TW201243871A - Positive-characteristic thermistor element - Google Patents

Positive-characteristic thermistor element Download PDF

Info

Publication number
TW201243871A
TW201243871A TW101105889A TW101105889A TW201243871A TW 201243871 A TW201243871 A TW 201243871A TW 101105889 A TW101105889 A TW 101105889A TW 101105889 A TW101105889 A TW 101105889A TW 201243871 A TW201243871 A TW 201243871A
Authority
TW
Taiwan
Prior art keywords
region
outer region
inner region
positive
ratio
Prior art date
Application number
TW101105889A
Other languages
Chinese (zh)
Other versions
TWI441203B (en
Inventor
Masato Goto
Kenji Yoshida
Tatsuya Matsunaga
Original Assignee
Murata Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co filed Critical Murata Manufacturing Co
Publication of TW201243871A publication Critical patent/TW201243871A/en
Application granted granted Critical
Publication of TWI441203B publication Critical patent/TWI441203B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Provided is a positive-characteristic thermistor element having excellent voltage resistance and no environmentally hazardous substances included in the principal components of a semiconductor ceramic. This positive-characteristic thermistor element (1) is provided with a semiconductor ceramic (11) containing BaTiO3 (where Ba may be partially substituted with at least one element selected from among Ca, Sr, and rare earth elements) as a principal component, and a pair of electrodes (12, 13) formed on both principal surfaces of the semiconductor ceramic (11). The positive-characteristic thermistor element (1) is characterized in that the semiconductor ceramic (11) includes a pair of outside regions (15, 16) adjacent to the pair of electrodes (12, 13), respectively; and an inside region (14) sandwiched between the pair of outside regions (15, 16), wherein the porosity of the outside regions (15, 16) is greater than the porosity of the inside region (14).

Description

201243871 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種正熱阻器元件,尤其是用於馬達用途 之正熱阻器元件。 【先前技術】 * . 鈦酸鋇(BaTi〇3)系之半導體陶瓷具有如下PTC(P〇sitive201243871 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a positive thermal resistor component, particularly a positive thermal resistor component for motor applications. [Prior Art] *. The barium titanate (BaTi〇3)-based semiconductor ceramic has the following PTC (P〇sitive)

