TW201241901A - Method for controlling dangling bonds in fluorocarbon films - Google Patents

Method for controlling dangling bonds in fluorocarbon films Download PDF

Info

Publication number
TW201241901A
TW201241901A TW101109099A TW101109099A TW201241901A TW 201241901 A TW201241901 A TW 201241901A TW 101109099 A TW101109099 A TW 101109099A TW 101109099 A TW101109099 A TW 101109099A TW 201241901 A TW201241901 A TW 201241901A
Authority
TW
Taiwan
Prior art keywords
bias
substrate
forming
plasma
gas
Prior art date
Application number
TW101109099A
Other languages
Chinese (zh)
Other versions
TWI469199B (en
Inventor
Yoshiyuki Kikuchi
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201241901A publication Critical patent/TW201241901A/en
Application granted granted Critical
Publication of TWI469199B publication Critical patent/TWI469199B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing

Abstract

Embodiments of the invention describe a method for forming fluorocarbon films for semiconductor devices. The method includes providing a substrate on a substrate holder in a plasma processing chamber, introducing in the plasma processing chamber a first process gas containing a Ca Fb gas, forming a first plasma from the first process gas by applying a first RF bias and a first positive DC bias to the substrate holder, and depositing a first fluorocarbon film on the substrate by the first plasma. The method further includes introducing in the plasma processing chamber a second process gas containing a CaFb gas, forming a second plasma from the second process gas by applying microwave power to the microwave antenna, and applying second RF bias and a second positive DC bias to the substrate holder, and depositing a second fluorocarbon film on the first fluorocarbon film by the second plasma.

Description

201241901 六、發明說明: 【相關申請案之交互參照】 本申請案主張2011年3月18日所申諳之盖剧 61/物,32()號的優先權,該案整軸容係併人於此作=青案第 【發明所屬之技術領域】 本發明大致上與在基板上沉積介電膜有關,且 碳化物膜中的懸空鍵之控制方法。 凡具有關於氟 【先前技術】 在例如半導體裝置、液晶顯示哭步晉、芬士 ^ (electro-luminescent,EL)元件的電子裝^製造 機^發夫 製程以在基板表面上形成傳導膜或絕緣蚀仃成瑕 =膜_成臈製程係常用於此成:程 體電路用的層間介電質㈣咖erdielectdcs ilDs/用以>儿積賴 用的膜為用作低介電常數(1〇讀)ILDs及用於宜他庫 用的刖瞻材料。當將CF膜與其他材料整合時,^ ^ CF膜及其他材料之間的接點於後續處理 =、二^ 部中的鋼配線=退 /膜及其他材料之間附著性減少。最A3 離寸者a &成賴侵似可能被看作基板上之薄膜起泡的薄膜剝 然而,難以藉由電漿處理來製備 3 濃度之懸空鍵及良好熱穩定度的高品質上 科之間的附者性。對於減少CF膜之 ^= 含:在於Cf膜上沉積其他材料層 201241901 屬。然而,忒專嘗试尚未產生可製造的解決方案,且需要新方法 來沉積具有低濃度之懸空鍵及良好熱穩定度的CF臈。 【發明内容】 本發明之實施例描述具有低濃度之懸空鍵及良好熱穩定度之 CF膜的積方法。依據—實施例,該方法包含:在電^理腔室 中的基板夾持器上提供基板,該電漿處理腔室含有微波天線、用 以對微波天祕電的微波電源、糾對基域持馳加射頻(radi〇 frequency,RF)偏壓的RF偏壓源、及用以對基板夾持器施加直流 (DC)偏壓的DC電壓源;在電漿處理腔室中引入含CaFb氣體的第 一處理氣體,其中a及b為正整數;藉由施加第一卵偏壓及第一 正DC偏壓至基板夹持器而自第一處理氣體形成第一電漿;及利 用第一電漿在基板上沉積第一氟碳化物膜。該方法更包含:在電 襞處理腔室中引入含CaFb氣體的第二處理氣體,其中a&b為正 整數;藉由施加微波功率至微波天線及施加第二即偏壓及第二正 DC偏壓至基板夾持器而自第二處理氣體形成第二電漿;及利用第 二電漿在第一氟碳化物膜上沉積第二氟碳化物膜。 。。依據另一實施例,該方法包含:在電漿處理腔室中的基板夾 持器上提供基板’該電聚處理腔室含有微波天線、肖以對微波天 線供電的微波電源、用以對基板夾持器施加处偏壓的射頻 偏壓源、及用以對基板夾持器施加DC偏壓的直流① 在電漿處理腔室中狀含QFb氣體的處理氣體,其中^ ^正 整數;藉祕加RF傾及正DC偏壓至基板趙細自處理氣體 形成電漿;施加微波功率至微波天線;及利用電漿在基板上沉積 氟碳化物膜,其中所施加之微波功率係於沉積期間自 率位準增加至第二微波功率位準。 ;/ 【實施方式】 具有低濃度之懸空鍵及良好熱穩定度之CF膜的沉積方法係 描述於各種實施例中。熟悉相關技術者將察知可在不具有具體細 201241901 多者、或在具備其他代替物及/或額外方法、材料、 ^件的情況下實施各種實施例。在其他實例中,孰知的 =:或詳述以避ΐ混淆本發明之:種實二例的 二提供太&於5兄明之目的’提出特紐量、材料、及配置 :乂匕共本發明之透徹理解。再者,應理解示於圖式 例為έ兒明性圖式且不必依比例繪製。 σ錢 、f 篇提及「―實施例」之處意指相關於該實施例所 ,的,疋龍、結構、材料、或躲係包含於本發明之至少一虛 但並不代表其於每-實施例中出現。因此,本說明書i 現的片語「在一實施例中」不必關於本發明之相同 製造中通常有對於用以沉積具有低濃度之懸空鍵及 薄膜。發明人已發現可於CF膜沉積期g 具有低濃度之㈣鍵及良 ΐΓ支該沉積電漿係藉由施加大正Dc偏壓至配 體萃^自持器而出自於含氣碳化物氣體的處理氣 ,〖的貞氟離子與CF财欠魏原子的補和碳之懸 _子與不飽和碳之懸空鍵的反‘ C F 鍵取代CF膜中的不飽和碳之懸空鍵匕導 極少懸空鍵及良好熱穩定度。 匕導致所/儿積的CF膜具有 依據本發明之實施例,厚CF膜可藉由首先於美柘 =^^膜、且其後201241901 VI. Description of invention: [Interactive reference of relevant application] This application claims the priority of cover drama 61/object and 32 () which was applied for on March 18, 2011. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a method of controlling a dangling bond in a carbide film in connection with depositing a dielectric film on a substrate. Where there is a fluorine-based [previous technique] in an electronic device such as a semiconductor device, a liquid crystal display, or an electro-luminescent (EL) device, a conductive film or insulating film is formed on the surface of the substrate.仃 仃 瑕 = film _ 臈 臈 系 常用 常用 常用 常用 常用 常用 : : : : : : : 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程 程Read) ILDs and prospective materials for use in the library. When the CF film is integrated with other materials, the contact between the CF film and other materials is reduced in subsequent processing = steel wiring in the second portion = retreat / film and other materials. The most A3 is a film that is likely to be considered as a film blistering on the substrate. However, it is difficult to prepare a high concentration of dangling bonds and good thermal stability by plasma treatment. The attachment between the two. For the reduction of CF film ^= Contains: deposits other material layers on the Cf film 201241901 genus. However, 忒 attempts have not yet produced a manufacturable solution, and new methods are needed to deposit CF 具有 with low concentration dangling bonds and good thermal stability. SUMMARY OF THE INVENTION Embodiments of the present invention describe a method of integrating a CF film having a low concentration of dangling bonds and good thermal stability. According to an embodiment, the method comprises: providing a substrate on a substrate holder in the electrical processing chamber, the plasma processing chamber comprising a microwave antenna, a microwave power source for the microwave secret electricity, and a correction base field An RF bias source carrying a radio frequency (RF) bias, and a DC voltage source for applying a direct current (DC) bias to the substrate holder; introducing a CaFb-containing gas into the plasma processing chamber a first process gas, wherein a and b are positive integers; forming a first plasma from the first process gas by applying a first egg bias and a first positive DC bias to the substrate holder; and utilizing the first The plasma deposits a first fluorocarbon film on the substrate. The method further comprises: introducing a second process gas containing CaFb gas into the electrocautery processing chamber, wherein a&b is a positive integer; applying microwave power to the microwave antenna and applying a second bias voltage and a second positive DC Biasing to the substrate holder to form a second plasma from the second process gas; and depositing a second fluorocarbon film on the first fluorocarbon film using the second plasma. . . According to another embodiment, the method includes: providing a substrate on a substrate holder in a plasma processing chamber. The electropolymerization processing chamber includes a microwave antenna, a microwave power supply for supplying power to the microwave antenna, and a substrate for the substrate. a biasing RF bias source applied to the holder, and a DC 1 for applying a DC bias to the substrate holder, wherein the QFb gas is contained in the plasma processing chamber, wherein ^^ is an integer; Adding RF tilting and positive DC bias to the substrate to form a plasma from the processing gas; applying microwave power to the microwave antenna; and depositing a fluorocarbon film on the substrate by using a plasma, wherein the applied microwave power is during deposition The self-rate level is increased to the second microwave power level. ; / [Embodiment] A deposition method of a CF film having a low concentration of dangling bonds and good thermal stability is described in various embodiments. Those skilled in the art will recognize that various embodiments can be practiced without a specific detail, or with other alternatives and/or additional methods, materials, and components. In other instances, the known =: or detailed description to confuse the present invention: the second two cases of the provision of the two provide too & the purpose of the 5 brothers to 'special amount, material, and configuration: A thorough understanding of the invention. Furthermore, it should be understood that the illustrations are shown in the drawings and are not necessarily drawn to scale. The reference to "the embodiment" in the context of "the embodiment" means that, in connection with the embodiment, the Snapdragon, the structure, the material, or the occlusion is included in at least one of the present inventions, but does not mean that it is - Appears in the examples. Therefore, the phrase "in one embodiment" of the present specification does not necessarily have to have a dangling bond and a film having a low concentration for deposition in the same manufacturing of the present invention. The inventors have found that the depositional plasma can have a low concentration of the (four) bond and the good electrode in the deposition period of the CF film. The deposited plasma is treated by the gas-containing carbide gas by applying a large positive Dc bias to the ligand extraction device. Gas, 贞 贞 fluoride ion and CF owe Wei atom's complement and carbon suspension _ sub- and unsaturated carbon dangling bond's 'CF bond instead of the unsaturated film in the CF film dangling bond 匕 very few dangling bonds and Good thermal stability. CF 匕 匕 CF CF CF CF CF 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据

