TW201248833A - White light illumination device - Google Patents

White light illumination device Download PDF

Info

Publication number
TW201248833A
TW201248833A TW101118203A TW101118203A TW201248833A TW 201248833 A TW201248833 A TW 201248833A TW 101118203 A TW101118203 A TW 101118203A TW 101118203 A TW101118203 A TW 101118203A TW 201248833 A TW201248833 A TW 201248833A
Authority
TW
Taiwan
Prior art keywords
light
light emitting
wafer
white light
color
Prior art date
Application number
TW101118203A
Other languages
Chinese (zh)
Inventor
Ya-Yu Hung
Yi-Chun Chen
Yong-Yi Chang
Original Assignee
Everlight Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Electronics Co Ltd filed Critical Everlight Electronics Co Ltd
Publication of TW201248833A publication Critical patent/TW201248833A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A white light illumination device including at least one first light emitting chip, at least one second light emitting chip and a first wavelength conversion material disposed on the first light emitting chip and the second light emitting chip is provided. The first light emitting chip is capable of emitting a fist color light, and the second light emitting chip is capable of emitting a red light. The first wavelength conversion material absorbs the first color light and converts the first color light into a yellow light. A ratio of the total area of the second light emitting chip to the total area of the first light emitting is less than 0.5. The color aberration of the white light emitted from the white light illumination device under a temperature of 85 DEG C is within 7-step MacAdam ellipse.

Description

201248833 六、發明說明: 【發明所屬之技術領域】 本發明疋有關於-種白光發光裝置,且特別是有關於 種透過組合波長轉換材料和多種發先晶# *白光的 發光裝置。 【先前技術】 成在全球能源短缺和環境污染的背景下,節約能源和保 護環境成為當今世界的重大課題。在照明領域中,發光二 極體(light emitting diode,LED )產品作為一種新型的綠色 光源,其具有節能、環保、壽命長、體積小、抗衝擊、回 應時間短等優點,並廣泛應用於各種指示、顯示、裝飾、 %光源、普通照明和城市夜景等領域。發光二極體未來發 展的趨勢被看好,且被認為將取代氣體放電燈成為新一代 的照明光源。因此白光發光二極體作為照明領域的重要產 品’其具有廣闊的市場前景而備受矚目。近年來白光led 技術更是迅速發展。 所謂白光是多種顏色混合而成的光,例如太陽發出的 白光是由紅、橙、黃、綠、藍、靛、紫七種色光混合而成。 工業上,為了得到人眼所能見的白光,必須至少混合兩種 顏色的光,如混合藍色光和黃色光,或混合藍色光、綠色 光和紅色光。目前製造白光發光二極體(light emitting diode)元件主要採用的方法是:將藍光發光二極體(light emitting diode )晶片和可被藍光有效激發的黃光螢光粉作 201248833 結合。白光發光二極體(light emitting diode)元件工作時, 其中的藍光晶片發出的一部分藍光被螢光粉吸收,經波長 轉換後發出黃光。螢光粉發射的黃光和另一部分未被螢光 粉吸收的藍光混合。調控藍光與黃光間的相對強度比即可 得到各種色溫的白光。但這樣的混合方法因缺少紅色波段 而導致演色性(Colour Rendering Index)偏低,為了提高led 發光裝置的演色性,則會添加紅色螢光粉以提高可見光光 譜的涵蓋範圍。然而由於螢光粉將第一種波長的光轉換為 第二種波長的光時,轉換效率有限,光的能量會有所損失, 故此做法將導致整個發光裝置的光效降低。此外,紅色螢 光粉價格較尚,導致整個組件成本增加。尤其是低色溫的 發光裝置所用到的紅色螢光粉較多,不僅光效低,成本也 高。由於現今紅光晶片的製作工藝日趨成熟,亮度高,且 價格較低,所以也出現了用紅光晶片代替紅色螢光粉的產 品。這種白光發光裝置與使用紅色螢光粉提供所需紅光的 產品相比,光效可以提高1〇%以上,且降低了成本。但所 有這些白光的色溫差異極大,而在照明領域中,色溫較低 (3000K左右)的暖白光照明裝置有較大的需求故製造 低色溫的暖白光發光裝置成為LED封裴行業的重要課題。 【發明内容】 一本發明提供一種發暖白光的白光發光裝置,其具有較 高的光效率和演色性,且成本低廉。 本發明之一實施例提出一種白光發光裝置。白光發光 4 201248833 裝置包括第—發光晶片,發紅光的第二發光晶片,以及配 置在第-發光晶片以及第二發光晶片之上的第—波長轉換 材料’第-波長轉換材料可吸收第—發光晶片所發出的光 並發出黃光,其中,白光發絲置中第二發光晶片的總面 積與第-發光晶片的總面積之比值小於〇5,且白光^ 裳置於溫度攝氏85度下所產生的白色光之色偏差在7"階 夕克亞富擴圓(MacAdam Ellipse )範圍之内。 在本發明之一實施例中,上述之第二發光晶片的總面 積與第一發光晶片的總面積之比值小於〇 3且大於。 廿在本發明之一實施例中,上述之第一色光、紅色光以 及黃色光共同混光!_-白光,自光具有實質近似色度圖上 3000K的色溫範圍。 在本發明之一實施例中,上述之第一發光晶片的材料 包括氮化銦鎵類或氮化鎵類化合物,而且第一色光之波長 落在380nm至470nm的範圍内。 在本發明之一實施例中,上述之第一波長轉換材 石權石結構的螢光粉。 ”、、 ^在本發明之一實施例中,上述之白光發光裝置還包括 第二波長轉換材料,配置在第一發光晶片與第二發光晶片 之上’第一色光照射至第二波長轉換材料時,第二= 轉換為紅色光。 尤破 在本發明之一實施例中 氮化物或氮氧化物螢光粉。 在本發明之一實施例中 上述之苐一波長轉換材料為 ,上述之第二晶片所發出的紅 201248833 色光之最大波長大於640ηιη。 本發明之-實施例提出—種白光發光裝置。白光發光 裝置包括發藍光的第-發光晶片,發紅光的第二發光晶片 以及配置在第-發光晶片以及第二發光晶片之上的第一波 長轉換材料,第—波長轉換材料可吸收第—發光晶片所發 出的光並發出黃光’其中第二發光晶片所發出的紅色光之 最大波長大於_nm’且自紐钱溫度氣85度下 所產生的白色光之色偏差在7階麥克亞當棚(廳她瓜 Ellipse)範圍之内。 基於上述,本發明一實施例之所述白光 第一發光晶片、吸收第-發光晶片發出的光並發出黃^ 波長轉換材料以及發紅光㈣二發光晶>1,並配置成使第 二發光晶片的總面積與第一發光晶片的總面積之比值小於 〇.5 ’使得白光發光裝置所發出的白光具有高演色性,而且 於溫度攝氏85度下所產生的白光之色偏差在7階麥克亞 當橢圓(MacAdam Ellipse)範圍之内。這樣的白光發光裝置 的^光效率南且成本低廉。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 圖1為本發明一實施例之白光發光裝置的示意圖。請 參見圖1,本發明第一實施方式的白光發光裝置1〇包括】 少一第一發光晶片12、至少一第二發光晶片13以及第— 6 201248833 波長轉換材料。第一發光晶片12適於發出第一色光。第二 發光晶片13適於發出紅色光。在本實施例中,第一發光晶 片12可以是氮化鎵(GaN)或氮化銦鎵(InGaN)材料為主的 藍光發光二極體晶片,其發出第一色光之波長例如是落在 380nm至470nm的範圍内。第二發光晶片13可以是磷化 鎵或珅化鎵㈣為主的紅光發光二極體,其發出的紅光的 最大波長可大於640nm。 第一波長轉換材料(未繪示)配置於第一發光晶片以 及第二發光晶片之上,第一波長轉換材料吸收第一發光晶 片所發出的第一色光並轉換第一色光成黃色光。在本實施 例中’其中該二發光晶片的總面積與第-發光晶片的總面 積之比值小於0.5。 ^具體而言,本實施例之白光發光裝置10更可包括基 座11,而基座11上配置固定的四個發光二極體晶片,其 中個發光二極體晶片為發出紅色光的第二發光晶片 13,其他二個發光二極體晶片為發出藍光的第一發光晶片 而第一發光晶片12及第二發光晶片13可利用熱電分 離,,電合一的技術配置在基座11上。在本實施例中,發 ,I光的第一發光晶片12之邊長為18密爾(mil),亦即 一個發,藍光的第一發光晶片12之面積總和為972密爾平 方(mi1 )。發出紅光的第二發光晶片13之邊長為14密 爾(nul) ’其面積為1%密爾平方(mil2)。換言之,第 :發光晶片13的總面積與第一發光晶片12的總面積之比 值為0.2016。然而本發明不限於此,在其他的實施例中, 201248833 第二發光晶片13的總面積與第一發光晶片12的總面積之 比值可以是其他數值,例如大於0.1而小於〇 3之間。 在本實施例中’第一波長轉換材料可為黃色螢光粉, 黃色螢光粉可以吸收第一發光晶片12發出的藍光,經波長 轉換發出黃光。白光發光裝置10在透過混合箆一絡氺曰g 發出的藍光、第二發光晶片13發出二 光粉發出的黃光,發出相關色溫(correlated color201248833 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a white light emitting device, and more particularly to a light emitting device that transmits a combined wavelength converting material and a plurality of white crystals. [Prior Art] In the context of global energy shortages and environmental pollution, saving energy and protecting the environment have become major issues in today's world. In the field of illumination, light emitting diode (LED) products are a new type of green light source, which has the advantages of energy saving, environmental protection, long life, small size, impact resistance, short response time, etc., and is widely used in various fields. Directions, displays, decorations, % light sources, general lighting, and urban night scenes. The future development of LEDs is optimistic and is believed to replace gas discharge lamps as a new generation of illumination sources. Therefore, white light-emitting diodes have been attracting attention as an important product in the field of lighting, which has broad market prospects. In recent years, white LED technology has developed rapidly. The so-called white light is a mixture of a plurality of colors, for example, the white light emitted by the sun is a mixture of seven colors of red, orange, yellow, green, blue, enamel, and purple. Industrially, in order to obtain white light visible to the human eye, it is necessary to mix at least two colors of light, such as mixed blue light and yellow light, or mixed blue light, green light, and red light. At present, a method for fabricating a white light emitting diode element is mainly to combine a blue light emitting diode chip and a yellow light fluorescent powder which can be effectively excited by blue light as 201248833. When a white light emitting diode device is operated, a part of the blue light emitted by the blue light wafer is absorbed by the fluorescent powder, and after the wavelength conversion, a yellow light is emitted. The yellow light emitted by the phosphor is mixed with another portion of the blue light that is not absorbed by the phosphor. By adjusting the relative intensity ratio between blue light and yellow light, white light of various color temperatures can be obtained. However, such a hybrid method results in a low color rendering (Colour Rendering Index) due to the lack of a red band. In order to improve the color rendering of the LED light-emitting device, red phosphor powder is added to increase the coverage of the visible light spectrum. However, since the phosphor converts the light of the first wavelength into the light of the second wavelength, the conversion efficiency is limited, and the energy of the light is lost, so that the light efficiency of the entire light-emitting device is lowered. In addition, the price of red phosphor powder is higher, resulting in an increase in the cost of the entire assembly. In particular, a low color temperature illuminating device uses a large amount of red fluorescent powder, which is low in light efficiency and high in cost. Due to the maturity of the production process of red wafers today, high brightness, and low price, there have also been products that use red wafers instead of red phosphors. This white light-emitting device can increase the light efficiency by more than 1% and reduce the cost compared with a product that uses red phosphor to provide the desired red light. However, the color temperature of all such white light varies greatly, and in the field of illumination, warm white light illumination devices with low color temperature (about 3000K) have a large demand, so the manufacture of low color temperature warm white light illumination devices has become an important issue in the LED sealing industry. SUMMARY OF THE INVENTION One invention provides a white light emitting device that emits warm white light, which has high light efficiency and color rendering properties, and is low in cost. One embodiment of the present invention provides a white light emitting device. White light emitting 4 201248833 The device comprises a first light emitting chip, a second light emitting chip emitting red light, and a first wavelength converting material disposed on the first light emitting chip and the second light emitting chip, the first wavelength converting material can absorb the first The light emitted by the illuminating chip emits yellow light, wherein the ratio of the total area of the second illuminating wafer to the total area of the first illuminating wafer is less than 〇5, and the white light is placed at a temperature of 85 degrees Celsius. The color deviation of the resulting white light is within the range of 7"MacAdam Ellipse. In one embodiment of the invention, the ratio of the total area of the second luminescent wafer to the total area of the first luminescent wafer is less than 〇 3 and greater than. In an embodiment of the invention, the first color light, the red light, and the yellow light are mixed together! _-White light, self-light has a color temperature range of 3000K on a substantially similar chromaticity diagram. In an embodiment of the invention, the material of the first light-emitting chip comprises an indium gallium nitride or a gallium nitride-based compound, and the wavelength of the first color light falls within a range of 380 nm to 470 nm. In an embodiment of the invention, the first wavelength conversion material has a phosphor powder of a stone structure. In an embodiment of the invention, the white light emitting device further includes a second wavelength converting material disposed on the first light emitting chip and the second light emitting chip, wherein the first color light is irradiated to the second wavelength conversion. In the case of a material, the second = converted to red light. In particular, in one embodiment of the invention, the nitride or oxynitride phosphor is in the embodiment of the invention. The maximum wavelength of the red 201248833 color light emitted by the second wafer is greater than 640 ηη. The present invention provides a white light emitting device. The white light emitting device includes a blue-emitting first-emitting wafer, a red-emitting second luminescent wafer, and a configuration. a first wavelength converting material on the first luminescent wafer and the second luminescent wafer, the first wavelength converting material absorbing light emitted by the first illuminating wafer and emitting yellow light, wherein the red light emitted by the second luminescent wafer The maximum wavelength is greater than _nm' and the color deviation of the white light produced from the Newark temperature of 85 degrees is within the range of the 7th-order MacAdam Shelter. In the above, the white light first light-emitting chip according to an embodiment of the present invention absorbs light emitted from the first light-emitting chip and emits a yellow wavelength conversion material and a red-emitting (four) light-emitting crystal>1, and is configured to make the second light emission. The ratio of the total area of the wafer to the total area of the first luminescent wafer is less than 〇.5' such that the white light emitted by the white light emitting device has high color rendering, and the color deviation of the white light generated at a temperature of 85 degrees Celsius is in the 7th order microphone. Within the scope of the MacAdam Ellipse. Such a white light-emitting device has a light efficiency and is low in cost. To make the above features and advantages of the present invention more apparent, the following embodiments are described in conjunction with the accompanying drawings. 1 is a schematic diagram of a white light emitting device according to an embodiment of the present invention. Referring to FIG. 1, a white light emitting device 1 according to a first embodiment of the present invention includes a first light emitting chip. 12. At least one second luminescent wafer 13 and a -6 201248833 wavelength converting material. The first luminescent wafer 12 is adapted to emit a first color light. The second luminescent wafer 13 is adapted to emit In the present embodiment, the first light-emitting chip 12 may be a blue light-emitting diode wafer mainly composed of a gallium nitride (GaN) or an indium gallium nitride (InGaN) material, and the wavelength of the first color light is, for example, Falling in the range of 380 nm to 470 nm, the second light-emitting chip 13 may be a red light-emitting diode mainly composed of gallium phosphide or gallium antimonide (tetra), and the maximum wavelength of red light emitted may be greater than 640 nm. A material (not shown) is disposed on the first illuminating wafer and the second illuminating wafer, and the first wavelength converting material absorbs the first color light emitted by the first illuminating wafer and converts the first color light into yellow light. In the example, the ratio of the total area of the two light-emitting wafers to the total area of the first-emitting wafer is less than 0.5. Specifically, the white light emitting device 10 of the present embodiment may further include a susceptor 11 , and the pedestal 11 is provided with four fixed light emitting diode chips, and one of the light emitting diode chips is a second emitting red light. The illuminating chip 13 and the other two illuminating diode chips are the first illuminating wafer emitting blue light, and the first illuminating wafer 12 and the second illuminating wafer 13 are separated by thermoelectricity, and the electric integration technique is disposed on the susceptor 11. In this embodiment, the first light-emitting chip 12 of the I-light is 18 mils long, that is, one light, and the total area of the first light-emitting chip 12 of the blue light is 972 mil square (mi1). . The second light-emitting chip 13 emitting red light has a side length of 14 mils (nul) and an area of 1% mil square. In other words, the ratio of the total area of the light-emitting wafer 13 to the total area of the first light-emitting wafer 12 is 0.2016. However, the present invention is not limited thereto. In other embodiments, the ratio of the total area of the second illuminating wafer 13 to the total area of the first luminescent wafer 12 of 201248833 may be other values, such as greater than 0.1 and less than 〇3. In the present embodiment, the first wavelength converting material may be yellow phosphor powder, and the yellow phosphor powder may absorb blue light emitted from the first light-emitting chip 12 and emit yellow light by wavelength conversion. The white light emitting device 10 emits a yellow light emitted by the two-light powder through the blue light emitted from the mixed light-emitting layer g, and emits a correlated color temperature (correlated color).

Temperature, CCT )為 3000K 左右的暖白光。 事實上’要滿足相關色溫(c〇rrelated c〇1〇rTemperature, CCT) is a warm white light of around 3000K. In fact, 'to meet the relevant color temperature (c〇rrelated c〇1〇r

Temperature,CCT) 30〇〇κ的要求,本實施例之晶片的數 量並非局限於三個為第—發光^ 12的藍光晶片和一個 為第二發光晶片13的紅光晶片。舉例而言,簡單地可參照 於藍光晶片與紅光晶片之數量比為3:1的配置,採用六個 藍光晶片加上兩個紅光晶;:!’或者九個藍光晶片加上三個 紅光晶片’亦或者十二個藍光晶片加上四個紅光晶片,又 或者十八個藍光晶片加上六個紅光晶片。而且發光晶片的 尺寸亦有多種選擇。 以下内谷將舉出上述圖!實施例之白光發光裝置之實 的數據。需注意的是,τ述之表—帽列的數據資料並 =以限定本發明,任何所屬技術領域中具有通常知識者 二本發明之後,當可對其參數或設定作適當的更動, 惟其仍應屬於本發明之範疇内。 表—列舉了白色發光裒置10的五個實驗例之數據, 五固貧驗例之白色發光裝置的結構相似,主要差異在第 8 201248833 一發光晶片12與第二發光晶片13在不同實驗例中有不同 的尺寸’亦即藍光晶片與紅光晶片的尺寸分別不同,但從 表一的資料可知’其中紅光晶片的總面積與藍光晶片的總 面積之比值均小於〇·5,而上述五個不同的白光發光裝置 發出的白光的相關色溫都在3000K左右。Temperature, CCT) The requirement of 30 〇〇 κ, the number of wafers of this embodiment is not limited to three blue light wafers of the first light-emitting layer 12 and one red light-emitting wafer of the second light-emitting chip 13. For example, simply refer to a configuration in which the ratio of blue to red wafers is 3:1, using six blue wafers plus two red crystals;:! 'Or nine blue wafers plus three red wafers' or twelve blue wafers plus four red wafers, or eighteen blue wafers plus six red wafers. Moreover, the size of the light-emitting chip is also various. The following map will be given by Neigu! The actual data of the white light emitting device of the embodiment. It should be noted that the data of the table of the τ-cap column is used to define the present invention, and any one of ordinary skill in the art may have appropriate changes to its parameters or settings, but still It should be within the scope of the invention. Table—The data of five experimental examples of the white light-emitting device 10 are listed. The structure of the white light-emitting device of the five solid-state test case is similar, and the main difference is in the eighth 201248833. The light-emitting chip 12 and the second light-emitting chip 13 are in different experimental examples. There are different sizes in the same size, that is, the size of the blue wafer and the red light wafer are different, but from the data in Table 1, the ratio of the total area of the red light wafer to the total area of the blue light wafer is less than 〇·5, and the above The correlated color temperatures of the white light emitted by the five different white light emitting devices are all around 3000K.

一. 〜矛一I硒万式的白光發光裝置20(未 繪示)’白光發光裝置20的結構與第一實施方式的白光發 光裝置10的結構相似,兩者主要的區別在於在於第一發光 曰曰片12與第—發光晶片13的數量比有所不同而且第一 f光晶^ 12所發出的紅光之最大波長大s64〇nm。具體而 ° 施中的藍光晶片與紅光晶片之數量比為2:1,而 且紅光晶片的紅光之最大波長為657nm〜659nm。請參見表二 :示:表二列舉了發光裝置2〇的五個實驗例之數;虞。需: “的疋下述之表二中所列的數據資料並非用以限定本發 3 何所屬技術領域中具有通常知識者在參照本發明^ 2當可對其參數或設定作適t的更動,惟其仍應屬於本 内。此五個實驗例之白色發光裝置2G所採用的 而接Γ,、紅光晶片具有不同尺寸,但其中紅光晶片的總 積/、所錢光晶㈣總面積之比料持G·5,更精^ 201248833 的說,比值是介於0.1到0.3之間,而上述五個不同的白 光發光裝置發出的白光的相關色溫都在3000K左右。 表二 晶片類型 晶片數量比 例 晶片尺寸(單位:mil) 紅光晶片 1 14 20 28 28 42 藍光晶片 2 18 24 38 45 45 紅/藍晶片總面積之比 0.3025 0.3472 0.2715 0.1936 0.4356 相對於第二實施例之白色發光裝置20,在此提出對照 例一和對照例二。除了所用紅光晶片的紅光之最大波長不 同之外’對照例一和對照例二的結構與白光發光裝置20 相同。另一方面,對照例一所用紅光晶片的紅光之最大波 長落在616nm〜620nm之範圍内,而對照例二所用紅光晶 片的紅光之最大波長落在622nm〜626nm之範圍内。圖2 顯不出白光發光裝置20所發出白光之光學品質。請參見圖 2所示’折線21表示發光裝置2〇從25°C升溫至85°C時在 色度坐標系下的色偏量,其中折線22、23分別表示對照例 -和對照例二從25。(:升溫至75。(:時的色偏量。根據能源之 星(Energy Star)標準,白光發光裝置2〇的白光之色偏移 需維持在® 2巾較大的橢圓環内,以符合麟之星(Energy Sta〇之7階麥克亞當搞圓(MacAdamEllipse)的標準, 佳狀態是色偏移維持在較小的湘勒,以符合能源之 星之4階麥克亞當_ (MaeAdamEllipse)的標準。事實 上對於4P&麥克亞當摘圓(MacAdam )的標準而 言’意即較小的_環内所代表的色偏移,人眼無法感知; 201248833 對於7階麥克亞當橢圓(MacAdam Ellipse)的標準而言, 意即較大的橢圓環内所代表的色偏移,人眼也不容易分 辨。而如圖2所示,對照例一和對照例二在75°C時的色偏 移量遠遠超出了較大的橢圓環,而根據本實例的發光裝置 20在更尚的溫度(85°C )下的色偏移量仍可以維持在較大 的橢圓環内’人眼一般不會感受到有色偏感。 色偏移的產生是由於紅光晶片在高溫下發光強度的衰 減大於其他顏色的晶片,而本實施之白光發光裝置2〇所使 用的最大發射波長為657〜659nm的長波長紅光晶片,相較 於對照例一和對照例二,白光發光裝置2〇所發出的光之強 度在高溫下衰減最少,因此色偏量也是最小的。實驗證明 最大發射波長大於640nm的長波長紅光晶片在高溫下的光 強衰減較小’可以滿足減小高溫下的色偏移量的要求。 請參考下面表三’表三說明本實施例之白光發光裝置 20使用波長大於640nm的長波長紅光晶片,白光發光裝置 20所發出的白光於溫度25¾至85。(:時的色溫變化(△CCT) 小於300。舉例而言’當溫度由25〇c升高至85。〇時,白光 的色溫變化(△CCT)大約為281。 表三 溫度(°c) 25 35 45 55 65 75 85 色溫變化 (ACCT) 0 45 88 126 168 225 281 201248833 綜上所述,本發明所述之白光發光裝置包括發藍光的 第一發光晶片、吸收第一發光晶片發出的光並發出黃光的 波長轉換材料,以及發紅光的第二發光晶片,且紅光晶片 的面積總和與藍光晶片的面積總和之比值小於0.5。如此 一來’白光發光裝置於溫度攝氏85度下所產生的白光之色 偏差在7階麥克亞當橢圓(MacAdamEllipse)範圍之内,而 且白光之相關色溫(Correlated Color Temperature,CCT) 接近於3000K並具有指數可達go以上的演色性。此外, 這樣的白光發光裝置具有較高的發光效率,且成本低廉。 其中’紅光晶片的面積總和與藍光晶片的面積總和之 比值,更精確的是小於〇.3且大於〇1,如此發光晶片能夠 在盡可能接近最大順向電流的情況下工作,充分利用其最 大功率,以致晶片利用率較高。另外,本發明所述白光發. 光裝置的紅光發光晶片的最大發射波長大於64〇nm,可有 效避免紅光晶片在高溫下的熱衰減帶來的色偏移問題。 進一步而言,本發明所述之白光發光裝置還可以包括 第-,波長轉換材料,例如發出紅光的氮化物⑽⑽邮) 或氮氧化物(CaAlSiN3)縣粉。第二紐長轉換材料可 ,發出黃色的波長轉換材料混合,並設於藍光晶片和紅光 曰曰片之上。同理’本發明所述之光發光裝魏可以包括更 夕種螢光粉’通過選擇縣粉的種類和調節這些螢光粉的 添加里,可以獲得所需色溫和顯色性的白光發光裝置。 本發明-實施例之所述的黃色㈣粉可以選擇但不 限於主要成分為石齡結構的螢光粉,在—實施例中可選 201248833 擇為紀紹石榴石勞光體(YsAhOaCe)化合物。並且,雖然 貫施方式給出的是以螢光粉進行波長變換,但可以想像的 是’其他波長轉換材料,如參有螢光粉的陶瓷板等也同樣 適用。螢光粉的配置方式並不限定於下列,舉例而言,可 實施的方式包括直接覆蓋於藍光晶片與紅光晶片的上方, 以形成共型結構(conformal structure)於晶片上方,亦可遠 離藍光晶片與紅光晶片。此外,塗布的方式可為噴塗、點 膠、電泳或是鑄模(molding)。 本發明實施例之白光發光裝置1〇、20更可包含驅動 ,路或驅動器,例如為可變電阻、電容或是脈衝寬度調變 系統(Pulse Width Modulation system,PWM system),如此可 ,於調控藍光晶片與紅光晶片於高溫下色偏移的現象,或 是調控藍光晶片與紅光晶片於白光發光裝置中的發光比 例,使白光色溫能維持在3000κ左右。此外,本發明實施 例之白光發光裝置1〇、20及利用此白光發光裝置的白光照 明系統可以應用於室内照明設備及室外照明設備上,例如 燈泡球、燈管或車頭燈等照明裝置。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 ^發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當減附之”專利範_界定者為準。 【圖式簡單說明】 圖1為本發明一實施例之白光發光裝置的示意圖。 13 201248833 圖2為本發明第二實施例的白光發光裝置和對照例一 以及對照例二在較高工作溫度下的色偏移之對比圖。 【主要元件符號說明】 10、20 :白光發光裝置 11 :基座 12 :第一發光晶片 13 :第二發光晶片 141. The spear-I-series type white light emitting device 20 (not shown) The structure of the white light emitting device 20 is similar to that of the white light emitting device 10 of the first embodiment, and the main difference between the two is that the first light is emitted. The number ratio of the ruthenium 12 to the first luminescent wafer 13 is different and the maximum wavelength of the red light emitted by the first f-crystal 12 is s64 〇 nm. Specifically, the ratio of the amount of the blue light to the red light is 2:1, and the maximum wavelength of the red light of the red light is 657 nm to 659 nm. Please refer to Table 2: Show: Table 2 lists the number of five experimental examples of the illuminating device 2〇; Requires: “The data listed in Table 2 below is not intended to limit the general knowledge of the technical field in which the present invention is referred to. However, it should still belong to the present. The five white light-emitting devices of the five experimental examples are used, and the red light wafers have different sizes, but the total product of the red light crystals and the total area of the light crystals (four) The ratio is G·5, which is more refined. According to 201248833, the ratio is between 0.1 and 0.3, and the correlated color temperature of the white light emitted by the above five different white light-emitting devices is about 3000K. Table 2 Wafer type wafer Quantity ratio wafer size (unit: mil) Red light wafer 1 14 20 28 28 42 Blue light wafer 2 18 24 38 45 45 Red/blue wafer total area ratio 0.3025 0.3472 0.2715 0.1936 0.4356 Relative to the white light emitting device 20 of the second embodiment Here, Comparative Example 1 and Comparative Example 2 were proposed. The structures of Comparative Example 1 and Comparative Example 2 were the same as those of the white light-emitting device 20 except that the maximum wavelength of the red light of the red light wafer used was different. On the other hand, Comparative Example 1 The maximum wavelength of the red light of the red light wafer falls within the range of 616 nm to 620 nm, and the maximum wavelength of the red light of the red light wafer used in the second embodiment falls within the range of 622 nm to 626 nm. Figure 2 shows a white light emitting device. The optical quality of the white light emitted by 20. Please refer to FIG. 2 'The broken line 21 indicates the amount of color shift in the chromaticity coordinate system when the light-emitting device 2 is heated from 25 ° C to 85 ° C, wherein the broken lines 22 and 23 respectively indicate Comparative Example - and Comparative Example 2 from 25. (: Temperature rise to 75. (: Color shift amount. According to the Energy Star standard, the white light color shift of the white light emitting device 2〇 needs to be maintained at ® 2 The larger elliptical ring of the towel conforms to the standard of Energy Star's 7th-order MacAdam Ellipse. The best state is that the color shift is maintained at a smaller Xiangle to meet the Energy Star 4 The standard of Mae Adam Ellipse. In fact, for the standard of 4P & MacAdam, it means that the color shift represented by the smaller _ ring is not perceptible by the human eye; 201248833 for 7 The standard of MacAdam Ellipse That is to say, the color shift represented by the larger elliptical ring is not easily discernible by the human eye. As shown in Fig. 2, the color shift of Comparative Example 1 and Comparative Example 2 at 75 ° C is far. The larger elliptical ring is exceeded, and the color shift of the illuminating device 20 according to the present example at a more advanced temperature (85 ° C) can still be maintained in a larger elliptical ring. The color shift is generated because the red light wafer has a higher attenuation of the light emission intensity at a higher temperature than the other color, and the white light emitting device 2 of the present embodiment uses a long wavelength red with a maximum emission wavelength of 657 to 659 nm. In the optical wafer, the intensity of light emitted by the white light-emitting device 2 衰减 is the least attenuated at a high temperature, and thus the amount of color shift is also the smallest, compared to the comparative example 1 and the second comparative example. Experiments have shown that long-wavelength red light wafers with a maximum emission wavelength greater than 640 nm have a lower attenuation of light at high temperatures, which can meet the requirement of reducing the color shift at high temperatures. Referring to Table 3 below, Table 3, the white light emitting device 20 of the present embodiment uses a long wavelength red light wafer having a wavelength greater than 640 nm, and the white light emitting device 20 emits white light at a temperature of 253⁄4 to 85. (: The color temperature change (ΔCCT) is less than 300. For example, 'When the temperature is raised from 25〇c to 85. 〇, the color temperature change of white light (ΔCCT) is about 281. Table 3 Temperature (°c) 25 35 45 55 65 75 85 Color temperature change (ACCT) 0 45 88 126 168 225 281 201248833 In summary, the white light emitting device of the present invention comprises a blue light emitting first light emitting chip, absorbing light emitted by the first light emitting chip And emitting a yellow wavelength conversion material, and a red light emitting second light emitting chip, and the ratio of the total area of the red light wafer to the sum of the area of the blue light wafer is less than 0.5. Thus, the white light emitting device is at a temperature of 85 degrees Celsius. The color deviation of the generated white light is within the range of the 7th-order MacAdam Ellipse, and the Correlated Color Temperature (CCT) of the white light is close to 3000K and has a color rendering property that is exponentially higher than go. The white light emitting device has high luminous efficiency and low cost. The ratio of the sum of the area of the red light wafer to the total area of the blue light wafer is more precisely less than 〇.3 And greater than 〇1, such a light-emitting chip can work as close as possible to the maximum forward current, making full use of its maximum power, so that the wafer utilization rate is high. In addition, the white light emitting device of the present invention emits red light. The maximum emission wavelength of the wafer is greater than 64 〇 nm, which can effectively avoid the color shift problem caused by the thermal attenuation of the red light wafer at a high temperature. Further, the white light emitting device of the present invention may further include the first-wavelength conversion. Materials such as nitrides emitting red light (10) (10) or nitrogen oxides (CaAlSiN3). The second long transition material can be a mixture of yellow wavelength converting materials and disposed on the blue wafer and the red ray. Similarly, the light-emitting device of the present invention may include a phosphorescent powder of the present invention. By selecting the type of the county powder and adjusting the addition of these phosphors, a white light-emitting device capable of obtaining a desired color temperature and color rendering property can be obtained. . The yellow (tetra) powder described in the present invention may be selected from, but not limited to, a phosphor powder whose main component is a stone age structure, and in the embodiment, may be selected as a compound of YsAhOaCe. Further, although the wavelength conversion is performed by the fluorescent powder, it is conceivable that other wavelength conversion materials, such as ceramic plates with phosphor powder, are also applicable. The configuration of the phosphor is not limited to the following. For example, the method can be implemented to directly cover the blue wafer and the red wafer to form a conformal structure on the wafer, and away from the blue light. Wafers and red light wafers. Further, the coating may be by spraying, dispensing, electrophoresis or molding. The white light emitting device 1〇20 of the embodiment of the present invention may further comprise a driving circuit or a driver, such as a variable resistor, a capacitor or a pulse width modulation system (PWM system). The phenomenon that the blue light wafer and the red light wafer are color-shifted at a high temperature or the light-emitting ratio of the blue light wafer and the red light crystal light in the white light emitting device is adjusted, so that the white light color temperature can be maintained at about 3,000 κ. Furthermore, the white light emitting devices 1 and 20 of the embodiments of the present invention and the white light illumination system using the white light emitting device can be applied to indoor lighting devices and outdoor lighting devices, such as lighting devices such as bulb balls, lamps or headlights. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the present invention is defined by the "patent specification" of the present invention. [FIG. 1 is a schematic diagram of a white light emitting device according to an embodiment of the present invention. 13 201248833 FIG. 2 is a second embodiment of the present invention. Comparison of color shifts of the white light-emitting device and Comparative Example 1 and Comparative Example 2 at a higher operating temperature. [Main element symbol description] 10, 20: White light-emitting device 11: Base 12: First light-emitting chip 13 : second luminescent wafer 14

Claims (1)

201248833 七、申請專利範圍: I一種白光發光裝置包括: 至少一第一發光晶片,適於發出一第一色光; 至少一第二發光晶片,適於發出一紅色光;以及 々一第一波長轉換材料,配置於該第一發光晶片以及該 第一發光晶片之上,該第一波長轉換材料吸收該第一發光 晶片所發出的該第一色光並將該第一色光轉換成一黃色 光, 、 其中该第二發光晶片的總面積與該第一發光晶片的 總面積之比值小於0.5,且該白光發光裝置於溫度攝氏85 度下所產生的白光之色偏差在7階麥克亞當橢圓(7_贫印 MacAdamEllipse)的範圍之内 0 2.如申請專利範圍第丨項所述之白光發光裝置,其中 該第二發光晶片的總面積與該第—發光晶片的總面積之比 值小於0.3且大於〇.1。 3.如申請專利範圍第丨項所述之白光發光裝置,其中 該第二色光、該紅色光以及該黃色光共同混光呈一白光, -亥白光具有貫質近似色度圖上3〇〇〇尺的色溫範圍。 4·如申請專利範圍第1項所述之白光發光裝置,其中 該第一發光晶片的材料包括氮化錮鎵類或氮化鎵類化合 物而且。亥第色光之波長落在380nm至470nm的範圍 内。 …5·如申請專利範圍帛1項所述之白光發光裝置,其中 該第-波長轉騎料為石榴^結制螢光粉。 6·如申請專利範圍第1項所述之白光發絲置,更包 15 201248833 括-第二波長轉換材料’配置在該第—發光晶片與該第二 發光晶片之上,該第—色光照射至該第二波長轉換材料 時’該第一色光被轉換為紅色光。 ;7.如中明專利範圍第6項所述之白光發光裝置,其中 該第二波長轉換材料為氮化物或氮氧化物勞光粉。 .如申請專利範圍第丄項至第7項中任一項所述之白 光發光裝置’其巾該第二晶片所發出的該紅色光之最大波 長大於640nm。 9.一種白光發光裝置,包括: 至少一第一發光晶片,適於發出一藍色光; 至少-第二發光晶片’適於發出—紅色光,其中該紅 色光之最大波長大於640nm ;以及 ★ -第-波長轉換材料’配置於該第—魏晶片以及該 第一發光晶片之上,該第一波長轉換材料吸收該第一發光 晶片所發出的該第-色光並將該第—色光轉換成一黃色 光, 一其中,5亥白光發光裝置於溫度攝氏%度下所產生的 白光之色偏差在7 P皆麥克亞當橢圓(7_卿MacAdamEUipse) 的範圍之内。 ▲ 10.如申請專利範圍第9項所述之白光發光裝置,其中 «亥第一叙光日曰片的總面積與該第一發光晶片的總面積之比 值小於0.5。 11.如申請專利範圍第1〇項所述之白光發光裝置,其 中忒第一發光曰曰片的總面積與該第一發光晶片的總面積之 比值小於0.3且大於〇.1。 '201248833 VII. Patent application scope: I A white light emitting device comprises: at least one first light emitting chip adapted to emit a first color light; at least one second light emitting chip adapted to emit a red light; and a first wavelength a conversion material disposed on the first illuminating wafer and the first illuminating wafer, the first wavelength converting material absorbing the first color light emitted by the first illuminating wafer and converting the first color light into a yellow light The ratio of the total area of the second illuminating wafer to the total area of the first illuminating wafer is less than 0.5, and the color deviation of the white light generated by the white illuminating device at a temperature of 85 degrees Celsius is in the 7th order MacAdam ellipse ( 2. The white light emitting device of claim 7, wherein the ratio of the total area of the second light emitting wafer to the total area of the first light emitting wafer is less than 0.3 and Greater than 〇.1. 3. The white light emitting device of claim 2, wherein the second color light, the red light, and the yellow light are mixed together to form a white light, and the white light has a chromaticity on the chromaticity diagram. The color temperature range of the ruler. 4. The white light emitting device of claim 1, wherein the material of the first light emitting wafer comprises a gallium nitride-based or gallium nitride-based compound. The wavelength of the first color light falls within the range of 380 nm to 470 nm. The white light-emitting device of claim 1, wherein the first-wavelength turning material is a pomegranate-based fluorescent powder. 6) The white light hair set according to claim 1, wherein the package 12 201248833 includes a second wavelength conversion material disposed on the first light emitting chip and the second light emitting chip, the first color light irradiation The first color light is converted to red light by the second wavelength converting material. 7. The white light emitting device of claim 6, wherein the second wavelength converting material is a nitride or oxynitride paste. The white light-emitting device of any one of the above-mentioned claims, wherein the red light emitted by the second wafer has a maximum wavelength greater than 640 nm. 9. A white light emitting device comprising: at least one first light emitting wafer adapted to emit a blue light; at least - a second light emitting chip ' adapted to emit red light, wherein the red light has a maximum wavelength greater than 640 nm; and The first wavelength conversion material is disposed on the first wafer and the first light emitting wafer, the first wavelength converting material absorbs the first color light emitted by the first light emitting wafer and converts the first color light into a yellow color Light, one of which, the color deviation of white light produced by the 5 Hz white light illuminating device at a temperature of Celsius % is within the range of 7 P all MacAdam EUipse. ??? 10. The white light emitting device of claim 9, wherein the ratio of the total area of the first light-emitting sheet to the total area of the first light-emitting wafer is less than 0.5. 11. The white light emitting device of claim 1, wherein a ratio of a total area of the first light emitting sheet to a total area of the first light emitting wafer is less than 0.3 and greater than 0.1. '
TW101118203A 2011-05-31 2012-05-22 White light illumination device TW201248833A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101449936A CN102810533A (en) 2011-05-31 2011-05-31 White light emitting device

Publications (1)

Publication Number Publication Date
TW201248833A true TW201248833A (en) 2012-12-01

Family

ID=47234202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101118203A TW201248833A (en) 2011-05-31 2012-05-22 White light illumination device

Country Status (2)

Country Link
CN (1) CN102810533A (en)
TW (1) TW201248833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772277B (en) * 2015-12-11 2022-08-01 美商薩萬特科技有限公司 Led apparatus employing tunable color filtering using multiple neodymium and fluorine compounds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470104B (en) * 2014-12-01 2017-01-25 苏州立瓷智能电器有限公司 Chip LED lamp color temperature adjusting method
CN106322148B (en) * 2016-10-21 2023-06-06 四川省桑瑞光辉标识***股份有限公司 Dimming system and method for LED lamp panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356116A (en) * 2003-05-26 2004-12-16 Citizen Electronics Co Ltd Light emitting diode
JP4458804B2 (en) * 2003-10-17 2010-04-28 シチズン電子株式会社 White LED
US7821023B2 (en) * 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
JP2007027421A (en) * 2005-07-15 2007-02-01 Harison Toshiba Lighting Corp Led package and lighting device
CN201039523Y (en) * 2007-04-27 2008-03-19 宁波升谱光电半导体有限公司 A high color index high-power white light LED part
CN101621054A (en) * 2008-07-01 2010-01-06 展晶科技(深圳)有限公司 LED light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772277B (en) * 2015-12-11 2022-08-01 美商薩萬特科技有限公司 Led apparatus employing tunable color filtering using multiple neodymium and fluorine compounds

Also Published As

Publication number Publication date
CN102810533A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US9530944B2 (en) High color-saturation lighting devices with enhanced long wavelength illumination
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
US9192013B1 (en) Lighting devices with variable gamut
CN108305929B (en) White light emitting device with high color rendering
TWI463636B (en) High cri lighting device with added long-wavelength blue color
US20150312990A1 (en) Solid state lighting devices with adjustable color point
US20140246990A1 (en) Lighting device and lighting control method
JP2008218486A (en) Light emitting device
US9593812B2 (en) High CRI solid state lighting devices with enhanced vividness
CN106104822A (en) Light-emitting device
TW200926442A (en) White light emitting device and producing method thereof
TWI595803B (en) White light illumination system
TW201248833A (en) White light illumination device
KR20130027740A (en) Lighting device and lighting control method
EP2407706A1 (en) Warm white light LED lamp with high luminance and high color rendering index and led module
CN102252192A (en) YAG (yttrium aluminum garnet) fluorescent LED (light emitting diode) bulb lamp
KR20130041552A (en) Lighting device
KR20130027741A (en) Lighting device and lighting control method
US9780264B2 (en) Light-emitting element and the manufacturing method of the same
US9054278B2 (en) Lighting apparatuses and driving methods regarding to light-emitting diodes
CN202394970U (en) Light-emitting diode (LED) chip and light source module using same
CN202109275U (en) YAG (Yttrium Aluminum Garnet) fluorescence LED (light-emitting diode) bulb
KR101948220B1 (en) Lighting device
TW200532934A (en) White light- emitting diode unit
CN103782092B (en) Illuminator and illumination control method