JPS587042B2 - Kotaiden Atsugataseitokuseisa Mista - Google Patents

Kotaiden Atsugataseitokuseisa Mista

Info

Publication number
JPS587042B2
JPS587042B2 JP8085675A JP8085675A JPS587042B2 JP S587042 B2 JPS587042 B2 JP S587042B2 JP 8085675 A JP8085675 A JP 8085675A JP 8085675 A JP8085675 A JP 8085675A JP S587042 B2 JPS587042 B2 JP S587042B2
Authority
JP
Japan
Prior art keywords
temperature
heat
resistivity
coefficient thermistor
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8085675A
Other languages
Japanese (ja)
Other versions
JPS525458A (en
Inventor
二木久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8085675A priority Critical patent/JPS587042B2/en
Publication of JPS525458A publication Critical patent/JPS525458A/en
Publication of JPS587042B2 publication Critical patent/JPS587042B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は高い耐電圧特性を持つ正特性サーミスタに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive temperature coefficient thermistor having high withstand voltage characteristics.

従来ディスク形正特性サーミスタをヒータまたは電流制
限装置として使うに当って、その表面に第1図のように
電極を兼ねる放熱板2を取付けて熱出力を大きくする方
法がとられて来た。
Conventionally, when using a disc type positive temperature coefficient thermistor as a heater or a current limiting device, a method has been adopted to increase the heat output by attaching a heat sink 2 which also serves as an electrode to the surface of the disc as shown in FIG.

しかし正特性サーミスク1はセラミックであるために、
熱伝導率があまり大きくなく、第1図の方法では正特性
サーミスク1の端面の放熱のみをよくすることになって
、内部からの熱出力を引出すには充分でない。
However, since the positive temperature coefficient thermistorc 1 is made of ceramic,
Thermal conductivity is not very high, and the method shown in FIG. 1 only improves heat dissipation from the end face of the PTC thermistor 1, which is not sufficient to draw out heat output from the inside.

常温(ある一定の室温)において、正特性サーミスタの
内部の抵抗率が均一の場合、通電によって自己加熱させ
ると、どうしても中心部の温度が端面に比べて高くなる
If the internal resistivity of a positive temperature coefficient thermistor is uniform at room temperature (a certain room temperature), if it is self-heated by electricity, the temperature at the center will inevitably be higher than at the end faces.

正特性サーミスタの温度一抵抗特性は第2図に示すよう
に温度上昇と共に電気抵抗が急増する関係にあるために
、このような正特性サーミスタに電圧を印加して発熱さ
せると、温度上昇による抵抗の増大によって電流が制限
され、ある一定の温度以上にならないように、素子自体
で制御する性質がある。
As shown in Figure 2, the temperature-resistance characteristic of a positive temperature coefficient thermistor is such that the electrical resistance rapidly increases as the temperature rises, so if a voltage is applied to such a positive coefficient thermistor to generate heat, the resistance will increase due to the temperature rise. The element itself has the property of controlling the current so that it does not exceed a certain temperature.

そのため、この性質を利用してヒークとすると外部に温
度制御装置を設けなくても一定温度を保つようにできる
利点がある。
Therefore, if this property is used to create a heat, there is an advantage that a constant temperature can be maintained without providing an external temperature control device.

しかし、正特性サーミスタが小さく全体の温度がほぼ均
一であれば良いが、熱出力を多く得るために形の大きい
正特性サーミスタを用いて素子の内部で温度が他の部よ
り高い所が生ずるとその部分の抵抗が大きくなって電界
が集中し、ますますその部分の温度が上昇することにな
る。
However, it is fine as long as the positive temperature coefficient thermistor is small and the overall temperature is almost uniform, but if a large positive temperature coefficient thermistor is used to obtain a large heat output, the temperature may be higher in some parts of the element than in other parts. The resistance of that part increases, the electric field concentrates, and the temperature of that part increases further.

そのため第1図に示したような構造では正特性サーミス
タ1の中心部がジュール熱の増加に伴なってますます発
熱量および温度上昇が大きくなるので、内部の温度分布
および電界密度の分布は、第3図a,bに示すような形
となる。
Therefore, in the structure shown in Fig. 1, the heat generation and temperature rise in the center of the PTC thermistor 1 increase as Joule heat increases, so the internal temperature distribution and electric field density distribution are as follows. The shape will be as shown in FIGS. 3a and 3b.