i ί。發明人已發現第—CF膜可提供在第- CF 膜上/儿積第—CF顧的H ,_下,第二CF膜(及依此方式之第= 於第-〇7、腔」1瞭弟—CF膜z儿積期間使用不同處理條件以高i ί. The inventors have found that the first CF film can be provided on the first CF film / H, _ under the H, _, the second CF film (and in this way, the first = 〇 7, cavity) 1 Brother-CF film z-product period using different processing conditions to high

所ί要Γ古tr:沉5率加以沉積。此允許半導置製造中 所乂要的问基板產置。可使用藉由施加第一即偏壓及第一正DC 201241901 偏壓至配置成支持基板的基板夾持器所形成的第一電漿沉積第一 CF膜於基板上,其中第一電漿可在不施加微波功率至電漿處理系 統中之微波天線的情況下形成。第二CF膜可藉由施加微波功率至 微波天線、及施加第二RF偏壓及第二正DC偏壓至基板夾持器而 以南沉積速率沉積。 长圖1為依據本發明之一實施例的在基板上形成氟碳化物膜的 流程,,且圖2A-2D示意性地顯示依據本發明之一實施例的基板 上之氟碳化物膜的形成。參考圖丨及2A-2D,流程圖1〇〇包含: 在步驟102中,在電漿處理腔室中的基板夾持器上提供基板。 依據若干實施例,第一蝕刻中止膜202(如Si〇2、siN、或siON) 可存在於基板200上。依據其他實施例,可省略第一蝕刻中止膜 =2電名處理腔至可含有微波天線、用以對微波天線供電的微波 電源、用以對基板夾持器施加RP偏壓的射頻(RP)電源、及用以對 基f夾持器施加DC偏壓的直流(DC)電壓源。微波天線可包含如 不意性地顯示於圖3-5中的輻射線槽孔天線(radial line sl〇t ante〇ia, RLSA)基板200可例如為半導體基板,如石夕基板、石夕鍺基板、 錄基板、玻璃基板、LCD基板、或如GaAs的化合物半導體基板。 基’可具有任何尺寸,例如2〇〇 mm晶圓、3〇〇 mm晶圓、450 mm 曰日圓、或甚至更大的晶圓或基板。 #在步驟104巾’於電聚處理腔室中引入含CaFb氣體的第一處 ,氣體’其巾a及b為正整數。依據若干實施例,切氣體可選 > 、C4F6、、及其他 CaFb 氣體。舉例而言,CaFb ^體,速可祕 seem、祕2QQ seem、或祕⑽s_。在 若干實例中,第一處理氣體可進一步含有氬(Ar)、氮"2)、或^ 及A兩者。Ar及&氣之氣體流速可小於5〇〇 sccm、小於2〇〇 seem、或小於1〇〇 sccm。舉例來說’電漿理 可小於刚—、小於50 mTo㈣、於3〇 •、或小於2〇識订。 驟1〇6 +,第一電聚係藉由施加第一 偏壓及第一正 堅至基板夾持器而自第一處理氣體形成。例如,第一 RF偏 堅可小於100 W、小於50 w、或小於25 w。依據-實施例,第- 201241901 電漿可在不施加微波功率至微波天線的情況下形成。第一正 偏壓可大於1.5 kV,例如3 kV、3.5 kV、或更大。在若干實例中, 第一正DC偏壓可在2kV及5kV之間、2kV及3kV之間、3kV 及4 kV之間、或4 kV及5 kV之間。 曰 在步驟108中,第一氟碳化物膜204係利用第一電聚沉積於 第一蝕刻中止膜上(圖2B)。依據若干實施例,第一氟碳化物膜2〇4 之沉積可包含將基板夾持器維持在例如大於33〇。〇、大於34〇〇c、 大於WC、或大於36(fC的溫度。在若干實例中,基板溫度可在 350°C及380°C之間、或380oC及400。(:之間。在一實例中,可將 基板夹持器維持在約360°C之溫度。 在步驟110 +,於電衆處理腔室中引入含CA氣體的第二處 理氣體,其中a及b為整數。依據若干實施例,cj?b氣體可選自 C4F4、C4F6、C6F6、C5F8、及其他CaFb氣體。caFb氣體之氣體流速 I例如小於500 SCCm、小於200 sccm、或小於1〇〇 sccn^在若干 貫例中,第二處理氣體可進一步含有氬㈣、氮㈣、或心及 兩者。Ar及N2氣體之乳體流速可小於5〇〇 sccm、小於2〇〇 sccm、 或小於100 seem。電漿處理腔室中的氣體壓力可例如小於1〇〇 mToir、小於50 mTorr、小於30 mT〇fr、或小於2〇虹⑽。 、在步驟II2中’第二電聚係藉由施加電漿形成微波功率至微 ,天線、及施加第二RF偏壓及第二正DC偏壓至基板失持器而自 第二處理氣體形成。第二RF偏壓可與第—Rp偏壓相同或不同, 例如小於100 W、小於50 W、或小於25 w。第二正DC偏壓可低 於第一正DC偏壓,例如小於3 kV、小於2.5 kV、小於2 kV、或 小於1.5kV。在若干實例中’第:正沈偏壓可在丨kV及2kv之 間、或在2 kV及小於3 kV之間。在一實例中,第一正DC偏壓可 為約3kV且第二正DC偏壓可為約】5kv。 ^在步驟114 +,第二氣碳化物膜2〇6係利用第二電装而沉積 於第碳化物膜上(圖2C)。依據若干實施例,第二氣碳化物膜 206之沉積可包含將基板夾持器維持在例如大於3〇〇c>c、大於 31〇°C、大於320°C、或大於330弋的溫度。在若干實例中,基板 8 201241901 μ度可在300°C及320°C之間、或320oC及350°C之間。在一實 t: I將基板夾持器維持在約33G°C之溫度。依據—實施例, 弟一氟碳化物膜204之沉積速率可小於第二氟碳化物膜2〇6 積逮率。 ”參,圖fD ’可將第二银刻中止膜208(如Si02、SiN、或SiON) ,儿積於第二氟碳化物膜206上。依據其他實施例,可省略第二 刻中止膜208。 — 斗,據若干實施例,第一正DC偏壓可大於第二正DC偏壓。在 ^干實例中,第一正DC偏壓可等於或大於3 kv。在一實例中, 第二正DC偏壓可為約1.5 kV。 、 依據若干實施例,可在第一基板夾持㉟溫度沉積第一氣碳化 ,綱,且可在低於第—基板祕器溫度的第二基板夾持器溫 沉積弟二氟碳化物膜206。 依據若干實施例,第一氟碳化物膜2〇4之厚度可小於 石反化物膜206之厚度。在-實例中,第—氟碳化物膜之厚度可 20 nm或更小’例如在5皿!及1〇 nm之間、或1〇⑽及2〇咖之 間。在-實例中’第二氟碳化物膜之厚度$ 3〇邮或更大 在3〇11111及20〇11111之間、3〇11111及1〇〇11111之間、或1〇〇11111 nm之間。 υυ 圖3為依據本發明之-實施例的賴處理系統之示意圖 電漿處理系統含有RLSA電漿源以供於基板上沉積氟碳化物膜二 J漿處理系統巾產生的賴之特徵為低電子溫度及高電毁密 度。賴處理糸統5〇G可例如絲自日本赤阪東 份有限公司的TRIAS™ SPA _系統。電襞處理系統= 558之開口部551。由石英、氮脑、或氧化紹所製如柱g 頂板554係設置成覆蓋開口部551。 ;1 氣體管線572係位於頂板下方的電聚處理腔室柳 部的側壁中。在-實例中,氣體管線572之數量 士 顯示其中二者)。選擇性地,可使用不同數量之氣體管 201241901 將氣體管線572環向地排列於電漿處理腔室550中,但此非本發 明所必須。處理氣體可自氣體管線572均勻且一致地被供應至電 漿處理腔室550中的電漿區域559中。處理氣體可含有可選自 C4F4、C4F6、C6F6及 C5F8、及其他 CaFb 氣體的 CaFb 氣體。CaFb 氣 體之氣體流速可小於500 seem、小於200 seem、或小於100 sccm。 處理氣體可進一步含有氬(Ar)、氮(N2)、或Ar及N2兩者。Ar及 Ν'2载體之氣體流速可小於5〇〇 seem、小於200 seem、或小於1〇〇 seem。電漿處理腔室中的氣體壓力可例如小於1〇〇 mT〇rr、小於5〇 mTorr、小於 30 mTorr、或小於 20 mTorr。The ί wants to Γ ancient tr: Shen 5 rate to deposit. This allows the substrate to be produced in a semi-conductive manufacturing process. Depositing a first CF film on the substrate using a first plasma formed by applying a first, biased, and first positive DC 201241901 bias to a substrate holder configured to support the substrate, wherein the first plasma is Formed without applying microwave power to the microwave antenna in the plasma processing system. The second CF film can be deposited at a south deposition rate by applying microwave power to the microwave antenna and applying a second RF bias and a second positive DC bias to the substrate holder. 1 is a flow of forming a fluorocarbon film on a substrate in accordance with an embodiment of the present invention, and FIGS. 2A-2D schematically illustrate formation of a fluorocarbon film on a substrate in accordance with an embodiment of the present invention. . Referring to Figures 2A-2D, Flowchart 1A includes: In step 102, a substrate is provided on a substrate holder in a plasma processing chamber. According to several embodiments, a first etch stop film 202 (such as Si 〇 2, siN, or siON) may be present on the substrate 200. According to other embodiments, the first etch stop film = 2 electric name processing chamber may be omitted to a microwave power source that may include a microwave antenna for powering the microwave antenna, and a radio frequency (RP) for applying an RP bias to the substrate holder. A power source, and a direct current (DC) voltage source for applying a DC bias to the base f holder. The microwave antenna may include a radial line antenna (RLSA) substrate 200 as shown in FIGS. 3-5, which may be, for example, a semiconductor substrate, such as a stone substrate or a stone substrate. A substrate, a glass substrate, an LCD substrate, or a compound semiconductor substrate such as GaAs. The base can be of any size, such as a 2 mm wafer, a 3 mm wafer, a 450 mm day, or even a larger wafer or substrate. In step 104, a first portion containing CaFb gas is introduced into the electropolymerization processing chamber, and the gases 'the towels a and b are positive integers. According to several embodiments, the gas is selected to be >, C4F6, and other CaFb gases. For example, CaFb ^ body, speed can be secret, secret 2QQ seem, or secret (10) s_. In some examples, the first process gas may further comprise both argon (Ar), nitrogen <2), or both. The gas flow rate of Ar and & gas may be less than 5 〇〇 sccm, less than 2 〇〇 seem, or less than 1 〇〇 sccm. For example, the 'plasma can be less than just-, less than 50 mTo (four), at 3 〇 •, or less than 2 〇. In the first step, the first electropolymer is formed from the first process gas by applying a first bias and a first positive to the substrate holder. For example, the first RF bias can be less than 100 W, less than 50 w, or less than 25 w. According to an embodiment, the -201241901 plasma can be formed without applying microwave power to the microwave antenna. The first positive bias voltage can be greater than 1.5 kV, such as 3 kV, 3.5 kV, or greater. In some examples, the first positive DC bias can be between 2 kV and 5 kV, between 2 kV and 3 kV, between 3 kV and 4 kV, or between 4 kV and 5 kV.