Temperature Coefficient,正溫度係數)特性:藉由施加電 壓而發熱,若超過自正方晶向立方晶相轉移之居里點 TC(CUrie temperature)則電阻值急遽增大。利用該pTc特 性,半導體陶竞可廣泛用於加熱用途或馬達啟動用途等 中。 然而,例如於將正熱阻器元件用於馬達用途之情形時, 除所使用之電壓以外,於馬達啟動時進而施加由電磁感應 所產生之電動勢,尤其是要求對於瞬間之高電壓具有耐性 (耐壓性)。並且,作為可獲得較高之耐壓性之正熱阻器元 件,例如於專利文獻1中,記載有具備内側區域及外側區 域,且外側區域之孔隙佔有率設定為大於内側區域的正熱 阻器元件。 * .[先行技術文獻] ' [專利文獻] [專利文獻1]曰本專利特開平9_176〇6號公報 【發明内容】 [發明所欲解決之問題] 然而,於專利文獻1中戶斤記載之正熱阻器元件中所使用 162386.doc 201243871 之半導體陶究中含有錯。由於錯為環境負荷物質,故若考 慮環境方面,則要求開發實質上不含錯之非錯系半導 瓷。 本發明㈣於該課題而完成者,其目的在 半導體陶曼之主成分中不含環境負荷物質、且耐壓性= 之正熱阻器元件。 [解決問題之技術手段] 本發明之正熱阻器元件之特徵在於:其係包括含有 BaTi03(其巾’ Ba之一部分亦可被&、及稀土類元素 中之至少1種元素置換)作為主成分之半導體陶瓷、及形成 於上述半導體陶瓷之兩個主表面上之一對電極者;且上述 半導體陶瓷具有分別與上述一對電極連接之一對外側區 域,及由上述一對外側區域所夾持之内側區域,上述外側 區域之孔隙含有率大於上述内側區域之孔隙含有率。 又於本發明之正熱阻器元件中,較佳為上述主成分係 通式(BaiLwCaxSryLnQTiO〆其令,Ln為稀土類元素,上述 x、y、Z滿足 〇^d2〇、〇gyg〇 2〇、〇 〇〇35gd〇〇85 之各條件)所表示之化合物。 又於本發明之正熱阻器元件中,較佳為上述外側區域 之孔隙含有率為12.5。/。以上且25』。/。以下,且上述外側區域 與内側區域之孔隙含有率之差為5 %以上。 又,於本發明之正熱阻器元件中,較佳為:外側區域之 比電阻南於内側區域之比電阻,於將外側區域之比電阻表 不為向p,將内側區域之比電阻表示為低p,將高p與低p之 162386.doc 201243871 比電阻比(高p-低p)/低p表示為Rp時,滿足 〇.〇5 SRpg 0.50 ’且於將一對外側區域之合計厚度表示為 t,,將内側區域之厚度表示為t2,將外側區域之厚度佔整 體之厚度之比例以(心)表示為Rt)時,滿足_〇 m9xRp + 49.44451^2-0.888^1^+89.444。 [發明之效果] 依據該發明可提供一種耐壓性優異 :實施方式】 以下,對用以實施本發明之形態進行說明。 -圖1係表示本發明之正熱阻器元件之剖面圖。正熱阻器 疋件1包括半導體陶竞η、及電極12、13。半導體陶U 含有⑽叫其中’Ba之-部分亦可被Ca、Sr、及稀土類 ''素中之至yi種元素置換)作為主成分。又,半導體陶瓷 U實:上不含有鉛。此處,所謂「實質上不含有鉛」指於 ?刀中不3有鉛。因此,不排除於不會對特性產生影響 内不可避免地混入之於重量叩爪以下之範圍内混 入之程度的錯。又’於本說明書中,將於主成分中含有錯 之組成系之材料稱為鉛系材料。 :::體陶瓷11形成為具有主表面之板狀。於本實施形態 半導體陶究11係形成為圓板狀,但亦可形成為長方體 狀。 ,電極12、13係形成於半導體陶瓷11之兩個主表面上。作 ^電極12 ' 13之材質’可列舉:Cu、Ni、A卜Cr·、Ni-Cr 合金等D S,# + ;本實施形態中,電極12、13為1層構造, 162386.doc 201243871 但亦可為多層構造。 半導體陶瓷11具有外側區域15、16、及内側區域14,外 側區域15 ' 16存在於半導體陶瓷11之主表面側,分別與電 極12、13連接。又,内側區域14存在於半導體陶瓷u之内 側’由外側區域1 5、16夾持》 本發明之特徵在於,外側區域][5、16之孔隙含有率大於 内側區域14之孔隙含有率。於該情形時,與内側區域丨斗之 電阻值(比電阻值)相比,外側區域15、16之電阻值(比電阻 值)變大。 於對半導體陶瓷施加瞬間之高電壓之情形時,達到破壞 之製程係如下所示。若對通常之半導體陶瓷施加電壓,則 與表面側相比半導體陶瓷之内側不易散熱,故内側成為高 溫。並且,内側熱膨脹而產生應力,若應力變得過大則半 導體陶究遭破壞。如本發明所述般,若外側區域15、此 電阻大於内側區域14之電阻,則外側區域15、以容易成為 高溫’而緩和内側區域14因熱膨脹而產生之應力,故而使 半導體陶瓷1 1之耐壓性提昇。 又’於對半導體pm加瞬間之高電壓並収耐壓性之 所謂閃光龍試料,於半導體H所產生之破壞模式中 存在「層裂模式、與「縱芻指4' 、縱裂模式」2種。圖2及圖3係於閃 光耐壓試驗中被破壞之半導體间究之外觀照[圖2為層 裂模式之例,圖3為縱裂模式之例。於圖2之層裂模式中, 斷裂面平滑’破壞之方向係沿半導體陶究之主表面之方 向。另一方面,於圖3之縱裂模式中,斷裂面上存在有凹 162386.doc 201243871 本發日之方向係沿陶究之厚度方向之方向。 進行研!之正熱阻器元件可藉由對組裝元件之裝置之構造 安全功—@具有故障安全(faii他)功能。此處所謂故障 體陶咨% ’係於施加高電壓而使半導體陶究破壞時’半導 作:於:裂面分離且切斷電路而保護整個電路之功能。 力半導體陶究以層裂模式破壞,則與縱裂模式相 比斷裂面之面藉& ,, ^ sl 積較大,故斷裂元件彼此變得容易接觸’半 陶究於破壞後變得容易短路。因此,層裂模式之產生 不佳。 ^與鉛系材料相比,BaTi〇3系陶瓷耐壓性較低,且丨層構 中之閃光耐壓試驗時之破壞模式為層裂模式。但是,如 ,發月所述般’於半導體陶究為具有2個外側區域與内側 區域之3層構造之情形時,閃光耐壓試驗時之破壞模式成 為縱裂模式。該模式為BaTi〇3系陶瓷特有之破壞模式,即 便於鉛系材料中形成3層構造之情形時,亦會產生層裂模 式之破壞。因此,藉由形成本發明之構成,可於閃光耐壓 試驗時抑制層裂模式之破壞。 又’半導體陶莞之主成分較佳為通式(Bai.xyzCaxSryLnz) Τι〇3(其中,Ln為稀土類元素,上述x、y、z滿足〇$χ$〇.2〇、 ΚΚ〇·20、0.0035 0.0085之各條件)所表示之化合 物°於該情形時,耐壓性之提昇之效果顯著。又,(Ba、 Ca、Sr、Ln)/Ti之莫耳比雖無特別規定,但較佳為 〇·980〜1.005之範圍。再者,於半導體陶瓷中,除主成分以 外,亦可含有Mn、Mg、Si等作為副成分。 I62386.doc 201243871 半導體陶瓷例如可藉由加壓成形或薄片成形進行製作。 此時’使各漿料中含有樹脂顆粒,並控制對應於外側區域 之部分中所含之樹脂顆粒量、及對應於内側區域之部分中 所含之樹脂顆粒量’藉此可使外側區域及内側區域之孔隙 含有率發生變化。再者,此處係改變樹脂顆粒之含量,例 如亦可藉由使所含有之黏合劑量不同而進行調整。 孔隙含有率係利用顯微鏡對經研磨之元件剖面進行觀察 並測定。 又’較佳為外側區域之孔隙含有率為12 5%以上且25 〇% 以下’且外側區域與内側區域之孔隙含有率之差為5%以 上。於該情形時’具有恢復時間較短之效果。恢復時間係 於以一定時間對正熱阻器元件施加一定電壓之後,進行放 電後直至恢復至電阻值為2倍點(2rc下之電阻值之2倍)之 值之時間’恢復時間越短則越適用於馬達用途。 外側區域與内側區域之孔隙含有率之差之上限並無特別 6又疋’若考慮半導體陶瓷之強度,較佳為2〇 〇%以下。 再者較佳為:外側區域之比電阻高於内側區域之比電 阻,於將外側區域之比電阻表示為高p,將内側區域之比 電阻表示為低p,將高P與低P之比電阻比(高p-低p)/低p表 示為Rp時,滿足0.05$ Rp$ 〇 5〇,且於將一對外側區域之 合计厚度表示為,將内側區域之厚度表示為t2,將外側 區域之厚度佔整體之厚度之比例t丨/(t,+t2)表示為1^時,滿 足-0.8889χΙΙΡ + 49·444$ΜΘ-0.8889χΙΙρ+89.444。於該情 形時,可獲得優異之耐壓提昇率。 162386.doc 201243871 繼而’對正熱阻器元件之製造方法進行說明。 八最先,、製作半導體陶兗之原料粉末。首先,將含有主成 刀之構成7L素之氧化物、碳酸物等化合物粉末以特定之比 例混合、預燒,獲得主成分 ⑤刀之原枓粉末。該方法通常被稱 J目α成法,作為其他方法,亦可使用水熱合成法、草 酸法等濕式合成法, 繼而’於主成分之原料粉末中,視需要而添加作為副成 分之Μη或Si等、乙酸乙烯酯系之有機黏合劑、及純水,並 與介質—同以濕式進行混合,使所獲得之衆料乾燥而獲得 半導體陶瓷之原料粉末。 乂繼而,於將半導體陶究之原料粉末與樹脂顆粒混合之 後’藉由加壓成形或全張成形獲得成形體β 繼而’將該成形體於大氣環境、氮氣環境、或該等之混 合氣流中’於50()〜_tT使黏合劑燃燒。其後,於大氣 中於半導體陶竞發生半導體化之溫度例如125〇〜⑷代 下煅燒特定時間,而獲得半導體陶瓷。 /繼而’於半導體陶究之兩個主表面上形成電極。電極係 藉由鍍敷、濺鍍、或燒接等而形成。以如上所述之方式, 製作正熱阻器元件。 再者,本發明並不限定於上述之實施形態。例如,亦可 於上述半導體陶瓷中,於不妨礙本發明之效杲之量之範圍 内’含有鹼金屬、過渡金屬、a、S、p、Hf等。 繼而,基於本發明對所實施之試驗例進行說明。 [試驗例1] 162386.doc 201243871 …:式驗例1申’實施正熱阻器元件之閃光耐壓試驗,並 進行與鉛系材料之比較。 (A)半導體陶瓷之原料粉末之製作 最先I備作為主成分之起始材料之BaC〇3、CaC〇3、 SrC03、Er2〇3之各粉末。並且’稱量各起始材料、並進行 調口。繼@ ’添加乙醇及高分子型分散劑,於球磨機内與 PSZ(partially stabiHzed zirc〇nia’部分穩定氧化錯)球一同 以-定時間進行濕式粉碎。其後使乙醇乾燥,並利用網眼 為300 μιη之篩網進行整粒。繼而,於8〇〇〜1〇〇〇它之溫度範 圍内熱處理2小時,而獲得主成分之原料粉末。 繼而,準備作為副成分之起始材料之Μη〇及Si〇2,並加 入主成分之原料粉末中β繼而,添加乙酸乙烯酯系有機黏 合劑,於球磨機内與PSZ球一同以一定時間進行濕式粉 碎。繼而,於使該漿料乾燥之後,利用網眼為300 之篩 網進行整粒,而獲得組成式(丨)所表示之半導體陶瓷之原料 粉末。再者,各試樣編號之調配比例係示於下述表1中。 組成式(1) : lOi^Bah.y.zCaxSryLndTiOa+aMn+bSi (B)成形體之製作 首先’準備上述之原料粉末為1〇〇重量%之第i粉末,及 相對於上述之原料粉末1 00重量。/❶,混合球形且平均粒徑 為20 pm之聚甲基丙烯酸曱酯(PMMA,polymethyl methacrylate)之樹脂顆粒4重量%而成之第2粉末。 繼而,製作於外側區域與内側區域中孔隙含有率不同之 成形體。首先’於乾式壓製機之模具之内部填充第2粉末1 g, 162386.doc 10 201243871 並以400 kgf/cm2之壓力進行加壓,而形成對應於外側區域 之部分。繼而,於對應於外側區域之部分上填充第1粉末1 g, 並以400 kgf/cm2之壓力進行加壓,而形成對應於内側區域 之部分。繼而,於對應於内側區域之部分上填充第2粉末1 g, 並以2000 kgf/cm2之壓力進行加壓,而形成對應於外側區 域之區域’同時進行整體之壓縮,藉此形成3層構造之成 形體。 又’為進行比較,填充第1粉末3 g、並以2000 kgf/cm2 之壓力進行加壓,而製作丨層構造之成形體。 (C) 正熱阻器元件之製作 繼而,將所獲得之成形體於135〇«c下煅燒,獲得直徑為 16 mm、厚度為2.5 mm之半導體陶瓷。此時,由於第2粉 末中所含之樹脂顆粒消失,樹脂顆粒之部分成為孔隙,故 外側區域之孔隙含有率大於内側區域之孔隙含有率。利用 顯微鏡對經研磨之元件剖面進行觀察並測定孔隙含有率, ,’。果.於本蜮驗例中,外側區域之孔隙含有率為。另 一方面,内側區域之孔隙含有率為5%。 繼而於半導體陶莞之兩個主表面上塗佈以Ni及Ag為主 成分之導電膏並進行燒接,藉此形成電極。 、上所述之方式,製作試樣編號1〜19之正熱阻器元 件。又,為進行比較,亦同時製作含有Pb之試樣編號 20〜22之正熱阻器元件。 (D) 特性評價 首先’利用雷射閃光法對1層構造之正熱阻器元件測定 162386.doc -11 · 201243871 試樣之導熱率。 繼而,實施閃光耐壓試驗。首先,利用四端子法測定各 試樣於室溫(25°C)下之電阻值。繼而,於對各試樣施加^秒 鐘之100 V電壓後,降低至室溫並再次測定電阻值。^ 且, 於所測定之電阻值與初期之電阻值相 時,提高電壓並重複進行同樣之測定。並1, 比無變化之情形 將半導體陶 €被破壞且電阻值剛發生變化之前之電壓值設為耐壓值 又’將1層構造中之耐壓值設為100%時,將此時之3層構 造中之耐壓值之提昇率設為对壓提昇率。將結果示於表1 中。再者,試樣編號中附有*者係本發明之範圍外之試 樣。 162386.doc 12 201243871 162386.doc }sq+ui+e°p(CN^JSXBuNfxw's°2 【I<】 耐壓提昇率 f—Ί I 122% 100% 150% 150% 78% 79% 100% 79% 77% 58% 58% 78% 78% 58% 60% 100% 78% 77% 78% 42% 40% 43% 3層構造 Ljii 壓[V]J I 355 1 400 450 450 560 500 500 500 630 1 710 1 560 560 710 710 800 400 560 | 630 800 [— 355」 560 800 比電阻[p*cm] ! 50.4 1 48.7 40.8 37.8 136.4 114.8 104.2 127.4 221.5 435.9 175.4 , 147.5 234.8 364.6 742.9 ! 75.2 154.3 195.1 542.3 38.5 130.1 363.9 單層構造 I耐壓[v] 1 s 200 § § in ΓΛ 280 250 280 νη ΓΛ 450 355 νΛ 400 450 500 200 'T) cn L 355_I 450 250 400 560 比電阻[p_cm] 45.5 | 40.9 34.8 31.5 115.3 105.6 98.4 115.6 205.8 412.8 153.4 129.1 206.2 329.5 681.8 64.6 135.6 153.5 489.7 32.4 113.7 341.3 I導熱率| [W/m*K] 1 2.30 | 2.24 I 2.25 2.20 2.06 2.18 2.12 1 2.10 1 2.08 2.04 2.10 2.12 2.05 1 2.05 1 2.01 L 2^1_1 2.16 1 2.04 2.03 ON 1 1.81 1 1.78 X) 2.00 | | 2.00 | I 2.00 I I 2.00 I 1 2.00 1 1 2.00 1 1 2.00 I 1 2.00 1 丨 2.00 1 1 2.00 I [2.00 1 1 2.00 1 I 2.00 Ι 1 2.00 1 1 2.00 1 [2.00 | | 2.00 | | 2.00 | | 2.00 | | 2.00 I | 2.00 | | 2.00 | C S CO 10.10 I 10.10 1 | 0.10 I I 0.10 I lo.ioj 1 0.10 1 1 0.10 1 1 ο.ιο 1 1 0.10 1 1 0.10 1 1 0.10 1 1 0.10 1 Ι ο.ιο I lo.ioj Lo.ioj 1 0.10 | | 0.10 | I 0.10 | | 0.10 | | 0.05 1 | 0.05 I | 0.06 | £ 〇 o o o ο ο ο ο ο ο ο ο ο ο ο o o o o | 0.049 I | 0.062 I | 0.075 | u] N [0.0085 | 0.0075 0.0065 I 0.0055 J 1 0.0050 1 10.0065 j 1 0.0060 1 1 0.0055 1 [0.0050」 1 0.0045 1 10.0050」 I 0.0045 ι 1 0.0045 1 10.0040 J I 0.0035 J | 0.0075 | | 0.0055 | I 0.0045 | | 0.0040 | | 0.0043 I | 0.0047 I 0.0051 in o o o o ο 1 0.10 1 1 0.10 1 1 0.10 1 1 0.10 ] 1 0.10 1 1 0.20 ;0.20 1 0.20 Ι 1 0.20 1 ! 0.20 1 0.05 ! 0.15 | | 0.05 | ! 0.15 ,0.023 0.024 0.025 U X o | 0.05 | | 0.10 I L〇_i5— 1 0.20 1 ο 1 0.05 1 1 0.10 1 1 015 ι 1 0.20 1 ο 1 0.05 1 1 0.10 1 1 0.15 ι 1 0.20 1 o o | 0.20 | | 0.20 | Γ〇.150 1 | 0.158 | 1 0.165 cd CQ 1-x-y-z-t 0.9915 0.9425 i 0.8935 [0.8445 | 0.7950 0.8935 0.8440 1 0.7945 1 0.7450 0.6955 0.7950 ,0.7455 0.6955 0.6460 ! 0.5965 0.9425 1 0.8445 0.7455 0.6460 0.7737 0.7518 0.7299 ε | 1.000 | | 1.000 | | l.ooo | Γι.οοο 1 「1.000 1 1 1.000 1 1 1.000 1 ΓιοοοΊ 1 1.000 1 Γι.οοο 1 1 1.000 1 「1.000] Γι.οοο 1 Γι.οοο 1 「1.000 1 Γι.οοδΊ | 1.000 | I l.ooo 1 | 1.000 | :1-002 | 「1-001 | 1.000 試樣 丨編號1 1— (N m 寸 yn 卜 00 σ\ ο 寸 卜 00 〇\ | 20木 | 21M j 22% | •13· s 201243871 依據表1,如試樣編號丨〜〗9般,於通式(BaUx.y.zCaxSryLnz) Ti〇3(其中,Ln為稀土類元素,上述x、y、z滿足、 〇SyS0.20、〇.0035$ζ$〇 〇〇85之各條件)所表示之組成之 h圍内,耐壓提昇率為5〇%以上。與含有鉛之試樣編號 20〜22之40〜43%相比,該值係較大之值。又,閃光耐壓試 驗中之破壞模式於試樣編號卜19中為縱裂模式,於試樣編 號20〜22中為層裂模式。 [試驗例2] 於試驗例2中,評價外側區域及内側區域之孔隙含有率 與恢復時間之關係。正熱阻器元件之製造方法與試驗例1 相同,半導體陶瓷之組成使用與試驗例丨之試樣編號4相同 者。並且,使半導體陶瓷之原料粉末中所混合之pMMA之 量發生變化,藉此製作内側區域與外側區域之孔隙含有率 不同之s式樣編號3 1〜40之正熱阻器元件。恢復時間係於施 加10分鐘之150 V之電壓後,測定放電後直至電阻值恢復 為2倍點之值之時間。 將試樣編號31〜40之孔隙含有率、比電阻、及恢復時間 之結果示於表2中。 [表2] 試樣 編號 孔隙含有率(%) 比電阻 [p*cm] 恢復時間 [秒] 外側區域 内側區域 差 31 10.0 5.0 5.0 33.3 52 32 12.5 10.0 2.5 36.7 50 33 12.5 7.5 5.0 35.8 34 12.5 5.0 7.5 35.0 4^ 35 15.0 10.0 5.0 38.3 46 36 15,0 5.0 10.0 36.7 43 37 20.0 15.0 _ 5,0 43.3 4^ 38 20.0 5.0 15.0 40.0 42 39 25.0 20.0 5.0 48.3 44 40 25.0 5.0 20.0 43.3 43 162386.doc -14· 201243871 於δ式樣編破3 1中’外側區域之孔隙含有率較低為 10.0°/。,恢復時間較長為52秒。又,於試樣編號32中,外 側區域與内側區域之孔隙含有率之差較小為2.5%,恢復時 間較長為5 0秒。另一方面,於外侧區域為1 2 5 %以上、且 外側區域與内側區域之孔隙含有率之差為5%以上的試樣 編號33〜40中,恢復時間為46秒以内,獲得恢復時間較小 之結果。 [試驗例3] 於试驗例3申,使用同一組成之半導體陶瓷,製作使外 側區域之比電阻與内側區域之比電阻的比電阻比、及元件 外側區域之厚度佔元件整體之厚度的比例發生變化而得之 19種正熱阻器元件(試樣編號41〜59)。 又’為分別與試樣編號41〜59之正熱阻器元件進行比 較,製作使用試樣編號41〜59各低ρ材料並以1層構造所製 作之用於比較的正熱阻器元件。 正熱阻器元件之製造方法與試驗例1相同,於半導體陶 瓷之組成中使用與試驗例丨之試樣編號4相同者。 外側區域之比電阻與内側區域之比電阻之比電阻比係藉 由改變外側區域中所含之樹脂顆粒量、改變外側區域與内 側區域之孔隙含有率而改變。再者,如上所述,由於外側 區域之比電阻高於内側區域之比電阻,故將外側區域之比 電阻記為「高P」,將内側區域之比電阻記為「低p」。又, 高P與低p之比電阻比(高MgtP)M&iP係記為Rp。 疋件外側區域之厚度佔元件整體之厚度的比例係藉由改 162386.doc •15· 201243871 變外側區域之厚度及内側區域之厚度而改變。再者,將一 對外側區域之合計厚度記為rti」,將内側區域之厚度記為 「t2」,將外側區域之厚度佔整體之厚度之比例記 為「Rt 1」。 於表3中表示:試樣編號41〜59之各正熱阻器元件之高p 與低P之比電阻比Rp[(高p_低p)/低p]、及元件外側區域之 厚度佔元件整體之厚度之比例Rti[ti/(ti+t2);^又,於表3中 表示:試樣編號41〜59之各正熱阻器之耐壓(3層構造耐 壓)[V],用於比較之正熱阻器元件之正熱阻器之耐壓(丨層 構造耐壓)[V] ’及表示於將1層構造之耐壓值設為1 〇〇%時 的3層構造之耐壓值之提昇率的耐壓提昇率[%卜再者,於 耐壓提昇率之欄中,「◎」表示耐壓提昇率為50%以上之 情形時,「〇」表示耐壓提昇率未達50%之情形時。 162386.doc -16 · 201243871 <06εο 0/03 寸 〇 yo-o %卜6© 0/--◎ %Z6© %Z寸。 。/03 寸 o %s 。—◎ %§ 。/0卜寸ο %卜ρ。 %§ %卜9© %§ βΝ0— y06co 0/-寸 ο 【Λ】阖畜彻雜喫εTemperature Coefficient (Characteristics of Temperature Coefficient): The heat is generated by applying a voltage. If the CU (Criece temperature) is transferred from the tetragonal phase to the cubic phase, the resistance value increases sharply. With this pTc characteristic, the semiconductor Tao Jing can be widely used in heating applications or motor starting applications. However, for example, when a positive thermistor element is used for a motor application, in addition to the voltage used, an electromotive force generated by electromagnetic induction is applied when the motor is started, in particular, it is required to be resistant to an instantaneous high voltage ( Pressure resistance). Further, as a positive thermal resistor element which can obtain a high pressure resistance, for example, Patent Document 1 discloses that an inner region and an outer region are provided, and the porosity of the outer region is set to be larger than the positive thermal resistance of the inner region. Component. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei 9-176 No. 6 (Convention) [Problems to be Solved by the Invention] However, in Patent Document 1, it is described in 161386.doc 201243871 used in the positive thermistor component contains errors. Since it is an environmentally hazardous substance, it is required to develop a non-missing semi-conducting porcelain that is substantially free of errors if environmental considerations are taken into consideration. According to a fourth aspect of the present invention, the object of the present invention is to provide a positive thermal resistor element having an environmentally-charged substance and a pressure resistance = in the main component of the semiconductor taman. [Technical means for solving the problem] The positive thermistor element of the present invention is characterized in that it comprises BaTi03 (a part of the 'B' can be replaced by at least one of the elements of the rare earth element) a semiconductor ceramic having a main component; and one of a pair of electrodes formed on the two main surfaces of the semiconductor ceramic; and the semiconductor ceramic has a pair of outer regions respectively connected to the pair of electrodes, and a pair of outer regions In the inner region of the clamping, the porosity of the outer region is greater than the porosity of the inner region. Further, in the positive thermistor element of the present invention, it is preferable that the above-mentioned main component is a general formula (BaiLwCaxSryLnQTiO〆, Ln is a rare earth element, and the above x, y, and Z satisfy 〇^d2〇, 〇gyg〇2〇 And the compound represented by the conditions of 35gd〇〇85). Further, in the positive thermistor element of the present invention, it is preferable that the outer region has a void content of 12.5. /. Above and 25". /. Hereinafter, the difference in the void content ratio between the outer region and the inner region is 5% or more. Further, in the positive thermistor device of the present invention, it is preferable that the specific resistance of the outer region is greater than the specific resistance of the inner region, and the specific resistance of the outer region is not to p, and the specific resistance of the inner region is represented. For low p, when the specific resistance ratio (high p-low p)/low p of high p and low p is expressed as Rp, 〇.