TW201313112A - Composite thermal interface materials - Google Patents

Composite thermal interface materials Download PDF

Info

Publication number
TW201313112A
TW201313112A TW100132790A TW100132790A TW201313112A TW 201313112 A TW201313112 A TW 201313112A TW 100132790 A TW100132790 A TW 100132790A TW 100132790 A TW100132790 A TW 100132790A TW 201313112 A TW201313112 A TW 201313112A
Authority
TW
Taiwan
Prior art keywords
phase change
thermal interface
particle
conductive material
composite thermal
Prior art date
Application number
TW100132790A
Other languages
Chinese (zh)
Inventor
Jeff Chen
Jimmy Hsieh
Enzo Tsai
Morris Chang
Original Assignee
Gbg Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gbg Technology Co Ltd filed Critical Gbg Technology Co Ltd
Priority to TW100132790A priority Critical patent/TW201313112A/en
Publication of TW201313112A publication Critical patent/TW201313112A/en

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

A Composite thermal interface materials includes two first thermal conductive materials layer and a second conductive materials layer, the two first thermal conductive materials layer respectively arranged at a bottom surface and a top surface of the second conductive materials layer, wherein the first thermal conductive materials layer includes a phase change materials, a plurality of first particle and a first reactant, and the second thermals conductive materials layer includes a substrate, a plurality of second particle, a plurality of third particle, and a second reactant.

Description

一種複合熱介面材料Composite thermal interface material

本發明涉及一種熱介面材料,尤其涉及一種複合熱介面材料。The present invention relates to a thermal interface material, and more particularly to a composite thermal interface material.

隨各種電子產品的推陳出新,除了整體產品輕、薄、短、小等基本需求外,通常在高功能、高效率等條件操作下,各種晶片、元件(例如CPU,LED照明等)皆需要在正常操作溫度下,方可以發揮其效能,效率降低進而損傷元件,因此,整體產品或元件的散熱功率需求越來越高。With the development of various electronic products, in addition to the basic requirements of light, thin, short, and small, the various products, such as CPU, LED lighting, etc., need to be in normal operation under the conditions of high function and high efficiency. At the operating temperature, the performance can be exerted, the efficiency is reduced, and the components are damaged. Therefore, the heat dissipation power requirement of the overall product or component is higher and higher.

由於熱會藉由熱傳導方式,從元件傳至散熱片,再經由熱對流或熱輻射的方式使熱散失,此方法可以有效地降低元件溫度。然而,在熱經由熱電子元件表面傳導至散熱片時,電子元件及散熱片表面均非平坦、光滑,使兩者間無法完整的貼合,而產生隙縫,空氣為不良的熱導體,介面間產生隙縫時會使得熱傳效率大幅降低,因此需要熱介面材料來填補隙縫,以增加熱傳導的效率。Since heat is transferred from the component to the heat sink by heat conduction, and then heat is dissipated by means of heat convection or heat radiation, this method can effectively lower the component temperature. However, when heat is transmitted to the heat sink via the surface of the hot electronic component, the surface of the electronic component and the heat sink are not flat and smooth, so that the two cannot be completely bonded together, and a gap is formed, and air is a poor heat conductor, and the interface is between the interfaces. When the gap is created, the heat transfer efficiency is greatly reduced, so a thermal interface material is needed to fill the gap to increase the efficiency of heat conduction.

熱介面材料廣義的定義為介於發熱源與散熱器材的中間材料,一般常見的存在於晶片與散熱鰭片的熱介面材料(TIM)或相變化材料PCM(Phase Change Materials),可以瞭解,熱介面材料為散熱功率高低之關鍵材料。The thermal interface material is broadly defined as an intermediate material between the heat source and the heat sink material. The common thermal interface material (TIM) or phase change material PCM (Phase Change Materials) present in the wafer and the heat sink fin can be understood. The interface material is the key material for the heat dissipation power.

目前,因為矽氧烷類較一般的有機樹脂有較好的耐溫度及抗化性,而導熱粉體仍以氧化鋁為成本最低。所以,目前市場上構成熱介面材料,主要還是以矽氧烷類及氧化鋁為最大宗。At present, since the siloxanes have better temperature resistance and chemical resistance than the general organic resins, the heat conductive powder still has the lowest cost as alumina. Therefore, the current thermal interface materials on the market are mainly composed of siloxanes and alumina.

市面上熱介面材料大致可分成一定形狀之固體狀(如pad)、無定形液體狀兩類。其中,固體狀主要的應用在於LCD及LED照明燈具等商業產品。The hot interface material on the market can be roughly divided into solid shapes (such as pad) and amorphous liquid. Among them, the main application of solids is in commercial products such as LCD and LED lighting.

熱介面材料更重要的應用在於LED照明燈具,如發光二極體燈管(LED light bar)已經被廣泛應用到很多領域,尤其是廣泛應用於燈具。隨著發光二極體燈具的功率與亮度越來越大,其產生的熱量也日益增加。目前業界通常於該燈具內設置一散熱器為該燈具散熱,然而,習知的散熱器散熱面積有限,在目前要求發光二極體燈管輕便且散熱效率高的環境下,這種燈具很難在照明領域中推廣應用。A more important application of thermal interface materials is LED lighting fixtures, such as LED light bars, which have been widely used in many fields, especially in lamps. As the power and brightness of light-emitting diode lamps become larger and larger, the amount of heat generated is also increasing. At present, a heat sink is usually disposed in the lamp to dissipate heat for the lamp. However, the conventional heat sink has a limited heat dissipation area, and the lamp is difficult to be used in an environment where the light-emitting diode lamp is light and the heat dissipation efficiency is high. Promote applications in the field of lighting.

因此,目前採用聚合物化合物已經用作為熱介面材料(TIM)來連結例如發光二極體燈管(LED light bar)與散熱器(Heat sink)之間。但矽酮樹脂基底之熱介面材料(TIM)的填縫力比傳統散熱膏和相變化材料還要差,所以,矽酮樹脂基底之熱介面材料無法達到完全的散熱效果。Therefore, polymer compounds have been used as a thermal interface material (TIM) to bond, for example, between an LED light bar and a heat sink. However, the thermal interface material (TIM) of the fluorenone resin substrate has a lower sealing force than the conventional thermal grease and the phase change material. Therefore, the thermal interface material of the fluorenone resin substrate cannot achieve complete heat dissipation.

另一方面,傳統散熱膏塗佈在發光二極體燈管(LED light bar)與散熱器(Heat sink)之間,會不夠平坦,因此,會存在有空氣在二極體燈管(led light bar)與散熱器(Heat sink)之間,導致散熱效果不佳。On the other hand, the conventional thermal grease is applied between the LED light bar and the heat sink, which is not flat enough. Therefore, there will be air in the diode lamp (led light). Bar) and heat sink (heat sink), resulting in poor heat dissipation.

然而,相變化材料其耐電壓能力比矽酮樹脂基底之熱介面材料差,使得使用相變化材料為散熱材料的發光二極體燈管整體的耐電壓變差。因此,矽酮樹脂基底之熱介面材料、傳統散熱膏與相變化材料皆分別存在的不同的材料問題,而導致無法更加提升散熱效率。However, the phase change material has a voltage withstand capability that is inferior to that of the thermal interface material of the fluorenone resin substrate, so that the overall withstand voltage of the light-emitting diode lamp using the phase change material as the heat dissipation material is deteriorated. Therefore, the thermal interface materials of the fluorenone resin substrate, the conventional thermal grease and the phase change material respectively have different material problems, and the heat dissipation efficiency cannot be further improved.

鑒於此,有必要提供一種複合熱介面材料,可改善傳統的熱界面材料存在的低熱導係數及高阻抗值的缺點。In view of this, it is necessary to provide a composite thermal interface material which can improve the low thermal conductivity and high resistance value of the conventional thermal interface material.

一種複合熱介面材料包含第一導熱材料層(相變化材料)、第二導熱材料層(矽酮樹脂基材),利用該第二導熱材料層增加耐電壓,上下各一層的該第一導熱材料層增加填縫能力。A composite thermal interface material comprises a first heat conductive material layer (phase change material) and a second heat conductive material layer (an ketone resin substrate), and the second heat conductive material layer is used to increase the withstand voltage, and the first heat conductive material of each layer above and below The layer increases the caulking ability.

換言之,利用矽酮樹脂為基材,並且在矽酮樹脂基材上塗佈相變化材料,首先,藉由矽酮樹脂柔軟度填平元件表面較大之孔洞、空隙或凹陷,再利用相變化材料特性填補細微之孔洞、空隙或凹陷,如此產生良好的導熱效果。In other words, using an fluorenone resin as a substrate and coating a phase change material on the fluorenone resin substrate, first, by filling the pores, voids or depressions on the surface of the element with the softness of the fluorenone resin, the phase change is utilized. The material properties fill in tiny holes, voids or depressions, which produces good thermal conductivity.

詳言之,由於矽酮樹脂基材之熱介面材料的填縫力比傳統散熱膏和相變化材料還要差,所以,矽酮樹脂基材之熱介面材料無法達到完全的散熱效果。因此,須要該第二導熱材料層,其中,該第二導熱材料層為一相變化材料,因為相變化材料在特定的相變化溫度上,具有一定的流動力。因此,可以有效填補該第一導熱層表面的細微之孔洞、空隙或凹陷,二極體燈管表面的細微之孔洞、空隙或凹陷與散熱器的細微之孔洞、空隙或凹陷,有效的防止空氣存在細微之孔洞、空隙或凹陷內,造成導熱效果變差。In detail, since the caulking force of the thermal interface material of the fluorenone resin substrate is worse than that of the conventional thermal grease and the phase change material, the thermal interface material of the fluorenone resin substrate cannot achieve complete heat dissipation. Therefore, the second layer of thermally conductive material is required, wherein the second layer of thermally conductive material is a phase change material because the phase change material has a certain flow force at a particular phase change temperature. Therefore, the fine holes, voids or depressions on the surface of the first heat conducting layer can be effectively filled, and the fine holes, voids or depressions on the surface of the diode tube and the fine holes, voids or depressions of the heat sink can effectively prevent air. There are fine holes, voids or depressions, resulting in poor thermal conductivity.

另一方面,相變化材料其耐電壓特性比矽酮樹脂基材之熱介面材料差,使得採用相變化材料為散熱材料的二極體燈管(LED light bar)整體的耐電壓變差。因此,利用該第一導熱材料層具有比該第二導熱材料層更優秀的耐電壓。因此,利用該第一導熱材料層之高耐電壓,可以有效補強該第二導熱材料層之不耐高電壓之材料特性上的缺點。On the other hand, the phase change material has a withstand voltage characteristic which is inferior to that of the thermal interface material of the fluorenone resin substrate, so that the overall withstand voltage of the diode light bar using the phase change material as the heat dissipating material is deteriorated. Therefore, the first heat conductive material layer has a better withstand voltage than the second heat conductive material layer. Therefore, by utilizing the high withstand voltage of the first heat conductive material layer, the shortcomings of the material properties of the second heat conductive material layer which are not resistant to high voltage can be effectively reinforced.

因此,與習知技術相比,複合熱介面材料可以有效明顯改善傳統相變化材料耐電壓不足的問題,並且明顯改善傳統的矽酮樹脂基材之填縫能力的問題。複合熱介面材料具有優秀的複合材料特性。Therefore, compared with the prior art, the composite thermal interface material can effectively improve the problem of insufficient voltage resistance of the conventional phase change material, and significantly improve the problem of the filling ability of the conventional fluorenone resin substrate. Composite thermal interface materials have excellent composite properties.

其中,該複合熱介面材料之該矽酮樹脂基材和該相變化材料,可以添加不同粒徑之導熱顆粒,藉由不同調配比例達到最佳散熱效果之目標。Wherein, the fluorenone resin substrate and the phase change material of the composite thermal interface material may be added with heat-conducting particles of different particle sizes, and the target of optimal heat dissipation is achieved by different mixing ratios.

進一步,該第一導熱材料層、該第二導熱材料層內添加不同直徑之填充物(金屬粒子、石墨、陶瓷…等),達到最佳散熱效果。Further, fillers (metal particles, graphite, ceramics, etc.) of different diameters are added to the first heat conductive material layer and the second heat conductive material layer to achieve an optimal heat dissipation effect.

其中,在熱介電材料中,熱傳導係數除了由所填充之粒子與基材本身之熱傳導係數來決定,也由第一顆粒,第二顆粒在該第一導熱材料層、該第二導熱材料層中所占的重量比來決定;其中,第一顆粒,第二顆粒佔第一導熱材料層、該第二導熱材料層重量的0%至90%。Wherein, in the thermal dielectric material, the heat transfer coefficient is determined not only by the heat transfer coefficient of the filled particles and the substrate itself, but also by the first particles, and the second particles are in the first heat conductive material layer and the second heat conductive material layer. The weight ratio is determined; wherein the first particles, the second particles comprise 0% to 90% of the weight of the first heat conductive material layer and the second heat conductive material layer.

除此之外,填充粒子的粒逕分布與基材中的分布情形,都會對於熱介電材料的熱傳導係數有一定的影響。In addition, the particle size distribution of the filled particles and the distribution in the substrate have a certain influence on the heat transfer coefficient of the thermal dielectric material.

更進一步來說,該複合熱介面材料之該矽酮樹脂基材和該相變化材料,可以添加不同粒徑之絕緣顆粒或PET或玻璃纖維,藉由不同調配比例達到最佳耐電壓之目標。Furthermore, the fluorenone resin substrate and the phase change material of the composite thermal interface material may be added with insulating particles of different particle sizes or PET or glass fibers, and the target of the best withstand voltage is achieved by different mixing ratios.

本發明第一實施例,請參見圖一與圖二,一種複合熱介面材料10,其包括二第一導熱材料層100,及一第二導熱材料層200,該二第一導熱材料層100分別堆疊在該第二導熱材料層200的上表面與下表面,其中,該第一導熱材料層100包括一相變化材料、和一第一反應劑,該第二導熱材料層200,包括一基材和一第二反應劑。其中,數個第二顆粒201或至少一個第三顆粒202可以分別單獨添加或一起填加入第二導熱材料層200。In the first embodiment of the present invention, referring to FIG. 1 and FIG. 2, a composite thermal interface material 10 includes two first thermal conductive material layers 100 and a second thermal conductive material layer 200. Stacked on the upper surface and the lower surface of the second heat conductive material layer 200, wherein the first heat conductive material layer 100 includes a phase change material, and a first reactant, the second heat conductive material layer 200 includes a substrate And a second reactant. The plurality of second particles 201 or the at least one third particles 202 may be separately added or added together to the second heat conductive material layer 200.

更進一步說明,該第一導熱材料層100更進一步包括至少一個第一顆粒101。該第二導熱材料層200更進一步包括至少一個第二顆粒201。其中,該第二導熱材料層200更進一步包括至少一個第三顆粒202。It is further explained that the first heat conductive material layer 100 further includes at least one first particle 101. The second layer of thermally conductive material 200 further includes at least one second particle 201. The second layer of thermal conductive material 200 further includes at least one third particle 202.

其中,該至少一個第二顆粒201或該至少一個第三顆粒202可以分別單獨添加或一起填加入第二導熱材料層200。The at least one second particle 201 or the at least one third particle 202 may be separately added or added together to the second heat conductive material layer 200.

在本實施例中,可以理解地,該第一導熱材料層100之該相變化材料並不局限於本實施例中列舉的情形,該相變化材料可以是一有機相變材料、一無機相變化材料與一複合相變材料。In this embodiment, it can be understood that the phase change material of the first heat conductive material layer 100 is not limited to the case illustrated in the embodiment, and the phase change material may be an organic phase change material and an inorganic phase change. Material and a composite phase change material.

有機相變化材料以石蠟為主,石蠟為直鏈烷烴混合物,一般來說,熔點和融化熱會隨著碳鏈的增長而變大但隨著碳鏈的增長,熔點的增加值逐漸減小,最後會趨近於一固定值The organic phase change material is mainly paraffin wax, and the paraffin wax is a mixture of linear paraffins. Generally, the melting point and heat of melting will increase as the carbon chain grows, but as the carbon chain grows, the increase value of the melting point gradually decreases. Will eventually approach a fixed value

無機相變化材料主要以鹽類的水合物為主,其價格較便宜且有較佳的潛熱,但卻有可能會產生過冷或腐蝕等缺點。Inorganic phase change materials are mainly based on salt hydrates, which are cheaper and have better latent heat, but may have disadvantages such as excessive cooling or corrosion.

然而,為了克服單一相變材料的缺點,複合材料應運而生。主要有無機鹽/陶瓷基相變複合材料、多孔石墨基/無機鹽相變材料。其缺點為價格較高且不易製造。However, in order to overcome the shortcomings of a single phase change material, composite materials have emerged. There are mainly inorganic salt/ceramic-based phase change composite materials and porous graphite-based/inorganic salt phase change materials. The disadvantage is that it is expensive and not easy to manufacture.

其中,該有機相變材料可以是辛酸、聚乙二醇、葵酸、月桂酸、豆蔻酸十四烷酸、聚乙二酸、酯類、棕櫚酸十六烷、硬酯酸、聯苯、萘、丙酰酸、乙酰酸、或石蠟。Wherein, the organic phase change material may be octanoic acid, polyethylene glycol, sunflower acid, lauric acid, myristic acid myristic acid, polyoxalic acid, ester, palmitic acid hexadecane, stearic acid, biphenyl, Naphthalene, propionyl acid, acetoic acid, or paraffin.

該石蠟又可細分為石蠟5913、十八碳烷、石蠟6106、石蠟5838、石蠟6035、石蠟6403、或石蠟6499。The paraffin may be further subdivided into paraffin wax 5913, octadecane, paraffin 6106, paraffin wax 5838, paraffin wax 6035, paraffin wax 6403, or paraffin wax 6499.

該無機相變化材料可以是硫酸鈉(Na2S04.10H2O、磷酸氫鈉(Na2HPO4.12H2O)、醋酸鈉(NaCH3COOH.3H2O)、硫代硫酸鈉(Na2S2O3.5H2O)、硝酸鎳(Ni(NO3)2.6H2O)、硝酸鋅(ZN(NO3)2.6H2O)、硝酸鎂(Mg(NO3)2.6H2O)、氯化鎂(MgCl2.6H2O)、氯化鈣(CaCl2.6H2O)、碳酸鈉(Na2CO3.10H2O)、氫氧化鋇(Ba(OH)2.8H2O)、氟化鉀(FK.2H2O)、氫氧化鈉(NaOH.3.5H2O)、氟化鉀(FK.4H2O)、溴化钙(CaBr2‧6H2O)、或氫氧化鈉(NaOH.H2O)。The inorganic phase change material may be sodium sulfate (Na 2 S0 4 .10H 2 O, sodium hydrogen phosphate (Na 2 HPO 4 .12H 2 O), sodium acetate (NaCH 3 COOH. 3H 2 O), sodium thiosulfate ( Na 2 S 2 O 3 .5H 2 O), nickel nitrate (Ni(NO 3 ) 2 .6H 2 O), zinc nitrate (ZN(NO 3 ) 2 .6H 2 O), magnesium nitrate (Mg(NO 3 ) 2 .6H 2 O), magnesium chloride (MgCl 2 .6H 2 O), calcium chloride (CaCl 2 .6H 2 O), sodium carbonate (Na 2 CO 3 .10H 2 O), barium hydroxide (Ba(OH) 2 .8H 2 O), potassium fluoride (FK.2H 2 O), sodium hydroxide (NaOH.3.5H 2 O), potassium fluoride (FK.4H 2 O), calcium bromide (CaBr 2 ‧6H 2 O), or sodium hydroxide (NaOH.H 2 O).

該複合相變材料主要是有機與無機共熔相變材料混合物。The composite phase change material is mainly a mixture of organic and inorganic eutectic phase change materials.

該第一導熱材料層100之該相變化材料屬於施加熱時,會由固體轉變成液相之類的材料,這些材料在低於相變化溫度時為固態。在高於相變化溫度時,為液態。若呈液態,相變化材料將易於順從表面,而有好的填縫力,可加工成膜狀,且易於處理與加工。The phase change material of the first layer of thermally conductive material 100 is a material that transforms from a solid to a liquid phase upon application of heat, and these materials are solid at temperatures below the phase change temperature. It is liquid when it is above the phase change temperature. If it is in a liquid state, the phase change material will be easy to conform to the surface, and has a good caulking force, can be processed into a film shape, and is easy to handle and process.

在本實施例中,該第一導熱材料層100之該相變化材料之相變化溫度介於10℃-130℃之間。In this embodiment, the phase change temperature of the phase change material of the first heat conductive material layer 100 is between 10 ° C and 130 ° C.

其中,辛酸的相變化溫度為10℃-40℃,聚乙二酸的相變化溫度為10℃-55℃,葵酸的相變化溫度為20℃-60℃,月桂酸的相變化溫度為25℃-65℃,豆蔻酸十四烷酸的相變化溫度為30℃-80℃,聚乙二酸的相變化溫度為30℃-80℃,酯類的相變化溫度為10℃-80℃,棕櫚酸十六烷的相變化溫度為35℃-90℃,硬酯酸及聯苯的相變化溫度為45℃-90℃,萘、丙酰酸、乙酰酸的相變化溫度為50℃-100℃。Among them, the phase change temperature of octanoic acid is 10 ° C -40 ° C, the phase change temperature of poly oxalic acid is 10 ° C -55 ° C, the phase change temperature of sunflower acid is 20 ° C -60 ° C, and the phase change temperature of lauric acid is 25 °C-65 ° C, the phase change temperature of myristic acid myristate is 30 ° C -80 ° C, the phase change temperature of polyoxalic acid is 30 ° C -80 ° C, the phase change temperature of the ester is 10 ° C -80 ° C, The phase change temperature of cetane palmitate is 35°C-90°C, the phase change temperature of stearic acid and biphenyl is 45°C-90°C, and the phase change temperature of naphthalene, propionyl acid and acetoic acid is 50°C-100. °C.

石蠟5913的相變變化溫度可以是10℃-60℃、十八碳烷的相變變化溫度可以是10℃-60℃、石蠟6106的相變變化溫度可以是20℃-70℃、石蠟5838的相變變化溫度可以是30℃-90℃、石蠟6035的相變變化溫度可以是30℃-95℃、石蠟6403的相變變化溫度可以是35℃-95℃。、石蠟6499的相變變化溫度可以是40℃-100℃。The phase change temperature of paraffin 5913 may be 10 ° C - 60 ° C, the phase change temperature of octadecane may be 10 ° C - 60 ° C, the phase change temperature of paraffin 6106 may be 20 ° C - 70 ° C, paraffin 5838 The phase change temperature may be 30 ° C - 90 ° C, the phase change temperature of paraffin 6035 may be 30 ° C - 95 ° C, and the phase change temperature of paraffin 6403 may be 35 ° C - 95 ° C. The phase change temperature of paraffin 6499 may be 40 ° C - 100 ° C.

氫氧化鈉(NaOH.3.5H2O)、氟化鉀(FK.4H2O)的相變化溫度可以是10℃-45℃。氯化鈣(CaCl2.6H2O)、碳酸鈉(Na2CO3.10H2O)、磷酸氫鈉(Na2HPO4.12H2O)、溴化钙(CaBr2‧6H2O)、硝酸鋅(ZN(NO3)2.6H2O)的相變化溫度可以是10℃-70℃。氟化鉀(FK.2H2O)、硫代硫酸鈉(Na2S2O3.5H2O)的相變化溫度可以是20℃-70℃。硝酸鎳(Ni(NO3)2.6H2O)、醋酸鈉(NaCH3COOH.3H2O)的相變化溫度可以是30℃-85℃。氫氧化鈉(NaOH.H2O)的相變化溫度可以是30℃-90℃。氫氧化鋇(Ba(OH)2.8H2O)的相變化溫度可以是50℃-100℃。硝酸鎂(Mg(NO3)2.6H2O)的相變化溫度可以是60℃-110℃。氯化鎂(MgCl2.6H2O)的相變化溫度可以是90℃-130℃。The phase change temperature of sodium hydroxide (NaOH.3.5H 2 O) and potassium fluoride (FK.4H 2 O) may be from 10 ° C to 45 ° C. Calcium chloride (CaCl 2 .6H 2 O), sodium carbonate (Na 2 CO 3 .10H 2 O), sodium hydrogen phosphate (Na 2 HPO 4 .12H 2 O), calcium bromide (CaBr 2 ‧6H 2 O) The phase change temperature of zinc nitrate (ZN(NO 3 ) 2 .6H 2 O) may be from 10 ° C to 70 ° C. The phase change temperature of potassium fluoride (FK.2H 2 O) and sodium thiosulfate (Na 2 S 2 O 3 .5H 2 O) may be from 20 ° C to 70 ° C. The phase change temperature of nickel nitrate (Ni(NO 3 ) 2 .6H 2 O) and sodium acetate (NaCH 3 COOH. 3H 2 O) may be 30 ° C to 85 ° C. The phase change temperature of sodium hydroxide (NaOH.H 2 O) may be from 30 ° C to 90 ° C. The phase change temperature of barium hydroxide (Ba(OH) 2 .8H 2 O) may be from 50 ° C to 100 ° C. The phase change temperature of magnesium nitrate (Mg(NO 3 ) 2 .6H 2 O) may be from 60 ° C to 110 ° C. The phase change temperature of magnesium chloride (MgCl 2 .6H 2 O) may be from 90 ° C to 130 ° C.

在本實施例中,該第一導熱材料層100可獨立地具有至少20℃、至少30℃、至少40℃、至少50℃、至少60℃、至少70℃、至少80℃、至少90℃、至少100℃的相變化溫度。In this embodiment, the first thermally conductive material layer 100 can independently have at least 20 ° C, at least 30 ° C, at least 40 ° C, at least 50 ° C, at least 60 ° C, at least 70 ° C, at least 80 ° C, at least 90 ° C, at least Phase change temperature of 100 °C.

第一導熱材料層100可以添加入至少一反應劑,該反應劑可以是界面活性劑、偶合劑、黏著改質劑、濕潤劑、色料或安定劑。The first layer of thermally conductive material 100 may be added to at least one reactant, which may be a surfactant, a coupling agent, an adhesion modifier, a wetting agent, a colorant or a stabilizer.

該第一導熱材料層100可以添加入該第一顆粒101,該第一顆粒101可以是導熱性良好的顆粒,如氧化鋅、氧化鋁、氮化硼、氮化鋁、鋁、銅、銀、銦、石墨、或陶瓷、錫或其組合。可以依狀況選擇是否添加該第一顆粒101到該第一導熱材料層100之內部。若選擇不添加,該第一顆粒101所占重量百分比為0%。若選擇添加,該第一顆粒101為所占重量百分比為20%至80%。The first heat conductive material layer 100 may be added to the first particles 101, and the first particles 101 may be particles having good thermal conductivity, such as zinc oxide, aluminum oxide, boron nitride, aluminum nitride, aluminum, copper, silver, Indium, graphite, or ceramic, tin, or a combination thereof. Whether or not to add the first particles 101 to the inside of the first heat conductive material layer 100 may be selected depending on the situation. If it is selected not to be added, the first particle 101 accounts for 0% by weight. If added, the first particles 101 are 20% to 80% by weight.

該第一導熱材料層100可包含總共至少20重量百分比、至少25重量百分比、至少30重量百分比、至少35重量百分比、至少40重量百分比、至少45重量百分比、至少50重量百分比、至少55重量百分比、至少60重量百分比、至少65重量百分比、至少70重量百分比、至少75重量百分比、至少80重量百分比的該第一顆粒101。The first thermally conductive material layer 100 can comprise a total of at least 20 weight percent, at least 25 weight percent, at least 30 weight percent, at least 35 weight percent, at least 40 weight percent, at least 45 weight percent, at least 50 weight percent, at least 55 weight percent, At least 60 weight percent, at least 65 weight percent, at least 70 weight percent, at least 75 weight percent, at least 80 weight percent of the first particles 101.

其中,該第一顆粒101的直徑可以為50μm以下的顆粒大小。該第一顆粒101的最佳直徑可以是30μm、3μm、或0.5μm。不同直徑的該第一顆粒101可混合加入該第一導熱材料層100之該相變化材料或也可以單獨加入該第一導熱材料層100之該相變化材料。The diameter of the first particles 101 may be a particle size of 50 μm or less. The optimum diameter of the first particles 101 may be 30 μm, 3 μm, or 0.5 μm. The first particles 101 of different diameters may be mixed into the phase change material of the first heat conductive material layer 100 or may be separately added to the phase change material of the first heat conductive material layer 100.

更進一步來說,該第一顆粒101,也選擇添加不同粒徑之具有絕緣特性的顆粒,增加該第一導熱材料層100的耐電壓,藉由不同調配比例達到最佳耐電壓之目標。Further, the first particles 101 are also selected to add particles having insulating properties of different particle diameters, increase the withstand voltage of the first heat conductive material layer 100, and achieve the goal of optimal withstand voltage by different blending ratios.

其中,該第一顆粒101的具有導熱性良好的顆粒和具有絕緣特性的顆粒可以相互混合使用。Among them, the particles having good thermal conductivity of the first particles 101 and the particles having insulating properties may be used in combination with each other.

該第二導熱材料層200可以是矽酮樹脂或環氧樹脂基板。The second heat conductive material layer 200 may be an fluorenone resin or an epoxy resin substrate.

第二導熱材料層200可以添加入至少一反應劑,該反應劑可以是界面活性劑、偶合劑、黏著改質劑、濕潤劑、色料或安定劑。The second layer of thermally conductive material 200 may be added to at least one reactant, which may be a surfactant, a coupling agent, an adhesion modifier, a wetting agent, a colorant or a stabilizer.

第二導熱材料層200可以添加入該第二顆粒201,該第二顆粒201可以是氧化鋅、氧化鋁、氮化硼、氮化鋁、鋁、銅、銀、銦、石墨、或陶瓷、錫或其組合。可以依狀況選擇是否填加該第二顆粒201到該第二導熱材料層200之內部。若選擇不添加,該第二顆粒201所占重量百分比為0%。若選擇添加,該第二顆粒201為所占重量百分比為20%至80%。該第二導熱材料層200可包含總共至少20重量百分比、至少25重量百分比、至少30重量百分比、至少35重量百分比、至少40重量百分比、至少45重量百分比、至少50重量百分比、至少55重量百分比、至少60重量百分比、至少65重量百分比、至少70重量百分比、至少75重量百分比、至少80重量百分比的該第二顆粒201。The second heat conductive material layer 200 may be added to the second particles 201, and the second particles 201 may be zinc oxide, aluminum oxide, boron nitride, aluminum nitride, aluminum, copper, silver, indium, graphite, or ceramic, tin. Or a combination thereof. Whether or not the second particles 201 are added to the inside of the second heat conductive material layer 200 may be selected depending on the situation. If not selected, the second particles 201 account for 0% by weight. If added, the second particles 201 are 20% to 80% by weight. The second thermally conductive material layer 200 can comprise a total of at least 20 weight percent, at least 25 weight percent, at least 30 weight percent, at least 35 weight percent, at least 40 weight percent, at least 45 weight percent, at least 50 weight percent, at least 55 weight percent, At least 60 weight percent, at least 65 weight percent, at least 70 weight percent, at least 75 weight percent, at least 80 weight percent of the second particles 201.

其中,該第二顆粒201的直徑可以為50μm以下的顆粒大小。The diameter of the second particles 201 may be a particle size of 50 μm or less.

該第二顆粒201的最佳直徑可以是30μm、3μm、或0.5μm。不同直徑的該導熱性填料可混合加入該第二導熱材料層200或也可以單獨加入該第二導熱材料層200。The optimum diameter of the second particles 201 may be 30 μm, 3 μm, or 0.5 μm. The thermally conductive filler of different diameters may be mixed into the second layer of thermally conductive material 200 or may be separately added to the second layer of thermally conductive material 200.

更進一步來說,該第二顆粒201,也選擇添加不同粒徑之具有絕緣特性的顆粒,增加該第二導熱材料層200的耐電壓,藉由不同調配比例達到最佳耐電壓之目標。Furthermore, the second particles 201 are also selected to add particles having insulating properties of different particle sizes, increasing the withstand voltage of the second heat conductive material layer 200, and achieving the goal of optimal withstand voltage by different blending ratios.

其中,第二顆粒201的具有導熱性良好的顆粒和具有絕緣特性的顆粒可以相互混合使用。Among them, the particles having good thermal conductivity of the second particles 201 and the particles having insulating properties may be used in combination with each other.

其中,該第三顆粒202的直徑可以為50μm以下的顆粒大小。The diameter of the third particles 202 may be a particle size of 50 μm or less.

該第三顆粒202的最佳直徑可以是30μm、3μm、或0.5μm。The optimum diameter of the third particles 202 may be 30 μm, 3 μm, or 0.5 μm.

可以依狀況選擇是否填加該第三顆粒202到該第二導熱材料層200之內部。若選擇不添加,該第三顆粒202所占重量百分比為0%。若選擇添加,該第三顆粒202為所占重量百分比為20%至80%。Whether or not the third particles 202 are added to the inside of the second heat conductive material layer 200 may be selected depending on the situation. If not selected, the third particle 202 is 0% by weight. If added, the third particles 202 are 20% to 80% by weight.

該第二導熱材料層200可包含總共至少20重量百分比、至少25重量百分比、至少30重量百分比、至少35重量百分比、至少40重量百分比、至少45重量百分比、至少50重量百分比、至少55重量百分比、至少60重量百分比、至少65重量百分比、至少70重量百分比、至少75重量百分比、至少80重量百分比的該第三顆粒202。The second thermally conductive material layer 200 can comprise a total of at least 20 weight percent, at least 25 weight percent, at least 30 weight percent, at least 35 weight percent, at least 40 weight percent, at least 45 weight percent, at least 50 weight percent, at least 55 weight percent, At least 60 weight percent, at least 65 weight percent, at least 70 weight percent, at least 75 weight percent, at least 80 weight percent of the third particles 202.

更進一步來說,該第三顆粒202,也選擇添加不同粒徑之具有絕緣特性的顆粒,增加該第二導熱材料層200的耐電壓,藉由不同調配比例達到最佳耐電壓之目標。Further, the third particles 202 are also selected to add particles having insulating properties of different particle sizes, increasing the withstand voltage of the second heat conductive material layer 200, and achieving the goal of optimal withstand voltage by different blending ratios.

不同直徑的該第三顆粒202與第二顆粒201可混合加入該第二導熱材料層200之該相變化材料或也可以單獨加入該第二導熱材料層200之該相變化材料。The third particles 202 and the second particles 201 of different diameters may be mixed into the phase change material of the second heat conductive material layer 200 or may be separately added to the phase change material of the second heat conductive material layer 200.

請參考圖三,本發明之第二實施例,一種複合熱介面材料10,其包括一第一導熱材料層100,及一第二導熱材料層200,該第二導熱材料層200堆疊在該第一導熱材料層100的上表面,其中,該第一導熱材料層100包括一相變化材料、至少一個第一顆粒101和一第一反應劑,該第二導熱材料層200,包括一基材,至少一個第二顆粒201、至少一個第三顆粒202和一第二反應劑。Referring to FIG. 3, a second embodiment of the present invention, a composite thermal interface material 10 includes a first heat conductive material layer 100 and a second heat conductive material layer 200 stacked on the first heat conductive material layer 200. An upper surface of a layer of thermally conductive material 100, wherein the first layer of thermally conductive material 100 comprises a phase change material, at least one first particle 101 and a first reactant, and the second layer of thermally conductive material 200 comprises a substrate. At least one second particle 201, at least one third particle 202, and a second reactant.

其中,至少一個第二顆粒201或至少一個第三顆粒202可以分別單獨添加或一起填加入第二導熱材料層200。The at least one second particle 201 or the at least one third particle 202 may be separately added or added together to the second heat conductive material layer 200.

請參考圖四,本發明之第三實施例,一種複合熱介面材料10,其包括二第一導熱材料層100,及一第二導熱材料層200,該二第一導熱材料層100分別堆疊在該第二導熱材料層200的上表面與下表面,其中,該第一導熱材料層100包括一相變化材料和一第一反應劑,該第二導熱材料層200,包括一基材、至少一第二顆粒201、至少一至少一個第三顆粒20和一第二反應劑。Referring to FIG. 4, a third embodiment of the present invention, a composite thermal interface material 10 includes two first heat conductive material layers 100 and a second heat conductive material layer 200 stacked on the first heat conductive material layer 100, respectively. An upper surface and a lower surface of the second heat conductive material layer 200, wherein the first heat conductive material layer 100 includes a phase change material and a first reactant, and the second heat conductive material layer 200 includes a substrate, at least one Second particles 201, at least one at least one third particle 20, and a second reactant.

本發明之第三實施例和前面實施例不同之處在於,二該第一導熱材料層100沒有添加該第一顆粒101。換句話說,該第一顆粒101在該第一導熱材料層100所占的重量百分比為0%。The third embodiment of the present invention is different from the previous embodiment in that the first heat conductive material layer 100 is not added with the first particles 101. In other words, the first particle 101 accounts for 0% by weight of the first heat conductive material layer 100.

請參考圖五,本發明之第四實施例,一種複合熱介面材料10,其包括二第一導熱材料層100,及一第二導熱材料層200,該二第一導熱材料層100分別堆疊在該第二導熱材料層200的上表面與下表面,其中,該第一導熱材料層100包括一相變化材料、至少一個第一顆粒101和一第一反應劑,該第二導熱材料層200,包括一基材和一第二反應劑。Referring to FIG. 5, a fourth embodiment of the present invention, a composite thermal interface material 10 includes two first heat conductive material layers 100 and a second heat conductive material layer 200 stacked on the first heat conductive material layer 100, respectively. An upper surface and a lower surface of the second heat conductive material layer 200, wherein the first heat conductive material layer 100 includes a phase change material, at least one first particle 101, and a first reactant, the second heat conductive material layer 200, A substrate and a second reactant are included.

本發明之第四實施例和前面實施例不同之處在於,二該第二導熱材料層200沒有添加該至少一個第二顆粒201及該至少一個第三顆粒202。換句話說,該第二顆粒201及該第三顆粒202在該第二導熱材料層200所占的重量百分比為0%。The fourth embodiment of the present invention is different from the previous embodiment in that the second heat conductive material layer 200 is not added with the at least one second particle 201 and the at least one third particle 202. In other words, the second particles 201 and the third particles 202 occupy 0% by weight of the second heat conductive material layer 200.

請參考圖六,本發明之第五實施例,一種複合熱介面材料10,其包括二第一導熱材料層100,及一第二導熱材料層200,該二第一導熱材料層100分別堆疊在該第二導熱材料層200的上表面與下表面,其中,該第一導熱材料層100包括一相變化材料,和一第一反應劑,該第二導熱材料層200,包括一基材和一第二反應劑。Referring to FIG. 6 , a fifth embodiment of the present invention, a composite thermal interface material 10 includes two first heat conductive material layers 100 and a second heat conductive material layer 200 stacked on the first heat conductive material layer 100 respectively. An upper surface and a lower surface of the second heat conductive material layer 200, wherein the first heat conductive material layer 100 includes a phase change material, and a first reactant, the second heat conductive material layer 200 includes a substrate and a Second reactant.

該二第一導熱材料層100可以同時加入至少一個第一顆粒101與至少一個第二顆粒201,或同時加入至少一個第一顆粒101或至少一個第三顆粒202。The two first heat conductive material layers 100 may simultaneously add at least one first particle 101 and at least one second particle 201, or simultaneously add at least one first particle 101 or at least one third particle 202.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be covered by the following claims.

10...複合熱介面材料10. . . Composite thermal interface material

100...第一導熱材料層100. . . First layer of thermally conductive material

101...第一顆粒101. . . First particle

200...第二導熱材料層200. . . Second layer of thermally conductive material

201...第二顆粒201. . . Second particle

202...第三顆粒202. . . Third particle

圖一是一複合熱介面材料的示意圖。Figure 1 is a schematic illustration of a composite thermal interface material.

圖二是圖一所示複合熱介面材料的第一實施例的剖面圖。Figure 2 is a cross-sectional view of the first embodiment of the composite thermal interface material of Figure 1.

圖三是圖一所示複合熱介面材料的第二實施例的剖面圖。Figure 3 is a cross-sectional view of a second embodiment of the composite thermal interface material of Figure 1.

圖四是圖一所示複合熱介面材料的第三實施例的剖面圖。Figure 4 is a cross-sectional view of a third embodiment of the composite thermal interface material of Figure 1.

圖五是圖一所示複合熱介面材料的第四實施例的剖面圖。Figure 5 is a cross-sectional view of a fourth embodiment of the composite thermal interface material of Figure 1.

圖六是圖一所示複合熱介面材料的第五實施例的剖面圖。Figure 6 is a cross-sectional view showing a fifth embodiment of the composite thermal interface material shown in Figure 1.

10...複合熱介面材料10. . . Composite thermal interface material

100...第一導熱材料層100. . . First layer of thermally conductive material

101...第一顆粒101. . . First particle

200...第二導熱材料層200. . . Second layer of thermally conductive material

201...第二顆粒201. . . Second particle

202...第三顆粒202. . . Third particle

Claims (21)

一種複合熱介面材料,其包括二第一導熱材料層,及一第二導熱材料層,該二第一導熱材料層分別堆疊在該第二導熱材料層的下表面與上表面,其中,該第一導熱材料層包括一相變化材料和一第一反應劑,該第二導熱材料層,包括一基材和一第二反應劑。A composite thermal interface material comprising two first heat conductive material layers and a second heat conductive material layer respectively stacked on a lower surface and an upper surface of the second heat conductive material layer, wherein the first A layer of thermally conductive material includes a phase change material and a first reactant, the second layer of thermally conductive material comprising a substrate and a second reactant. 如申請專利範圍第1項之複合熱介面材料,其中,該第一導熱材料層包括至少一個第一顆粒。The composite thermal interface material of claim 1, wherein the first thermally conductive material layer comprises at least one first particle. 如申請專利範圍第2項之複合熱介面材料,其中,該第一導熱材料層包括至少一個第三顆粒。The composite thermal interface material of claim 2, wherein the first thermally conductive material layer comprises at least one third particle. 如申請專利範圍第1項之複合熱介面材料,其中,該第二導熱材料層包括至少一個第二顆粒。The composite thermal interface material of claim 1, wherein the second thermally conductive material layer comprises at least one second particle. 如申請專利範圍第4項之複合熱介面材料,其中,該第二導熱材料層包括至少一個該第三顆粒。The composite thermal interface material of claim 4, wherein the second thermally conductive material layer comprises at least one of the third particles. 如申請專利範圍第1項之複合熱介面材料,其中,該相變化材料是有機相變材料,該有機相變材料是辛酸、聚乙二醇、葵酸、月桂酸、豆蔻酸十四烷酸、聚乙二酸、酯類、棕櫚酸十六烷、硬酯酸、聯苯、萘、丙酰酸、乙酰酸、或石蠟。The composite thermal interface material according to claim 1, wherein the phase change material is an organic phase change material, and the organic phase change material is caprylic acid, polyethylene glycol, sunflower acid, lauric acid, myristic acid myristic acid. , polyoxalic acid, esters, palmitic acid palmade, stearic acid, biphenyl, naphthalene, propionyl acid, acetoic acid, or paraffin. 如申請專利範圍第1項之複合熱介面材料,其中,該相變化材料是一無機相變化材料,該無機相變化材料可以是硫酸鈉(Na2S04.10H2O)、磷酸氫鈉(Na2HPO4.12H2O)、醋酸鈉(NaCH3COOH.3H2O)、硫代硫酸鈉(Na2S2O3.5H2O)、硝酸鎳(Ni(NO3)2.6H2O)、硝酸鋅(ZN(NO3)2.6H2O)、硝酸鎂(Mg(NO3)2.6H2O)、氯化鎂(MgCl2.6H2O)、氯化鈣(CaCl2.6H2O)、碳酸鈉(Na2CO3.10H2O)、氫氧化鋇(Ba(OH)2.8H2O)、氟化鉀(FK.2H2O)、氫氧化鈉(NaOH.3.5H2O)、氟化鉀(FK.4H2O)、溴化钙(CaBr2‧6H2O)、或氫氧化鈉(NaOH. H2O)。The composite thermal interface material according to claim 1, wherein the phase change material is an inorganic phase change material, and the inorganic phase change material may be sodium sulfate (Na 2 S0 4 .10H 2 O) or sodium hydrogen phosphate ( Na 2 HPO 4 .12H 2 O), sodium acetate (NaCH 3 COOH. 3H 2 O), sodium thiosulfate (Na 2 S 2 O 3 .5H 2 O), nickel nitrate (Ni(NO 3 ) 2 .6H 2 O), zinc nitrate (ZN(NO 3 ) 2 .6H 2 O), magnesium nitrate (Mg(NO 3 ) 2 .6H 2 O), magnesium chloride (MgCl 2 .6H 2 O), calcium chloride (CaCl 2 ) .6H 2 O), sodium carbonate (Na 2 CO 3 .10H 2 O), barium hydroxide (Ba(OH) 2 .8H 2 O), potassium fluoride (FK.2H 2 O), sodium hydroxide (NaOH) .3.5H 2 O), potassium fluoride (FK.4H 2 O), calcium bromide (CaBr 2 ‧6H 2 O), or sodium hydroxide (NaOH. H 2 O). 如申請專利範圍第1項之複合熱介面材料,其中,該相變化材料是一複合相變材料,該複合相變材料是有機與無機共熔相變材料混合物。The composite thermal interface material according to claim 1, wherein the phase change material is a composite phase change material, and the composite phase change material is a mixture of organic and inorganic eutectic phase change materials. 如申請專利範圍第1項之複合熱介面材料,其中,該相變化材料的該相變化溫度介於10℃-100℃之間。The composite thermal interface material according to claim 1, wherein the phase change temperature of the phase change material is between 10 ° C and 100 ° C. 如申請專利範圍第1項之複合熱介面材料,其中,該第一反應劑及該第二反應劑可以是界面活性劑、偶合劑、黏著改質劑、濕潤劑、色料或安定劑。The composite thermal interface material according to claim 1, wherein the first reactant and the second reactant may be a surfactant, a coupling agent, an adhesion modifier, a wetting agent, a colorant or a stabilizer. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第一顆粒、該第二顆粒或該第三顆粒可以是氧化鋅、氧化鋁、氮化硼、氮化鋁、鋁、銅、銀、銦、石墨、陶瓷、錫或其組合。The composite thermal interface material of claim 2, 3, 4 or 5, wherein the first particle, the second particle or the third particle may be zinc oxide, aluminum oxide or nitrogen Boron, aluminum nitride, aluminum, copper, silver, indium, graphite, ceramic, tin or a combination thereof. 如申請專利範圍第1項之複合熱介面材料,其中,該基材是矽酮樹脂或環氧樹脂。The composite thermal interface material according to claim 1, wherein the substrate is an anthrone resin or an epoxy resin. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第一顆粒在該第一導熱材料層之重量百分比是20%至80%。The composite thermal interface material of claim 2, 3, 4, or 5, wherein the first particles are 20% to 80% by weight of the first thermally conductive material layer. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第二顆粒或該第三顆粒在該第二導熱材料層之重量百分比是20%至80%。The composite thermal interface material of claim 2, 3, 4 or 5, wherein the weight percentage of the second or third particles in the second thermally conductive material layer is 20% to 80%. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第一顆粒、該第二顆粒或該第三顆粒的直徑可以為50μm以下。The composite thermal interface material of claim 2, 3, 4 or 5, wherein the first particle, the second particle or the third particle may have a diameter of 50 μm or less. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第一顆粒、該第二顆粒或該第三顆粒的最佳直徑可以是30μm、3μm、或0.5μm。The composite thermal interface material according to claim 2, 3, 4 or 5, wherein the first particle, the second particle or the third particle may have an optimum diameter of 30 μm and 3 μm. , or 0.5 μm. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,不同直徑的該第一顆粒、該第二顆粒或該第三顆粒可混合添加入該相變化材料或單獨添加入該相變化材料。The composite thermal interface material according to claim 2, 3, 4 or 5, wherein the first particles, the second particles or the third particles of different diameters may be mixed and added to the phase The varying material is added separately to the phase change material. 如申請專利範圍第2項、第3項、第4項或第5項之複合熱介面材料,其中,該第一顆粒、該第二顆粒或該第三顆粒可以是絕緣顆粒。The composite thermal interface material of claim 2, 3, 4 or 5, wherein the first particle, the second particle or the third particle may be insulating particles. 一種複合熱介面材料,其包括一第一導熱材料層,及一第二導熱材料層,該第二導熱材料層分別堆疊在該第一導熱材料層的上表面,其中,該第一導熱材料層包括一相變化材料、至少一第一顆粒和一第一反應劑,該第二導熱材料層,包括一基材,至少一第二顆粒和一第二反應劑。A composite thermal interface material comprising a first heat conductive material layer and a second heat conductive material layer respectively stacked on an upper surface of the first heat conductive material layer, wherein the first heat conductive material layer The invention comprises a phase change material, at least a first particle and a first reactant, the second heat conductive material layer comprising a substrate, at least a second particle and a second reactant. 如申請專利範圍第19項之複合熱介面材料,其中,該相變化材料是有機相變材料,該有機相變材料是辛酸、聚乙二醇、葵酸、月桂酸、豆蔻酸十四烷酸、聚乙二酸、酯類、棕櫚酸十六烷、硬酯酸、聯苯、萘、丙酰酸、乙酰酸、或石蠟。The composite thermal interface material according to claim 19, wherein the phase change material is an organic phase change material, and the organic phase change material is octanoic acid, polyethylene glycol, sunflower acid, lauric acid, myristic acid myristic acid. , polyoxalic acid, esters, palmitic acid palmade, stearic acid, biphenyl, naphthalene, propionyl acid, acetoic acid, or paraffin. 如申請專利範圍第19項之複合熱介面材料,其中,該相變化材料是一無機相變化材料,該無機相變化材料可以是硫酸鈉(Na2S04.10H2O)、磷酸氫鈉(Na2HPO4.12H2O)、醋酸鈉(NaCH3COOH.3H2O)、硫代硫酸鈉(Na2S2O3.5H2O)、硝酸鎳(Ni(NO3)2.6H2O)、硝酸鋅(ZN(NO3)2.6H2O)、硝酸鎂(Mg(NO3)2.6H2O)、氯化鎂(MgCl2.6H2O)、氯化鈣(CaCl2.6H2O)、碳酸鈉(Na2CO3.10H2O)、氫氧化鋇(Ba(OH)2.8H2O)、氟化鉀(FK.2H2O)、氫氧化鈉(NaOH.3.5H2O)、氟化鉀(FK.4H2O)、溴化钙(CaBr2‧6H2O)、或氫氧化鈉(NaOH. H2O)。The composite thermal interface material according to claim 19, wherein the phase change material is an inorganic phase change material, and the inorganic phase change material may be sodium sulfate (Na 2 S0 4 .10H 2 O) or sodium hydrogen phosphate ( Na 2 HPO 4 .12H 2 O), sodium acetate (NaCH 3 COOH. 3H 2 O), sodium thiosulfate (Na 2 S 2 O 3 .5H 2 O), nickel nitrate (Ni(NO 3 ) 2 .6H 2 O), zinc nitrate (ZN(NO 3 ) 2 .6H 2 O), magnesium nitrate (Mg(NO 3 ) 2 .6H 2 O), magnesium chloride (MgCl 2 .6H 2 O), calcium chloride (CaCl 2 ) .6H 2 O), sodium carbonate (Na 2 CO 3 .10H 2 O), barium hydroxide (Ba(OH) 2 .8H 2 O), potassium fluoride (FK.2H 2 O), sodium hydroxide (NaOH) .3.5H 2 O), potassium fluoride (FK.4H 2 O), calcium bromide (CaBr 2 ‧6H 2 O), or sodium hydroxide (NaOH. H 2 O).
TW100132790A 2011-09-13 2011-09-13 Composite thermal interface materials TW201313112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100132790A TW201313112A (en) 2011-09-13 2011-09-13 Composite thermal interface materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100132790A TW201313112A (en) 2011-09-13 2011-09-13 Composite thermal interface materials

Publications (1)

Publication Number Publication Date
TW201313112A true TW201313112A (en) 2013-03-16

Family

ID=48482752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132790A TW201313112A (en) 2011-09-13 2011-09-13 Composite thermal interface materials

Country Status (1)

Country Link
TW (1) TW201313112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733479A (en) * 2015-04-13 2015-06-24 京东方科技集团股份有限公司 Flexible lining substrate and manufacture method, display substrate and display device
TWI603441B (en) * 2016-05-12 2017-10-21 台達電子企業管理(上海)有限公司 Power module and manufacturing method thereof
CN111769084A (en) * 2020-07-09 2020-10-13 安徽杉越科技有限公司 Heat-conducting product and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733479A (en) * 2015-04-13 2015-06-24 京东方科技集团股份有限公司 Flexible lining substrate and manufacture method, display substrate and display device
TWI603441B (en) * 2016-05-12 2017-10-21 台達電子企業管理(上海)有限公司 Power module and manufacturing method thereof
CN111769084A (en) * 2020-07-09 2020-10-13 安徽杉越科技有限公司 Heat-conducting product and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Liu et al. Calorimetric evaluation of phase change materials for use as thermal interface materials
CN104726069B (en) A kind of novel phase-change material composition
CN104031600B (en) A kind of heat-conducting metal glue of insulation and manufacture method thereof
CN103131396B (en) A kind of heat interfacial material and manufacture method thereof
JP2021513503A (en) Graphene denaturing method, modified graphene and compositions containing graphene
CN1955252A (en) Nano metal fluid with high heat-transfer performance
CN1589496A (en) Optimised application of PCMs in chillers
CA2472278A1 (en) Use of paraffin-containing powders as phase-change materials (pcm) in polymer composites in cooling devices
CN104696832B (en) Led street lamp
CN102155729A (en) Heat dissipation method of LED (light-emitting diode) device and device
CN101515572A (en) Novel LED and a high-power radiator of a radiating element
CN102192491A (en) Heat-dissipation structure for LED (Light Emitting Diode) light
KR101760840B1 (en) Sheets with phase change material for heat sink and heat sink coated the same
KR101739697B1 (en) LED Lighting Apparatus For Radiation Area
TW201313112A (en) Composite thermal interface materials
CN102278726B (en) LED lamp heat-radiating device
KR101546832B1 (en) Radiating liquid for LED illumination device with liquified polymer type and LED illumination device
CN106587970A (en) Radiation radiating LED (Light-Emitting Diode) ceramic substrate and preparation method thereof
CN106634654A (en) Adhesive film with radiant heat dissipation function for LED (Light Emitting Diode) and preparation method of adhesive film
CN101761903A (en) Cooling structure for LED lamp
CN104696759A (en) Novel LED lamp
CN201706453U (en) Heat sink for LED lamp
CN102263185A (en) Thermal radiation light emitting diode structure and manufacturing method thereof
KR20220108708A (en) Thermal conductive structure and electronic device
KR20200123317A (en) Heat sink for led lighting comprising heat radiation composition