この傾向は両端面に放熱板をつけて強制的に冷却する時
に、特にはなはだしく、正特性サーミスタの端面附近の
みの発熱量は小さいために、放熱板をより大きくしても
熱出力はさほど大きくならない。
This tendency is particularly noticeable when forced cooling is performed by attaching heat sinks to both end faces; the amount of heat generated only near the end faces of a positive temperature coefficient thermistor is small, so even if the heat sinks are made larger, the heat output will not increase significantly. .

また内部の電界は上に述べたように局部的に密になるの
で、その部分が異状に高温になって破損するという不都
合な問題が起る。
In addition, since the internal electric field becomes locally dense as described above, this causes an inconvenient problem in that the area becomes abnormally hot and may be damaged.

本発明の目的は上記のような欠点を改善し、耐電圧特性
の良好な、しかも大きい熱出力の正特性サーミスク素子
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and provide a positive temperature coefficient thermistor element having good withstand voltage characteristics and high heat output.

上記の目的を達成するために本発明は、正特性サーミス
タの内部の常温での抵抗率の分布を均一にしないで変化
を与えることにより、電圧を印加して発熱したときの温
度分布あるいは電界密度の分布を均一化し、耐電圧を良
好にしたものである。
In order to achieve the above object, the present invention changes the resistivity distribution at room temperature inside a positive temperature coefficient thermistor, thereby changing the temperature distribution or electric field density when a voltage is applied and generates heat. This makes the distribution uniform and improves the withstand voltage.

以下本発明を具体的な実施例によって説明する。The present invention will be explained below using specific examples.

常温においてディスク形正特性サーミスタ内部の抵抗率
分布は中心部の方が端面部よりも高くなっているのが一
般であるが、この発明では第4図に示すように中心部1
2の抵抗率を端面部11に比ベて30%以下に低くした
ものである。
Generally, the resistivity distribution inside a disk-type positive temperature coefficient thermistor is higher at the center than at the end face at room temperature, but in this invention, as shown in FIG.
2 has a resistivity lowered to 30% or less compared to that of the end face portion 11.

第5図によってその動作の模様を説明する。The operation pattern will be explained with reference to FIG.

第5図aは本発明によるディスク形正特性サーミスクの
厚さ方向の抵抗率分布を示したもので、中心部12の抵
抗率が端面部11の抵抗率に比べて30%以下に低くし
たことを示している。
FIG. 5a shows the resistivity distribution in the thickness direction of the disk-shaped PTC thermistor according to the present invention, and shows that the resistivity of the center portion 12 is lowered to 30% or less compared to the resistivity of the end face portions 11. It shows.

このような正特性サーミスクに通電してキュリ一温度以
上に自己発熱させる時、中心部12は抵抗率が小さいた
めに、また端面部11は端冷効果のために、ジュール熱
の発生量が小さく、それに対して中心部12と端面部1
1の中間の位置は発熱量が太きいために、第5図bのよ
うな動作温度の分布となる。
When such a positive temperature coefficient thermistor is energized to generate heat above one Curie temperature, the amount of Joule heat generated is small because the center part 12 has a low resistivity and the end face parts 11 have a cooling effect. , whereas the center part 12 and the end face part 1
Since the amount of heat generated is large at the intermediate position of 1, the operating temperature distribution is as shown in FIG. 5b.

中心部12の発熱量が小さいのに、この図で中心部の温
度が平坦になっているのは、両側からの熱拡散によるも
のである。
The reason why the temperature at the center is flat in this figure even though the amount of heat generated at the center 12 is small is due to heat diffusion from both sides.

第5図Cはこの正特性サーミスタ内部の電界密度を示し
たものである。
FIG. 5C shows the electric field density inside this positive temperature coefficient thermistor.

中心部の常温抵抗率が小さいということは、キュリ一点
以上の一定温度における抵抗率も端面部に比べて小さい
という事であるから、当然中心部の電界密度は小さくな
り、そのために第5図Cのように電界密度の高い領域が
2つ現われる。
The fact that the resistivity at room temperature in the center is small means that the resistivity at a constant temperature above the Curie point is also small compared to the end face, so naturally the electric field density in the center is small, and therefore, as shown in Figure 5C. Two regions with high electric field density appear as shown in the figure.