曰 In step 108, the first fluorocarbon film 204 is deposited on the first etch stop film by the first electropolymer (Fig. 2B). According to several embodiments, the depositing of the first fluorocarbon film 2〇4 may comprise maintaining the substrate holder at, for example, greater than 33 〇. 〇, greater than 34〇〇c, greater than WC, or greater than 36 (fC temperature. In some examples, the substrate temperature can be between 350 ° C and 380 ° C, or 380 ° C and 400. In an example, the substrate holder can be maintained at a temperature of about 360° C. In step 110+, a second process gas containing CA gas is introduced into the electricity processing chamber, where a and b are integers. For example, the cj?b gas may be selected from the group consisting of C4F4, C4F6, C6F6, C5F8, and other CaFb gases. The gas flow rate I of the caFb gas is, for example, less than 500 SCCm, less than 200 sccm, or less than 1 〇〇sccn^ in a number of examples, The second process gas may further comprise argon (tetra), nitrogen (tetra), or both, and both. The flow rate of the Ar and N 2 gases may be less than 5 〇〇 sccm, less than 2 〇〇 sccm, or less than 100 seem. Plasma processing chamber The gas pressure in the gas may be, for example, less than 1 〇〇 m Toir, less than 50 mTorr, less than 30 mT 〇 fr, or less than 2 〇 rainbow (10). In step II2, 'the second electropolymer is formed by applying plasma to form microwave power to micro Antenna, and applying a second RF bias and a second positive DC bias to the substrate holder from the second Gas formation. The second RF bias may be the same or different than the first-Rp bias, such as less than 100 W, less than 50 W, or less than 25 W. The second positive DC bias may be lower than the first positive DC bias, such as Less than 3 kV, less than 2.5 kV, less than 2 kV, or less than 1.5 kV. In some examples, the 'first: positive sinking bias can be between 丨kV and 2kv, or between 2 kV and less than 3 kV. In an example, the first positive DC bias voltage may be about 3 kV and the second positive DC bias voltage may be about 5 kV. ^ In step 114 +, the second gas carbide film 2 〇 6 is deposited by the second electrical device. On the carbide film (Fig. 2C). According to several embodiments, the deposition of the second gas carbide film 206 may comprise maintaining the substrate holder at, for example, greater than 3 〇〇 c > c, greater than 31 ° C, greater than 320 ° C, or a temperature greater than 330 A. In several examples, the substrate 8 201241901 μ degrees can be between 300 ° C and 320 ° C, or between 320 ° C and 350 ° C. The substrate is held in a real t: I The device is maintained at a temperature of about 33 G ° C. According to the embodiment, the deposition rate of the difluorocarbon film 204 may be less than the second fluorocarbon film 2 〇 6 accumulation rate. "Ref., Figure fD ' The second silver stop film 208 (such as SiO 2 , SiN, or SiON) is deposited on the second fluorocarbon film 206. According to other embodiments, the second inscribed film 208 may be omitted. The first positive DC bias may be greater than the second positive DC bias. In the example, the first positive DC bias may be equal to or greater than 3 kv. In an example, the second positive DC bias can be about 1.5 kV. According to some embodiments, the first gas carbonization may be deposited at the temperature of the first substrate clamping 35, and the second dilute carbide film 206 may be thermally deposited at a second substrate holder lower than the temperature of the first substrate. . According to several embodiments, the thickness of the first fluorocarbon film 2〇4 may be less than the thickness of the stone reflector film 206. In the example, the thickness of the first fluorocarbon film may be 20 nm or less, for example, between 5 dishes! and 1 〇 nm, or between 1 〇 (10) and 2 〇. In the example - the thickness of the second fluorocarbon film is $3 or more between 3〇11111 and 20〇11111, between 3〇11111 and 1〇〇11111, or between 1〇〇11111 nm. . 3 is a schematic diagram of a plasma processing system according to an embodiment of the present invention. The plasma processing system includes a RLSA plasma source for depositing a fluorocarbon film on a substrate. Temperature and high electrical density. Lai processing system 5〇G can be obtained, for example, from the TRISTM SPA _ system of Akasaka East Co., Ltd., Japan. Electric enthalpy processing system = 551 opening 551. A column g 554 such as a column g, which is made of quartz, nitrogen brain, or oxidized, is provided to cover the opening portion 551. ; 1 gas line 572 is located in the side wall of the electrolysis processing chamber willow below the top plate. In the example, the number of gas lines 572 shows both of them). Alternatively, a different number of gas tubes 201241901 can be used to circumferentially align the gas line 572 in the plasma processing chamber 550, but this is not required by the present invention. The process gas can be supplied uniformly and consistently from the gas line 572 to the plasma region 559 in the plasma processing chamber 550. The process gas may contain CaFb gas which may be selected from the group consisting of C4F4, C4F6, C6F6 and C5F8, and other CaFb gases. The gas flow rate of the CaFb gas may be less than 500 seem, less than 200 seem, or less than 100 sccm. The process gas may further contain argon (Ar), nitrogen (N2), or both Ar and N2. The gas flow rates of the Ar and Ν'2 carriers may be less than 5 〇〇 seem, less than 200 seem, or less than 1 〇〇 seem. The gas pressure in the plasma processing chamber can be, for example, less than 1 〇〇 mT rr, less than 5 〇 mTorr, less than 30 mTorr, or less than 20 mTorr.

在電漿處理系統500中,微波功率係經由具有複數槽孔56〇A 的槽孔天線560通過頂板554而提供至電漿處理腔室550。槽孔天 線560面向待處理之基板558,且槽孔天線56〇可由例如銅的金屬 板所製成。為了將微波功率供應至槽孔天線’波導563係設置 於頂板554上,其中波導563係連接至用以產生具有例如約^幻 GHz的頻率之微波的微波電源561。波導563含有:具有連接至 槽孔,線56〇之下端的平面圓形波導563八、連接至圓形波導563八 之亡表面側的圓形波導S63B、及連接至圓形波導563b之上表面 波導轉換器56冗。再者,矩形波導563D係連接至共軸 波導轉換态563C之側面及微波電源56卜 置,内部,導電材料之轴向部562係共轴地設 、斤i t!向 之一端連接至槽孔天線560之上表面的中心(咬 軸波導。結構。因此,圓形波導563B係建構成運作為共 性地,微tit!!如在約01w/cm2制4 w/cm2之間。選擇 電漿可含右Z 4 10 GHz的微波頻率,例如約2.45 GHz ’且 h I、ί 2或等於5 eV的電子溫度,包含1、b、2、2.5、3、 低於5 eV、:氏於f其任何組合。在其他實例中,電子溫度可 實例中,電声低於4 eV、或甚至低於3.5 eV。在若干 /皿度可在3.0及3.5 eV之間、3.5 eV及4.0 eV之間、 201241901 °1 x 101 1 ^ ^01 w 板55^面tiff里腔室550中,基板夹持器552係設置於頂 有加㈣557似熱基板558(如晶圓)。基板夹持器552含 ί ϋίΓ 板558,其中加熱器557可為電阻式純 二ΪΪ Ϊ將;熱器557可為燈加熱器或其他任何形式的加熱' 二,者包水處理腔室550含有連接至電漿處理腔室 部及真空泵555的排出管線553。 w腔至550之底 電漿處理系、統5〇〇更含有配置成對基板炎持 施加偏壓岐生«及/或㈣鮮引至 的=,壓线556。基板偏㈣統556包含用以將功輪合3 Ξ央ίϋ2的基板電基板電源含有即產生器及阻抗&配i 。土板電源係配置成藉由供給基板夹持 ^ =率耦合至基板爽持器552。卵偏‘典型頻中 =約10鳴的範圍内,且可為⑽MHz。中: =可ΪΪ 1 ^,例如小於〇.8耻、小於〇·6驗、小於 0·4ΜΗΖ、或甚至小於G.2MHz。在_ = 雜地’ RP辨細絲辭杨爲極 、洗556係配置成供應Rp偏壓功率,該及 100 w ^100 W ^ 200 W 2〇〇 w ; 3〇〇"w Ιί Z w 及400 W之間、或400 W及5〇〇 w之間。在 $,= ,功率可例如小於⑽W、小於5G w、或小於25 w ^ ,RF偏壓系統為熟悉本技術領域者所熟知 間的爾供應至= 之脈;板 10Hz、20Hz、30Hz、50Hz、或更士 “立心丄 =察覺基板偏壓祕556之功率位準與〜受處^基^7^^ 關。例如’ mm Si晶圓於處理期間需要較麵晶圓大的功 201241901 率消耗。 制器糖處峨500。控 谭,仲制的微處理器、記憶體、及數位工/〇 i自動電m理系統之輸入並監控 腔室55^真;州1^出。再者,控制器599係與電漿處理 電賴箱接ΐ交偏壓系統556、及微波 儲在的制β和士十換凡儲存於§己憶體中的程式係用以依據所 59=== 電;站處=的構件。控制器 實施為-般騎電腦、數位1號==等可將控制器5" 300°ί^ίί^ίΊ5ί)()巾魏碳化物麟處種件可包含約 ,·勺〇 C之間的基板溫度,例如在約3〇〇〇c及約4〇〇〇c之 曰” σ ’可將電漿處理腔室55〇中的壓力維持在例如小於⑽ m on、小於5〇 mT〇rr、小於3〇 mT〇rr、或小於2〇祕订。 ,J i1依據本發明之另—實施例的電椠處理系統之示意圖, 含有輻射線槽孔天線Mial Hne sbt ίίϋ統1G包含電漿處理腔室2G(真空腔室)、天線單元、ί 二供ίί^°電漿處理腔室2G之内部被粗略區分成位於電漿氣 ίϋΓ 下方的電漿產生區域Rb及基板夹持器21上方的 C區域R2。電漿產生區域R1中所產生的電漿可具有數= 之電子溫度。當使電漿擴散至其中執行成膜處理的電 聚擴政區域R2中時’接近基板夾持器21的電漿之電子溫度可下 降,低於約2 eV之數值。基板夾持器21係置中地位於電漿處理 腔室2〇之底部上並作為支持基板w的基板夾持器。在基板夾持 器21内部設有絕緣構件21a、冷卻套2此、及用以 的溫度控鮮元(未顯和。 腿板狐度 / μ電漿處理腔室20之頂部係開放端型式。電漿氣體供應單元3〇 係,置於基板夾持器21之對面,且係經由如〇型環的密封構件(未 顯不)附接至電漿處理腔室2 0之頂部。亦可用作介電窗之電漿氣體 201241901 如氧他或石細擔所製成,且具有平面。複 之^。21讀面及縣氣體供應 m 上複數氣體供應孔31經由氣流通道32盥電喂氣 連通。電聚氣體供應源34將如氬㈤氣或其^氣的 氣體供麟33中。然後’電漿氣體經由複數氣 體ί、應孔31而均勻地供應至電漿產生區域幻中。 蔣立Ϊ聚處理系統1〇更包含處理氣體供應單元40 ’其係置中於雷 體々漿f散區域R2之間的電漿處理腔室20中:處 金所^例如_M_合 焱m^ 孔體么、應早30相似,複數氣體供應孔41 40 ° 4; 之平面係„又置於基板夾持器21之對面。 ,漿處理腔室2〇更包含連接至電漿處理腔室% ίίίΐί排出管線%連接至壓力控制器閥28及直空泵3 壓力控制器閥28可用以達成電漿處理腔^中 -ifί體供應單元4〇之俯視圖係顯示於圖5中。如本圖中所 3二ϋ通道42係形成於處理氣11供應單元40内。格狀氣 通複數孔體供應孔41之下部為面向基板失 g氣體供應孔41經由格狀氣流通道42而與處理氣體供^ 再者,複數開口 44係形成於處理氣體 器21 他職的魏_人基板夾持 形成於相鄰氣流通道\^間。中戶=’複數開口44係 45-47 供應c減體(或一般為caFb氣體)、Ar、及^:"原可 處理乱體&過格狀⑽通道42,且雜由複數氣體供應孔41 13 201241901 至1散區域把中。電漿處理系統ig更包含四 H μ量流速控制^(應1遞4)以供控制處理氣 頻率-55:由,波導54提供如2.4·的預定 導俨*白他50。共轴波導54可包含内導體54B及外 錢技域R1中、電 内的處理氣體激發。 生電场,因此造成電浆處理腔室20 元5〇圖可6包^^卩剖關。如關巾所示,天線單 圓带。面天線主體51可具有附帶開放端型式底面的 '複數柯L 56 Ϊ 51及鋪線槽孔板52可由傳導材料所製成。 波。複56=又置練射線槽孔板52上,以產生圓形極化 於槽孔56a及56b 心圓形圖案或螺旋圖案。由 係如艾面波般自輕射ί槽T板正交極化分量的圓形極化波 電材料所^例如氧化雖购或氮化石夕(秘4)的低損耗介 腔室2〇上,曰传如y利用检封構件(未顯示)而裝設於電漿處理 係位於射:線槽孔板52與蓋板23緊密接觸。蓋板23 性連應源22經由匹配網路25與基板夾持器21電 的奸偏塵心’、用源^應源22產生例如13·56ΜΗζ之預定頻率 量。電皮牽引至基板W之中的離子之ΐ 脈衝。脈衝頻'率可大於置成選擇性地提供处偏麗功率之 2〇HZ、3〇 j、sn” 例如 2Ηζ、4ΗΖ、6Ηζ、8Ηζ、10Ηζ、 及100\v之門/更大。電力供應源公係配置成供應 之間、100 W及200 W之間、勘W及300 W之間、3〇〇 ⑧ 14 201241901 n4〇Gwm、或4QQw&5(x)w之間的rf偏舞功率。古九朵 本技術領域者將察知電力供應源2 ^ 尺寸有關。舉例而言,腿^之基板的 ==,電_系統 於CF 應至基板失持器21的DC電壓產生器35。 積期間,可使用電漿氣體供應單元30將如龜_ 軋的包水氣體引入電漿處理腔室2〇中。另一方面,、 ) :=、單元4〇將處理氣體引入電漿處理腔室20中。雖缺:顯: 漿氣體供應單元3〇將C5F8(或一“ 2之或更多者引入電漿處理腔室2〇中。 依據若干實施例,CF膜可於連續製程中沉積,再 喔轉辦、融輸度= 土之或,夕者。此係不意性地顯示於圖7_9中。 之^ 示意㈣齡氟碳化_絲躺的微波功率位準 4第-=j開始於tG °圖^顯示微波功率位準曲線700, 微ίΪί位準P1係於時間tG及1之間施加。在時間t時, 在第mi/、Γ上升至第二微波功率位準P2,且薄膜沉積 微波功率位準Ρ2時持續。圖7Β顯示在描跡彻中,於膜 =、;Γ=使微波功率位準自$ 一微波功率位準P1單調遞增至第‘ 立波功率位準P2。圖7C顯示在描跡720中,使時間t的捋油 波功率位準P1單調遞增至第二5率 ί ί t中,P1可為零,且因此於時間t0及t之間的第-亂碳 可大期間不施加微波功率。在若干實例中,功率位準P2 」大於1 kW,例如約1.35 kW。 h ^A_8C示意性地顯示氟碳化物膜沉積期間的基板夾持器溫 專膜沉積開始於t〇。目8A顯示基板失持器溫度曲線 往„ /、士中弟一基板夾持器溫度T1係使用於時間to及t之間。在 且i二溫度自T1下降至第二基板夾持器溫度T2, 儿積ί弟一基板夹持器溫度Τ2時持續。圖8Β顯示在描跡 ,於薄膜沉積期間使基板夾持器溫度自於t〇的第一基板夾 15 201241901 =^單^遞減至第二基板夾持器溫度T2。圖8C顯示在描 Γ Γ ΐ基板夾持器溫度自第-基板夾持器溫度T1 早1遞減至紅基板趙H溫度Τ2。在若干實例巾,τ 360 C,且T2可為約330°C。依據若干實摊俐筮和山了為',·勺 ===,且第場==== =9C示意性地顯示l碳化物膜沉翻_加至基板炎持 ,_,其中正DC偏壓DC1係使用於時間tG及t之J g ^時,DC偏壓自DC1下降至第二正Dc偏壓⑽,且薄膜 ^第二DC偏壓DC2時持續。圖9B顯示在描跡91〇中,於薄膜 二積期間使DC偏壓自t。時的第—正DC偏壓DC1單調遞減至第 =正DC偏壓DC2。圖9C顯示在描跡920中,使時間t的Dc偏 壓自第-正DC偏壓DC1單調遞減至第二正Dc偏壓⑽ 實例:,DC1可為約3kV ’且DC2可為約i解。依據若干實施 例,第一氣礙化物膜可沉積於時間t0及t之間,且第二氣碳化物 膜在大於t的時間沉積於第一 i碳化物膜上。 依據本發明之實施例,示意性地顯示於圖7_9中的不同微波功In the plasma processing system 500, microwave power is provided to the plasma processing chamber 550 through the top plate 554 via a slot antenna 560 having a plurality of slots 56A. The slot antenna 560 faces the substrate 558 to be processed, and the slot antenna 56 is made of a metal plate such as copper. In order to supply microwave power to the slot antenna 'waveguide 563' is disposed on the top plate 554, wherein the waveguide 563 is coupled to a microwave power source 561 for generating microwaves having a frequency of, for example, approximately phantom GHz. The waveguide 563 includes: a planar circular waveguide 563 connected to the slot, the lower end of the line 56〇, a circular waveguide S63B connected to the dead side surface of the circular waveguide 563, and a surface connected to the upper surface of the circular waveguide 563b. The waveguide converter 56 is redundant. Furthermore, the rectangular waveguide 563D is connected to the side of the coaxial waveguide switching state 563C and the microwave power source 56 is disposed, and the axial portion 562 of the conductive material is coaxially disposed, and the one end is connected to the slot antenna. The center of the surface above the 560 (biting the axis waveguide. Structure. Therefore, the circular waveguide 563B is constructed to operate in a common manner, micro-tit!! as between about 4w/cm2 and 4 w/cm2. The choice of plasma can be included The microwave frequency of the right Z 4 10 GHz, for example, an electron temperature of about 2.45 GHz 'and h I, ί 2 or equal to 5 eV, including 1, b, 2, 2.5, 3, less than 5 eV, or any of f In other examples, the electronic temperature can be exemplified, the electroacoustic sound is lower than 4 eV, or even lower than 3.5 eV. In some / dish degrees can be between 3.0 and 3.5 eV, between 3.5 eV and 4.0 eV, 201241901 °1 x 101 1 ^ ^01 w The plate holder 55 is mounted on the top of the chamber 550, and the substrate holder 552 is disposed on the top of the (4) 557-like thermal substrate 558 (such as a wafer). The substrate holder 552 includes ί ϋ Γ Plate 558, wherein the heater 557 can be a resistive type of pure ΪΪ ;; the heater 557 can be a lamp heater or any other form of heating 'two, the water The chamber 550 includes a discharge line 553 connected to the plasma processing chamber portion and the vacuum pump 555. The bottom portion of the plasma processing system of the 550 to the bottom of the 550 is further configured to bias the substrate against the substrate. And/or (4) fresh lead =, press line 556. The substrate bias (4) system 556 includes the substrate for the power wheel to be 3 Ξ ϋ ϋ 2 substrate electrical substrate power supply containing the generator and impedance & equipped with i. It is configured to be coupled to the substrate holder 552 by the supply substrate clamping rate. The egg bias is in the range of typical frequency = about 10 octaves, and may be (10) MHz. Medium: = ΪΪ 1 ^, for example, less than 〇. 8 shame, less than 〇 · 6 test, less than 0 · 4 ΜΗΖ, or even less than G. 2MHz. In _ = miscellaneous ' RP discriminating silk words Yang is extremely, washing 556 is configured to supply Rp bias power, and 100 w ^100 W ^ 200 W 2〇〇w ; 3〇〇"w Ιί between Z w and 400 W, or between 400 W and 5 〇〇 w. At $, = , the power can be, for example, less than (10) W, less than 5G w, or less than 25 w ^ , the RF bias system is familiar to those skilled in the art, and is supplied to the pulse; 10 Hz, 20 Hz, 30 Hz, 50 Hz, or more = Detecting the power level of the substrate bias 556 and the ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ . Control Tan, Zhongzhong's microprocessor, memory, and digital work / 〇 i automatic electric system input and monitor the chamber 55 ^ true; state 1 ^ out. Furthermore, the controller 599 is connected to the plasma processing electric box and the bias system 556, and the system in which the microwave is stored is stored in the § memory. == electricity; the component at the station =. The controller is implemented as a general-purpose computer, digital number 1 ==, etc. The controller 5" 300°ί^ίί^ίΊ5ί)() towel Wei carbide carbide parts can contain about, · spoon 〇 C The substrate temperature, for example, between about 3 〇〇〇c and about 4 〇〇〇c σ ' can maintain the pressure in the plasma processing chamber 55 在 at, for example, less than (10) m on, less