〇5 SRpg 0.50 ' is satisfied and the total of a pair of outer regions is The thickness is expressed as t, and the thickness of the inner region is expressed as t2, and the ratio of the thickness of the outer region to the thickness of the whole is expressed as (heart) as Rt), which satisfies _〇m9xRp + 49.44451^2-0.888^1^+ 89.444. [Effects of the Invention] According to the present invention, it is possible to provide a pressure-resistant property: Embodiments Hereinafter, embodiments for carrying out the invention will be described. - Figure 1 is a cross-sectional view showing the positive thermistor element of the present invention. The positive thermal resistor element 1 includes a semiconductor pottery θ and electrodes 12 and 13. The semiconductor ceramic U contains (10) a part in which the 'Ba' can be replaced by Ca, Sr, and a rare earth ''in the y element'). Moreover, the semiconductor ceramic U: does not contain lead. Here, "substantially does not contain lead" means that there is no lead in the knife. Therefore, it is not excluded from the fact that the characteristics are inevitably mixed in the range below the weight claws. Further, in the present specification, a material which contains a wrong component in the main component is referred to as a lead-based material. ::: The bulk ceramic 11 is formed in a plate shape having a main surface. In the present embodiment, the semiconductor ceramics 11 is formed into a disk shape, but may be formed in a rectangular parallelepiped shape. The electrodes 12, 13 are formed on the two main surfaces of the semiconductor ceramic 11. Examples of the material of the electrode 12 ' 13 include DS, # + such as Cu, Ni, A, Cr, and Ni-Cr alloy; in the present embodiment, the electrodes 12 and 13 have a one-layer structure, 162386.doc 201243871 It can also be a multi-layer construction. The semiconductor ceramic 11 has outer regions 15, 16 and an inner region 14, and the outer region 15'16 is present on the main surface side of the semiconductor ceramic 11, and is connected to the electrodes 12, 13, respectively. Further, the inner region 14 exists on the inner side of the semiconductor ceramic u, and is sandwiched by the outer regions 15 and 16, and the present invention is characterized in that the outer region] [5, 16 has a void content ratio larger than that of the inner region 14]. In this case, the resistance value (specific resistance value) of the outer regions 15 and 16 becomes larger than the resistance value (specific resistance value) of the inner region bucket. In the case where an instantaneous high voltage is applied to the semiconductor ceramic, the process for achieving the damage is as follows. When a voltage is applied to a normal semiconductor ceramic, the inside of the semiconductor ceramic is less likely to dissipate heat than the surface side, so that the inside becomes high. Further, the inner side thermally expands to generate stress, and if the stress becomes too large, the semiconductor is damaged. As described in the present invention, if the outer region 15 and the electric resistance are larger than the electric resistance of the inner region 14, the outer region 15 tends to become a high temperature, and the stress generated by the thermal expansion of the inner region 14 is alleviated, so that the semiconductor ceramic 1 1 Increased pressure resistance. In addition, the so-called flash dragon sample which adds a momentary high voltage to the semiconductor pm and receives the withstand voltage has a "layer split mode," and "longitudinal finger 4', longitudinal split mode" in the failure mode generated by the semiconductor H. Kind. Fig. 2 and Fig. 3 are photographs showing the appearance of a semiconductor which is destroyed in a flash withstand voltage test [Fig. 2 is an example of a spallation mode, and Fig. 3 is an example of a longitudinal split mode. In the spallation mode of Fig. 2, the fracture surface is smoothed and the direction of destruction is in the direction of the main surface of the semiconductor slab. On the other hand, in the longitudinal split mode of Fig. 3, there is a concave surface on the fracture surface 162386.doc 201243871 The direction of the present day is in the direction of the thickness direction of the ceramic. Carry out research! The positive thermistor element can be safely constructed by means of a device that assembles the component - with a fail-safe function. Here, the faulty body is used to protect the semiconductor from damage when a high voltage is applied to the semiconductor. The semi-conducting function is to separate the cracked surface and cut off the circuit to protect the entire circuit. When the semiconductor semiconductor is destroyed by the spallation mode, the surface of the fracture surface is larger than the longitudinal crack mode, and the ^ sl product is larger, so the fracture elements become easy to contact with each other. Short circuit. Therefore, the spallation mode is not good. ^BaTi〇3 ceramics have lower pressure resistance than lead-based materials, and the failure mode in the flash-compression test of the ruthenium layer structure is the spallation mode. However, in the case where the semiconductor is a three-layer structure having two outer regions and an inner region, the failure mode in the flash withstand voltage test is a longitudinal split mode. This mode is a unique failure mode of the BaTi〇3 ceramics, that is, when a three-layer structure is formed in the lead-based material, the rupture mode is also destroyed. Therefore, by forming the constitution of the present invention, it is possible to suppress the destruction of the spallation mode at the flash withstand voltage test. Further, the main component of the semiconductor pottery is preferably of the formula (Bai.xyzCaxSryLnz) Τι〇3 (wherein Ln is a rare earth element, and the above x, y, and z satisfy 〇$χ$〇.2〇, ΚΚ〇·20, 0.0035 In the case of the compound represented by the conditions of 0.0085, the effect of improving the pressure resistance is remarkable. Further, the molar ratio of (Ba, Ca, Sr, Ln)/Ti is not particularly limited, but is preferably in the range of 980·980 to 1.005. Further, in the semiconductor ceramic, in addition to the main component, Mn, Mg, Si or the like may be contained as an auxiliary component. I62386.doc 201243871 Semiconductor ceramics can be produced, for example, by press forming or sheet forming. At this time, 'the resin particles are contained in each slurry, and the amount of the resin particles contained in the portion corresponding to the outer region and the amount of the resin particles contained in the portion corresponding to the inner region are controlled', whereby the outer region and The porosity content of the inner region changes. Further, the content of the resin particles is changed here, for example, by adjusting the amount of the binder to be contained. The pore content ratio was observed and measured by a microscope using a microscope. Further, it is preferable that the void content of the outer region is 125% or more and 25 % or less and the difference in the void content ratio between the outer region and the inner region is 5% or more. In this case, 'the effect of having a shorter recovery time. The recovery time is a time after a certain voltage is applied to the positive thermistor element for a certain period of time, and after the discharge is restored until the resistance value is 2 times (2 times the resistance value at 2 rc), the recovery time is shorter. The more suitable for motor use. The upper limit of the difference in the void content ratio between the outer region and the inner region is not particularly high. When considering the strength of the semiconductor ceramic, it is preferably 2 〇% or less. Further preferably, the specific resistance of the outer region is higher than the specific resistance of the inner region, and the specific resistance of the outer region is represented as high p, the specific resistance of the inner region is represented as low p, and the ratio of high P to low P is further. When the resistance ratio (high p-low p)/low p is expressed as Rp, 0.05$ Rp$ 〇5〇 is satisfied, and the total thickness of the pair of outer regions is expressed as the thickness of the inner region is represented as t2, and the outer side is The ratio of the thickness of the region to the thickness of the whole t丨/(t, +t2) is expressed as 1^, which satisfies -0.8889χΙΙΡ + 49·444$ΜΘ-0.8889χΙΙρ+89.444. In this case, an excellent pressure increase rate can be obtained. 162386.doc 201243871 Next, the method of manufacturing the positive thermistor element will be described. Eight first, the production of raw materials for semiconductor pottery. First, a compound powder containing an oxide of a 7 L element, a carbonate, or the like, which is composed of a main forming blade, is mixed and calcined in a specific ratio to obtain a primary powder of a main component of 5 knives. This method is generally referred to as a J-form α method, and as another method, a wet synthesis method such as a hydrothermal synthesis method or an oxalic acid method may be used, and then a raw material powder of a main component may be added as an auxiliary component as needed. Or Si, etc., a vinyl acetate-based organic binder, and pure water, and mixed with the medium in a wet manner, and the obtained material is dried to obtain a raw material powder of the semiconductor ceramic. Then, after mixing the raw material powder of the semiconductor ceramics with the resin particles, 'the shaped body β is obtained by press forming or full-sheet forming, and then the shaped body is placed in an atmosphere, a nitrogen atmosphere, or a mixed gas stream. 'At 50 () ~ _tT to make the binder burn. Thereafter, the semiconductor ceramic is obtained by calcining for a specific time in the atmosphere at a semiconductor semiconductor temperature of, for example, 125 Å to (4). / In turn, electrodes are formed on the two major surfaces of the semiconductor slab. The electrode system is formed by plating, sputtering, or baking. A positive thermistor element is fabricated in the manner described above. Furthermore, the present invention is not limited to the above embodiments. For example, an alkali metal, a transition metal, a, S, p, Hf or the like may be contained in the above-mentioned semiconductor ceramic within a range that does not impair the effect of the present invention. Next, a test example to be carried out will be described based on the present invention. [Test Example 1] 162386.doc 201243871 ...: Test Example 1 applies a flash withstand voltage test of a positive thermistor element and compares it with a lead-based material. (A) Preparation of Raw Material Powder of Semiconductor Ceramics First, each of BaC〇3, CaC〇3, SrC03, and Er2〇3 as a starting material of the main component was prepared. And 'weigh the starting materials and adjust the mouth. Following the addition of ethanol and a polymeric dispersant to @', wet pulverization was carried out in a ball mill together with a PSZ (partially stabiHzed zirc〇nia' partially stabilized oxidized) ball. Thereafter, the ethanol was dried and granulated by using a mesh of 300 μm mesh. Then, it was heat-treated in a temperature range of 8 Torr to 1 Torr for 2 hours to obtain a raw material powder of a main component. Then, Μη〇 and Si〇2, which are starting materials of the subcomponents, are prepared, and β is added to the raw material powder of the main component, followed by adding a vinyl acetate organic binder, and is wetted together with the PSZ ball in a ball mill for a certain period of time. Smash. Then, after the slurry was dried, it was sized by a sieve having a mesh of 300 to obtain a raw material powder of a semiconductor ceramic represented by the composition formula (丨). In addition, the ratio of preparation of each sample number is shown in the following Table 1. Composition (1): lOi^Bah.y.zCaxSryLndTiOa+aMn+bSi (B) formed body First, 'prepare the above-mentioned raw material powder as 1% by weight of the i-th powder, and the above-mentioned raw material powder 1 00 weight. /❶, a second powder obtained by mixing 4% by weight of resin particles of spherical polystyrene (PMMA, polymethyl methacrylate) having an average particle diameter of 20 pm. Then, a molded body having a different void content ratio in the outer region and the inner region was produced. First, the inside of the mold of the dry press was filled with the second powder 1 g, 162386.doc 10 201243871 and pressurized at a pressure of 400 kgf/cm 2 to form a portion corresponding to the outer region. Then, the first powder 1 g was filled in a portion corresponding to the outer region, and pressurized at a pressure of 400 kgf/cm 2 to form a portion corresponding to the inner region. Then, the second powder 1 g is filled in a portion corresponding to the inner region, and pressurized at a pressure of 2000 kgf/cm 2 to form a region corresponding to the outer region while performing overall compression, thereby forming a three-layer structure. The formed body. Further, for comparison, 3 g of the first powder was filled and pressurized at a pressure of 2000 kgf/cm 2 to prepare a molded body having a layer structure. (C) Fabrication of positive thermistor element Next, the obtained shaped body was calcined at 135 Å «c to obtain a semiconductor ceramic having a diameter of 16 mm and a thickness of 2.5 mm. At this time, since the resin particles contained in the second powder disappear and the portion of the resin particles becomes pores, the void content ratio in the outer region is larger than the void content in the inner region. The cross section of the polished component was observed with a microscope and the porosity content was measured, '. In the present example, the porosity of the outer region is. On the other hand, the inner region has a void content of 5%. Then, a conductive paste containing Ni and Ag as a main component was applied to both main surfaces of the semiconductor pottery and baked, thereby forming an electrode. In the manner described above, the positive thermistor elements of sample numbers 1 to 19 were produced. Further, for comparison, a positive thermal resistor element containing sample numbers 20 to 22 of Pb was also produced. (D) Evaluation of characteristics First, the thermal resistance of the sample was measured by the laser flash method for the positive thermal resistance element of the one-layer structure. 162386.doc -11 · 201243871 Then, a flash withstand voltage test was carried out. First, the resistance value of each sample at room temperature (25 ° C) was measured by a four-terminal method. Then, after applying a voltage of 100 V for 2 seconds to each sample, the temperature was lowered to room temperature and the resistance value was measured again. ^ Further, when the measured resistance value is in phase with the initial resistance value, the voltage is raised and the same measurement is repeated. And 1, the voltage value before the semiconductor device is destroyed and the resistance value has just changed is the withstand voltage value, and the voltage value in the 1-layer structure is set to 100%. The increase rate of the withstand voltage value in the 3-layer structure is set as the pressure increase rate. The results are shown in Table 1. Further, a sample having a * in the sample number is outside the scope of the present invention. 162386.doc 12 201243871 162386.doc }sq+ui+e°p(CN^JSXBuNfxw's°2 [I<] Pressure increase rate f—Ί I 122% 100% 150% 150% 78% 79% 100% 79% 77% 58% 58% 78% 78% 58% 60% 100% 78% 77% 78% 42% 40% 43% 3-layer construction Ljii pressure [V]JI 355 1 400 450 450 560 500 500 500 630 1 710 1 560 560 710 710 800 400 560 | 630 800 [— 355] 560 800 specific resistance [p*cm] ! 50.4 1 48.7 40.8 37.8 136.4 114.8 104.2 127.4 221.5 435.9 175.4 , 147.5 234.8 364.6 742.9 ! 75.2 154.3 195.1 542.3 38.5 130.1 363.9 Layer structure I withstand voltage [v] 1 s 200 § § in ΓΛ 280 250 280 νη ΓΛ 450 355 ν Λ 400 450 500 200 'T) cn L 355_I 450 250 400 560 Specific resistance [p_cm] 45.5 | 40.9 34.8 31.5 115.3 105.6 98.4 115.6 205.8 412.8 153.4 129.1 206.2 329.5 681.8 64.6 135.6 153.5 489.7 32.4 113.7 341.3 I Thermal conductivity | [W/m*K] 1 2.30 | 2.24 I 2.25 2.20 2.06 2.18 2.12 1 2.10 1 2.08 2.04 2.10 2.12 2.05 1 2.05 1 2.01 L 2 ^1_1 2.16 1 2.04 2.03 ON 1 1.81 1 1.78 X) 2.00 | | 2.00 | I 2.00 II 2.00 I 1 2.00 1 1 2.00 1 1 2.00 I 1 2.00 1 丨 2.00 1 1 2.00 I [2.00 1 1 2.00 1 I 2.00 Ι 1 2.00 1 1 2.00 1 [2.00 | | 2.00 | | 2.00 | | 2.00 | | 2.00 I | 2.00 | | 2.00 | CS CO 10.10 I 10.10 1 | 0.10 II 0.10 I lo.ioj 1 0.10 1 1 0.10 1 1 ο.ιο 1 1 0.10 1 1 0.10 1 1 0.10 1 1 0.10 1 Ι ο.ιο I lo.ioj Lo.ioj 1 0.10 | | 0.10 | I 0.10 | | 0.10 | | 0.05 1 | I oooo | 0.049 I | 0.062 I | 0.075 | u] N [0.0085 | 0.0075 0.0065 I 0.0055 J 1 0.0050 1 10.0065 j 1 0.0060 1 1 0.0055 1 [0.0050] 1 0.0045 1 10.0050" I 0.0045 ι 1 0.0045 1 10.0040 JI 0.0035 J | 0.0075 | | 0.0055 | I 0.0045 | | 0.0040 | | 0.0043 I | 0.0047 I 0.0051 in oooo ο 1 0.10 1 1 0.10 1 1 0.10 1 1 0.10 ] 1 0.10 1 1 0.20 ; 0.20 1 0.20 Ι 1 0.20 1 ! 0.20 1 0.05 ! 0.15 | | 0.05 | ! 0.15 ,0.023 0.024 0.025 UX o | 0.05 | | 0.10 IL〇_i5— 1 0.20 1 ο 1 0.05 1 1 0.10 1 1 015 ι 1 0.20 1 ο 1 0.05 1 1 0.10 1 1 0.15 ι 1 0.20 1 oo | 0.20 | | 0.20 | Γ〇.150 1 | 0.158 | 1 0.165 cd CQ 1-xyzt 0.9915 0.9425 i 0.8935 [0.8445 | 0.7950 0.8935 0.8440 1 0.7945 1 0.7450 0.6955 0.7950 , 0.7455 0.6955 0.6460 ! 0.5965 0.9425 1 0.8445 0.7455 0.6460 0.7737 0.7518 0.7299 ε | 1.000 | | 1.000 | | l.ooo | Γι.οοο 1 "1.000 1 1 1.000 1 1 1.000 1 ΓιοοοΊ 1 1.000 1 Γι.οοο 1 1 1.000 1 "1.000] Γι.οοο 1 Γι.οοο 1 "1.000 1 Γι.οοδΊ | 1.000 | I l.ooo 1 | 1.000 | :1-002 | "1-001 | 1.000 sample 丨 number 1 1 - (N m inch yn 00 00 σ \ ο inch 00 〇 \ | 20 wood | 21M j 22% | • 13· s 201243871 according to Table 1, as sample number 丨 ~ 〗 9 , in the formula (BaUx.y.zCaxSryLnz) Ti〇3 (wherein Ln is a rare earth element, the above x, y, z satisfy, 〇SyS0.20, 〇.0035$ζ$〇〇〇85) In the h range of the composition shown, the pressure increase rate is 5% or more. This value is a larger value than 40 to 43% of the sample number 20 to 22 containing lead. Further, the failure mode in the flash withstand voltage test is the longitudinal split mode in the sample No. 19, and the spallation mode in the sample numbers 20 to 22. [Test Example 2] In Test Example 2, the relationship between the void content ratio of the outer region and the inner region and the recovery time was evaluated. The manufacturing method of the positive thermistor element was the same as that of Test Example 1, and the composition of the semiconductor ceramic was the same as that of the sample No. 4 of the test example. Further, the amount of pMMA mixed in the raw material powder of the semiconductor ceramic is changed, whereby the positive thermal resistor elements of the pattern numbers 3 1 to 40 having different void contents of the inner region and the outer region are produced. The recovery time was measured after the voltage of 150 V was applied for 10 minutes, and the time until the resistance value returned to the value of 2 times was measured after the discharge. The results of the void content, specific resistance, and recovery time of Sample Nos. 31 to 40 are shown in Table 2. [Table 2] Sample No. Pore content ratio (%) Specific resistance [p*cm] Recovery time [sec] Outside area inner area difference 31 10.0 5.0 5.0 33.3 52 32 12.5 10.0 2.5 36.7 50 33 12.5 7.5 5.0 35.8 34 12.5 5.0 7.5 35.0 4^ 35 15.0 10.0 5.0 38.3 46 36 15,0 5.0 10.0 36.7 43 37 20.0 15.0 _ 5,0 43.3 4^ 38 20.0 5.0 15.0 40.0 42 39 25.0 20.0 5.0 48.3 44 40 25.0 5.0 20.0 43.3 43 162386.doc - 14· 201243871 The porosity of the outer region is less than 10.0°/ in the δ-patterned 3 1 . The recovery time is longer than 52 seconds. Further, in sample No. 32, the difference in the void content ratio between the outer region and the inner region was as small as 2.5%, and the recovery time was as long as 50 seconds. On the other hand, in sample numbers 33 to 40 in which the outer region is 1 2 5 % or more and the difference in the void content ratio between the outer region and the inner region is 5% or more, the recovery time is within 46 seconds, and the recovery time is obtained. Small result. [Test Example 3] In Test Example 3, the ratio of the specific resistance of the specific resistance of the outer region to the inner region and the thickness of the outer region of the device to the thickness of the entire device were prepared using the semiconductor ceramic of the same composition. 19 kinds of positive thermistor elements (sample numbers 41 to 59) which have been changed. Further, in order to compare with the positive thermistor elements of sample Nos. 41 to 59, a positive thermal resistor element for comparison using the low-p material of each of sample numbers 41 to 59 and having a one-layer structure was prepared. The manufacturing method of the positive thermistor element was the same as that of the test example 1, and the same as the sample No. 4 of the test example was used for the composition of the semiconductor ceramic. The specific resistance ratio of the specific resistance of the outer region to the specific resistance of the inner region is changed by changing the amount of the resin particles contained in the outer region and changing the void content of the outer region and the inner region. Further, as described above, since the specific resistance of the outer region is higher than the specific resistance of the inner region, the specific resistance of the outer region is referred to as "high P", and the specific resistance of the inner region is referred to as "low p". Further, the specific resistance ratio of high P to low p (high MgtP) M&iP is denoted as Rp. The ratio of the thickness of the outer region of the component to the thickness of the component as a whole is changed by changing the thickness of the outer region and the thickness of the inner region. Further, the total thickness of one pair of outer regions is denoted by rti", the thickness of the inner region is denoted by "t2", and the ratio of the thickness of the outer region to the thickness of the whole is denoted as "Rt 1". Table 3 shows that the ratio of the high p to the low P of each positive thermistor of sample Nos. 41 to 59 is proportional to the resistance ratio Rp [(high p_low p) / low p], and the thickness of the outer region of the element The ratio of the thickness of the entire component Rti[ti/(ti+t2); ^, in Table 3, shows the withstand voltage of each positive thermistor of sample numbers 41 to 59 (three-layer structural withstand voltage) [V] For the comparison of the withstand voltage of the positive thermistor of the positive thermistor element (the 丨 layer structure withstand voltage) [V] ' and the 3 layers when the withstand voltage value of the 1-layer structure is set to 1 〇〇% The pressure increase rate of the increase rate of the pressure resistance value of the structure [%, in the column of the pressure increase rate, "◎" indicates that the pressure increase rate is 50% or more, and "〇" indicates the withstand voltage. When the rate of increase is less than 50%. 162386.doc -16 · 201243871 <06εο 0/03 inch 〇 yo-o %卜6© 0/--◎ %Z6© %Z inch. . /03 inch o %s. —◎ %§. /0 Bu inch ο % Bu ρ. %§%卜9© %§ βΝ0— y06co 0/-inch ο 【Λ】阖肉杂杂 ε

Ιιηοο'ηοιηιοιηοιηιοίΛίηΐΛ^ΜΊΟΌΟ ^Ίΐην〇οο〇Γ**-ν〇Ό(Ν〇〇(Ν»ηι〇^ί·ο^»η^ιη (N(NCNCNr〇<N(NCNmr〇fnrv|(Nrn^tm(N(N(N 【Λ】阖畜啭雜噢一 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 t-M r<~» ^»· s^sls ^-¥J 锏-wd"硃d 砸 0/¾ %3S i %0·° %0i 11° o/-z 0/¾ 0/¾ 0/¾ 0/¾ 0/os 0/0·° 0/-%s 。/-0/οε 0/οε 【-+->】 一2苳^铡毗该一一蔘女 0/οε 0\05 0/01。/- 。/-寸 0/¾ 0/003 。/0 卜 Ζ。/-寸 。/0卜90/0寸卜 0/08eΟ/OS寸 。/0 卜 9 0/0S8 。/-6 。/0卜寸 0/0 卜 8 【lulu】^靶時皙一一軍εΙιηοο'ηοιηιοιηοιηιοίΛίηΐΛ^ΜΊΟΌΟ ^Ίΐην〇οο〇Γ**-ν〇Ό(Ν〇〇(Ν»ηι〇^ί·ο^»η^ιη (N(NCNCNr〇<N(NCNmr〇fnrv|(Nrn ^tm(N(N(N[N]ΛΛ阖阖啭啭噢〇〇〇〇〇tM r<~» ^»· s^sls ^-¥J 锏-wd"朱d 砸0/3⁄4 %3S i %0·° %0i 11° o/-z 0/3⁄4 0/ 3⁄4 0/3⁄4 0/3⁄4 0/os 0/0·° 0/-%s ./-0/οε 0/οε [-+->] One 2苳^铡The one-to-one prostitute 0/οε 0\05 0/01./- ./-inch 0/3⁄4 0/003 ./0 Divination./-inch./0 Bu 90/0 inch Bu 0/08eΟ/OS inch./0 Bu 9 0/ 0S8 ./-6 ./0 Bu inch 0/0 Bu 8 [lulu]^ Target when the army ε

§-S寸.1 $卜寸Ηs-5/.-1 oo'l 000H ss.l s.l sz-o §d ος·1 s’lmi SO 00s s.l SO ¥ε】 ϊ·*5I绛紱 r--ιεΐ 162386.doc SI SZ.Ssi sd S9Os-.l ooe.l 000 so 2.1 s.l S.I 0560 2Ί ¢/.9.1 ss 00ΓΖ 5-.1 —W*·) ΌΓ'-ΟΟΟν 〇 — (ΝΓΠ 寸 ΌΓ-ΟΟΟΝ 寸呀寸々々寸寸寸 • 17· 201243871 入,於圆4中表示:試樣編 ^ ^ ^ I谷正熱阻器兀件之 问Ρ與低Ρ之比電阻比Rp、及外侧ρ祕+厂& ^ .,,ID, , P次外側區域之厚度佔整體之厚度 之比例Rt,。再者,於圖4中,數丰 * - ffi+ ^ ^ s * 数子表不試樣編號,「◎」 表不耐壓k昇率為5〇0/〇以上 昇率未達鄉之情料。m 〇」表示耐壓提 "=4 於高P與低P之比電阻比Rp[(高p,)/低p]滿足 .?鄭〇.5〇,且外側區域β厚度佔元件整體之厚度之比 例 μα/㈣ 2)]滿足德89xRp+49 444at|^G8晰如 89.444之情形時,耐麗提昇率為观以上而較佳。 [試驗例4] 於試驗例4中,藉由對所使用之半導體陶究之組成進行 各種變更,將高P與低p之比電阻比Rp[(高ρ·低p)/低p] 一直 維持為45。/。,並且將外側區域ti之厚度佔元件整體之厚产 之比例RMt’+y] 一直維持為25%,而製作耐壓又 種正熱阻器元件(試樣編號61〜66)。 又,為分別與試樣編號61〜66之正熱阻器進行比較, 製作使用試樣61〜66各低p材料並以丨層構造所製作之用 比較的正熱阻器。 ; 於表4中表不:試樣編號61〜66之各正熱阻器之高p與低 之比電阻比Rp[(高p-低p)/低p]、及元件外側區域之佔P 元件整體之厚度之比例1^1[11/({|+12)]。又,於表4中表示, 試樣編號01〜66之各正熱阻器之耐壓(3層構造耐壓)[v],. 用於比較之正熱阻器元件之正熱阻器之耐壓〇層構造2 壓)[V],及表示於將1層構造之耐壓值設為1〇〇%時的 造之耐壓值之提昇率的耐壓提昇率[%]。再者,於耐^ 昇率之攔中,「◎」表示耐壓提昇率為5〇%以上之情夕 時’「〇」表示耐壓提昇率未達50%之情形時。 月形 162386.doc 201243871 r-I寸 ΐ 耐壓提高率 ◎ 153% ◎ 122% ◎ 114% ◎ 111% ©83% ◎ 112% 3層構造耐壓 [V] 455 355 600 750 825 955 1層構造耐壓 [V] 180 160 280 355 450 450 高Ρ與低Ρ之比電阻比Rp [(高p-低P)/低P] 45% 45% 45% 45% 45% 45% 外側區域厚度比例Rt, [ti/t,+t2] 25% 25% 25% 25% 25% 25% 内側區域厚度t2 [mm] 1.875 1.875 1.875 1.875 1.875 1.875 外側區域厚度q [mm] 0.625 0.625 0.625 0.625 0.625 0.625 試樣 編號 <N m ^ Ό \〇 \〇 \〇 \〇 162386.doc ·19· s 201243871 如表 4 可知:於 〇.〇5$RpS〇_50、及 _〇 8889xRp + 49 444 SRt丨$-0.8889xRp+89.444之範圍内,於將Rp&Rti維持為 一定之狀態下,即便對所使用之半導體陶瓷之組成進行各 種變更,亦可獲得50%以上之較高之耐壓提昇率。 【圖式簡單說明】 圖1係表示本發明之正熱阻器元件之剖面圖。 圖2係於耐壓s式驗中被破壞之半導體陶瓷之外觀照片、 且备、層裂模式之例。 圖3係於耐壓試驗中被破壞之半導體陶瓷之外觀照片、 其係縱裂模式之例。 圖4係表示試驗例3中之試樣編號41〜59之外側區域之厚 又4整體之厚度的比例Rt〗、及高p與低p的比電阻比之 圖。 【主要元件符號說明】 I 正熱阻器元件 II 半導體陶竟 12 ' 13 電極 14 内側區域 15 ' 16 外側區域 162386.doc§-S inch.1 $卜寸Ηs-5/.-1 oo'l 000H ss.l sl sz-o §d ος·1 s'lmi SO 00s sl SO ¥ε】 ϊ·*5I绛绂r- -ιεΐ 162386.doc SI SZ.Ssi sd S9Os-.l ooe.l 000 so 2.1 sl SI 0560 2Ί ¢/.9.1 ss 00ΓΖ 5-.1 —W*·) ΌΓ'-ΟΟΟν 〇—(ΝΓΠ寸ΌΓ-寸 inch inch inch inch inch inch • 17· 201243871 into, in the circle 4 said: sample code ^ ^ ^ I valley positive thermal resistance device Ρ Ρ Ρ Ρ Ρ Ρ Ρ 电阻 电阻 电阻 电阻 及 及 及 及+factory & ^ .,,ID, , the ratio of the thickness of the outer side of P to the thickness of the whole, Rt. Furthermore, in Fig. 4, the number of abundance * - ffi + ^ ^ s * is not the sample number, "◎" The table does not have a pressure-k increase rate of 5〇0/〇, and the rate of increase does not reach the hometown. m 〇” means that the pressure is higher than the ratio of high P to low P. Rp[( High p,) / low p] satisfies. Zheng Zheng. 5〇, and the ratio of the thickness of the outer region β to the thickness of the component as a whole μα/(4) 2)] satisfies the condition of 89xRp+49 444at|^G8 as 89.444 The Nelly increase rate is better than the above. [Test Example 4] In Test Example 4, by changing the composition of the semiconductor ceramic used, the specific resistance ratio of high P to low p was Rp [(high ρ·low p)/low p] Maintain at 45. /. Further, the ratio RMt'+y] of the thickness of the outer region ti to the overall thickness of the element was maintained at 25%, and a positive-resistance element (sample Nos. 61 to 66) was produced. Further, in comparison with the positive thermal resistors of sample Nos. 61 to 66, a comparative positive thermal resistor manufactured using the low-p materials of the samples 61 to 66 and having a bismuth layer structure was prepared. ; Table 4 shows: the ratio of the high p to the low ratio of the high p and low resistance of each positive thermistor of sample Nos. 61 to 66, Rp [(high p-low p) / low p], and the area outside the component The ratio of the thickness of the entire component is 1^1 [11/({|+12)]. Further, in Table 4, the withstand voltages of the positive thermal resistors of the sample numbers 01 to 66 (three-layer structure withstand voltage) [v], are used for comparing the positive thermal resistors of the positive thermistor elements. The pressure-resistant layer structure 2 pressure) [V] and the pressure increase rate [%] of the increase rate of the withstand voltage value when the pressure resistance value of the one-layer structure is set to 1%. In addition, in the stoppage of the resistance rate, "◎" indicates that the pressure increase rate is 5% or more, and "〇" means that the pressure increase rate is less than 50%. Moon shape 162386.doc 201243871 rI inch 耐 Pressure increase rate ◎ 153% ◎ 122% ◎ 114% ◎ 111% ©83% ◎ 112% 3-layer structure withstand voltage [V] 455 355 600 750 825 955 1-layer structure withstand voltage [V] 180 160 280 355 450 450 Specific resistance ratio of sorghum to low R Rp [(high p-low P) / low P] 45% 45% 45% 45% 45% 45% outer region thickness ratio Rt, [ Ti/t, +t2] 25% 25% 25% 25% 25% 25% inner region thickness t2 [mm] 1.875 1.875 1.875 1.875 1.875 1.875 outer region thickness q [mm] 0.625 0.625 0.625 0.625 0.625 0.625 sample number < N m ^ Ό \〇\〇\〇\〇162386.doc ·19· s 201243871 As shown in Table 4: Yu 〇.〇5$RpS〇_50, and _〇8889xRp + 49 444 SRt丨$-0.8889xRp+ In the range of 89.444, even if Rp&Rti is maintained at a constant state, even if various changes are made to the composition of the semiconductor ceramic used, a higher withstand voltage increase rate of 50% or more can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a positive thermistor element of the present invention. Fig. 2 is an example of an appearance photograph, a preparation, and a spallation mode of a semiconductor ceramic which is destroyed in a pressure-resistant s test. Fig. 3 is a photograph showing the appearance of a semiconductor ceramic which is destroyed in a withstand voltage test, and an example of a longitudinal split mode. Fig. 4 is a graph showing the ratio Rt of the thickness of the outer region of the sample Nos. 41 to 59 in the test example 3, and the specific resistance ratio between the high p and the low p. [Main component symbol description] I positive thermal resistance device II Semiconductor ceramics 12 ' 13 electrode 14 inner region 15 ' 16 outer region 162386.doc

Claims (1)

201243871 七、申請專利範園: 1· 一種正熱阻器元件,其特徵在於: 其係包括含有BaTi〇3(其中,如之—部分亦可被Ca、 Sr,、及稀土類元素中之至少1種元素置換)作為主成分之 半導體陶瓷,及 形成於上述半導體陶瓷之兩個主表面上之一對電極 者;且 上述半導體陶莞具有分別與上述一對電極連接之一對 外側區域、及由上述一對外側區域所夾持之内側區域, 这卜側區域之孔隙含有率大於上述内側區域之孔隙含 • 有率。 2.如請求項1之正熱阻器元件,其中上述主成分係通式 (Ba丨·x.y.zCaxSryLnz)Ti〇3(其中,Ln為稀土類元素,上述 χ ' Υ ' z^^.〇^x^〇2〇 > 〇^y^〇.2〇 , 0.0035^z^ 0.0085 之各條件)所表示之化合物。 3·如請求項1之正熱阻器元件,其中上述外側區域之孔隙 含有率為12.5%以上且25.0%以下,上述外側區域與内側 區域之孔隙含有率之差為5%以上。 4. 如請求項2之正熱阻器元件,其中上述外側區域之孔隙 含有率為12.5%以上且25·0。/。以下,上述外側區域與内側 區域之孔隙含有率之差為5%以上。 5. 如請求項1至4中任一項之正熱阻器元件,其中 上述外側區域之比電阻高於上述内側區域之比電阻, 於將上述外側區域之比電阻表示為高ρ,將上述内側 I62386.doc 5 201243871 區域之比電阻表示為低P1高卩與低p之比電阻比(高p 低p)/低p表示為Rp時,滿足〇 〇5gRpg〇 5〇,且 於將上述一對外側區域之合計厚度表示為I,將上述 内側區域之厚度表示為,將外側區域之厚度佔整體之 厚度之比例表示為尺^時, 滿足-0.8889><11卩+49.444$1^|$-〇.8889><11|3+89.444。 162386.doc201243871 VII. Application for Patent Park: 1. A positive thermistor element, characterized in that it comprises BaTi〇3 (where, as it is - part may also be at least one of Ca, Sr, and rare earth elements) a semiconductor material as a main component, and a pair of electrodes formed on two main surfaces of the semiconductor ceramic; and the semiconductor ceramics have a pair of outer regions respectively connected to the pair of electrodes, and The inner region sandwiched by the pair of outer regions, the void content of the inner region is greater than the porosity of the inner region. 2. The positive thermistor element of claim 1, wherein the main component is of the formula (Ba丨·xyzCaxSryLnz)Ti〇3 (wherein Ln is a rare earth element, the above χ ' Υ ' z^^.〇^ The compound represented by x^〇2〇> 〇^y^〇.2〇, 0.0035^z^ 0.0085). 3. The positive thermistor element of claim 1, wherein the outer region has a void content of 12.5% or more and 25.0% or less, and a difference in void content between the outer region and the inner region is 5% or more. 4. The positive thermistor element of claim 2, wherein the outer region has a void content of 12.5% or more and 25.0. /. Hereinafter, the difference in the void content ratio between the outer region and the inner region is 5% or more. 5. The positive thermistor element according to any one of claims 1 to 4, wherein the specific resistance of the outer region is higher than the specific resistance of the inner region, and the specific resistance of the outer region is represented as a high ρ, Inner side I62386.doc 5 201243871 The specific resistance of the region is expressed as low P1 high and low p ratio resistance ratio (high p low p) / low p is expressed as Rp, satisfying 〇〇5gRpg〇5〇, and The total thickness of the outer region is expressed as I, and the thickness of the inner region is expressed as a ratio of the thickness of the outer region to the thickness of the whole, which is -0.8889><11卩+49.444$1^| $-〇.8889><11|3+89.444. 162386.doc
TW101105889A 2011-02-24 2012-02-22 Positive thermal resistance element TWI441203B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011038763 2011-02-24
JP2012022122 2012-02-03

Publications (2)

Publication Number Publication Date
TW201243871A true TW201243871A (en) 2012-11-01
TWI441203B TWI441203B (en) 2014-06-11

Family

ID=46720840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101105889A TWI441203B (en) 2011-02-24 2012-02-22 Positive thermal resistance element

Country Status (4)

Country Link
JP (1) JP5500307B2 (en)
CN (1) CN103403814B (en)
TW (1) TWI441203B (en)
WO (1) WO2012115063A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587042B2 (en) * 1975-07-02 1983-02-08 株式会社日立製作所 Kotaiden Atsugataseitokuseisa Mista
JP3327444B2 (en) * 1995-06-29 2002-09-24 株式会社村田製作所 Positive thermistor element
JPH11135302A (en) * 1997-10-27 1999-05-21 Murata Mfg Co Ltd Positive temperature coefficient thermistor
JP2005093574A (en) * 2003-09-16 2005-04-07 Murata Mfg Co Ltd Multilayer positive characteristic thermistor and method of manufacturing the same
KR101149634B1 (en) * 2007-06-14 2012-05-25 가부시키가이샤 무라타 세이사쿠쇼 Semiconductor ceramic material
JP4888405B2 (en) * 2008-01-25 2012-02-29 Tdk株式会社 Multilayer PTC thermistor and manufacturing method thereof
EP2377837B1 (en) * 2008-12-12 2018-08-08 Murata Manufacturing Co., Ltd. Semiconductor ceramic and positive temperature coefficient thermistor
KR101178971B1 (en) * 2008-12-12 2012-08-31 가부시키가이샤 무라타 세이사쿠쇼 Semiconductor ceramic and positive temperature coefficient thermistor
JP5327555B2 (en) * 2008-12-12 2013-10-30 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
WO2012132954A1 (en) * 2011-03-30 2012-10-04 株式会社村田製作所 Semiconductor ceramic, and positive temperature coefficient thermistor

Also Published As

Publication number Publication date
WO2012115063A1 (en) 2012-08-30
TWI441203B (en) 2014-06-11
CN103403814A (en) 2013-11-20
JP5500307B2 (en) 2014-05-21
JPWO2012115063A1 (en) 2014-07-07
CN103403814B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP5662888B2 (en) Multi-layer piezoelectric ceramic parts
TWI247321B (en) Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor
TWI330624B (en) Electronic device
TW200812931A (en) Dielectric ceramic, ceramic electronic component, and laminated ceramic capacitor
JP5851591B2 (en) Oxide sintered body and wiring board using the same
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
WO2009116548A1 (en) Piezoelectric/electrostrictive element and manufacturing method thereof
TWI433827B (en) NTC thermal resistors for semiconductor porcelain compositions and NTC thermal resistors
JP5345834B2 (en) Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method
TW200401312A (en) Manufacturing method of laminated ceramic electronic device
JP2010215427A (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet and method for producing laminated ceramic capacitor
CN107001145B (en) Conductive oxide sintered body, conductive member, gas sensor, piezoelectric element, and method for manufacturing piezoelectric element
JP2009007182A (en) Sintering aid for lead-free piezoelectric ceramic, lead-free piezoelectric ceramic, and method for production of the ceramic
JP2010173910A (en) Dielectric ceramic and laminated ceramic capacitor
KR101973414B1 (en) Dielectric composition for low temperature sintering, multilayer ceramic electronic device including the same and method for fabricating the multilayer ceramic electronic device
JP4940389B2 (en) Lead-free piezoelectric ceramic composite and piezoelectric element using the same
JP5817839B2 (en) PTC thermistor and method for manufacturing PTC thermistor
TW201243871A (en) Positive-characteristic thermistor element
JP5812091B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5469475B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP5190894B2 (en) Piezoelectric or dielectric ceramic composition, piezoelectric device and dielectric device
JP4283730B2 (en) Piezoelectric ceramic and piezoelectric element manufacturing method, method for lowering the firing temperature in the firing step in piezoelectric ceramic manufacturing, and piezoelectric element
JP6791350B2 (en) Composite oxide
WO2012036142A1 (en) Positive characteristic thermistor and method for manufacturing positive characteristic thermistor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees