有接觸孔3134,使汲極電極3131c與第一電極3122電性接合。主動矩陣驅動元件3130包含閘極電極3131a、閘極氧化膜3132、源極電極3131b、汲極電極3131c及活性層3131d等。 Further, an active matrix driving element 3130 is formed between the substrate 3121 and the first electrode (lower electrode) 3122. A gate electrode 3131a and a gate oxide film 3132 are formed on the substrate 3121. An active layer 3131d, a source electrode 3131b, and a drain electrode 3131c are formed on the gate oxide film 3132, and an interlayer insulating film 3133 is further formed. A contact hole 3134 is formed in the interlayer insulating film 3133 to electrically connect the drain electrode 3131c and the first electrode 3122. The active matrix driving element 3130 includes a gate electrode 3131a, a gate oxide film 3132, a source electrode 3131b, a drain electrode 3131c, an active layer 3131d, and the like.

(發光裝置:第十九實施形態) (Light-emitting device: nineteenth embodiment)

為了提高第一電極(下部電極)之導電性,亦較佳為於進而具備輔助電極之發光裝置上形成光反射性障壁。 In order to improve the conductivity of the first electrode (lower electrode), it is preferable to form a light-reflective barrier on the light-emitting device further including the auxiliary electrode.

圖20A及圖20B係表示第八實施形態之發光裝置之概略剖面圖。再者,圖20A係自上方觀察發光裝置時之平面圖。圖20B係圖20A之A-A線之剖面圖。 20A and 20B are schematic cross-sectional views showing a light-emitting device of an eighth embodiment. In addition, FIG. 20A is a plan view when the light-emitting device is viewed from above. Figure 20B is a cross-sectional view taken along line A-A of Figure 20A.

該實施形態之發光裝置200係於玻璃等透光性基板201上形成有輔助配線209。輔助配線209只要配置1根或複數根即可。輔助配線209通常使用Al、Ag等電阻值較低之金屬材料。於配置複數根輔助配線209之情形時,可配置成例如條紋狀、或格子狀。 In the light-emitting device 200 of the embodiment, the auxiliary wiring 209 is formed on the light-transmitting substrate 201 such as glass. It is only necessary to arrange one or a plurality of auxiliary wirings 209. The auxiliary wiring 209 is usually made of a metal material having a low resistance value such as Al or Ag. In the case where the plurality of auxiliary wirings 209 are disposed, they may be arranged, for example, in a stripe shape or a lattice shape.

輔助配線209由第一電極(下部電極)202覆蓋。第一電極(下部電極)202係使用例如ITO、IZO等透明電極材料,膜厚例如為100 nm~300 nm左右。為了將第一電極202形成為特定形狀,可採用使用光微影法等進行圖案化之方法、或 遮罩蒸鍍等。 The auxiliary wiring 209 is covered by the first electrode (lower electrode) 202. The first electrode (lower electrode) 202 is made of a transparent electrode material such as ITO or IZO, and has a film thickness of, for example, about 100 nm to 300 nm. In order to form the first electrode 202 into a specific shape, a method of patterning using a photolithography method or the like, or Mask evaporation, etc.

於鄰接之第一電極(下部電極)202彼此之間形成有光反射性障壁205。即便障壁205僅覆蓋第一電極(下部電極)202之周圍之一部分,亦可獲得光提取效率提高之效果,較佳為將周圍全部包圍,其對於光提取效率提高而言效果最高。再者,於圖20A中,光反射性障壁205之開口區域係描繪為正方形之形狀,亦可為長方形、圓形、其他形狀。作為障壁205之開口尺寸,並無限定,可選擇開口直徑0.5 mm、1 mm、5 mm、10 mm、50 mm、100 mm等各種尺寸。 A light reflective barrier 205 is formed between the adjacent first electrodes (lower electrodes) 202. Even if the barrier 205 covers only a portion of the periphery of the first electrode (lower electrode) 202, the effect of improving the light extraction efficiency can be obtained, and it is preferable to surround the entire periphery, which is most effective for improving the light extraction efficiency. Furthermore, in FIG. 20A, the open area of the light-reflective barrier 205 is depicted as a square shape, and may be rectangular, circular, or other shapes. The size of the opening of the barrier 205 is not limited, and various sizes such as an opening diameter of 0.5 mm, 1 mm, 5 mm, 10 mm, 50 mm, and 100 mm can be selected.

於第一電極(下部電極)202上形成有有機發光層204。有機發光層204可使用例如電洞注入層、電洞傳輸層、發光層、電洞阻擋層、電子傳輸層、及電子注入層之積層膜等。於有機發光層204上形成有第二電極(上部電極)203。第二電極(上部電極)203只要使用例如LiF/Al作為陰極即可。 An organic light emitting layer 204 is formed on the first electrode (lower electrode) 202. As the organic light-emitting layer 204, for example, a hole injection layer, a hole transport layer, a light-emitting layer, a hole barrier layer, an electron transport layer, a laminated film of an electron injection layer, or the like can be used. A second electrode (upper electrode) 203 is formed on the organic light emitting layer 204. The second electrode (upper electrode) 203 may be, for example, LiF/Al as a cathode.

進而,於圖20B中未圖示,為了保護發光裝置200免受由大氣中之水分或氧引起之腐蝕、變質,較佳為使用對向基板等進行密封。 Further, as shown in FIG. 20B, in order to protect the light-emitting device 200 from corrosion or deterioration caused by moisture or oxygen in the atmosphere, it is preferable to use a counter substrate or the like.

再者,於因障壁205之形狀成為倒錐形狀等而有可能使第二電極(上部電極)203產生段割之情形時,如圖21A、圖21B所示,較佳為於障壁205上形成無段差之部分。 In the case where the second electrode (upper electrode) 203 is cut by the shape of the barrier 205, the shape of the barrier 205 is reversed, and as shown in FIGS. 21A and 21B, it is preferably formed on the barrier 205. No part of the step.