than 5 〇 mT rr, Less than 3〇mT〇rr, or less than 2〇., J i1 is a schematic diagram of an electric power treatment system according to another embodiment of the present invention, containing a radiation slot antenna Mial Hne sbt ίίϋ 1G containing a plasma processing chamber The inside of the chamber 2G (vacuum chamber), the antenna unit, and the plasma processing chamber 2G are roughly divided into a plasma generating region Rb located below the plasma gas and a C above the substrate holder 21. The region R2. The plasma generated in the plasma generating region R1 may have an electron temperature of several = When approaching the plasma into the electropolymerization region R2 in which the film forming process is performed, 'close to the substrate holder 21 The electron temperature of the plasma can be lowered, less than about 2 eV. The substrate holder 21 is placed in the plasma processing chamber. The bottom of the chamber 2 is used as a substrate holder for supporting the substrate w. Inside the substrate holder 21, an insulating member 21a, a cooling jacket 2, and a temperature-controlled fresh element are provided (not shown. The top of the fox/μ plasma processing chamber 20 is an open end type. The plasma gas supply unit 3 is placed opposite the substrate holder 21 and is passed through a sealing member such as a 〇-shaped ring (not shown) It is attached to the top of the plasma processing chamber 20. It can also be used as a plasma gas for the dielectric window 201241901, such as oxygen or stone, and has a flat surface. The plurality of gas supply holes 31 on the gas supply m are electrically fed through the gas flow path 32. The electropolymer gas supply source 34 supplies a gas such as argon (5) gas or its gas to the gas 33. Then, the plasma gas passes through a plurality of gases. The hole 31 is evenly supplied to the plasma generation region. The Jiang Lijun polymerization system 1 further includes a processing gas supply unit 40' which is connected to the plasma between the detonation region F2. In the processing chamber 20: at the gold station ^, for example, _M_合焱m^ hole body, should be similar to the early 30, a plurality of gas supply holes 41 40 ° 4; The plane system is placed opposite the substrate holder 21. The slurry processing chamber 2〇 is further connected to the plasma processing chamber. 排出% of the discharge line is connected to the pressure controller valve 28 and straight The air pump 3 pressure controller valve 28 can be used to achieve a plasma processing chamber. The top view of the liquid supply chamber is shown in Fig. 5. As shown in Fig. 5, the two channels 42 are formed in the processing gas 11 supply. In the unit 40, the lower portion of the grid-shaped gas-passing plurality of pore supply holes 41 is disposed facing the substrate and the gas supply hole 41 is supplied to the processing gas via the lattice flow passage 42, and the plurality of openings 44 are formed in the process gas 21 The Wei-Human substrate clamping of his position is formed between adjacent airflow channels. Zhonghu = 'plural opening 44 series 45-47 supply c minus body (or generally caFb gas), Ar, and ^:" original handleable chaos & over-grid (10) channel 42, and miscellaneous gas supply Hole 41 13 201241901 to 1 scattered area to the middle. The plasma processing system ig further comprises a four-H μ flow rate control ^ (should 1 pass 4) for controlling the process gas frequency -55: by, the waveguide 54 provides a predetermined guide such as 2.4 · white 50. The coaxial waveguide 54 may include a process gas excitation in the inner conductor 54B and the external power domain R1. The electric field is generated, so that the plasma processing chamber is 20 yuan 5 〇 map can be 6 packs ^ ^ 卩 cut off. As shown in the towel, the antenna is rounded. The face antenna body 51 may have a 'complex number L 56 Ϊ 51 and a wire slot plate 52 with an open end type bottom surface that may be made of a conductive material. wave. The complex 56 = is again placed on the ray slot plate 52 to produce a circular or spiral pattern of circular polarizations in the slots 56a and 56b. The circularly polarized wave electric material of the T-plate orthogonal polarization component is oxidized by a series of low-loss dielectric chambers such as Oxidation The 曰 如 如 y is installed in the plasma processing system by means of a sealing member (not shown), and the wire slot plate 52 is in close contact with the cover plate 23. The cover 23 is connected to the substrate 22 via the matching network 25 and the substrate holder 21 to generate a predetermined frequency of, for example, 13.56 用. The skin is pulled to the pulse of ions in the substrate W. The pulse frequency' rate may be greater than 2〇HZ, 3〇j, sn", such as 2Ηζ, 4ΗΖ, 6Ηζ, 8Ηζ, 10Ηζ, and 100\v gates/larger, which are selectively provided to provide a partial power. The source system is configured to supply rf dance power between supply, between 100 W and 200 W, between W and 300 W, between 3〇〇8 14 201241901 n4〇Gwm, or 4QQw&5(x)w The nine nine skilled person in the art will know that the power supply source is 2 sized. For example, the == of the substrate of the leg ^, the system _ is applied to the DC voltage generator 35 of the substrate holder 21 at CF. During the period, the water-incorporating gas such as the turtle-rolling may be introduced into the plasma processing chamber 2 by using the plasma gas supply unit 30. On the other hand, , ::, the unit 4〇 introduces the processing gas into the plasma processing chamber. 20. In the absence of: the slurry gas supply unit 3 〇 C5F8 (or one or two or more into the plasma processing chamber 2 。. According to several embodiments, the CF film can be deposited in a continuous process, Then transfer, melt the degree = earth or, the evening. This is not shown in Figure 7_9. ^ (four) age fluorocarbonization _ silk lying microwave The rate level 4 -=j starts at tG °Fig. ^ shows the microwave power level curve 700, and the micro level is P1 is applied between time tG and 1. At time t, the mi/, Γ rises to The second microwave power level P2, and the film deposition microwave power level Ρ2 continues. Figure 7Β shows that in the trace, the film =, Γ = monotonically increase the microwave power level from the microwave power level P1 Up to the 'standing wave power level P2. Figure 7C shows that in trace 720, the oil wave power level P1 of time t is monotonically increased to the second rate 5%, P1 can be zero, and therefore at time The first-disordered carbon between t0 and t may not apply microwave power for a large period. In several examples, the power level P2" is greater than 1 kW, such as about 1.35 kW. h ^A_8C schematically shows the deposition of fluorocarbon film during deposition The substrate holder temperature film deposition starts at t〇. The 8A shows the substrate missing device temperature curve to „ /, 士中弟 a substrate holder temperature T1 is used between time to and t. The temperature drops from T1 to the second substrate holder temperature T2, and continues when the substrate holder temperature Τ2. Figure 8Β shows Traced, the substrate holder temperature is reduced from the first substrate holder 15 during the film deposition period to the second substrate holder temperature T2. Figure 8C shows the substrate clamping in the drawing Γ ΐ The temperature of the device is decreased from the first substrate holder temperature T1 by 1 to the red substrate Zhao H temperature Τ 2. In several example towels, τ 360 C, and T2 can be about 330 ° C. According to several actual spreads and mountains ',·spoon===, and the first field=====9C schematically shows that l carbide film is overturned_added to the substrate, _, where positive DC bias DC1 is used at time tG and t At J g ^, the DC bias drops from DC1 to the second positive Dc bias (10), and the film continues for the second DC bias DC2. Figure 9B shows that in trace 91, the DC is biased from t during the film accumulation. The first positive DC bias DC1 monotonically decreases to the = positive DC bias DC2. Figure 9C shows an example in which the Dc bias of time t is monotonically decreasing from the first positive DC bias DC1 to the second positive Dc bias (10) in the trace 920. Example: DC1 can be about 3kV ' and DC2 can be about i solution . According to several embodiments, the first gas barrier film can be deposited between times t0 and t, and the second gas carbide film is deposited on the first i carbide film at a time greater than t. Different microwave work schematically shown in Figure 7-9, in accordance with an embodiment of the present invention