もし中心部の常温抵抗率が端面部の常温抵抗率に比べて
あまり小さくない場合は電界密度の高い領域は1つしか
現われないが、そのピークは第3図bの場合よりはるか
にブロードになる。
If the room temperature resistivity at the center is not much smaller than the room temperature resistivity at the edge, only one region with high electric field density will appear, but its peak will be much broader than in the case of Figure 3b. .

尚、この内部の常温抵抗率分布は、中心部と端面部間で
連続的に変化させることが望ましいが、中心部と端面部
の組成を層状に変えて不連続にしてもよい。
Although it is desirable that the internal room-temperature resistivity distribution be changed continuously between the center portion and the end surface portions, it may be made discontinuous by changing the composition of the center portion and the end surface portions in a layered manner.

また3枚以上の常温抵抗率の異なる正特性サーミスタを
重ね合わして同様の効果を果すことも可能である。
It is also possible to achieve the same effect by stacking three or more positive temperature coefficient thermistors having different room temperature resistivities.

上述したように、本発明による中心部の常温抵抗率が端
面部のそれに比べて30%以下である正特性サーミスタ
を使う時、内部電界密度分布が従来のものに比べてはる
かにブロードとなるので、素子の信頼性が向上し、従来
のものに比べて高い電圧を印加することができるので、
従来不町能であった高電圧用の正特性サーミスタをつく
ることができる。
As mentioned above, when using a positive temperature coefficient thermistor according to the present invention in which the room temperature resistivity of the center part is 30% or less compared to that of the end face part, the internal electric field density distribution becomes much broader than that of the conventional one. , the reliability of the element is improved and a higher voltage can be applied compared to conventional ones.
It is now possible to create a high voltage positive characteristic thermistor, which was previously impossible.

また、本発明の素子では発熱量の大きい部分が従来のも
のに比べて端面部に近くなっているので、従来のものに
比べて大きい熱出力を得ることができる。
Furthermore, in the element of the present invention, since the portion that generates a large amount of heat is located closer to the end face than in the conventional element, it is possible to obtain a larger heat output than in the conventional element.

また、この効果はディスク形正特性サーミスタに限るも
のではなく、ハネカム形(多数の縦穴を持つディスク形
)正特性サーミスクおよび角形などディスク形と同じ発
熱効果を持つ正特性サーミスタにも適用できるものであ
って、特に内部の熱伝導度の悪いハネカム形正特性サー
ミスタに適用した場合に、大きい効果を現わすものであ
る。
Furthermore, this effect is not limited to disk-shaped PTC thermistors, but can also be applied to honeycomb-type (disk-shaped PTC thermistors with many vertical holes) PTC thermistors and square-shaped PTC thermistors that have the same heat generation effect as disk-shaped PTC thermistors. This is especially effective when applied to a honeycomb type positive temperature coefficient thermistor whose internal thermal conductivity is poor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は放熱板のついたヒーク用正特性サーミスタの構
造を示す側面図、第2図は代表的な正特性サーミスクの
温度と電気抵抗の関係を示す特性曲線図、第3図a,b
は従来のヒータ用正特性サーミスタの内部温度分布およ
び内部の電界密度分布を示す図、第4図は本発明の正特
性サーミスタの構造を示す側面図、第5図a+b+cは
本発明の止特性サーミスタの厚さ方向の位置と常温抵抗
率の関係、内部の動作温度の分布、および内部の電界密
度分布をそれぞれ示す図である。 1・・・・・・正特性サーミスタ、2・・・・・・放熱
板。
Figure 1 is a side view showing the structure of a heat sink positive temperature coefficient thermistor with a heat sink, Figure 2 is a characteristic curve diagram showing the relationship between temperature and electrical resistance of a typical positive temperature coefficient thermistor, and Figures 3 a and b.
4 is a side view showing the structure of the positive temperature coefficient thermistor of the present invention, and Figure 5 a+b+c shows the stop characteristic thermistor of the present invention. FIG. 3 is a diagram showing the relationship between the position in the thickness direction and the room temperature resistivity, the internal operating temperature distribution, and the internal electric field density distribution. 1... Positive characteristic thermistor, 2... Heat sink.

Claims (1)

【特許請求の範囲】[Claims] 1 両端面間に電圧を印加することによって発熱させる
正特性サーミスタにおいて、その内部の常温抵抗率を上
記両端面部の常温抵抗率より低くしたことを特徴とする
高耐電圧形正特性サーミスタ。
1. A high withstand voltage type positive temperature coefficient thermistor that generates heat by applying a voltage between both end faces, characterized in that the room temperature resistivity of the inside thereof is lower than the room temperature resistivity of the end faces.
JP8085675A 1975-07-02 1975-07-02 Kotaiden Atsugataseitokuseisa Mista Expired JPS587042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8085675A JPS587042B2 (en) 1975-07-02 1975-07-02 Kotaiden Atsugataseitokuseisa Mista

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8085675A JPS587042B2 (en) 1975-07-02 1975-07-02 Kotaiden Atsugataseitokuseisa Mista

Publications (2)

Publication Number Publication Date
JPS525458A JPS525458A (en) 1977-01-17
JPS587042B2 true JPS587042B2 (en) 1983-02-08

Family

ID=13729976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8085675A Expired JPS587042B2 (en) 1975-07-02 1975-07-02 Kotaiden Atsugataseitokuseisa Mista

Country Status (1)

Country Link
JP (1) JPS587042B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7900096A (en) * 1978-01-16 1979-07-18 Raychem Corp UNDER THE INFLUENCE OF HEAT-REPAIRABLE METALLIC COUPLING ORGANS.
JPS54149856A (en) * 1978-05-17 1979-11-24 Matsushita Electric Ind Co Ltd Method of producing heat impacttproof selffexothermic positive temperature coefficient thermistor
CH630148A5 (en) * 1978-08-10 1982-05-28 Bbc Brown Boveri & Cie Method of connecting structural elements
BE880992A (en) * 1979-01-05 1980-05-02 Raychem Corp IMPROVEMENTS ON THERMAL RECOVERY DEVICES
JPS55119206A (en) * 1979-03-08 1980-09-12 Nippon Steel Corp Method of connecting joint of steel structure or like
JPS60123482U (en) * 1984-01-30 1985-08-20 株式会社トーキン pipe fittings
JPH0229385U (en) * 1988-08-12 1990-02-26
JPH02265215A (en) * 1989-04-05 1990-10-30 Murata Mfg Co Ltd Porcelain semiconductor electronic component for degaussing circuit
JP3327444B2 (en) * 1995-06-29 2002-09-24 株式会社村田製作所 Positive thermistor element
CN103403814B (en) * 2011-02-24 2016-08-10 株式会社村田制作所 Positive characteristic thermistor resistance element

Also Published As

Publication number Publication date
JPS525458A (en) 1977-01-17

Similar Documents

Publication Publication Date Title
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
JP3063395B2 (en) Positive characteristic thermistor heating element
CN209642996U (en) It is a kind of without blowing High-Power PTC Heaters
US3742192A (en) Electrical heating device and method
JP2820804B2 (en) PTC heater for flat surface
JPS5836155Y2 (en) heating element device
JPH09293581A (en) Positive thermistor heating element
JPS59710Y2 (en) constant temperature heating element
JP3067396B2 (en) Rapid heating type PTC thermistor heating device
JP3257746B2 (en) Inrush current suppression type PTC heating device
JPS6125249Y2 (en)
JPS6330158Y2 (en)
JPH0646075Y2 (en) PTC thermistor heating device
JPS631421Y2 (en)
JPS5836154Y2 (en) Positive temperature coefficient thermistor for heating elements
JPS5818580Y2 (en) heating device
JPS6218921Y2 (en)
JPS5836153Y2 (en) Positive temperature coefficient thermistor for heating elements
JPH0445352A (en) Warm air producing heater
JPH05114461A (en) Heating body of positive characteristic thermistor
JPS5838553Y2 (en) Hatsunetsu Thailand
JPS61143985A (en) Heat generating body
JPH0211764Y2 (en)
JPS61143629A (en) Heater
JPS58100388A (en) Constant-temperature heater