以下,於圖14A~圖20B中表示圖20A及圖20B所示之第八實施形態之變形例。再者,於該等實施形態中,對與圖 20A及圖20B相同之構件標註相同之編號,省略其詳細說明。又,於圖24A~圖20B中,圖24A、圖25A、圖26A、圖27A、圖28A、圖29A、及圖30A係自上方觀察發光裝置時之平面圖。圖24B、圖25B、圖26B、圖27B、圖28B、圖29B、及圖30B分別係圖24A、圖25A、圖26A、圖27A、圖28A、圖29A、及圖30A之A-A'線之剖面圖。 Hereinafter, a modification of the eighth embodiment shown in Figs. 20A and 20B is shown in Figs. 14A to 20B. Furthermore, in these embodiments, the pair and the figure 20A and FIG. 20B are denoted by the same reference numerals, and detailed description thereof will be omitted. In addition, in FIGS. 24A to 20B, FIGS. 24A, 25A, 26A, 27A, 28A, 29A, and 30A are plan views when the light-emitting device is viewed from above. 24B, 25B, 26B, 27B, 28B, 29B, and 30B are lines AA' of Figs. 24A, 25A, 26A, 27A, 28A, 29A, and 30A, respectively. Sectional view.

配置輔助配線209之位置可如圖20A及圖20B所示般配置於發光區域內,於藉由不透明電極製作輔助配線之情形等時,輔助配線遮斷所發出之光,因此未必較佳。另一方面,如圖24A及圖24B所示,若於發光區域外配置輔助配線,則可更順利地提取所發出之光,因此較佳。於圖20A及圖20B所示之實施形態中,有機發光層204形成於障壁205內,亦可如圖24A及圖24B所示之實施形態之發光裝置210般,以覆蓋障壁205之形態形成有機發光層204。就生產性之方面而言,於基板面整個面上形成之該形態較高效。 The position where the auxiliary wiring 209 is disposed can be disposed in the light-emitting region as shown in FIGS. 20A and 20B. When the auxiliary wiring is formed by the opaque electrode, the auxiliary wiring blocks the emitted light, which is not necessarily preferable. On the other hand, as shown in FIG. 24A and FIG. 24B, if the auxiliary wiring is disposed outside the light-emitting region, the emitted light can be extracted more smoothly, which is preferable. In the embodiment shown in FIG. 20A and FIG. 20B, the organic light-emitting layer 204 is formed in the barrier 205, and the organic light-emitting device 210 of the embodiment shown in FIGS. 24A and 24B can be formed in the form of a cover barrier 205. Light emitting layer 204. In terms of productivity, the form formed on the entire surface of the substrate surface is more efficient.

於圖24A及圖24B中,有機發光層204所發出之光(激發光)之中,沿朝向透明之第一電極(下部電極)202之方向射出之光透過第一電極202而射入基板201。 In FIGS. 24A and 24B, among the light (excitation light) emitted from the organic light-emitting layer 204, light emitted in a direction toward the transparent first electrode (lower electrode) 202 passes through the first electrode 202 and is incident on the substrate 201. .

又,有機發光層204所發出之光(激發光)之中,沿朝向非透光性第二電極(上部電極)203之方向射出之光由第二電極203之表面反射,再次透過有機發光層204並透過第一電極202而射入基板201。 Further, among the light (excitation light) emitted from the organic light-emitting layer 204, light emitted in a direction toward the non-transmissive second electrode (upper electrode) 203 is reflected by the surface of the second electrode 203, and is again transmitted through the organic light-emitting layer. 204 passes through the first electrode 202 and enters the substrate 201.

另一方面,有機發光層204所發出之光(激發光)之中, 沿面擴展方向(與積層方向垂直之方向)射出之光射入障壁205。射入障壁205之光由於障壁205包含具有光反射性之材料,故而使所射入之光反射、且較佳為使其擴散。並且,經障壁205反射之光亦透過第一電極202而射入基板201。 On the other hand, among the light (excitation light) emitted by the organic light-emitting layer 204, Light emitted in the direction in which the surface is expanded (the direction perpendicular to the direction of the lamination) is incident on the barrier 205. Since the light entering the barrier 205 includes a material having light reflectivity, the light that is incident on the barrier 205 reflects the light incident thereon and preferably diffuses it. Further, the light reflected by the barrier 205 is also transmitted through the first electrode 202 to the substrate 201.

射入基板201之光射向基板201與空氣之界面。此處,由於存在基板201與空氣之折射率差,故而一部分射出至外部,但角度小於由基板201與空氣之折射率差所規定之一定角度的光經基板201與空氣之界面反射。該經反射之光中,一部分遇到障壁205之光發生反射、較佳為發生散射,再次射向基板201與空氣之界面。此時,藉由於障壁205上之反射、較佳為散射而使角度改變,因此於基板201與空氣之界面上不發生反射之角度之光被提取至外部。藉由反覆進行上述製程,最終大部分光被提取至外部,光提取效率提高。 The light incident on the substrate 201 is directed to the interface between the substrate 201 and the air. Here, since the refractive index difference between the substrate 201 and the air is present, a part of the light is emitted to the outside, but the light having an angle smaller than a predetermined angle defined by the difference in refractive index between the substrate 201 and the air is reflected by the interface between the substrate 201 and the air. Of the reflected light, a part of the light that has encountered the barrier 205 is reflected, preferably scattered, and is again incident on the interface between the substrate 201 and the air. At this time, since the angle is changed by reflection on the barrier 205, preferably by scattering, light that does not reflect at the interface between the substrate 201 and the air is extracted to the outside. By repeating the above process, most of the light is finally extracted to the outside, and the light extraction efficiency is improved.

如上所述,藉由具有光反射性、較佳為光散射性之障壁205,光提取效率提高。若無障壁205,則射向面擴展方向(與積層方向垂直之方向)之光不會被提取至外部,又,經基板201與空氣之界面反射之光亦僅於元件內向面擴展方向(與積層方向垂直之方向)傳播,不會被提取至外部。 As described above, the light extraction efficiency is improved by the barrier 205 having light reflectivity, preferably light scattering property. If there is no barrier 205, the light that is incident on the surface expansion direction (the direction perpendicular to the lamination direction) is not extracted to the outside, and the light reflected by the interface between the substrate 201 and the air is also expanded only in the inward direction of the element (and The direction of the stack is perpendicular to the direction and will not be extracted to the outside.

於圖24A及圖24B所示之實施形態中,輔助配線209由第一電極(下部電極)202覆蓋,除此以外亦可如例如圖25A及圖25B所示之實施形態之發光裝置220般,以一部分接觸障壁205之方式形成輔助配線209。 In the embodiment shown in Figs. 24A and 24B, the auxiliary wiring 209 is covered by the first electrode (lower electrode) 202, and may be, for example, the light-emitting device 220 of the embodiment shown in Figs. 25A and 25B. The auxiliary wiring 209 is formed in such a manner that a part of the barrier 205 is contacted.

於圖20A及圖20B所示之實施形態中,輔助配線209由第一電極(下部電極)202覆蓋,亦可如圖26A所示之實施形態之發光裝置230般,於第一電極(下部電極)202上形成輔助配線209。 In the embodiment shown in Figs. 20A and 20B, the auxiliary wiring 209 is covered by the first electrode (lower electrode) 202, and may be in the same manner as the light-emitting device 230 of the embodiment shown in Fig. 26A. The auxiliary wiring 209 is formed on the 202.

於該等圖20A及圖20B、圖24A及圖24B、圖25A及圖25B所示之實施形態之情形時,作為製造步驟,通常選取如下4步驟:(1)輔助電極膜之成膜,(2)輔助電極膜之圖案化,(3)下部電極膜之成膜,(4)下部電極膜之圖案化。相對於此,於圖26A及圖26B所示之實施形態中,可藉由(1)使下部電極膜與輔助電極膜連續成膜,其後進行(2)輔助電極膜之圖案化、(3)下部電極膜之圖案化而以3步驟進行製造,於製造製程上具有優勢。 In the case of the embodiments shown in FIGS. 20A and 20B, 24A and 24B, and 25A and 25B, as a manufacturing step, the following four steps are generally selected: (1) film formation of the auxiliary electrode film, ( 2) patterning of the auxiliary electrode film, (3) film formation of the lower electrode film, and (4) patterning of the lower electrode film. On the other hand, in the embodiment shown in FIGS. 26A and 26B, the lower electrode film and the auxiliary electrode film can be continuously formed by (1), and then (2) the auxiliary electrode film can be patterned, (3) The patterning of the lower electrode film is performed in three steps, which is advantageous in the manufacturing process.

於圖20A及圖20B所示之實施形態中,使第一電極(下部電極)202圖案化,以覆蓋其周圍之形態形成有障壁205,亦可如圖27A及圖27B所示之實施形態之發光裝置240般,不使第一電極(下部電極)202圖案化。又,於該圖27A及圖27B所示之發光裝置240中,以於各區域均形成有輔助配線209之方式描繪,但亦可適當減省地形成輔助配線209。 In the embodiment shown in FIG. 20A and FIG. 20B, the first electrode (lower electrode) 202 is patterned, and the barrier 205 is formed to cover the periphery thereof, as shown in FIGS. 27A and 27B. Like the light-emitting device 240, the first electrode (lower electrode) 202 is not patterned. Further, in the light-emitting device 240 shown in FIGS. 27A and 27B, the auxiliary wiring 209 is formed in each region, but the auxiliary wiring 209 may be formed in a reduced manner.

於圖27A及圖27B所示之實施形態中,輔助配線209由第一電極(下部電極)202覆蓋,亦可如圖28A及圖28B所示之實施形態之發光裝置250般,於第一電極(下部電極)202上形成輔助配線209。於該圖28A及圖28B所示之實施形態中,於各區域均形成有輔助配線209,但亦可適當減省地形成輔助配線209。 In the embodiment shown in FIG. 27A and FIG. 27B, the auxiliary wiring 209 is covered by the first electrode (lower electrode) 202, and may be the same as the light-emitting device 250 of the embodiment shown in FIGS. 28A and 28B. The auxiliary wiring 209 is formed on the (lower electrode) 202. In the embodiment shown in FIG. 28A and FIG. 28B, the auxiliary wiring 209 is formed in each region, but the auxiliary wiring 209 may be formed in a reduced manner.

於為圖20A及圖20B、圖24A及圖24B、圖25A及圖25B所示之實施形態之情形時,作為製造步驟,選取如下4步驟:(1)輔助電極膜之成膜,(2)輔助電極膜之圖案化,(3)下部電極膜之成膜,(4)下部電極膜之圖案化。相對於此,作為圖28A及圖28B所示之實施形態之發光裝置250之製造步驟,可藉由(1)使下部電極膜與輔助電極膜連續成膜,其後進行(2)輔助電極膜之圖案化、(3)下部電極膜之圖案化而以3步驟進行製造,於製造製程上具有優勢。 In the case of the embodiment shown in FIGS. 20A and 20B, 24A and 24B, and 25A and 25B, as a manufacturing step, the following four steps are selected: (1) film formation of the auxiliary electrode film, (2) Patterning of the auxiliary electrode film, (3) film formation of the lower electrode film, and (4) patterning of the lower electrode film. On the other hand, as a manufacturing step of the light-emitting device 250 of the embodiment shown in FIGS. 28A and 28B, the lower electrode film and the auxiliary electrode film can be continuously formed by (1), and then (2) the auxiliary electrode film can be performed. The patterning and (3) patterning of the lower electrode film are carried out in three steps, which is advantageous in the manufacturing process.

再者,於因障壁205之形狀成為倒錐形狀等而有可能使第二電極(上部電極)203產生段割之情形時,作為圖21A、圖21B之變形例,如圖29A及圖29B所示,可為於障壁205上形成無段差之部分、並且第一電極(下部電極)202未經圖案化之形態的發光裝置260。 In the case where the shape of the barrier 205 is reversed or the like, and the second electrode (upper electrode) 203 may be cut, the modification of FIGS. 21A and 21B is as shown in FIGS. 29A and 29B. As shown, a light-emitting device 260 in a form in which no step is formed on the barrier 205 and the first electrode (lower electrode) 202 is not patterned may be used.

於圖21A及圖21B、圖29A及圖29B所示之實施形態中,以未形成障壁205之部分處於一直線上之方式描繪,該位置亦可處於其他位置。於處於一直線上之情形時,沿該方向行進之光不會遇到障壁,因此有產生未被提取之光之虞。相對於此,如例如圖30A及圖30B所示之實施形態之發光裝置270般,以不成為一直線之方式形成未形成障壁205之部分之形態均為較佳之形態。若如此,則可不遇到障壁205且不產生損失之光,且亦有利於防止第二電極(上部電極)203之段割。 In the embodiment shown in Figs. 21A and 21B, 29A and 29B, the portion where the barrier 205 is not formed is drawn in a straight line, and the position may be at another position. When in a straight line, the light traveling in this direction does not encounter the barrier, so there is a ripple of unextracted light. On the other hand, as in the case of the light-emitting device 270 of the embodiment shown in FIGS. 30A and 30B, for example, a form in which the portion where the barrier 205 is not formed is formed in a straight line is preferable. If so, the barrier 205 is not encountered and no loss of light is generated, and it is also advantageous to prevent the second electrode (upper electrode) 203 from being cut.

於圖20A及圖20B、圖21A及圖21B、圖24A~圖30B各自所示之實施形態中,輔助配線209配置成條紋狀,但於如 照明用途等般只要使整個面發光即可之情形時,亦可形成為例如格子狀。又,於圖24A~圖30B各自所示之實施形態中,輔助配線209係於各區域之一側配置成條紋狀,亦可配置於各區域之兩側。 In the embodiment shown in each of FIGS. 20A and 20B, 21A and 21B, and 24A to 30B, the auxiliary wiring 209 is arranged in a stripe shape, but In the case where the entire surface is illuminated as in the case of illumination, etc., it may be formed, for example, in a lattice shape. Further, in the embodiment shown in each of Figs. 24A to 30B, the auxiliary wiring 209 is arranged in a stripe shape on one side of each region, and may be disposed on both sides of each region.

上述圖20A及圖20B、圖21A及圖21B、圖24A~圖30B各自所示之實施形態之發光裝置尤其適合應用於如圖23A及圖23B所示之照明用途之情形等。 The light-emitting device of the embodiment shown in each of FIGS. 20A and 20B, FIG. 21A and FIG. 21B, and FIG. 24A to FIG. 30B is particularly preferably applied to the lighting application as shown in FIGS. 23A and 23B.

該等實施形態所示之障壁之形成圖案可選取各種形態。於圖31A~圖31I中列舉障壁之形成圖案之代表例,但障壁之形狀並不限定於該等實施形態。 The pattern of formation of the barrier ribs shown in these embodiments can be selected in various forms. A representative example of the formation pattern of the barrier ribs is shown in FIGS. 31A to 31I, but the shape of the barrier rib is not limited to the embodiments.

圖31A係將各區域形成為四角形者。 Fig. 31A is a view in which each region is formed into a quadrangle.

圖31B係將各區域形成為圓形者。若使各區域成為圓形,則有經障壁反射之光之分佈於各方向上相等之優點。又,於利用塗佈法形成有機層之情形等時,若如四角形般具有角部,則存在產生塗佈液僅於該部分不易濕潤擴散之課題的情況,於為圓形之情形時無角部,因此可使塗佈液均勻地擴散。再者,於該圖31B中,將各區域描繪成圓形,亦可形成為橢圓、或於四角形之角部帶弧度之形狀等。 Fig. 31B is a case where each region is formed into a circle. If each of the regions is made circular, there is an advantage that the distribution of the light reflected by the barrier is equal in all directions. In the case where the organic layer is formed by a coating method, if the corner portion is formed as a square shape, there is a problem that the coating liquid is less likely to be wet-diffused only in the portion, and the shape is round without a corner. Therefore, the coating liquid can be uniformly diffused. Further, in FIG. 31B, each region is drawn in a circular shape, and may be formed in an ellipse or a shape having a curvature in a corner portion of a quadrangle.

圖31C係將各區域之配置設為六方配置者。藉由設為六方配置,與圖21C之實施形態相比,可提高發光區域之比率。 Fig. 31C shows the arrangement of each area as a hexagonal configurator. By setting it as a hexagonal arrangement, the ratio of the light-emitting region can be improved as compared with the embodiment of Fig. 21C.

圖31D係六方配置六角形區域者。 Figure 31D is a hexagonal configuration of hexagonal regions.

圖31E係於各區域之一部分配置未形成障壁之區域者。 藉此,可防止第二電極覆蓋障壁時產生段割,提高良率及可靠性。 Fig. 31E is a portion in which a region where no barrier is formed is disposed in one of the regions. Thereby, it is possible to prevent segment cutting when the second electrode covers the barrier, thereby improving yield and reliability.

圖31F係使於各區域之一部分未形成障壁之區域之位置不處於一直線上之例。 Fig. 31F is an example in which the position of the region where the barrier is not formed in one of the regions is not in a straight line.

於為圖31E所示之實施形態之情形時,於未形成障壁之區域,沿橫方向導波之光直至裝置之端部為止未經反射/散射,從而損失。相對於此,於圖31F中,成為於未形成障壁之區域中,沿橫方向導波而自某區域進入另一區域之光於另一區域中遇到障壁的構造,可抑制光之損失。圖31G、圖31H、圖31I係於圖31D、圖31B、圖31C之構成中分別於各區域之一部分配置未形成障壁之區域者。 In the case of the embodiment shown in Fig. 31E, in the region where the barrier is not formed, the light guided in the lateral direction is not reflected/scattered until the end portion of the device, and is lost. On the other hand, in FIG. 31F, in the region where the barrier is not formed, the light guided in the lateral direction and the light entering the other region from the certain region encounters the barrier in the other region, and the loss of light can be suppressed. 31G, FIG. 31H, and FIG. 31I are the same as those in the configuration of FIG. 31D, FIG. 31B, and FIG. 31C, respectively, in a region where no barrier is formed in one of the regions.

(發光裝置之應用例) (Application example of light-emitting device)

作為發光裝置之應用例,可列舉:圖22A所示之行動電話機、圖22B所示之有機EL電視等。 Examples of the application of the light-emitting device include a mobile phone shown in FIG. 22A and an organic EL television shown in FIG. 22B.

圖22A所示之行動電話機1000具備本體1001、顯示部1002、聲音輸入部1003、聲音輸出部1004、天線1005、及操作開關1006等,於顯示部1002使用上述各實施形態之發光裝置。 The mobile phone 1000 shown in FIG. 22A includes a main body 1001, a display unit 1002, an audio input unit 1003, an audio output unit 1004, an antenna 1005, and an operation switch 1006. The display unit 1002 uses the light-emitting devices of the above embodiments.

圖22B所示之電視受信裝置1100具備本體機殼1101、顯示部1102、揚聲器1103、及支架1104等,於顯示部1102使用上述各實施形態之發光裝置。 The television receiver 1100 shown in FIG. 22B includes a main body casing 1101, a display unit 1102, a speaker 1103, and a holder 1104. The display unit 1102 uses the light-emitting devices of the above-described embodiments.

於該等行動電話機或有機EL電視中,由於使用上述各實施形態之發光裝置,故而亮度較高、顯示品質優異。 In such a mobile phone or an organic EL television, since the light-emitting device of each of the above embodiments is used, the brightness is high and the display quality is excellent.

又,作為發光裝置之應用例,例如可應用於圖23A所示 之吸頂燈(照明裝置)中。圖23A所示之吸頂燈1400具備照明部1401、吊具1402、及電源線1403等。並且,作為照明部1401,可較佳地應用上述各實施形態之發光裝置。藉由將本發明之一實施形態之發光裝置應用於吸頂燈1400之照明部1401,可以較少之消耗電力獲得明亮且色調自然之照明光,可實現顯色性較高之照明器具。又,亦可實現可發出照度均勻且色純度較高之面發光的照明器具。 Further, as an application example of the light-emitting device, for example, it can be applied to that shown in FIG. 23A. In the ceiling light (lighting device). The ceiling lamp 1400 shown in FIG. 23A includes an illumination unit 1401, a spreader 1402, a power supply line 1403, and the like. Further, as the illumination unit 1401, the light-emitting device of each of the above embodiments can be preferably applied. By applying the light-emitting device according to the embodiment of the present invention to the illumination unit 1401 of the ceiling lamp 1400, it is possible to obtain a bright and natural-looking illumination light with less power consumption, and it is possible to realize a lighting fixture having high color rendering properties. Further, it is also possible to realize a lighting fixture that emits a surface that emits light with uniform illumination and high color purity.

又,作為發光裝置之應用例,例如可應用於圖23B所示之照明用支架上。圖23B所示之照明用支架1500具備照明部1501、支架1502、電源開關1503、及電源線1504等。並且,作為照明部1501,可較佳地應用上述各實施形態之發光裝置。藉由將本發明之一實施形態之發光裝置應用於照明用支架1500之照明部1501,可以較少之消耗電力獲得明亮且色調自然之照明光,可實現顯色性較高之照明器具。又,亦可實現可發出照度均勻且色純度較高之面發光的照明器具。 Further, as an application example of the light-emitting device, for example, it can be applied to the illumination holder shown in Fig. 23B. The illumination holder 1500 shown in FIG. 23B includes an illumination unit 1501, a holder 1502, a power switch 1503, a power supply line 1504, and the like. Further, as the illumination unit 1501, the light-emitting device of each of the above embodiments can be preferably applied. By applying the light-emitting device according to the embodiment of the present invention to the illumination unit 1501 of the illumination holder 1500, it is possible to obtain illumination light having a bright and natural color with less power consumption, and it is possible to realize a lighting fixture having high color rendering properties. Further, it is also possible to realize a lighting fixture that emits a surface that emits light with uniform illumination and high color purity.

[產業上之可利用性] [Industrial availability]

本發明之態樣可應用於發光元件,更具體而言,可應用於顯示裝置、顯示系統、照明裝置、照明系統等。 Aspects of the present invention are applicable to a light-emitting element, and more particularly, to a display device, a display system, a lighting device, a lighting system, and the like.

10‧‧‧發光裝置 10‧‧‧Lighting device

11‧‧‧基板 11‧‧‧Substrate

11a‧‧‧基板11之一面 11a‧‧‧One side of the substrate 11

12‧‧‧第一電極(下部電極) 12‧‧‧First electrode (lower electrode)

13‧‧‧第二電極(上部電極) 13‧‧‧Second electrode (upper electrode)

14‧‧‧有機發光層 14‧‧‧Organic light-emitting layer

15‧‧‧障壁 15 ‧ ‧ barrier

F1‧‧‧沿朝向透明之第一電極(下部電極)12之方向射出之光 F1‧‧‧Light emitted in the direction of the transparent first electrode (lower electrode) 12

F2‧‧‧沿朝向非透光性第二電極(上部電極)13之方向射出之光 F2‧‧‧light emitted in the direction toward the non-transmissive second electrode (upper electrode)

F3‧‧‧沿面擴展方向(與積層方向垂直之方向)射出之光 F3‧‧‧Light emitted in the direction of the surface expansion (the direction perpendicular to the direction of the laminate)

圖1係表示本發明之第一實施形態之發光裝置之剖面圖。 Fig. 1 is a cross-sectional view showing a light-emitting device according to a first embodiment of the present invention.

圖2係表示本發明之第二實施形態之發光裝置之剖面圖。 Fig. 2 is a cross-sectional view showing a light-emitting device according to a second embodiment of the present invention.

圖3係表示本發明之第三實施形態之發光裝置之剖面圖。 Fig. 3 is a cross-sectional view showing a light-emitting device according to a third embodiment of the present invention.

圖4係表示本發明之第四實施形態之發光裝置之剖面圖。 Fig. 4 is a cross-sectional view showing a light-emitting device according to a fourth embodiment of the present invention.

圖5係表示本發明之第五實施形態之發光裝置之剖面圖。 Fig. 5 is a cross-sectional view showing a light-emitting device according to a fifth embodiment of the present invention.

圖6係表示本發明之第六實施形態之發光裝置之剖面圖。 Fig. 6 is a cross-sectional view showing a light-emitting device according to a sixth embodiment of the present invention.

圖7係表示本發明之第七實施形態之發光裝置之剖面圖。 Fig. 7 is a cross-sectional view showing a light-emitting device according to a seventh embodiment of the present invention.

圖8係表示本發明之第八實施形態之發光裝置之剖面圖。 Figure 8 is a cross-sectional view showing a light-emitting device according to an eighth embodiment of the present invention.

圖9係表示本發明之第九實施形態之發光裝置之剖面圖。 Fig. 9 is a cross-sectional view showing a light-emitting device according to a ninth embodiment of the present invention.

圖10係表示本發明之第十實施形態之發光裝置之剖面圖。 Figure 10 is a cross-sectional view showing a light-emitting device according to a tenth embodiment of the present invention.

圖11係表示本發明之第十一實施形態之顯示裝置之剖面圖。 Figure 11 is a cross-sectional view showing a display device according to an eleventh embodiment of the present invention.

圖12係表示本發明之第十二實施形態之顯示裝置之剖面圖。 Figure 12 is a cross-sectional view showing a display device according to a twelfth embodiment of the present invention.

圖13A係本發明之第十三實施形態之發光裝置,係表示第一實施形態之變形例之剖面圖。 Fig. 13 is a cross-sectional view showing a modification of the first embodiment of the light-emitting device according to the thirteenth embodiment of the present invention.

圖138係本發明之第十三實施形態之發光裝置,係表示第三實施形態之變形例之剖面圖。 Figure 138 is a cross-sectional view showing a modification of the third embodiment of the light-emitting device according to the thirteenth embodiment of the present invention.

圖13C係本發明之第十三實施形態之發光裝置,係表示第四實施形態之變形例之剖面圖。 Figure 13 is a cross-sectional view showing a modification of the fourth embodiment of the light-emitting device according to the thirteenth embodiment of the present invention.

圖13D係本發明之第十三實施形態之發光裝置,係表示第七實施形態之變形例之剖面圖。 Figure 13 is a cross-sectional view showing a modification of the seventh embodiment of the light-emitting device according to the thirteenth embodiment of the present invention.

圖14係表示本發明之第十五實施形態之顯示裝置之剖面圖。 Figure 14 is a cross-sectional view showing a display device according to a fifteenth embodiment of the present invention.

圖15係表示本發明之第十六實施形態之顯示裝置之剖面圖。 Figure 15 is a cross-sectional view showing a display device according to a sixteenth embodiment of the present invention.

圖16A係表示障壁之形狀例之剖面圖。 Fig. 16A is a cross-sectional view showing an example of the shape of a barrier rib.

圖16B係表示障壁之形狀例之剖面圖。 Fig. 16B is a cross-sectional view showing an example of the shape of the barrier rib.

圖16C係表示障壁之形狀例之剖面圖。 Fig. 16C is a cross-sectional view showing an example of the shape of the barrier rib.

圖16D係表示障壁之形狀例之剖面圖。 Fig. 16D is a cross-sectional view showing an example of the shape of the barrier rib.

圖16E係表示障壁之形狀例之剖面圖。 Fig. 16E is a cross-sectional view showing an example of the shape of the barrier rib.

圖17A係表示障壁之構成例之剖面圖。 Fig. 17A is a cross-sectional view showing a configuration example of a barrier rib.

圖17B係表示障壁之構成例之剖面圖。 Fig. 17B is a cross-sectional view showing a configuration example of a barrier rib.

圖17C係表示障壁之構成例之剖面圖。 Fig. 17C is a cross-sectional view showing a configuration example of a barrier rib.

圖17D係表示障壁之構成例之剖面圖。 Fig. 17D is a cross-sectional view showing a configuration example of a barrier rib.

圖17E係表示障壁之構成例之剖面圖。 Fig. 17E is a cross-sectional view showing a configuration example of a barrier rib.

圖17F係表示障壁之構成例之剖面圖。 Fig. 17F is a cross-sectional view showing a configuration example of a barrier rib.

圖18係表示本發明之第十七實施形態之顯示裝置之剖面圖。 Figure 18 is a cross-sectional view showing a display device according to a seventeenth embodiment of the present invention.

圖19係表示本發明之第十八實施形態之顯示裝置之剖面圖。 Figure 19 is a cross-sectional view showing a display device according to an eighteenth embodiment of the present invention.

圖20A係表示本發明之第十九實施形態之發光裝置之剖 面圖。 Figure 20A is a cross-sectional view showing a light-emitting device according to a nineteenth embodiment of the present invention; Surface map.

圖20B係表示本發明之第十九實施形態之發光裝置之剖面圖。 Figure 20B is a cross-sectional view showing a light-emitting device according to a nineteenth embodiment of the present invention.

圖21A係表示第十九實施形態之變形例之剖面圖。 Fig. 21A is a cross-sectional view showing a modification of the nineteenth embodiment.

圖21B係表示第十九實施形態之變形例之剖面圖。 Fig. 21B is a cross-sectional view showing a modification of the nineteenth embodiment.

圖22A係表示作為本發明之發光裝置之一應用例的顯示裝置之外觀圖。 Fig. 22A is a perspective view showing a display device as an application example of the light-emitting device of the present invention.

圖22B係表示作為本發明之發光裝置之一應用例的顯示裝置之外觀圖。 Fig. 22B is an external view showing a display device which is an application example of the light-emitting device of the present invention.

圖23A係表示作為本發明之發光裝置之一應用例的照明裝置之外觀圖。 Fig. 23A is an external view showing a lighting device as an application example of the light-emitting device of the present invention.

圖23B係表示作為本發明之發光裝置之一應用例的照明裝置之外觀圖。 Fig. 23B is an external view showing a lighting device which is an application example of the light-emitting device of the present invention.

圖24A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 24A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖24B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 24B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖25A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 25A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖25B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 25B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖26A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 26A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖26B係表示第十九實施形態之變形例之發光裝置之剖 面圖。 Fig. 26B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment; Surface map.

圖27A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 27A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖27B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 27B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖28A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 28A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖28B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 28B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖29A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 29A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖29B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 29B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖30A係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 30A is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖30B係表示第十九實施形態之變形例之發光裝置之剖面圖。 Fig. 30B is a cross-sectional view showing a light-emitting device according to a modification of the nineteenth embodiment.

圖31A係表示障壁之形狀變化之剖面圖。 Fig. 31A is a cross-sectional view showing a change in shape of a barrier rib.

圖31B係表示障壁之形狀變化之剖面圖。 Fig. 31B is a cross-sectional view showing the shape change of the barrier rib.

圖31C係表示障壁之形狀變化之剖面圖。 Fig. 31C is a cross-sectional view showing the shape change of the barrier rib.

圖31D係表示障壁之形狀變化之剖面圖。 Fig. 31D is a cross-sectional view showing the shape change of the barrier.

圖31E係表示障壁之形狀變化之剖面圖。 Fig. 31E is a cross-sectional view showing the shape change of the barrier.

圖31F係表示障壁之形狀變化之剖面圖。 Fig. 31F is a cross-sectional view showing the shape change of the barrier rib.

圖31G係表示障壁之形狀變化之剖面圖。 Fig. 31G is a cross-sectional view showing the shape change of the barrier.

圖31H係表示障壁之形狀變化之剖面圖。 Fig. 31H is a cross-sectional view showing the shape change of the barrier.

圖31I係表示障壁之形狀變化之剖面圖。 Fig. 31I is a cross-sectional view showing the shape change of the barrier rib.

圖32係表示本發明之第十四實施形態之顯示裝置之剖面圖。 Figure 32 is a cross-sectional view showing a display device according to a fourteenth embodiment of the present invention.

10‧‧‧發光裝置 10‧‧‧Lighting device

11‧‧‧基板 11‧‧‧Substrate

11a‧‧‧基板11之一面 11a‧‧‧One side of the substrate 11

12‧‧‧第一電極(下部電極) 12‧‧‧First electrode (lower electrode)

13‧‧‧第二電極(上部電極) 13‧‧‧Second electrode (upper electrode)

14‧‧‧有機發光層 14‧‧‧Organic light-emitting layer

15‧‧‧障壁 15 ‧ ‧ barrier

F1‧‧‧沿朝向透明之第一電極(下部電極)12之方向射出之光 F1‧‧‧Light emitted in the direction of the transparent first electrode (lower electrode) 12

F2‧‧‧沿朝向非透光性第二電極(上部電極)13之方向射出之光 F2‧‧‧light emitted in the direction toward the non-transmissive second electrode (upper electrode)

F3‧‧‧沿面擴展方向(與積層方向垂直之方向)射出之光 F3‧‧‧Light emitted in the direction of the surface expansion (the direction perpendicular to the direction of the laminate)

Claims (16)

一種發光裝置,其具備透光性基板、依序積層於上述基板之一面上之第一電極及第二電極、形成於上述第一電極及上述第二電極之間的有機發光層、及將至少上述第一電極劃分成特定區域之第一障壁,且上述第一障壁包含具有光反射性之材料。 A light-emitting device comprising: a light-transmitting substrate; a first electrode and a second electrode sequentially stacked on one surface of the substrate; an organic light-emitting layer formed between the first electrode and the second electrode; and at least The first electrode is divided into a first barrier rib of a specific region, and the first barrier rib includes a material having light reflectivity. 如請求項1之發光裝置,其中上述第二電極具有遮光性。 The illuminating device of claim 1, wherein the second electrode has a light blocking property. 如請求項1或2之發光裝置,其中上述第一電極包含具有透光性之材料。 The light-emitting device of claim 1 or 2, wherein the first electrode comprises a material having light transmissivity. 如請求項1或2之發光裝置,其中上述第一障壁包含白色材料。 The illuminating device of claim 1 or 2, wherein the first barrier rib comprises a white material. 如請求項1或2之發光裝置,其中上述第一障壁所含之上述材料係進而具有光擴散性之材料。 The light-emitting device of claim 1 or 2, wherein the material contained in the first barrier is further a material having light diffusibility. 如請求項1或2之發光裝置,其中上述第一障壁包含樹脂、及分散於上述樹脂中之微細之光反射性粒子。 The light-emitting device of claim 1 or 2, wherein the first barrier rib comprises a resin and fine light-reflecting particles dispersed in the resin. 如請求項6之發光裝置,其中上述光反射性粒子之粒徑為200 nm~5 μm。 The light-emitting device of claim 6, wherein the light-reflecting particles have a particle diameter of 200 nm to 5 μm. 如請求項1或2之發光裝置,其中上述第一障壁包含第二障壁、第三障壁、及光反射膜,上述第二障壁係形成於上述基板上,上述光反射膜覆蓋上述第二障壁, 上述第三障壁覆蓋上述光反射膜,上述第三障壁包含具有透光性之材料。 The illuminating device of claim 1 or 2, wherein the first barrier rib includes a second barrier rib, a third barrier rib, and a light reflecting film, wherein the second barrier rib is formed on the substrate, and the light reflecting film covers the second barrier rib. The third barrier covers the light reflecting film, and the third barrier includes a material having light transmissivity. 如請求項8之發光裝置,其中上述第二障壁為黑色。 The illuminating device of claim 8, wherein the second barrier is black. 如請求項8之發光裝置,其中上述第三障壁所含之上述材料進而具有光散射性。 The light-emitting device of claim 8, wherein the material contained in the third barrier layer further has light scattering properties. 如請求項1或2之發光裝置,其中於上述基板與上述第一電極之間進而包含折射率低於上述基板之低折射率層。 The light-emitting device of claim 1 or 2, further comprising a low refractive index layer having a lower refractive index than the substrate between the substrate and the first electrode. 如請求項1或2之發光裝置,其進而具有配置於上述基板與上述第一電極之間的波長轉換層。 The light-emitting device of claim 1 or 2, further comprising a wavelength conversion layer disposed between the substrate and the first electrode. 如請求項12之發光裝置,其中於上述波長轉換層之側面進而具備第二障壁,且上述第二障壁包含具有光反射性之材料。 The illuminating device of claim 12, wherein the second barrier rib is further provided on a side surface of the wavelength conversion layer, and the second barrier rib comprises a material having light reflectivity. 如請求項12之發光裝置,其中於上述基板與上述波長轉換層之間、上述基板與第一電極之間中的任意一者或兩者進而包含折射率低於上述基板之低折射率層。 The light-emitting device of claim 12, wherein either or both of the substrate and the wavelength conversion layer and between the substrate and the first electrode further comprise a low refractive index layer having a lower refractive index than the substrate. 一種顯示裝置,其配置有如請求項1或2之發光裝置、及針對上述發光裝置而控制上述發光裝置之發光之驅動部。 A display device is provided with a light-emitting device according to claim 1 or 2, and a driving portion that controls light emission of the light-emitting device with respect to the light-emitting device. 一種照明裝置,其配置有針對如請求項1或2之發光裝置而控制上述發光裝置之發光之驅動部。 A lighting device configured to drive a light-emitting device for controlling the light-emitting device of the light-emitting device according to claim 1 or 2.
TW101132599A 2011-09-12 2012-09-06 Light emitting device, display device, and illumination device TW201318240A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011198500 2011-09-12
JP2011257961A JP2014225328A (en) 2011-11-25 2011-11-25 Light-emitting device, display device and luminaire
JP2012035470A JP2014225329A (en) 2011-09-12 2012-02-21 Light-emitting device, display device, and illuminating device

Publications (1)

Publication Number Publication Date
TW201318240A true TW201318240A (en) 2013-05-01

Family

ID=47883202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101132599A TW201318240A (en) 2011-09-12 2012-09-06 Light emitting device, display device, and illumination device

Country Status (2)

Country Link
TW (1) TW201318240A (en)
WO (1) WO2013038971A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109315031A (en) * 2016-06-15 2019-02-05 株式会社日本有机雷特显示器 Display device and electronic equipment
CN109315049A (en) * 2016-05-11 2019-02-05 株式会社日本有机雷特显示器 Display device and electronic equipment
TWI655762B (en) * 2013-07-04 2019-04-01 南韓商三星顯示器有限公司 Organic light-emitting display device and method of manufacturing the same
TWI694430B (en) * 2017-11-23 2020-05-21 超微晶科技(深圳)有限公司 Micro-led display panel
US10862070B2 (en) 2017-02-13 2020-12-08 Sony Corporation Display device and electronic apparatus
TWI799825B (en) * 2020-08-27 2023-04-21 友達光電股份有限公司 Biometric sensing apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246133B2 (en) * 2013-04-12 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting panel, and light-emitting device
US20140346468A1 (en) * 2013-05-27 2014-11-27 Samsung Display Co., Ltd. Organic light emitting display device having a channel in pixel defining layer
DE102013110024B9 (en) * 2013-09-12 2023-11-09 Pictiva Displays International Limited Radiation-emitting component with an organic layer stack
JP2016042449A (en) * 2014-08-19 2016-03-31 株式会社ジャパンディスプレイ Display device
DE102015101463A1 (en) * 2015-02-02 2016-08-04 Osram Oled Gmbh Organic light emitting diode device and method of manufacturing an organic light emitting diode device
KR102460407B1 (en) * 2015-10-30 2022-10-27 엘지디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
KR102650659B1 (en) * 2018-09-13 2024-03-25 삼성전자주식회사 Display device
US20230276648A1 (en) * 2019-10-24 2023-08-31 Sharp Kabushiki Kaisha Display device
US20230217696A1 (en) * 2021-12-30 2023-07-06 Lg Display Co., Ltd. Light Emitting Display Device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260844A (en) * 2001-02-27 2002-09-13 Bando Chem Ind Ltd Organic electroluminescence device
JP2003282264A (en) * 2002-03-27 2003-10-03 Toshiba Lighting & Technology Corp Organic electroluminescent light source and liquid crystal display device
JP2004039580A (en) * 2002-07-08 2004-02-05 Dainippon Printing Co Ltd Organic electroluminescent image display device
JP2005123088A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color conversion filter and organic el display using it
DE102004041371B4 (en) * 2004-08-25 2007-08-02 Novaled Ag Component based on an organic light emitting diode device and method for manufacturing
EP1635406A3 (en) * 2004-09-08 2006-10-04 LG Electronics, Inc. Organic electroluminescent device
JP2008277186A (en) * 2007-05-01 2008-11-13 Hoya Corp Organic electroluminescence element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655762B (en) * 2013-07-04 2019-04-01 南韓商三星顯示器有限公司 Organic light-emitting display device and method of manufacturing the same
CN109315049A (en) * 2016-05-11 2019-02-05 株式会社日本有机雷特显示器 Display device and electronic equipment
CN109315049B (en) * 2016-05-11 2021-10-08 株式会社日本有机雷特显示器 Display device and electronic apparatus
US11201309B2 (en) 2016-05-11 2021-12-14 Joled Inc. Display unit and electronic apparatus including a divided electrode
CN109315031A (en) * 2016-06-15 2019-02-05 株式会社日本有机雷特显示器 Display device and electronic equipment
US11081675B2 (en) 2016-06-15 2021-08-03 Joled Inc. Display unit and electronic apparatus
CN109315031B (en) * 2016-06-15 2021-09-07 株式会社日本有机雷特显示器 Display device and electronic apparatus
US10862070B2 (en) 2017-02-13 2020-12-08 Sony Corporation Display device and electronic apparatus
US11621405B2 (en) 2017-02-13 2023-04-04 Sony Corporation Display device and electronic apparatus
TWI694430B (en) * 2017-11-23 2020-05-21 超微晶科技(深圳)有限公司 Micro-led display panel
TWI799825B (en) * 2020-08-27 2023-04-21 友達光電股份有限公司 Biometric sensing apparatus

Also Published As

Publication number Publication date
WO2013038971A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
TW201318240A (en) Light emitting device, display device, and illumination device
US10411223B2 (en) Organic electroluminescence device and illumination device
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
US8786177B2 (en) Single-photon type organic electroluminescent element
US10164202B2 (en) Organic electroluminescence device including an organic electroluminescence element above a contact hole
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
CN108029178B (en) Organic electroluminescent device, method for manufacturing organic electroluminescent device, lighting device, and display device
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
JP2014225329A (en) Light-emitting device, display device, and illuminating device
WO2017043242A1 (en) Organic electroluminescence device, lighting device and display device
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
JP2011155002A (en) Organic el element and organic el panel
WO2015174464A1 (en) Organic electroluminescence display device
JP2016164855A (en) Light-emitting device, and display device, lighting device, and electronic apparatus each including the same
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
US8547013B2 (en) Organic EL display device with a color converting layer
KR20230025422A (en) Organic light emitting device
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
TW201318241A (en) Light emitting device, display device, and illumination device
JP2014225328A (en) Light-emitting device, display device and luminaire
KR20200103616A (en) White organic light emitting device
US20120306359A1 (en) Organic electroluminescent component and display device
JP2014225330A (en) Light-emitting device, luminaire and display device
KR102607169B1 (en) Organic light emitting display device