率位準、基板夾持器溫度、及DC偏壓之任何變更可於CF膜沉 期間使用。 I 依據本發明之實施例,提供用以形成半導體裝置的方法。該 方法包含.在電漿處理腔室中的基板夾持器上提供基板,該電喂 處理腔室含有微波天線、用以對微波天線供電的微波電源D、用^ 對基板夹持器施加射頻(RF)偏壓的RF偏壓源、及用以對基板夾持 器施加直流(DC)偏壓的DC電壓源。該方法更包含:在電漿處理 腔室中引入含CaFb氣體的第一處理氣體。在—實例中,第二^理 氣體可包含C5F8、Ar、A N2。之後,第-賴麵由施加^一 RF偏壓及第一正DC偏壓至基板夾持器而自電漿處理系統中的第 一處理氣體形成,且曝路於弟一電聚以第一基板夾持哭严声為其 板上沉積第一亂碳化物膜。在一實例中,第一基板夾度$ 201241901 為約360°C ’第一 RF偏壓可為約25 w,且第一正%偏壓可為約 。在—實例中’第―㈣可在不施加微波功率至微波天線的 慣況下形成。 第-Ϊ方ΐ更包含:在電聚處理腔室中引入含CaFb氣體的 處理讀。在-實例中,第二處理氣體可包含吼、&、及 ^第二電漿係藉由施加微波功率至微波天線、並施加第二处 ,墨及第二正DC偏壓至基板夾持n而自第二處理氣體形直 以第二基板夾持器溫度在第—氟碳化物膜上^ °在—實例中’第二基板祕器溫度可為約 33〇 C ’微波功率可為約135kw,第二即偏壓可為約25 w,且 弟-正DC偏壓可為約L5 kv。進—步的處理條件可包含約μ ==之虱體壓力、約100 sccm之Ar氣體流 N2氣體流。 W seem之 之就之第—基板鱗器溫度及3 的第一 〇膜、及使用3购之第二基板 人符。W皿度、1.5kV之第二正〇(:偏壓、及J 3 直接形成於第—CF膜上之第二CF膜的^==波^ 或剝離的徵象。g — 了 口構亚未顯不出起泡 度之懸空及第^㈣具有低濃 或負編度及_ 過退火測試。^1積的CF膜的測試結構並未通 溫度及3kv之第一=^%有l3’或330〇c之基板夾持器 通過退火測試。第二CF膜係使 J 構並未Any change in the rate level, substrate holder temperature, and DC bias can be used during the CF film sink. In accordance with an embodiment of the present invention, a method for forming a semiconductor device is provided. The method includes providing a substrate on a substrate holder in a plasma processing chamber, the electric processing chamber including a microwave antenna, a microwave power source D for supplying power to the microwave antenna, and applying a radio frequency to the substrate holder A (RF) biased RF bias source and a DC voltage source for applying a direct current (DC) bias to the substrate holder. The method further includes introducing a first process gas containing CaFb gas into the plasma processing chamber. In the example, the second gas may comprise C5F8, Ar, A N2. Thereafter, the first-side surface is formed from the first processing gas in the plasma processing system by applying an RF bias and a first positive DC bias to the substrate holder, and exposing the first to the first one. The substrate is held tightly and the first chaotic carbide film is deposited on the plate. In one example, the first substrate clamping of $201241901 is about 360 ° C. The first RF bias can be about 25 w, and the first positive % bias can be about . In the example - '--(iv) can be formed without the application of microwave power to the microwave antenna. The first method includes: introducing a processing read containing CaFb gas into the electropolymerization processing chamber. In an example, the second process gas can comprise 吼, &, and ^ the second plasma is applied to the substrate by applying microwave power to the microwave antenna and applying the second portion, the ink and the second positive DC bias to the substrate. n from the second process gas straight to the second substrate holder temperature on the first fluorocarbon film ^ in the example - the second substrate secret temperature can be about 33 〇 C 'microwave power can be about At 135 kw, the second, i.e., bias, can be about 25 w, and the di-positive DC bias can be about L5 kv. The further processing conditions may include a 虱 body pressure of about μ ==, an Ar gas stream of about 100 sccm, and a N 2 gas stream. W seem to be the first - the substrate scale temperature and the first film of 3, and the second substrate used in 3. W-degree, 1.5kV second positive 〇 (: bias, and J 3 directly formed on the first CF film of the second CF film ^ = = wave ^ or peeling signs. g - mouth structure The dangling degree of the foaming degree and the (4) have low-concentration or negative-programming and _ over-annealing test. The test structure of the CF film of ^1 is not passed through the temperature and the first =^% of 3kv has l3' or The 330 〇c substrate holder passed the annealing test. The second CF film system did not make the structure

Energy LosT^f; + ^ ° (Electron SPeCt_Py,EELS)的測試結構之進一步分析顯示通 17 201241901 測試結構中經改善的c_c鍵結及增加的C_F鍵结。 M ^- SiN^^l ti, 膜及弟一 CF M之間的改良界面。 τ 、㈣描ΐΐ用微波電漿縣形成料體裝置之氟碳化物的 1之實施例的前述說明已為了 來犬。太πίίΐ欲為詳盡無遺或將本發明限制於所揭露的精石崔 ί i、士 it ϊ 後的申料利範圍包含僅用於描述目的且 ,生之用語。例如,於此(包含申請專利範圍中) 不需為基板「上」的膜直接在基板上且緊接基 板及基板之間可能有第二薄膜或其他結構。 4悉侧技術領域者可鑑於上職轉知許多修改及 Si丄ίίί技術領域者將察知圖式中所示的各種構件之各種 隨附申睛專利範圍所限制。 由 【圖式簡單說明】 程圖圖1為依據本發明之實施例的在基板上形成氟碳化物膜的流 化物Κΐΐ示意性地顯示依據本發明之實施例的基板上之氟石炭 將考=為依據本發明之實施例的電漿處理系統之示意圖,該電 ::糸統含有輕射線槽孔天線(radial line slot _腿,虹 水源以供於基板上沉積氟碳化物膜; #愈ξ ί為依據本發明之實施例的另一電漿處理系統的示意圖, 泫電水處理系統含有輻射線槽孔天線(radial line slot antenna, RLSA)電漿源以於基板上沉積氟碳化物; 圖5顯示圖4中的電漿處理系統之氣體供應單元的俯視圖; 圖6顯示圖4中的電漿處理系統之天線部份的局部剖面圖; 及 圖7A-7C、圖8A-8C、圖9A-9C示意性地顯示依據本發明之 18 201241901 若干實施例於氟碳化物膜沉積期間的微波功率位準、基板夾持器 溫度、及DC偏壓上的變化。 【主要元件符號說明】 10 電漿處理系統 20 電漿處理腔室 21 基板失持器 21a 絕緣構件 21b 冷卻套 22 電力供應源 23 蓋板 25 匹配網路 26 排出管線 27 真空管線 28 壓力控制器閥 29 真空泵 30 電漿氣體供應單元 31 氣體供應孔 32 氣流通道 33 電漿氣體供應埠 34 電漿氣體供應源 35 DC電壓產生器 40 處理氣體供應單元 41 氣體供應孔 42 氣流通道 43 處理氣體供應琿 44 複數開口 45 處理氣體供應源 46 處理氣體供應源 47 處理氣體供應源 19 201241901 50 天線單元 51 平面天線主體 52 輻射線槽孔板 53 介電板 54 共軸波導 54A 外導體 54B 内導體 55 微波產生器 56 複數槽孔 56a 槽孔 56b 槽孔 100 流程圖 102 步驟 104 步驟 106 步驟 108 步驟 110 步驟 112 步驟 114 步驟 200 基板 202 第一蝕刻中止膜 204 第一氟碳化物膜 206 第二氟碳化物膜 208 第二蝕刻中止膜 500 電漿處理系統 550 電漿處理腔室 551 開口部 552 基板夹持器 553 排出管線 554 頂板 ⑧ 201241901 555 真空泵 556 基板偏壓系統 557 加熱器 558 基板 559 電漿區域 560 槽孔天線 560A 槽孔 561 微波電源 562 軸向部 563 波導 563A 圓形波導 563B 圓形波導 563C 共軸波導轉換器 563D 矩形波導 572 氣體管線 599 控制器 700 曲線 710 描跡 720 描跡 800 曲線 810 描跡 820 描跡 900 曲線 910 描跡 920 描跡 MFC1 質量流速控制器 MFC2 質量流速控制器 MFC3 質量流速控制器 MFC4 質量流速控制器 R1 電漿產生區域 21 201241901 R2 電漿擴散區域 VI 閥門 V2 閥門 V3 閥門 V4 閥門 W 基板 ⑧:Further analysis of the test structure of Energy LosT^f; + ^ ° (Electron SPeCt_Py, EELS) shows an improved c_c bond and an increased C_F bond in the test structure of 201241901. M ^- SiN^^l ti, an improved interface between the membrane and the CF-M. τ, (4) The foregoing description of the embodiment of the formation of the fluorocarbon of the material device by the microwave plasma county has been made for dogs. Too πίί ΐ 详尽 详尽 或 或 或 或 或 或 或 或 或 或 或 或 或 或 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔 崔For example, this (including the scope of the patent application) does not require a film "on" the substrate to be directly on the substrate and possibly a second film or other structure between the substrate and the substrate. 4 Those skilled in the art can understand that many modifications and those skilled in the art will be limited by the scope of the various patents attached to the various components shown in the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow of a fluorocarbon film formed on a substrate according to an embodiment of the present invention. FIG. 1 is a schematic view showing a fluorocarbon on a substrate according to an embodiment of the present invention. A schematic diagram of a plasma processing system according to an embodiment of the present invention, the electricity system: a system containing a light ray slot antenna (radial line slot _ leg, a rainbow water source for depositing a fluorocarbon film on the substrate; #ξ ί is a schematic diagram of another plasma processing system according to an embodiment of the present invention, the 泫 water treatment system includes a radial line slot antenna (RLSA) plasma source for depositing fluorocarbon on the substrate; 5 is a top plan view showing the gas supply unit of the plasma processing system of FIG. 4; FIG. 6 is a partial cross-sectional view showing the antenna portion of the plasma processing system of FIG. 4; and FIGS. 7A-7C, 8A-8C, and 9A -9C schematically shows changes in microwave power level, substrate holder temperature, and DC bias during deposition of a fluorocarbon film in accordance with several embodiments of the invention in accordance with the invention 18 201241901. [Signal Description of Main Components] 10 Electricity Slurry treatment system 20 plasma processing chamber 21 substrate holder 21a insulating member 21b cooling jacket 22 power supply source 23 cover plate 25 matching network 26 discharge line 27 vacuum line 28 pressure controller valve 29 vacuum pump 30 plasma gas supply unit 31 gas supply Hole 32 Air flow channel 33 Plasma gas supply 埠 34 Plasma gas supply source 35 DC voltage generator 40 Process gas supply unit 41 Gas supply hole 42 Air flow channel 43 Process gas supply 珲 44 Complex opening 45 Process gas supply source 46 Process gas supply Source 47 Process gas supply source 19 201241901 50 Antenna unit 51 Planar antenna body 52 Radiator slot plate 53 Dielectric plate 54 Coaxial waveguide 54A Outer conductor 54B Inner conductor 55 Microwave generator 56 Multiple slots 56a Slot 56b Slot 100 Flowchart 102 Step 104 Step 106 Step 108 Step 110 Step 112 Step 114 Step 200 Substrate 202 First Etch Stop Film 204 First Fluorocarbon Film 206 Second Fluorocarbon Film 208 Second Etch Stop Film 500 Plasma Processing System 550 Plasma processing chamber 551 opening Portion 552 Substrate holder 553 Discharge line 554 Top plate 8 201241901 555 Vacuum pump 556 Substrate bias system 557 Heater 558 Substrate 559 Plasma region 560 Slot antenna 560A Slot 561 Microwave power supply 562 Axial portion 563 Waveguide 563A Circular waveguide 563B Circular Waveguide 563C Coaxial Waveguide Converter 563D Rectangular Waveguide 572 Gas Line 599 Controller 700 Curve 710 Trace 720 Trace 800 Curve 810 Trace 820 Trace 900 Curve 910 Trace 920 Trace MFC1 Mass Flow Controller MFC2 Mass Flow Rate Controller MFC3 Mass Flow Controller MFC4 Mass Flow Controller R1 Plasma Generation Zone 21 201241901 R2 Plasma Diffusion Zone VI Valve V2 Valve V3 Valve V4 Valve W Substrate 8:

Claims (1)

201241901 七、申請專利範圍: 種半導體裝置的形成方法,包含: —人在電漿處理腔室中的基板夾持器上提供基板,該電漿處理腔 ,吞有祕波天線、用以對該微波天線供電的微波功率源、用以對 该基板,持器施加射頻偏壓的卯偏壓源、及 用以對該基板夾持器施加直流(direct current,Dc)偏壓的DC電壓 源; 在該電漿處理腔室中引入含CaFb氣體的第一處理氣 a&b為正整數; 軋股,、平 藉=施加第-RF偏壓及第—正DC偏壓至該基板夾持器而自 该第一處理氣體形成第一電漿; 利用該第一電漿在該基板上沉積第一氟碳化物膜; 在該電漿處理腔室中引入含CaFb氣體的第二處理 a及b為正整數; ^ 藉由施加微波功率至該微波天線、及施加第二即偏壓及第二 正DC偏壓至該基板夾持器而自該第二處理氣體形成第二電漿; 及 ^ 膜。利用该第二錢在該第—氟碳化物膜上沉積第二減化物 2.如申請專繼圍第1項之半導錄置的形成方法,其中 一電漿係於不施加微波功率至該微波天線的情況下形成。 3·如申請專利範圍f 1項之半賴裝置的形成方法,盆中 一正DC偏壓大於該第二正DC偏壓。 '、 ,其中該第 4.如申請專利範圍第3項之半導體裝置的形成方法 一正DC偏壓等於或大於3 kV。 ^如申請專利範圍帛!項之半導體裝置的形成綠,其中 二亂碳化細在第-基板夾持器溫度沉積,且該第 在低於該第-基板婦H溫度的第三基板夾肺沉積。 ' 6.如申請專利範圍1項之半導體裝置的形成方法,財該 天線包含輻射線槽孔天線(mdialline sl〇tantenna> j^m'。 23 201241901 cf 第1項之半導體裝置卿成方法,其中該 a b 風體係k 自 C4F4、C4F6、C6F6 及 C5F8。 -及8第1項之半導縣置的軸方法,其中該第 及弟一處理軋體含有相同的CaFb氣體。 -及第1項之半導體裝置的形成方法,其中該第 及ϋ理I體更含有氬(Ar)、氮⑽、或&及Ν2兩者。 笛-利範圍第1項之半導體裝置的形成方法,其中該 弟貺奴化,膜之厚度小於該第二氟碳化物膜之厚度。 赞申請專纖1111項之半導體裝置的形成方法,其中該 膜:严膜之^度為2G11111或更小,且其中該第二11碳化物 腺之7于度為30 nm或更大。 12. 如申請專利範圍第丨項之半導體裝置的形成方直 第-氟碳化物膜之沉積速率低於該第二驗化物膜找積速率中^ 13. —種半導體裝置的形成方法,包含: 、 f漿處理腔室中的基板夾持器上提供基板,該·處理腔 =有,波天線、用以對該微波天線供電的微波功率源、用以對 该,板夹持器施加射頻(RP)偏壓的处偏壓源、及用以對該基板 持器施加直流(DC)偏壓的DC電壓源; μ 土 在該電漿處理腔室中引入含CaFb氣體的處理氣體,宜中 b為正整數; /'Ya及 體形偏壓及正%偏壓至該基板夹持器'而自該處理氣 施加微波功率至該微波天線;及 利用該電漿在該基板上沉積氟碳化物膜,其中所施加之 ,率係於該沉積期間自第一微波功率位準上升至第二微波功率位 準。 H.專利範圍第13項之半導體裝置的形成方法,其中該電漿 於不施加微波功率至該微波天線的情況下形成。 7 '、 15.專利範圍第13項之半導體裝置的形成方法,更包含:於嗜 沉積期間使該正DC偏壓自第一正DC偏壓減少至第二正Dc、g ⑧ 24 201241901 壓。 16.專利範圍第13項之半導體裝置的形成方法,更包含:於該 沉積期間使該基板夾持器之溫度自第—基板夾持器溫度減少至g 二基板夾持器溫度。 17. 專利範圍第13項之半導體裝置的形成方法,其中該微波天 線包含輻射線槽孔天線(radial line slot antenn\ RLISA)。 18. 專利範圍f 13項之半導體裝置的形成方法,其中該CaFb 氣體係選自 C4F4、c4f6、C6F6 及 c5F8。 -J·專f心圍第13項之半導體錢的形成方法,其中該處理氣 體更S有氬(Ar)、氮(N2)、或Ar及N2兩者。 專f範财13項之半導體裝置的形成方法,其中該氟破化 物朕之沉積速率於該沉積期間增加。 八、圖式: 25201241901 VII. Patent application scope: A method for forming a semiconductor device, comprising: - a person provides a substrate on a substrate holder in a plasma processing chamber, the plasma processing chamber is engulfed with a secret wave antenna for a microwave power source for supplying microwave antennas, a 卯 bias source for applying a radio frequency bias to the substrate, and a DC voltage source for applying a direct current (Dc) bias to the substrate holder; Introducing a first process gas a&b containing CaFb gas into the plasma processing chamber as a positive integer; rolling, lending = applying a first RF bias and a first positive DC bias to the substrate holder Forming a first plasma from the first process gas; depositing a first fluorocarbon film on the substrate using the first plasma; introducing a second process a and b containing a CaFb gas in the plasma processing chamber a positive integer; ^ forming a second plasma from the second process gas by applying microwave power to the microwave antenna, and applying a second, biased, and second positive DC bias to the substrate holder; and membrane. Using the second money to deposit a second subtractive compound on the first fluorocarbon film. 2. A method for forming a semi-conductive recording according to the first item, wherein a plasma is applied to the microwave power Formed in the case of a microwave antenna. 3. A method of forming a device according to the scope of claim 1 of the invention, wherein a positive DC bias in the basin is greater than the second positive DC bias. ', wherein the fourth embodiment of the semiconductor device of claim 3 is formed with a positive DC bias equal to or greater than 3 kV. ^ If you apply for a patent scope 帛! The formation of the semiconductor device is green, wherein the chaotic carbonization is deposited at the temperature of the first substrate holder, and the third substrate is deposited at a temperature lower than the temperature of the first substrate. 6. The method of forming a semiconductor device according to claim 1, wherein the antenna comprises a radiation slot antenna (mdialline sl〇tantenna) j^m'. 23 201241901 cf Item 1 of the semiconductor device, wherein The ab wind system is derived from C4F4, C4F6, C6F6, and C5F8. - and the first method of the semi-guided county of the eighth item, wherein the first and second processing bodies contain the same CaFb gas. - and the first item A method of forming a semiconductor device, wherein the first and second processing bodies further comprise argon (Ar), nitrogen (10), or both & Ν2. The method for forming a semiconductor device according to the first item of the present invention, wherein the younger brother The thickness of the film is less than the thickness of the second fluorocarbon film. The method for forming a semiconductor device of the special fiber 1111 is applied, wherein the film has a degree of 2G11111 or less, and wherein the second 11 The carbide gland 7 is 30 nm or more. 12. The deposition rate of the formed straight fluorocarbon film of the semiconductor device according to the scope of claim 2 is lower than the second sample film deposition rate. Medium ^ 13. A method of forming a semiconductor device, package Providing a substrate on the substrate holder in the f-treatment chamber, the processing chamber=having a wave antenna, a microwave power source for supplying power to the microwave antenna, and applying the RF to the plate holder (RP) bias source at the bias voltage, and a DC voltage source for applying a direct current (DC) bias to the substrate holder; μ soil is introduced into the plasma processing chamber to introduce a processing gas containing CaFb gas, preferably Where b is a positive integer; /'Ya and body bias and positive % biased to the substrate holder' and microwave power is applied from the process gas to the microwave antenna; and fluorocarbonization is deposited on the substrate using the plasma The method of forming a semiconductor device, wherein the plasma is applied from the first microwave power level to the second microwave power level during the deposition. The method for forming a semiconductor device according to the invention of claim 13, further comprising: reducing the positive DC bias from the first positive DC bias during the deposition process To the second positive Dc, g 8 24 201241901 pressure. 16 The method for forming a semiconductor device according to Item 13, further comprising: reducing a temperature of the substrate holder from a temperature of the substrate holder to a temperature of the substrate holder during the deposition. 17. Patent scope The method of forming a semiconductor device according to Item 13, wherein the microwave antenna comprises a radiation line slot antenn (RLISA). 18. The method for forming a semiconductor device according to claim 13 wherein the CaFb gas system is selected from the group consisting of C4F4, c4f6, C6F6 and c5F8. A method of forming a semiconductor money according to item 13 of the present invention, wherein the processing gas further contains argon (Ar), nitrogen (N2), or both Ar and N2. A method of forming a semiconductor device according to the 13th aspect, wherein the deposition rate of the fluorine-decomposed germanium is increased during the deposition. Eight, schema: 25
TW101109099A 2011-03-18 2012-03-16 Method for controlling dangling bonds in fluorocarbon films TWI469199B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161454320P 2011-03-18 2011-03-18

Publications (2)

Publication Number Publication Date
TW201241901A true TW201241901A (en) 2012-10-16
TWI469199B TWI469199B (en) 2015-01-11

Family

ID=46879696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101109099A TWI469199B (en) 2011-03-18 2012-03-16 Method for controlling dangling bonds in fluorocarbon films

Country Status (2)

Country Link
TW (1) TWI469199B (en)
WO (1) WO2012129122A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624736A (en) * 1984-07-24 1986-11-25 The United States Of America As Represented By The United States Department Of Energy Laser/plasma chemical processing of substrates
TW469574B (en) * 2000-12-08 2001-12-21 Nat Science Council Manufacturing process of low K material
US7256134B2 (en) * 2003-08-01 2007-08-14 Applied Materials, Inc. Selective etching of carbon-doped low-k dielectrics
WO2005112092A2 (en) * 2004-05-11 2005-11-24 Applied Materials, Inc. CARBON-DOPED-Si OXIDE ETCH USING H2 ADDITIVE IN FLUOROCARBON ETCH CHEMISTRY
US7288488B2 (en) * 2005-05-10 2007-10-30 Lam Research Corporation Method for resist strip in presence of regular low k and/or porous low k dielectric materials
KR101185757B1 (en) * 2005-06-20 2012-09-25 고에키자이단호진 고쿠사이카가쿠 신고우자이단 Interlayer insulating film and wiring structure, and process for producing the same
JP5082411B2 (en) * 2006-12-01 2012-11-28 東京エレクトロン株式会社 Deposition method

Also Published As

Publication number Publication date
WO2012129122A1 (en) 2012-09-27
TWI469199B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
US9478434B2 (en) Chlorine-based hardmask removal
TWI496193B (en) Method of depositing highly conformal amorphous carbon films over raised features
KR102419980B1 (en) Methods for forming a metal silicide interconnection nanowire structure
TW200945443A (en) Methods for oxidation of a semiconductor device
TW200908074A (en) Hydrogen ashing enhanced with water vapor and diluent gas
US9362111B2 (en) Hermetic CVD-cap with improved step coverage in high aspect ratio structures
JP6025735B2 (en) Dielectric film deposition method using microwave plasma
TW434824B (en) An interconnect structure for use in an integrated circuit
JP2010192755A (en) Forming method of silicon oxide film, and manufacturing method of semiconductor device
US20170125517A1 (en) Method of corner rounding and trimming of nanowires by microwave plasma
TW200830411A (en) Plasma oxidizing method
JP2008211079A (en) Barrier film and forming method thereof, and multilayer interconnection structure and manufacturing method thereof
JP4123428B2 (en) Etching method
TW201030846A (en) Method and apparatus for forming silicon oxide film
TW201103103A (en) Method for fabricating integrated circuit structures
CN107851558B (en) UV-assisted injection of materials into porous membranes
CN109923660B (en) High pressure anneal and reduced wet etch rate
KR100834612B1 (en) Method for treating silicone-based material to be treated, treatment apparatus and method for manufacturing semiconductor device
TW201241901A (en) Method for controlling dangling bonds in fluorocarbon films
JP5935227B2 (en) Semiconductor device manufacturing method and semiconductor device
TWI505360B (en) Method of forming metal carbide barrier layers for fluorocarbon films
KR20160138078A (en) Film forming method, semiconductor device manufacturing method, and semiconductor device
TW201131654A (en) Semiconductor device, method for fabricating the same and apparatus for fabricating the same
TW201026885A (en) Silicon oxynitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
TW201034078A (en) Methods for forming conformal oxide layers on semiconductor devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees