TW201241072A - Conductive microparticle, resin particle, and anisotropic conductive material using same - Google Patents

Conductive microparticle, resin particle, and anisotropic conductive material using same Download PDF

Info

Publication number
TW201241072A
TW201241072A TW101102433A TW101102433A TW201241072A TW 201241072 A TW201241072 A TW 201241072A TW 101102433 A TW101102433 A TW 101102433A TW 101102433 A TW101102433 A TW 101102433A TW 201241072 A TW201241072 A TW 201241072A
Authority
TW
Taiwan
Prior art keywords
value
particles
resin particles
resin
monomer
Prior art date
Application number
TW101102433A
Other languages
Chinese (zh)
Inventor
Kazuaki Matsumoto
Naoki Kobayashi
Yoshikuni Sasaki
Original Assignee
Nippon Catalytic Chem Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Catalytic Chem Ind filed Critical Nippon Catalytic Chem Ind
Publication of TW201241072A publication Critical patent/TW201241072A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a conductive microparticle that has a low initial resistance value and can maintain a stable connected state while being a minute conductive microparticle. This conductive microparticle has a base material formed from a resin particle and at least one conductive metal layer formed on the surface of the base material. This conductive microparticle is characterized by the number-based average dispersed particle size for the resin particle being 1.0 - 2.5 [mu]m and the modulus of compressive elasticity when the diameter of the resin particle is displaced 10% (10% K value) being 12,000 N/mm2 or greater.

Description

201241072 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式. 益 〇 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種微細之導電性微粒 丁 将別是關於 一種可以減低在使用於電連接之狀態下之短路發生之導電 性微粒子。 【先前技術】 向來,在電子機器之組裝,為了進行對向之許多之電 :或配線間之電連接’目此,採用藉由異方性導電材料而 造成之連接方式。異方性導電材料係導電性微粒子混合於 黏合劑樹脂等之材料,例如有異方性導電糊膏⑽)、異方 性導電薄膜(ACF)、異方性導電油墨、異方性導電薄片等。 在此作為使用於異方性導電材料之導電性微粒子係使用 藉由導電性金屬層而被覆金屬粒子或成為基材之樹脂粒子 之表面者。 但是,在近年來,t子機器之小型.化、高機能化係越 來越加進展。隨著這個而進行搭載於電氣機器之電子零件 J里化、尚密度構裝化,電子電路之電極或配線係流行 微、、’田化、狹小化。接著,正如前面之敘述,進行電子 電路之電極或配線之微細化、狹小化,或者即使是就使用 於異方性導電材料之導電性微粒子而言,也要求粒徑更加 201241072 v 小者。 作為粒徑小之導電性微粒子係提議例如由樹脂或無機 化合物而組成且使用平均粒徑為0. 5〜2. 5 μ m、粒徑之cv 值為20%以下之微球來作為基材之導電性微粒子(專利文獻 1)。此外,報告在由有機高分子而組成之核體,在以規定 之厚度來施行金屬電錢之導電粒子’使得配合導電粒子之 直徑而得到良好之連接電阻之導電粒子之硬度呈不同其 中’揭示粒子直徑為1〜2/zm之導電粒子(專利文獻2)。 【先前技術文獻】 【專利文獻】 專利文獻1 :日本特開2000 - 30526號公報 專利文獻2 .日本專利第415 4 91 9號公報 【發明内容】 【發明所欲解決之課題】 但是,正如向來,在僅 態下’比起粒徑變大之狀態 初期電阻值變高或者是無法 生。 本發明係有鑒於前述之 細之導電性微粒子同時初期 之連接狀態之導電性微粒子 基材之樹脂粒子、以及使用 材料’來作為目的。 導電性微粒子之粒徑變小之狀 ’連接面積更加小,因此,有 維持安定之連接狀態之傾向發 狀態而完成的;以提供成為微 電阻值變低並且可以維持安定 '使用於此種導電性微粒子之 該導電性微粒子之異方性導電 3 201241072 本發明人們係為了解決前述之課題,因此,全心地進 行研究。結果發現:為了使得導電性微粒子之粒徑成為微 細,並且,安定地確保同等於粒徑大之狀態之電流量因 此,相對地提高相對於粒徑之連接面積比係變得重要,為 了實現這個,因此,可以提高壓痕形成能(具體地說是在連 接之際、在僅變形之時間點而可以形成壓痕之特性)而以連 接狀態來充分地確保導電性金屬層和被連接體(電極)之密 合。接著,在個數基準之平均分散粒徑成為1〇“m以上、201241072 V. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention. 益〇六、发明说明: Technical Field of the Invention The present invention relates to a fine conductive microparticle. The conductive fine particles which are generated by the short circuit in the state of being electrically connected are reduced. [Prior Art] Conventionally, in the assembly of an electronic device, in order to perform a large amount of electric power: or electrical connection between wiring lines, a connection method by an anisotropic conductive material is employed. The anisotropic conductive material is a material in which conductive fine particles are mixed with a binder resin or the like, for example, an anisotropic conductive paste (10), an anisotropic conductive film (ACF), an anisotropic conductive ink, an anisotropic conductive sheet, or the like. . Here, as the conductive fine particles used for the anisotropic conductive material, the surface of the metal particles or the resin particles serving as the substrate is coated with the conductive metal layer. However, in recent years, the miniaturization and high-performance of the t-sub-machines are getting more and more advanced. With this, the electronic components mounted on the electrical equipment are J-integrated and the density is built, and the electrodes or wiring systems of the electronic circuits are popular, and the fields are thin and thin. Then, as described above, the electrode or the wiring of the electronic circuit is made finer and narrower, or even if the conductive fine particles used for the anisotropic conductive material are used, the particle size is required to be smaller than 201241072 v. The microparticles having a particle diameter of less than 20% are used as a substrate, for example, which is composed of a resin or an inorganic compound and which has an average particle diameter of 0. 5 to 2. 5 μ m and a particle diameter of cv of 20% or less. Conductive fine particles (Patent Document 1). In addition, it is reported that in the core body composed of an organic polymer, the conductive particles of the metal electricity money are applied in a prescribed thickness so that the hardness of the conductive particles which have a good connection resistance in accordance with the diameter of the conductive particles is different. Conductive particles having a particle diameter of 1 to 2/zm (Patent Document 2). [PRIOR ART DOCUMENT] Patent Document 1: Japanese Laid-Open Patent Publication No. 2000-30526 (Patent Document 2) Japanese Patent No. 415 4 91 9 SUMMARY OF INVENTION [Problems to be Solved by the Invention] However, as always In the state only, the resistance value becomes high or cannot be generated in the initial state. The present invention is directed to the resin particles of the conductive fine particle substrate in which the fine conductive fine particles are simultaneously connected in the initial state, and the use material. The shape of the conductive fine particles is smaller, and the connection area is smaller. Therefore, it is completed in a state in which the stable connection state is maintained; the micro-resistance value is lowered and the stability can be maintained. The anisotropic conduction of the conductive fine particles of the fine particles 3 201241072 The present inventors have made a thorough study to solve the above problems. As a result, it has been found that in order to make the particle size of the conductive fine particles fine, and to ensure the amount of current equivalent to the state of the large particle diameter, it is important to relatively increase the connection area ratio with respect to the particle diameter. Therefore, it is possible to improve the indentation forming ability (specifically, the characteristics of the indentation can be formed at the time of the connection only at the time of the connection), and the conductive metal layer and the connected body can be sufficiently ensured in the connected state ( The adhesion of the electrodes). Then, the average dispersed particle diameter on the basis of the number is 1 〇 "m or more,

子來作為基材之導電性微粒子的話, 川1\/_以上之樹脂粒 ’則可以對於被連接體 電極),形成充分之塵痕,以致於完成本發明。 也就是說,本發明係由以下之構造而組成。 (1) ·· 一種導電性微粒子, 基材以及形成於該基材表面之When the conductive fine particles are used as the base material, the resin particles of the above 1//_ can form sufficient dust marks for the connected electrode, so that the present invention can be completed. That is, the present invention is composed of the following configurations. (1) · A conductive fine particle, a substrate and a surface formed on the substrate

係具有由樹脂粒子而組成之 至少一層之導電性金屬層的 月1j述樹脂粒子之個數基準之 ’ 2. m以下,在前述樹脂The number of the resin particles having at least one layer of the conductive metal layer composed of the resin particles is ≤ 2. m or less, and the resin is

率(10% K 值)係 1 2, 000NRate (10% K value) is 1 2 000N

201241072 (3):前述(1)記載之導電性微粒子係前述樹脂粒子之 個數基準之平均分散粒徑為未滿2. 0 y m,在前述樹脂粒子 之直徑位移ι〇%時之壓縮彈性率(ίο% κ值)係超過1 9,600n / mm2。 (4):前述(1)至(3)中任一項所述之導電性微粒子係前 述樹脂粒子之壓縮破壞變形率為3〇%以上。 (5 )·刖述(1)至(4)中任一項所述之導電性微粒子係在 則述樹脂粒子之直徑位移3〇%時之壓縮彈性率〖值) 小於前述之1 〇 β/β K值。 (6).則述(1)至(5)中任一項所述之導電性微粒子係在 表面之至少一部分,具有絕緣性樹脂層。 (Ό: 一種樹脂粒子,係使用作為導電性微粒子之基材 之粒子’其特徵在於:個數基準之平均分散粒徑係1〇土^ 以上、2.5# m以下,在粒子之直徑位移1〇%時之壓縮彈性 率(10% K 值)係 i2,〇〇〇N//mm2 以上。 (8):前述(7)記載之樹脂粒子係個數基準之平均分散 粒徑為2.0㈣以上,在粒子之直徑位移1〇%時之壓縮彈性 率(10% K 值)係 i7,〇〇〇N/mm2以上。 之平均分散 之壓縮彈性 (9 )剛述(7)5己載之樹脂粒子係個數基準 粒徑為未滿2. 0 # m,在粒子之直徑位移i 〇%時 率(ίο% κ 值)係超過 1 9 600N/mm2。 項所述之樹脂粒子係壓縮 (10) ·•前述(7)至(9)中任一 破壞變形率為30%以上。 (11):前述(7)至(10)中任一 項所述之樹脂粒子係在粒 201241072 子之直徑位移30%時之壓縮彈性率(3〇% κ值)小於前述之 10% Κ 值。 (12)—種異方性導電材料,其特徵在於:前述(1)至(6) 中任一項所述之導電性微粒子係分散於黏合劑樹脂。 【發明效果】 如果藉由本發明之導電性微粒子的話,則即使是低 壓,也可以對於被連接體(電極),形成壓痕,可以藉此而 提高導電性金屬層和被連接體之密合性,並且,確保大連 接面積,因此,可以進行小徑化,並且,充分地發現低初 期電阻值’而且,維持安定之連接狀態。 【實施方式】 1.導電性微粒子 本發明之導電性微粒子係具有由樹脂粒子而組成之基 材以及形成於該基材表面之至少一層之導電性金屬層。 本發明係以微細之導電性微粒子之改良,作為 因此’在本發明’成為導電性微粒子基材之樹脂粒子係粒 徑變小,其個數基準之平均分散粒徑係10#m以上,最好 是以上,更加理想是h2//m以上,甚至最好是13 …上’成為2.5”以下,最好是2 3…下,更加 理想是2」^下’甚至最好是19“以下。如果樹脂 粒子(基材)之平均分散粒徑為該範圍内的話,則㈣微細 之導電性微粒子…對於微細化·窄小化之電極或配線 之電連接而適度地使用。In the conductive fine particles according to the above (1), the average dispersed particle diameter based on the number of the resin particles is less than 2.0 μm, and the compression modulus is when the diameter of the resin particles is shifted by 〇 〇 %. (ίο% κ value) is more than 1,900n / mm2. (4) The conductive fine particles according to any one of the above (1) to (3), wherein the resin particles have a compression-deformation deformation ratio of 3% by mass or more. (5) The conductive fine particles according to any one of (1) to (4), wherein the compressive elastic modulus of the resin particles having a diameter displacement of 3〇% is smaller than the above-mentioned 1 〇β/ β K value. (6) The conductive fine particles according to any one of (1) to (5), wherein at least a part of the surface is provided with an insulating resin layer. (Ό: A resin particle is a particle which is used as a base material of conductive fine particles. The average dispersed particle diameter of the number of bases is 1 ^ or more, 2.5 Å or less, and the diameter of the particle is displaced by 1 〇. The compression elastic modulus (10% K value) at % is i2, 〇〇〇N//mm2 or more. (8) The average particle diameter of the resin particles based on the number of the above-mentioned (7) is 2.0 (four) or more. The compressive elastic modulus (10% K value) when the diameter of the particle is displaced by 1% is i7, 〇〇〇N/mm2 or more. The average dispersion of the compressive elasticity (9) just described (7) 5 loaded resin particles The reference particle size is less than 2. 0 # m, and the rate (ίο% κ value) is more than 1 9 600 N/mm2 when the diameter of the particle is i 〇%. The resin particle is compressed (10) The damage deformation rate of any one of the above (7) to (9) is 30% or more. (11) The resin particle according to any one of the above (7) to (10) is a diameter displacement of the particle 201241072 The compression modulus at 30% (3〇% κ) is less than the above 10% 。. (12) An anisotropic conductive material characterized by any one of the above (1) to (6) According to the conductive fine particles of the present invention, even if the pressure is low, an indentation can be formed on the connected body (electrode). In addition, the adhesion between the conductive metal layer and the object to be bonded is improved, and the large connection area is ensured. Therefore, the diameter can be reduced, and the low initial resistance value can be sufficiently found and the stable connection state can be maintained. 1. The conductive fine particles of the present invention have a base material composed of resin particles and a conductive metal layer formed on at least one surface of the base material. The present invention is improved by fine conductive fine particles. Therefore, the particle size of the resin particle-based material which becomes the conductive fine particle substrate in the present invention is small, and the average dispersed particle diameter based on the number of the particles is 10 #m or more, preferably more than or more, more preferably h2//m. Above, even better is 13 ... on 'below 2.5' or less, preferably 2 3... under, more ideally 2" ^ down 'or even better than 19" below. If the tree The average particle (substrate) of the dispersion particle diameter within this range, then (iv) the fine conductive particles used in moderation ... connected to the electrical miniaturization and the narrowing of the electrode or the wiring.

S 6 201241072 此外,前述樹脂粒子(基材)之分散粒徑之個數基準之 變動係數(cv值)係最好是10 0%以下,更加理想是8 〇%以 下,甚至最好是5.0%以下,更加最好是4·5%以下,特別最 好是4. 0%以下,最加理想是3. 〇%以下。像這樣,分散粒徑 之變動係數小之樹脂粒子係不僅是一次粒徑之大小呈一 致,並且,一次粒徑之單一分散性極為高。因此,藉由使 用此種樹脂粒子,作為基材,而得到粒徑呈一致且抑制凝 集之導電性微粒子。 此外,在本發明之所謂樹脂粒子之個數基準之平均分 散粒徑或其變動係數等係藉由庫爾特計數器(Cosher counter)而測定之值,就測定方法而言,在實施例,敘述 於後面。 此外,在導電性微粒子,在存在粗大粒子之時,在成 為異方性導電材料而保管長期間之際,恐怕會沉降粗大粒 子而成為導電性微粒子之凝集原因。因此,前述之樹脂粒 子係最好是除去粗大粒子。也就是說,前述之樹脂粒子係 最好是在個數基準之累積分布曲線,累積值9〇%之粒徑成 為以下,更加理想是2.2//Π1以下,甚至最好是2 〇 ^ ^下^'積值9 0 %之粒徑係相同於平均分散粒徑,表示 在藉由庫爾特計數器(Coulter counter)來測定之個數累 積分布曲線而個數累積值成為90%之粒徑。 在本發明,作為基材之前述之樹脂粒子係在其直徑位 移ίο%時之壓縮彈性率(1〇% κ值)成為12,〇〇〇N/^m2以上 而變得重要。如果樹脂粒子之1〇% κ值為該範圍的話,則 201241072 可以對於被連接體(電極),形成充分之壓痕,可以藉此而 提高導電性金屬層和被連接體之密合性,並且,確保大連 接面積。樹脂粒子之1〇%Κ值係最好是l4,〇〇〇N/mm2以上, 更加理想是15,〇〇〇N/mm2以上,甚至最好是17〇〇〇ν/μ: 以2上,更加最好是20,000N/關2以上’最好是5〇〇〇〇n/ mm2以下,更加理想是40,000N/mm2以下。 在本發明之理想狀態,前述樹脂粒子之個數基準之平 均分散粒徑係2.0”以上、2.5" m以下並且在前述樹脂 粒子之直徑位移10%時之壓縮彈性率(1〇% κ值)成為 Π’ΟΟΟΝ/ιπιπ2以上’或者是前述樹脂粒子之個數基準之平 均分散粒徑係l.〇"m以上、未滿2〇//111並且在前述樹脂 粒子之直徑位移1()%時之壓縮彈性率(1()% κ值)超過 19’600N/mm2(大於19,6〇〇Ν/關2)。如果是此種形態的 話,則抑制異方導電連接狀態之電阻值之經時上升,也達 到所謂得到良好之連接可靠性之效果。也就是說,如果樹 脂粒子之ίο% κ值位處於前述之1 2,000N/mm2以上之範圍 的話,則藉由良好之壓痕形成能,不依賴異方導電連接時 之壓力條件而得到低連接電阻值之連接構造體,但是,還 為了得到高度之連接可靠性,因此,還配合樹脂粒子之粒 徑而存在適當之10% K值之範圍。 此外,前述樹脂粒子之10% κ值係可以使用習知之微 小壓縮試驗機而進行測定,但是,最好是使用習知之微小 壓縮试驗機(例如島津製作所製、「MCT_ W5〇〇」等),在室 溫而以荷重負荷速度2.2295mN/sec來施加荷重至粒子之In addition, the coefficient of variation (cv value) based on the number of the dispersed particle diameters of the resin particles (substrate) is preferably 100% or less, more preferably 8% or less, even more preferably 5.0%. The following is more preferably 4.5% or less, particularly preferably 4. 0% or less, and most preferably 3.5% or less. In this manner, the resin particles having a small variation coefficient of the dispersed particle diameter are not only uniform in primary particle diameter, but also have a single dispersion of the primary particle diameter extremely high. Therefore, by using such resin particles, as the substrate, conductive fine particles having uniform particle diameters and suppressing aggregation can be obtained. In addition, the average dispersed particle diameter on the basis of the number of resin particles of the present invention or a coefficient of variation thereof is a value measured by a Couter counter, and the measurement method is described in the examples. In the back. In the case where coarse particles are present, when the conductive particles are stored for a long period of time, the coarse particles are likely to settle and become a cause of aggregation of the conductive particles. Therefore, it is preferable that the aforementioned resin particle system removes coarse particles. In other words, the resin particle system described above is preferably a cumulative distribution curve on a number basis, and the particle diameter of the cumulative value of 9〇% is as follows, more preferably 2.2//Π1 or less, even more preferably 2 〇^ ^ The particle diameter of the ''integral value of 90% is the same as the average dispersed particle diameter, and indicates the particle diameter at which the cumulative value of the number is 90% by the cumulative distribution curve measured by the Coulter counter. In the present invention, the above-mentioned resin particles as the substrate have a compressive modulus (% κ κ value) of 12, 〇〇〇N/^m2 or more, which is important when the diameter is shifted by ί. When the 〇% κ value of the resin particles is in this range, 201241072 can form a sufficient indentation for the connected body (electrode), whereby the adhesion between the conductive metal layer and the connected body can be improved, and To ensure a large connection area. The 〇% Κ value of the resin particles is preferably l4, 〇〇〇N/mm2 or more, more preferably 15, 〇〇〇N/mm2 or more, even more preferably 17〇〇〇ν/μ: 2 More preferably, it is 20,000 N / off 2 or more 'preferably 5 〇〇〇〇 n / mm 2 or less, more preferably 40,000 N / mm 2 or less. In a preferred embodiment of the present invention, the average dispersed particle diameter based on the number of the resin particles is 2.0" or more, 2.5" or less, and the compression modulus (10% κ value when the diameter of the resin particles is shifted by 10%) The average dispersed particle diameter of the number of the above-mentioned resin particles is Π'ΟΟΟΝ/ιπιπ2 or more, or more than 2〇//111, and the diameter of the resin particles is shifted by 1 () The compression modulus (% (%) κ value) at % exceeds 19'600 N/mm2 (greater than 19, 6 〇〇Ν / off 2). If this is the case, the resistance value of the heteroconductive connection state is suppressed. The rise in time also achieves the effect of obtaining good connection reliability. That is, if the ίο% κ value of the resin particles is in the range of 1 2,000 N/mm 2 or more, the good indentation is obtained. A connection structure capable of obtaining a low connection resistance value without depending on the pressure condition at the time of the hetero-conducting connection is formed, but in order to obtain a high connection reliability, an appropriate 10% of the particle diameter of the resin particles is also present. The range of K values. The 10% κ value of the resin particles can be measured using a conventional micro compression tester. However, it is preferable to use a conventional micro compression tester (for example, "MCT_W5" manufactured by Shimadzu Corporation). Applying a load to the particles at a load rate of 2.2295 mN/sec at room temperature

S 8 201241072S 8 201241072

中心方向之壓縮試驗,最好 好疋測疋在壓縮位移成為粒徑之 10%為止而變形粒子時之懕 从 壓縮何重(N)和壓縮位移(mm),採 用根據下列之公式而求出之值。 [數1] 3 X F E = 2 1/2, S3/2xr1/2 (在此’ E:壓縮彈性率(k F:塵縮荷重⑻、s:壓 縮位移(mm)、R :粒子之半徑(_)。) 在本發Θ 4乍為基材之前述之樹脂粒子係帛好是其壓 Μ破壞變形率4 30%以上。此種樹脂粒子係以大幅度地壓 縮變形之狀態,來具有Μ力,目此,可以更加地提高連 接面積知十月曰粒子之壓縮破壞變形率係更加理想是權以 上,甚至最好是50%以上。就壓縮破壞變形率之上限而言, 最好是無破壞點,即使是8〇%以下(特別是7〇%以下),也°可 以使用。此外,所謂壓縮破壞變形率係使用習知之微小壓 縮試驗機(例如島津製作所製、「MCT—W5〇〇」等),在室溫 而以何重負荷速度2. 2295mN/sec來施加荷重至粒子之中 心方向之壓縮試驗,測定在粒子到達至破壞時之壓縮位移 (em),藉由下列之公式而算出之值。例如在使用島津製作 所製之「MCT-W500」來作為微小壓縮試驗機之狀態下,最 好疋藉由該試驗機之所具備之「標準表面檢測」模式而進 行測定。 壓縮破壞變化率(%)==[壓縮位移粒徑(#m)]xi〇〇 此外,在本發明,作為基材之前述之樹脂粒子係最好 201241072 是在前述樹脂粒子之直徑位移30%時之壓縮彈性率(3〇% Κ 值)小於前述之10%Κ值。在30%Κ值為ι〇%κ值以上之時, 為了確保由於變形而造成之面積,因此,需要高壓力,但 是,由於該咼壓而使得粒子破裂,喪失粒子之復原力而降 低連接安定性。相反地,在樹脂粒子之3〇%κ值小於1〇%κ 值之時,可以藉由低壓而確保大壓縮變形。具體地說,可 以使得30% Κ值/ 1 0% Κ值之值係最好是〇. 9以下,更加 理想是0. 8以下,甚至最好是〇. 7以下。此外,在可以加 入對於壓縮初期之電極之咬入並且提高電極之咬入性之方 面,30% Κ值/ 1 0% Κ值之值係最好是〇· 3以上,更加理想 是0. 4以上。 由於相同之理由,因此,在樹脂粒子之直徑位移2〇% 時之壓縮彈性率(20% Κ值)係最好小於前述之1〇% κ值, 20% Κ值/10% Κ值之值係最好是〇.8以下,更加理想是 0 · 7以下,最好是〇 · 4以上,更加理想是〇 5以上。此外, 在樹脂粒子之直徑位移40%時之壓縮彈性率(4〇% κ值)係也 由於相同之理由,因此,最好是2 〇以下,更加理想是i 〇 以下’最好是0. 4以上,更加理想{ 〇. 5以上。在加熱連 接時,以進行壓縮而使得壓縮變形率成為3〇%〜5〇%程度之 狀態來進行加壓連接係最好是在得到高度之連接可靠性之 連接狀態之方面,因此,不僅是1〇%](值,即使是就2〇%κ 值、30%Κ值、40%Κ值而言,也最好是位處於前述之範圍。 此外,前述樹脂粒子之2〇% κ值、3〇% κ值及4〇% κ 值係可以在相同於前述丨〇% κ值之壓縮試驗測定在變形In the compression test in the center direction, it is preferable to measure the weight (N) and the compression displacement (mm) of the enthalpy from the compression when the compression displacement becomes 10% of the particle diameter, and the following formula is used. The value. [Number 1] 3 XFE = 2 1/2, S3/2xr1/2 (here 'E: compression modulus (k F: dust load (8), s: compression displacement (mm), R: radius of the particle (_ The above-mentioned resin particle system which is the base material of the present invention has a crushing deformation rate of 4 30% or more. The resin particles are strongly compressed and deformed to have a strong force. Therefore, the connection area can be further increased to know that the compression deformation rate of the October 曰 particles is more than ideal, even more preferably 50% or more. In terms of the upper limit of the compression deformation rate, it is preferable that there is no damage. In addition, it is also possible to use a small compression tester (for example, Shimadzu Corporation, "MCT-W5〇〇", which is a small compression tester (for example, the Shimadzu Corporation). Etc.), a compression test in which the load is applied to the center of the particle at a load rate of 2. 2295 mN/sec at room temperature, and the compression displacement (em) at the time of particle arrival to destruction is measured, and is calculated by the following formula For example, the "MCT-W500" manufactured by Shimadzu Corporation is used as a micro pressure. In the state of the shrinkage tester, it is preferable to carry out the measurement by the "standard surface detection" mode of the test machine. Compression failure change rate (%) == [compression displacement particle size (#m)] xi〇 Further, in the present invention, it is preferable that the above-mentioned resin particle system as a substrate is 201241072, and the compression modulus (3〇% Κ value) when the diameter of the resin particles is displaced by 30% is smaller than the above-described 10% Κ value. When the 30% enthalpy is greater than the ι 〇 % κ value, high pressure is required to ensure the area due to deformation, but the rupture of the particles due to the squeezing causes loss of the restoring force of the particles and reduces the connection stability. Conversely, when the 3〇%κ value of the resin particles is less than 1〇%κ, large compression deformation can be ensured by the low pressure. Specifically, the value of 30% //100% Κ can be made. Preferably, it is 〇. 9 or less, more preferably 0.8 or less, even more preferably 〇. 7 or less. Further, in terms of biting into the electrode at the initial stage of compression and improving the biteness of the electrode, 30 % Κ / 1 0% The value of the Κ value is preferably 〇 · 3 or more, more The addition is preferably 0.4 or more. For the same reason, the compression modulus (20% Κ value) when the diameter of the resin particles is displaced by 2% is preferably less than the aforementioned 〇% κ value, 20% Κ The value of the value/10% Κ value is preferably 〇.8 or less, more preferably 0·7 or less, more preferably 〇·4 or more, more preferably 〇5 or more. Further, the diameter of the resin particles is displaced by 40%. The compression elastic modulus (4〇% κ value) is also preferably 2 〇 or less for the same reason, and more preferably i 〇 or less 'best is 0.4 or more, more preferably { 〇. 5 or more. . When the connection is made by heating, the compression connection is performed in a state where the compression deformation ratio is about 3〇% to 5〇%, and it is preferable that the pressure connection is obtained in a connection state in which the connection reliability of the height is obtained. 1〇%] (value, even in the case of 2〇%κ value, 30%Κ value, 40%Κ value, it is preferable that the position is in the aforementioned range. Further, the 2树脂% κ value of the aforementioned resin particle, The 3〇% κ value and the 4〇% κ value can be determined in the compression test in the same compression test as the above 丨〇% κ value.

S 10 201241072 粒子而直㈣縮之位移成為粒徑之m、3_ 4㈣止時 之塵縮荷重⑻和I縮位移(龍)’根據相同於前述觀值 之公式而求出。 前述之樹脂粒子(基材)係可以包含㈣成分,不㈣S 10 201241072 Particles and straight (four) contraction displacements are m, 3_4 (four) stop dust load (8) and I contraction (dragon)' are determined according to the same formula as the above observation. The aforementioned resin particles (substrate) may contain (four) components, not (four)

^堇由有機材料而構成之粒子,可以是由有機無機複合材 料而構成之粒子。藉由樹脂粒子成為基材而 特性呈良好之導電性微粒子。 坪受I /作為構成前述樹脂粒子之有機材料係列舉例如聚乙 烯、聚丙烯、聚氯乙烯、聚四氟乙烯、聚異丁烯'聚丁二 稀等之聚浠煙;苯乙烯系樹脂、丙稀系樹脂、苯乙稀一丙 烯樹脂等之乙稀聚合物;聚乙稀對笨二甲酸醋、聚乙稀莽 -甲酸醋等之聚醋;聚碳酸醋;聚酿胺;聚醯亞胺;苯龄 ^树脂’三聚氰胺甲酸樹脂;三聚氛胺苯并鳥翼胺甲醛 :旨’尿素甲醛樹脂;矽酮樹脂等。此外,作為有機無機 複合材料係列舉包含前述有機材料和聚石夕氧烧骨格之材料 例如聚嫩骨格和乙稀聚合物進行複合化而組成之材 。像廷樣’構成前述樹脂粒子之材料係由範圍廣泛之 ^料中’適度地進行選擇而可以控制平均粒徑及順值, 成為前述之範圍。構成这此始 & 二树知杻子之材料係可以單獨地 使用’也可以併用2種以上。 作為構成前述樹脂粒子之材料係最好是包含乙稀聚合 粗及聚石夕氧烧骨格之至少-種。藉由包含乙稀聚合物之材 备典 具有乙烯基進行聚合而形成之有機 '、月格,在加壓連接時之彈性變形呈良好。此外,藉由包 11 201241072 含聚矽氧烷骨格之材料而構成之樹脂粒子係在加壓連接時 而對於被連接體之接觸壓呈良好。特別是藉由㈣氧烧骨 格和乙烯聚合物來進行複合化之材料而構成之樹脂粒子係 彈性變形性及接觸壓呈良好,得到之導電性微粒子之連接 可罪性更加地良好’因此,變得理想。 月,j述之乙烯聚合物係對於含乙烯基單體來進行聚合 (自由基聚合在本發明,在「乙烯基」,不僅是碳一: 雙鍵,並且’也包含例如具有(甲基)丙稀醯氧基、烯丙基、 異丙稀基、乙稀基苯基、異丙稀苯基之聚合性碳—碳雙鍵 之取代基。此外’在本說明書,「(甲基)丙烯醯基」、「又(甲 基)丙稀醯_氧基」、「(甲基)丙烯酸酯」或「(甲基)丙烯」 係分別表示「丙烯酿基、甲基丙稀醯基之—種或兩種」、 「丙烯醯氧基、甲基丙稀酿氧基之一種或兩種」、「丙稀 酸醋、甲基丙烯酸酷之一種或兩種」或者{「丙烯、甲基 丙烯之一種或兩種。 在則述之含乙烯基單體,包含在 -. 刀丁 π具·有一脏 稀基之單體⑴、在丨分子中具有—個乙烤基和乙稀基以 之官能基(羧基'羥基等之質子性含氫基、烷氧基 官能基等)之單體(2)、在!分子中具有2個以上 之單體(3)。在此,單體⑴係乙稀系非交聯性單體。單 (2)係可以在叛基、經基、燒惫 疋氣基4之成為反應(鍵結)到 之基存在於其他之單體夕 早體之狀態下’形成交聯構造,因此 成為乙烯系交聯性單體,作县 .,,.c ^ 彳—疋,在成為反應對象之基不 在於其他之單體之狀態下’成為乙烯系非交聯性單體。The particles composed of an organic material may be particles composed of an organic-inorganic composite material. The conductive particles are excellent in characteristics by the resin particles serving as a substrate. A group of organic materials constituting the aforementioned resin particles, such as polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyisobutylene polybutadiene, etc.; styrene resin, propylene a polyethylene polymer such as a resin, a styrene-acrylic resin, a polyacetate, a polyacetate, a polyethylene acetonate, a formic acid vinegar, or the like; a polycarbonate; a polyamine; a polyamine; Benzene age resin 'melamine resin; triammonium benzoguanamine formaldehyde: the purpose of 'urea formaldehyde resin; fluorenone resin. Further, as the organic-inorganic composite material, a material comprising the above-mentioned organic material and a poly-stone-fired bone-shaped material such as a poly-tender and an ethylene polymer is compounded. The material constituting the resin particles is appropriately selected from a wide range of materials, and the average particle diameter and the value can be controlled to be within the above range. The materials constituting the first & second tree can be used singly or in combination of two or more. The material constituting the resin particles is preferably at least one selected from the group consisting of ethylene-polymerized coarse and poly-stone-burned bone. By means of a material containing an ethylene polymer, the organic polymer formed by polymerization of a vinyl group has a good elastic deformation at the time of pressure connection. Further, the resin particles composed of the material containing the polyoxyalkylene skeleton of the package 11 201241072 are excellent in contact pressure with respect to the connected body at the time of pressure connection. In particular, the resin particles which are composed of the (4) oxygen-fired aggregate and the ethylene polymer are excellent in elastic deformability and contact pressure, and the connection of the obtained conductive fine particles is more sinful. Be ideal. In the month, the ethylene polymer is polymerized for a vinyl-containing monomer (radical polymerization in the present invention, in "vinyl", not only carbon one: double bond, and 'also contains, for example, (meth) a substituent of a polymerizable carbon-carbon double bond of acryloxy, allyl, isopropyl, ethyl phenyl or isopropyl phenyl. In addition, 'in this specification, '(meth) propylene "醯基", "also (meth) acrylonitrile _ oxy", "(meth) acrylate" or "(meth) propylene" respectively mean "acrylic acid, methyl propyl sulfhydryl" Species or two", "one or two of propylene oxy, methyl propylene oxide", "one or two of acryl vinegar, methacrylic acid" or {"propylene, methacryl One or two of the vinyl-containing monomers described above are contained in -. The saponin has a viscous base monomer (1), and has an ethyl bake group and a vinyl group in the ruthenium molecule. The monomer (2) having a functional group (a protonic hydrogen-containing group such as a carboxyl group hydroxyl group or an alkoxy group, etc.) and two or more monomers (3) in the ! molecule. The monomer (1) is an ethylene-based non-crosslinkable monomer. The mono-(2) system may be present in the other groups in the reaction (bonding) to the base of the ruthenium, the meridine, and the ruthenium group 4 In the state of the early morning, the cross-linked structure is formed, so that it is a vinyl-based cross-linking monomer, and it is a county.,, .c ^ 彳-疋, and the base of the reaction is not in the state of other monomers. It becomes a vinyl non-crosslinkable monomer.

12 201241072 . 體(3)係乙烯系交聯性單體。這些單體(u〜(3)係可以單獨 地使用’並且’也可以併用2種以上。 作為前述之單體(1)(乙烯系非交聯性單體)係列舉例 如甲基(曱基)丙稀酸酯、乙基(甲基)丙烯酸酯、丙基(甲基) 丙烯酸醋、n_ 丁基(甲基)丙烯酸酯、異丁基(曱基)丙烯酸 酉曰、戊基(曱基)丙稀酸醋、己基(甲基)丙烯酸醋、庚基(甲 基)丙烯酸酯、辛基(曱基)丙烯酸酯、壬基(曱基)丙烯酸 醋、癸基(曱基)丙烯酸酯、月桂基(甲基)丙烯酸酯、硬脂 醯(甲基)丙烯酸酯、2—乙基己基(甲基)丙烯酸酯等之烷基 (甲基)丙烯酸酯類;環丙基(甲基)丙烯酸酯、環戊基(曱基) 丙稀酸酯、環己基(甲基)丙稀酸酯' 環辛基(曱基)丙烯酸 醋、環十一烷基(甲基)丙烯酸酯、環月桂基(曱基)丙烯酸 酯、異冰片(甲基)丙烯酸酯、4—t — 丁基環己基(甲基)丙 烯酸酯等之環烷基(甲基)丙浠酸酯類;苯基(甲基)丙稀酸 醋、苄基(甲基)丙稀酸酯、甲苯基(甲基)丙烯酸酯、苯乙 基(曱基)丙烯酸酯等之含芳香環(曱基)丙烯酸酯類;笨乙 烯'〇—甲基苯乙烯、m. —甲基苯乙烯、p—曱基苯乙烯、α —甲基苯乙烯、P— t — 丁基苯乙烯等之烷基苯乙烯類、〇 ~氣苯乙烯、m —氯笨乙烯、P —氣苯乙烯等之含鹵素基笨 乙稀類等之苯乙烯系單官能單體等。 作為前述之單體(2)(乙烯系交聯性單體或乙烯系非交 聯生單體)係列舉例如(曱基)丙烯酸等之具有叛基之安 體;2 —羥基乙基(甲基)丙烯酸酯、2 —羥基丙基(曱基)丙 稀酸8旨、2 —羥基丁基(甲基)丙烯酸酯等之含羥基(甲基) 13 201241072 丙烯酸酯類、ρ_經基苯乙烯等之含經基笨乙烯類等之具有 羥基之單體;2—甲氧基乙基(甲基)丙烯酸酯、3—甲氧基 丁基(曱基)丙烯酸酯、2 — 丁氧基乙基(甲基)丙烯酸酯等之 含烷氧基(曱基)丙烯酸酯類、P—甲氧基苯乙烯等之烷氧基 苯乙烯類等之具有烷氧基之單體等。 作為前述之單體(3)(乙烯系交聯性單體)係列舉例如 稀丙基(曱基)丙稀酸酯等之烯丙基(甲基)丙稀酸酯類;乙 稀乙二醇二(曱基)丙稀酸酯、1,4 — 丁烧二醇二(甲基)丙稀 酸酯、1,6 —己烷二醇二(曱基)丙烯酸酯' 1,9 一壬烷二醇 二(曱基)丙烯酸酯、1,10 —癸烷二醇二(甲基)丙烯酸酯、 1,3_ 丁烯二(甲基)丙稀酸酯等之鏈院二醇二(甲基)丙婦 酸酯;二乙二醇二(甲基)丙烯酸酯、三乙二醇二(曱基)丙 烯酸酯、十乙二醇二(曱基)丙烯酸酯、十五乙二醇二(甲基) 丙稀酸酯、一百五十乙二醇二(甲基)丙婦酸酯、聚乙二醇 二(甲基)丙稀酸酯、聚丙二醇二(甲基)丙稀酸酯、聚四甲 二醇二(曱基)丙烯酸酯等之聚烷撐乙二醇二(甲基)丙稀酸 醋等之二(甲基)丙烯酸酯類;三羥甲基丙烷三(甲基)丙烯 酸酯等之三(曱基)丙烯酸酯類;季戊四醇四(曱基)丙稀酸 醋等之四(曱基)丙烯酸酯類;二季戊四醇六(曱基)丙烯酸 醋等之六(曱基)丙烯酸酯類;二乙烯基苯、二乙烯基萘、 以及這些之衍生物等之芳香族烴系交聯劑(最好是二乙烯 基笨等之笨乙烯系多官能單體);n,n —二乙烯基苯胺、二 乙稀基醚、二乙烯基硫化物、二乙烯基項酸等之含異原子 交聯劑等。12 201241072 . The body (3) is a vinyl crosslinkable monomer. These monomers (u to (3) may be used singly or in combination of two or more kinds. The monomer (1) (ethylene-based non-crosslinkable monomer) may be, for example, a methyl group (mercapto group). ) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isopropyl hydrazide, pentyl (mercapto) Acetic acid vinegar, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (decyl) acrylate, fluorenyl (fluorenyl) acrylate, fluorenyl (fluorenyl) acrylate, Alkyl (meth) acrylates such as lauryl (meth) acrylate, stearic acid (meth) acrylate, 2-ethylhexyl (meth) acrylate; cyclopropyl (meth) acrylate Ester, cyclopentyl (fluorenyl) acrylate, cyclohexyl (meth) acrylate "cyclooctyl (meth) acrylate, cycloundecyl (meth) acrylate, cyclolauryl (fluorenyl) acrylate, isobornyl (meth) acrylate, 4-t-butylcyclohexyl (meth) propylene Cycloalkyl (meth) acrylates such as esters; phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, phenyl Aromatic (fluorenyl) acrylates such as fluorenyl acrylates; stupid ethylene '〇-methyl styrene, m. methyl styrene, p-mercapto styrene, α-methyl benzene Styrene-based styrenes such as alkyl styrenes such as ethylene, P-t-butyl styrene, fluorene-styrene, m-chlorostyrene, P-gas styrene, etc. A functional monomer, etc. As a monomer (2) (ethylene crosslinkable monomer or ethylene non-crosslinking raw monomer), for example, a repellent body such as (mercapto)acrylic acid; Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (mercapto) acrylic acid, hydroxy group (methyl) 13 such as 2-hydroxybutyl (meth) acrylate, etc. 2012 201272 acrylate, a monomer having a hydroxyl group containing a vinyl group or the like; a methoxyethyl (meth) acrylate or a 3-methoxy group; Alkoxy styrene containing alkoxy (mercapto) acrylate such as butyl (fluorenyl) acrylate or 2-butoxyethyl (meth) acrylate or P-methoxy styrene A monomer having an alkoxy group, etc., etc. As the above-mentioned monomer (3) (ethylene crosslinkable monomer), for example, an allyl group such as a propyl (mercapto) acrylate is used. Acrylates; ethylene glycol bis(indenyl) acrylate, 1,4-butanediol di(methyl) acrylate, 1,6-hexanediol (fluorenyl) acrylate ' 1,9-nonanediol bis(indenyl) acrylate, 1,10-decanediol di(meth) acrylate, 1,3 - butene di(methyl) propyl Chain diol di(methyl)propionate such as dibasic acid ester; diethylene glycol di(meth) acrylate, triethylene glycol bis(indenyl) acrylate, ten ethylene glycol di(曱) Acrylate, pentadecyl ethylene di(meth) acrylate, one hundred and fifty ethylene glycol di(methyl) propionate, polyethylene glycol di(meth) acrylate Polypropylene glycol di(methyl) propyl a di(meth)acrylate such as a polyalkylene glycol di(meth)acrylic acid vinegar such as an acid ester or a polytetramethylene glycol bis(indenyl) acrylate; trimethylolpropane tris(III) Three (mercapto) acrylates such as methyl acrylate; tetrakis(yl) acrylates such as pentaerythritol tetrakis(meth) acrylate vinegar; and dipentaerythritol hexa(meth) acrylate vinegar; An aromatic hydrocarbon-based crosslinking agent (preferably a stupid vinyl-based polyfunctional monomer such as divinyl phenyl), such as dimethicone, divinyl benzene, divinyl naphthalene, and derivatives thereof; n, n - a hetero atom-containing crosslinking agent such as divinylaniline, diethyl ether, divinyl sulfide or divinyl acid.

S 14 201241072 前述之聚石夕氧烧骨格係藉由對於石夕院系單體來 ㈣合而得到’前述之㈣系單體係大致分成為钱 父聯性單體和矽烷系交聯性單體。 作為前述之矽烷系非交聯性單體係列舉例如二曱基二 甲氧切U基:乙氧基錢等之二院基㈣等:― 官能性我系單體;三甲基甲氧^H甲基乙氧基石夕 院專之三烧基㈣等之丨官能性钱W料。這些石夕燒 系非交聯性單體係可以單獨地使用,並且,也可以併用凡 種以上。 刖述之石夕烧系交聯性單體係如果是可以形成交聯構造 的話’則並無特別限定。作為藉由石夕院系交聯性單體而形 成之交聯構造係列舉交聯有機聚合物骨格(例如乙稀系聚 合物骨格)和有機聚合物骨格者(第】形態);交聯聚矽氧产 骨格和聚石夕氧院骨格者(第2形態”交聯有機聚合物骨: 和聚矽氧烷骨格者(第3形態)。 作為可以形成第1形態者係列舉例如二甲基二乙烯基 矽烷、甲基三乙烯基矽烷、乙烯基矽烷等。作為可以形 成第2形態者係列舉例如四甲氧基矽烷、㈤乙氧基矽烷: 四異丙氧基㈣、四丁氧基錢等之4官能性錢系翠 體;甲基三曱氧基矽烷、曱基三乙氧基矽烷、乙基三甲氧 基矽烷、乙基三乙氧基矽烷等之3官能性矽烷系單體等。 作為可以形成f 3形態者係列舉例如3—曱基丙烯醯氧基 丙基三曱氧基矽烷、3 -曱基丙烯醯氧基丙基三乙氧基矽 烷、3—丙烯醯氧基丙基三甲氧基矽烷、3—甲基丙烯:氧 15 201241072 基丙基曱基二曱氧基矽烷、3 —曱基丙烯醯氧基丙基甲基二 乙氧基矽烷、3_丙烯醯氧基丙基三乙氧基矽烷、3 —甲基 丙烯醯氧基乙氧基丙基三曱氧基矽烷等之具有(曱基)丙稀 醯基者;乙稀基三甲氧基石夕烧、乙烯基三乙氧基石夕烧、卩 —笨乙烯基三曱氧基矽烷等之具有乙烯基者;3 —環氧丙氧 基丙基二甲氧基矽烧、3 —環氧丙氧基丙基三乙氧基矽院、 2 (3’4_5衣氧環己基)乙基三甲氧基石夕院等之具有環氧基 者;3—胺基丙基三曱氧基矽烷、3一胺基丙基三乙氧基矽 烷等之具有胺基者。這些矽烷系交聯性單體係可以單獨地 使用,並且,也可以併用2種以上。 .....^ ^ w & 3' C* ^ 合物和聚石夕氧院骨格之至少一種之材料而構成。也就 說’形成乙稀聚合物之乙烯系交聯性單體或乙稀系非交 性單體、或者是包含形成聚石夕氧院骨格之石夕燒系交聯性 體或矽烷系非交聯性單體之單 即使县u 平遐成刀係最好疋進仃聚合 ,在其中’也特別最好是控制樹脂粒子之】 成為12,0〇〇N/mm2以上, 含六胂 ^ 樹脂粒子係最好是藉由 又葬之乙烯聚合物和交聯之聚矽氧烷骨格之至小 材料而槐A 7孔也月格之至少一種 冓成,而且,樹脂粒子係 也就县筇. 取奸疋滿足以下之條件 12 nnnw / a 4樹知粒子之10% K值,成 u,〇〇〇N/mm2以上,因此 成 脂鈿2 如首先作為用以開始形士 月田叔子之單體成分係 勺阳阀始形成, 性單體之至少-種==性—: 體」。),肖八:&人1 也,S地僅稱為「交聯性 ;包3其合計之含有| 4日m # ' 相對於單體成分總量而S 14 201241072 The above-mentioned poly-stone-burning bone system is obtained by the (four) combination of the Si Xi Yuan series monomer. The above-mentioned (four) system is roughly divided into a money-parent monomer and a decane-based cross-linking single. body. Examples of the above-mentioned decane-based non-crosslinkable monomer include a dimercapto-dimethoxy-cut U-based group: an ethoxy group or the like, a second-complex (four) or the like: ― a functional monomer; a trimethylmethoxy group; H-methyl ethoxy shi xiyuan special three-burning base (four), etc. 丨 functional money W material. These non-crosslinking single systems can be used singly or in combination of more than one. There is no particular limitation on the case where the cross-linked single system of the Shishi-sinter system can be formed into a cross-linked structure. A series of crosslinked structures formed by cross-linking monomers of the Shixi system are cross-linked organic polymer skeletons (for example, ethylene polymer skeletons) and organic polymer skeletons (first form); cross-linked polycondensation矽 产 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨 骨Divinyl decane, methyl trivinyl decane, vinyl decane, etc. As a series in which the second form can be formed, for example, tetramethoxy decane, (5) ethoxy decane: tetraisopropoxy (tetra), tetrabutoxy A trifunctional decane monomer such as methyl trimethoxy decane, decyl triethoxy decane, ethyl trimethoxy decane or ethyl triethoxy decane As a series which can form the form of f 3 , for example, 3-mercapto acryloxypropyl trimethoxy decane, 3-mercapto propylene methoxy propyl triethoxy decane, 3- propylene oxy group Propyltrimethoxydecane, 3-methylpropene: oxygen 15 201241072 propyl propyl hydrazine Decane, 3-mercaptopropenyloxypropylmethyldiethoxydecane, 3-propenyloxypropyltriethoxydecane, 3-methylpropenyloxyethoxypropyltrioxane a compound having a (fluorenyl) acrylonitrile group such as a decane or the like; a vinyl group having a vinylidene trimethoxy group, a vinyl triethoxy group, a bismuth-vinyl stearoxy decane, or the like; 3 —glycidoxypropyl dimethoxy oxime, 3-glycidoxypropyl triethoxy oxime, 2 (3′4_5 oxocyclohexyl)ethyltrimethoxy shixiyuan, etc. Those having an epoxy group; 3-aminopropyltrimethoxy decane, 3-aminopropyltriethoxy decane, etc. having an amine group. These decane-based crosslinkable single systems can be used alone. Further, it is also possible to use two or more kinds of .....^^ w & 3' C* ^ compound and at least one of the materials of the poly-stone compound, which means that the formation of ethylene polymerization a vinyl-based cross-linkable monomer or a vinyl-based non-crosslinkable monomer, or a cross-linking or decane-based cross-linking single body comprising a skeletal oxide-forming skeleton It is the best in the case of the prefecture, and it is the best to control the resin particles. It is the best in the resin particle. It is by the burial of the ethylene polymer and the cross-linked polyoxane skeleton to the small material and the 7A 7 hole is also formed by at least one of the moon, and the resin particle system is also the county 筇. The following conditions 12 nnnw / a 4 tree know the 10% K value of the particles, into u, 〇〇〇 N / mm2 or more, so the fat 钿 2 as the first to start the shape of the monomer The male valve begins to form, at least the kind of sexual monomer == sex -: body".), Xiao Ba: & person 1 Also, S is only called "crosslinking; package 3 its total content | 4 days m # ' relative to the total amount of monomer components

16 201241072 20質里/〇以上(最好是3〇質 F 、置❶以上、更加理想是50質量% 以上)(條件A)。接著,滿足誃 ^ ^ ^ ^ ”條件A,並且,還使得矽烷 糸父聯性早體和矽烷系非交 &八+ > π # θ Μ生早體之合計,未滿全單體 成刀中之95質里%(條件Β), -乂考疋矽烷糸交聯性單體和 矽烷系非交聯性單體之合計, 战马王早體成分中之95質量 %以上,不在2 0 〇 °c以上之、许 '皿X,加熱得到之粒子(條件C)。 也就是說,可以藉由滿足前 二 4〜Ί禾仟A及則返之條件B ,16 201241072 20 quality / 〇 or more (preferably 3 〇 quality F, set above, more preferably 50% by mass or more) (Condition A). Then, satisfying the condition A^^^^", and also making the total mixture of the decane 糸 parent-linked early body and the decane-based non-crossing & 八+ > π # θ twins 95% of the knives in the knives (conditions Β), - 乂 疋矽 疋矽 糸 糸 糸 糸 矽 矽 矽 矽 矽 矽 矽 矽 矽 合 合 合 合 战 战 战 战 战 战 战 战 战 战 战 战 战〇°c or more, Xu 'X, heated to obtain the particles (condition C). That is, by satisfying the first two 4 ~ Ί 仟 A and then return to condition B,

或者是滿足前述之條件A 19 nnnM/ 2 及則述之條件C:,而得到具有 12’麵以上之则值之樹脂粒子。詳細地說,在 滿足引达之條件A時,成為藉由乙稀系交聯性單 :交聯:單體之至少-種而進行-定交聯之樹脂粒子。接 者在刖述之條件B,樹脂粒子之交聯係進行於乙稀系交 聯單體之主體,在前述之你杜 # 隹别述之條件C,猎由矽烷系交聯單體而 造成之交聯係成為主體。 但是,石夕烧系交聯單體係藉由縮合反應而形成石夕氧烧 鍵:構成交聯構造,但是,在聚合後之階段,並無充分地 進:丁鈿合反應。因& ’在大量地使用矽烷系交聯性單體之 狀心下,推薦在聚合後之樹脂粒子,施行燒成(在高溫之加 熱處理)。但是,由於聚合後之樹脂粒子之熱履歷程度而大 中田度地降低1 〇% κ值。因此,在前述條件c之狀熊下,必 須限制對於聚合後之樹脂粒子之加熱。 〜、,必 在前述之條件c來規定冬加熱係在合成樹脂粒子之 後,以對於粒子來進行之全部之加熱處理 M B ^ 芍對象,不 僅疋前述之燒成(由於進行來自於矽烷系單 、袖合反應 17 201241072 (石夕氧烷鍵之形成)之目 —人 的而進行之加熱等),並且,伽‘ 在合成樹脂粒子後之乾择 例如以 厍時之加熱等,作為對象。Alternatively, the above-described condition A 19 nnnM / 2 and the condition C: described above are satisfied, and resin particles having a value of 12' or more are obtained. Specifically, when the condition A of the introduction is satisfied, the resin particles which are subjected to cross-linking by at least one of the cross-linking: cross-linking: at least one type of the monomer are obtained. In the condition B of the above description, the intersection of the resin particles is carried out in the main body of the ethylene crosslinking monomer, and in the above-mentioned condition C, the hunting is caused by the decane crosslinking monomer. Handing over becomes the subject. However, the Shixia-fired cross-linked single system forms a zeolitic oxygen bond by a condensation reaction: it constitutes a crosslinked structure, but at the stage after the polymerization, the ruthenium complex reaction is not sufficiently advanced. In the case where a large amount of a decane-based crosslinkable monomer is used, the resin particles after polymerization are recommended to be calcined (heat treatment at a high temperature). However, due to the thermal history of the resin particles after polymerization, the value of the 1% κ is greatly reduced. Therefore, under the condition of the aforementioned condition c, it is necessary to restrict the heating of the resin particles after the polymerization. 〜,, in the above-mentioned condition c, it is necessary to specify the winter heating system after the synthetic resin particles, and to heat the MB ^ 芍 object for all the particles, not only the above-mentioned firing (due to the decane series The sleeve reaction 17 201241072 (formation of the formation of the austenite bond)-heating by a person, and the like, and the addition of the resin particles after the synthesis of the resin particles, for example, heating in the case of hydrazine, is targeted.

此外,在前述之條件c I 熱溫度,成為規定… ,最好是加 义成為規疋之範圍,同時,加熱之 之惰性氣體氛圍。 战為氮專 另一方面’就滿足前述之# # 月m “ κ條件A及别述之條件B之樹 曰’5 ’不限制對於聚合後之樹脂粒子之加執條 — …、之際進仃於熱分解溫度以下之.、ro庚 乾圍此外’也在該狀態下,就加熱處理時之氛圍而古^ 最好是成為氮等之惰性氣體氛圍。 ° 滿足則述之條件A和前述之條件B或者是滿足前 條件A和前述之條件Γ $留 4之條件C之早體成分係包含乙烯系交聯 體和石夕燒系交聯性單體之至少-種,但是,為了更加確實 地控制樹脂粒子之1〇"值,成為i2〇_/mm2以上,因 此’就更加理想之乙烯系交聯性單體、錢系交聯 而言,說明於以下。 早體 作為前述之乙稀系交聯性單體係在更加確實地Further, in the above-mentioned condition c I, the heat temperature becomes a predetermined..., and it is preferable to add a temperature to the range of the specification and to heat the inert gas atmosphere. The battle for the nitrogen on the other hand 'satisfies the above # #月 m " κ condition A and the condition B of the tree 曰 '5 ' does not limit the addition of resin particles after polymerization - ..., on the occasion In the state where the temperature is lower than the thermal decomposition temperature, the environment of the heat treatment is also an inert gas atmosphere such as nitrogen. The condition B is the condition of the pre-condition A and the condition Γ $4, and the early body component contains at least one of the ethylene-based crosslinked body and the sinter-fired cross-linking monomer, but Since the value of 1 〇 " of the resin particles is surely controlled to be i2 〇 _ / mm 2 or more, the more preferable ethylene-based crosslinkable monomer and the money-based cross-linking are described below. The early body is as described above. The ethylene cross-linking single system is more sure

10% K值之方面,喿榀县兑、+. DD 币J 最好疋則述之單體(3)。即使是在其中, 也更加理想是在1分手中且古9 、 oo 刀子中具有2個以上之(曱基)丙烯醯基 之早體(也就疋在i分子中具有2個以上之丙烯醯基之單體 或者是在1分子中具有2個以上之甲基丙稀醯基之單體)、 苯乙烯系多官能單體之一種或兩者。 作為前述之在1分子 仕1刀千中具有2個以上之(甲基)丙稀醯 基之早體係在容易得到高1〇% κ值之樹脂粒子之方面最 Ο 18 201241072 好是在1分子中具有2個之(甲基)丙烯醯基之單體(二(甲 基)丙烯酸酯類)。在二(曱基)丙烯酸酯類中,由於同樣之 理由,因此,更加理想是鏈烷二醇二(甲基)丙烯酸酯、聚 烷撐乙二醇二(甲基)丙烯酸酯,特別是因為在導電性金屬 層被覆後之粒子強度之降低變小,所以,最好是鏈烷二醇 二(甲基)丙烯酸酯。此外,在二(曱基)丙烯酸酯類中,特 別最好是具有連接於2個之(甲基)丙烯醯基之碳一碳雙鍵 (C=C)之間而存在之原子數為6個〜14個之分子構造之二 (甲基)丙烯酸酯。此外’在此’作為連接於碳—碳雙鍵之 間而存在之原子數係不計算碳—碳雙鍵(c= 〇本身之碳原 子,在存在複數個之連接(甲基)丙烯醯基間之原子鏈之狀 態下’成為最短之原子鏈之原子數。 作為刚述之苯乙烯系多官能單體係在容易得到高】⑽ K值之樹脂粒子而導電性金屬層被覆後之粒子強度之降低 變小之方面’最好是在!分子中具有2個之乙烯基之單體 (含2官㉟乙烯基單體),即使是在其中,也最好是二乙稀 基苯。 在用以形成樹脂粒子之單體成分,佔有之乙烯系交聯 性單體之含有量係最好是10質量%以上’更加理想是3〇質 量%以上,甚至最好是50質量%以上。在乙烯系交聯性單體 之含有量為該範圍之時,可以更加確實地控制1〇% κ值, 成為12, ΟΟΟΝ/mm2以上。 作為前述之矽烷系交聯性單體係在更加確實地控制 ίο% κ值之方面,最好是可以形成前述之第3形態之交聯 19 201241072 構造之石夕烧系交聯M _ 聯ίΐ早體,容易得到高硬度之粒子。在使 用前述石夕院系交聯,卜4 „0 ^ ϋ早體之狀態下,樹脂粒子係最好是含 有藉由對於包含石夕、ρω 3 7坑糸交聯性單體之矽烷系單體來進行水 解及縮。而形成之聚矽氧烷骨格,但是,至少藉由對於可 、形成月】述第3形態之交聯構造之矽烷系交聯性單體來進 仃水解及縮合而形成之聚矽氧烷骨格係具備來自於具有可 聚5之碳碳雙鍵(例如乙烯基、(甲基)丙烯醯基) 之聚合性聚矽氧院之骨格。 作為可以形成前述第3形態之交聯構造之矽烷系交聯 性單體係最好是具有(甲基)丙稀醯基、具有乙稀基或者是 具有環氧基’更加理想是具有(甲基)丙稀醯基、具有乙稀 基甚至最好疋具有(甲基)丙烯醯基。在具有(甲基)丙烯 醯基之中,特別最好是3_甲基丙烯醯氧基丙基三甲氧基 夕院3 f基丙稀酿氧基丙基甲基二甲氧基梦院,在具有 乙烯基之中,特別最好是乙烯基三甲氧基矽烷。 、 滿足刚述之條件A和前述之條件B或前述之條件A和 刖述之條件C之單體成分係包含乙烯系交聯性單體和矽烷 系交聯性單體之至少一冑,但是,也可以包含乙烯系非交 聯性單體和矽烷系非交聯性單體之至少一種。特別是在含 有乙烯系非交聯性單體之時,容易控制回復特性(復原性) 或破壞強度等之壓縮變形特性,因此,變得理想。 作為前述之乙烯系非交聯性單體係最好是前述之單體 (〇,更加理想是烷基(甲基)丙烯酸酯類、環烷基(甲基) 丙稀酸醋類、含芳香環(甲基)丙婦酸s旨類、苯乙烯系單"官 20 201241072 能單體。即使是在其中,也在控制回復特性(復原性)或破 壞強度並且容易得到高1 〇 % K值之樹脂粒子之方面,最好 是具有碳數4以下之炫基之烧基(甲基)丙烯酸酯類、具有 碳數6以下之環烷基之環烷基(甲基)丙烯酸酯類、笨乙烯 系單官能單體’特別是在成為高1 0 % }(值之樹脂粒子之方 面,最好是苯乙烯系單官能單體。 作為本乙稀糸早g能早體係在容易得到高1 〇 % K值之 樹脂粒子之方面’更加理想是苯乙烯。在具有碳數4以下 之院基之烧基(甲基)丙烯酸酯類之中,最好是n_ 丁基丙 烯酸酯、η—丁基曱基丙烯酸酯、甲基甲基丙烯酸酯。在具 有碳數6以下之環烷基之環烷基(甲基)丙烯酸酯類之中, 最好是環己基丙稀酸酯 '環己基曱基丙烯酸酷。 例如在包含苯乙烯系單官能單體來作為前述單體(j) 之狀態下,最好是包含在1分子中具有2個以上之(曱基) 丙烯醯基之單體或苯乙烯系多官能單體來作為前述單體(3) 之形態。 在控制以上之樹脂粒子之10% Κ值而成為12,000Ν/ mm2以上之方面’適當之單體成分係大致分成為(丨)具有乙 烯系交聯性單體而不具有矽烷系交聯性單體之形態、(i i ) 具有石夕烧系交聯性單體而不具有乙稀系交聯性單體之形 癌、(iii)具有乙稀系父聯性单體和碎烧系交聯性單體之形 態。各形態之特別理想之單體之組合係正如以不。 (i )之形態(具有乙烯系交聯性單體而不具有石夕院系交 聯性單體之形態)之狀態:連接於2個之(曱基)丙稀醯基之 21 201241072 碳一碳雙鍵(c==c)之間而存在之原子數(但是,不計算碳一 碳雙鍵(c=c)之碳原子,在存在複數個之連接(甲基)丙烯 醯基間之原子鍵之狀態下,成為最短之原子鏈之原子數。) 為6個〜14個之二(甲基)丙烯酸酯和單官能苯乙烯單體之 組合。 (i i )之形態(具有矽烷系交聯性單體而不具有乙烯系 交聯性單體之形態)之狀態:在分子内具有(甲基)丙烯醯基 或乙烯基之矽烷系交聯性單體間之組合(例如3_甲基丙烯 醯氧基丙基三甲氧基矽烷和3一曱基丙烯醯氧基丙基甲基 二甲氧基矽烷之組合)。 (i i i)之形態(具有乙烯系交聯性單體和矽烷系交聯性 早體之形態)之狀態:具有(甲基)丙烯醯基之矽烷系交聯性 單體、苯乙婦系多官能單體和連接於2個之(甲基)丙稀醯 基之碳-碳雙鍵(C=C)之間而存在之原子數為6個〜"個 之二(甲基)丙烯酸酯之組合、+ β 、或者是具有(甲基)丙烯醯基 之矽烷系交聯性單體、笨乙熵么夕—„ μ ♦g佈不多g旎早體和苯乙烯系單 官能單體之組合。 在前述樹脂粒子之個數其進 数丞準之平均分散粒徑為2. 0 # m 以上、2. 5 # m以下之狀態下,In terms of 10% K value, Jixian County, +. DD currency J is best described as the monomer (3). Even in it, it is more desirable to have two or more (mercapto) acryl fluorenyl precursors in the first 9 and oo knives (that is, there are two or more acrylonitrile in the i molecule). The monomer of the group is either a monomer having two or more methyl propyl sulfonium groups in one molecule, or one or both of styrene-based polyfunctional monomers. The early system having two or more (meth) propyl fluorenyl groups in one molecule of the first one is the most suitable for obtaining resin particles having a high 〇 κ value. 18 201241072 A monomer (di(meth)acrylate) having two (meth)acrylonitrile groups therein. Among the bis(indenyl) acrylates, alkanediol di(meth)acrylates, polyalkylene glycol di(meth)acrylates are more preferred for the same reason, especially because Since the decrease in the strength of the particles after the coating of the conductive metal layer is small, an alkanediol di(meth)acrylate is preferable. Further, among the bis(indenyl) acrylates, it is particularly preferred to have a carbon-carbon double bond (C=C) bonded to two (meth) acrylonitrile groups and have an atomic number of 6 ~14 molecular structure of the two (meth) acrylate. In addition, the 'number of atoms' existing between the carbon-carbon double bonds is not calculated by carbon-carbon double bonds (c = carbon atoms of ruthenium itself, in the presence of a plurality of linked (meth) acrylonitrile groups In the state of the atomic chain between the two, the number of atoms that are the shortest atomic chain. As the styrene-based polyfunctional single system described earlier, the particle strength of the resin particles after the high (10) K value is easily obtained and the conductive metal layer is coated The aspect of the reduction is smaller. It is preferably a monomer having two vinyl groups (including two official 35 vinyl monomers) in the molecule, and even in it, it is preferably diethylbenzene. The monomer component for forming the resin particles preferably contains 10% by mass or more of the ethylene-based crosslinkable monomer, more preferably 3% by mass or more, even more preferably 50% by mass or more. When the content of the ethylene-based crosslinkable monomer is within this range, the 〇% κ value can be more reliably controlled to be 12 ΟΟΟΝ/mm 2 or more. The decane-based crosslinkable single system is more surely Control ίο% κ value, it is best to shape Crosslinking of the third aspect described above 19 201241072 The structure of the stone-fired system is cross-linked with M _ ΐ ΐ ΐ ΐ, and it is easy to obtain particles of high hardness. In the use of the above-mentioned Shi Xiyuan system cross-linking, Bu 4 „0 ^ ϋ early body In the state of the resin particles, it is preferable to contain a polyoxyalkylene skeleton which is formed by hydrolyzing and shrinking a decane-based monomer containing a cross-linking monomer of 石ω, ρω 3 糸 ,, but The polyoxyalkylene skeleton formed by at least hydrolyzing and condensing the decane-based crosslinkable monomer capable of forming the crosslinked structure of the third embodiment of the present invention has a carbon-containing carbon having a polymerizable 5 It is preferable that the decane-based crosslinkable single system having a double bond (for example, a vinyl group or a (meth) acryl fluorenyl group) has a crosslinked structure capable of forming the crosslinked structure of the third aspect. Methyl) acrylonitrile, having a vinyl group or having an epoxy group is more desirably having a (meth)allyl fluorenyl group, having a vinyl group or even preferably having a (meth) acrylonitrile group. Among the (meth) acrylonitrile groups, particularly preferably 3-methacryl oxime Propyl trimethoxy methoxy 3 propyl methoxy propyl methoxy methoxy methoxy siloxane, among the vinyl groups, particularly preferably vinyl trimethoxy decane. A and the above-mentioned condition B or the above-mentioned condition A and the condition C of the monomer component described above include at least one of a vinyl crosslinkable monomer and a decane crosslinkable monomer, but may also contain a vinyl group. At least one of a non-crosslinkable monomer and a decane-based non-crosslinkable monomer. In particular, when a vinyl-based non-crosslinkable monomer is contained, it is easy to control the compression characteristics such as recovery characteristics (recoverability) or breaking strength. Therefore, it is preferable that the ethylene-based non-crosslinkable single system is the aforementioned monomer (〇, more preferably an alkyl (meth) acrylate or a cycloalkyl (methyl) propyl group. Dilute vinegar, aromatic ring (methyl) propylene succinic acid s, styrene single " officer 20 201241072 energy monomer. Even in the case of controlling the recovery characteristics (restoration) or breaking the strength and easily obtaining a resin particle having a high K value of 1%, it is preferable to use a ketone group having a carbon number of 4 or less (methyl). Acrylates, cycloalkyl (meth) acrylates having a cycloalkyl group having 6 or less carbon atoms, and stupid vinyl monofunctional monomers are particularly in the form of resin particles having a value of 10% by weight. It is preferable that it is a styrene-based monofunctional monomer. As the present ethylene, the early system can be more preferably styrene in terms of easily obtaining a resin particle having a K value of 1% K. In a hospital having a carbon number of 4 or less. Among the alkyl (meth) acrylates, n-butyl acrylate, η-butyl methacrylate, and methyl methacrylate are preferred. The cycloalkyl group having a carbon number of 6 or less is preferred. Among the cycloalkyl (meth) acrylates, cyclohexyl acrylate "cyclohexyl decyl acrylate" is preferred. For example, a styrene-based monofunctional monomer is included as the monomer (j). Preferably, it is contained in one molecule having two or more (fluorenyl groups) The monomer of the olefin group or the styrene-based polyfunctional monomer is used as the form of the monomer (3). The amount of the above-mentioned resin particles is 10% Κ and becomes 12,000 Å/mm 2 or more. The body component is roughly divided into a form having a vinyl crosslinkable monomer and having no decane crosslinkable monomer, and (ii) having a sinter calcining crosslinkable monomer without an ethylene crosslink. The form of the unitary monomer, (iii) the form of the ethylene parent monomer and the calcined crosslinkable monomer. The combination of the particularly desirable monomers of each form is as follows: (i) The state of the form (having a vinyl cross-linking monomer and not having the form of a cross-linking monomer of the Shixiyuan system): 21 attached to two (mercapto) acrylonitrile groups 201241072 Carbon-carbon double bond The number of atoms existing between (c==c) (however, the carbon atom of the carbon-carbon double bond (c=c) is not calculated, and there are atomic bonds between a plurality of linked (meth) acryloyl groups. In the state, it becomes the atomic number of the shortest atomic chain.) It is 6 to 14 bis (meth) acrylate and monofunctional styrene a combination of (ii) a form (having a form of a decane-based crosslinkable monomer and no vinyl crosslinkable monomer): a decane having a (meth)acryl fluorenyl group or a vinyl group in a molecule a combination of crosslinkable monomers (for example, a combination of 3-methacryloxypropyltrimethoxydecane and 3-mercaptopropoxypropylmethyldimethoxydecane). (iii) a state of a form (having a form of a vinyl crosslinkable monomer and a decane crosslinkable early form): a decane crosslinkable monomer having a (meth) acrylonitrile group, a styrene-based polyfunctional monomer, and The number of atoms present between the carbon-carbon double bonds (C=C) of two (meth) propyl fluorenyl groups is 6 ~" bis(meth) acrylate combinations, + β, or a combination of a decane-based crosslinkable monomer having a (meth)acryl fluorenyl group, a stupid enantiomer, and a styrene-based monofunctional monomer. The state in which the average number of the particles of the resin particles is 2. 0 # m or more and 2. 5 # m or less

r 為了使仔樹脂粒子之1 0% K 值成為17,〇〇ON/ mm2以上,因卜卜 上因此,除了用以使得前述之10% K值成為1 2,000N/mm2以上之。 上之條件(滿足條件A和條件B兩 者或者是滿足條件A和條件「士 土、, 千1兩者)以外,還滿足下列之條 件X和下列之條件a ’或者是 可疋滿足下列之條件X和下列之 條件b 1。但是,在選擇條件A ^ ^ ' A和條件C之組合來作為用以r In order to make the 10% K value of the resin particles to 17, 〇〇ON/mm2 or more, in addition to the above, the 10% K value is set to be 12,000 N/mm2 or more. The above conditions (satisfying the condition A and the condition B or satisfying the condition A and the condition "territory, both thousand 1") satisfy the following condition X and the following condition a ' or may satisfy the following Condition X and the following condition b 1. However, in combination with the condition A ^ ^ ' A and condition C are selected as

S 22 201241072 使得l〇% K值成為1 2, 000N/mm2以上 足條件x和條件a。 <條件之狀態下’滿 如果是用以形成樹脂粒子之單體成分… 聯性單體之含有量相對於單體成分總量而成為5〇 質f /。以上或者是該矽烷系 早體之含有量相對於單 體成刀總S而未滿50質量%的話,則單 A ,, 〇〇 ^ ⑴早體成分中之乙烯系 交聯性早體之含有量係相 旦。/、,L 了於早體成分總量而成為35質 里/6以上。 條件a’帛以形成樹脂粒子之單體成分中之乙基乙烯 …有量係相對於單體成分總量而成為!質量%以下。 ":件bl :在用以形成樹脂粒子之單體成分中之乙基乙 烯基苯之含有量相對於星_ 士、八^ θ 、早體成刀總篁而超過1質量%之狀 I、下’用以形成樹脂粒子 之早體成刀中之乙烯系交聯性單 體之含有量係相對於單體成分總量而成為80質量%以上, 並且’在200t以上’加熱樹脂粒子。 在前述樹脂粒子之軲你t ,, + "k比較大之狀態(也就是個數基 準之平均分散粒經為2 η “ ^ 马以上之狀態),為了更加地提 南10%Κ值’因此,需*审a > 要更加尚之父私卩度。在滿足前述之 條件X之時,可以藉由R η » θ „ 稭由50質置%以上之矽烷系交聯性單體 或35質量%以上之乙稀系交聯性單體而更加地提高交聯 此外,在單體成分中’控制無助於交聯之乙基乙稀基 本之含有量,來成為1質量%以下(前述之條件a),或者如 果是乙基乙烯基笨之含有量超過1質量%的話,則為了補r 這個,因此,使得乙嫌备丄 ' 補偏 寸乙烯糸父聯性單體之含有量,成為8〇質 23 201241072 量%以上’並且,藉由賴定夕+勒而# 疋之加熱而促進交聯(前述之條件 bl )。藉此而確保更加高之交聯。 ' 另-方面,在前述樹脂粒子之個數基準之 徑為1. 0 /i m以μ ο π τ 刀敢板 粒子之in Κ值*、·㈣未滿之狀態下’為了使得樹脂 于之 1ϋ/β Κ 值大於 19, 6〇〇N/mm2, 前述之10%K值成A nnnM/ 2 除了用以使得 成為12, OOON/mm以上之條件(读S 22 201241072 makes the l〇% K value become 1 2 000 N/mm 2 or more and the condition x and condition a. <In the condition of the condition, the monomer component for forming the resin particles is ... The content of the coupling monomer is 5 ff / for the total amount of the monomer component. In the case where the content of the decane-based precursor is less than 50% by mass based on the total amount of the monomer-forming knives, the content of the ethylene-based cross-linking precursor in the early component of the single A, 〇〇^ (1) The quantity is the same. /, L is 35 mass/6 or more in the total amount of the early body components. The condition a'帛 is such that the amount of ethylethylene in the monomer component forming the resin particles is based on the total amount of the monomer components! Below mass%. ": piece bl: the content of ethylvinylbenzene in the monomer component for forming the resin particles is more than 1% by mass relative to the total amount of the star-shaped, eight- θ, and the early-formed knives. The content of the ethylene-based crosslinkable monomer in the early forming of the resin particles is 80% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 t or more. In the above-mentioned resin particles, you t,, + "k is relatively large (that is, the average dispersion of the number of particles is 2 η " ^ horse above the state), in order to more mention the South 10% depreciation ' Therefore, it is necessary to judge a > more to the father's private degree. When the above condition X is satisfied, it is possible to use R η » θ „ straw from 50 mass% or more of decane crosslinkable monomer or 35 The ethylene-based crosslinkable monomer having a mass% or more and more to improve the cross-linking, and the amount of the ethylidene which does not contribute to the cross-linking in the monomer component is controlled to be 1% by mass or less (the aforementioned Condition a), or if the content of ethyl vinyl stupid exceeds 1% by mass, in order to supplement this, therefore, the content of the parenteral monomer of the 偏 寸 糸 , , , It becomes 8 〇 23 23 201241072%% or more 'and the crosslinking is promoted by the heating of 赖定夕+勒## (the aforementioned condition bl). This ensures a higher cross-linking. 'In another aspect, the diameter of the number of the resin particles is 1. 0 /im is μ ο π τ The value of the 敢 板 粒子 粒子 粒子 * * * 、 、 、 、 、 、 、 、 、 、 、 ' ' 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了/β Κ value is greater than 19, 6〇〇N/mm2, the aforementioned 10% K value is A nnnM / 2 except for the condition of being 12, OOON/mm or more (read

和條件β兩者戎去aq u件A /者疋滿足條件A和條件G兩者)以外,還滿 n条件a ’或者是滿足下列之條件b 擇條件a和條株Γ A从* 彳-疋在選 條件C來作為心使得ln κ值成為12,咖 mm以上之條件之狀態下,滿足前述之條件a。 條件b2 ·在用以形成樹脂粒子之單體成分中之 稀基笨之令古暴乙 本:…相對於單體成分總量而超…量%之狀 心下用以形成樹脂粒子之單體成分中 體 中之乙烯系交聯性單 里’丁、目對於單體成分總量而成為35質量%以上, 在2 0 0 C以上,加熱樹脂粒子。 =述樹脂粒子之粒徑變小之狀態(也就是個數基準 態^:散二徑未滿U…狀態),在比起粒徑大之狀 e Ρ使疋比較低之交聯度,也可以提高1G% Κ值。也 二::,4 了更加地提高1〇% Κ值而需要之交聯度係有粒 :;小而越加變低之傾向發生。因此,在樹脂粒子之個數 土準之平均分 條徠 苽拔仫未滿2. 0^^之狀態下,不需要前述之 時, 在乙基乙烯基本之含有量超過1質量%之 猎由乙稀系交聯性單體 述之 遐之3有量成為35質量%以上(前 ” b )而確保更加高之交聯。And condition β both abbreviated aq u piece A / person 疋 satisfy both condition A and condition G), full n condition a ' or satisfy the following conditions b condition a and bar Γ A from * 彳- In the state where the condition C is selected as the heart so that the ln κ value becomes 12, and the condition of the coffee mm or more is satisfied, the aforementioned condition a is satisfied. Condition b2 - the rare base in the monomer component for forming the resin particles, the violent base: ... the monomer used to form the resin particles under the core of the total amount of the monomer component In the component, the ethylene-based cross-linking singularity of the component is 35% by mass or more based on the total amount of the monomer components, and the resin particles are heated at 200 C or more. = the state in which the particle diameter of the resin particles becomes small (that is, the number of reference states ^: the two diameters are less than the U state), and the degree of crosslinking is lower than that of the e Ρ which is larger than the particle diameter. Can increase the 1G% threshold. Also 2::,4 has increased the value of 1%% and the degree of cross-linking required to have a grain:; the tendency to become smaller and become lower. Therefore, in the state where the average number of the resin particles is less than 2. 0^^, when the above-mentioned condition is not required, the content of the ethyl vinyl group exceeds 1% by mass. The amount of the ethylene cross-linking monomer is 35% by mass or more (pre-b) and ensures a higher cross-linking.

S 24 201241072 此:卜值為了使得前述樹脂粒子之壓縮破壞變形 體T述之範圍,因此,例如可以含有乙稀 糸父聯性早體,來作真田,、,^ , …,用以形成樹脂粒子之單體成分, 該乙稀系交聯性單體中,使得50„%以上(更加理= 60質量%以上、甚至最好是70質量%以上),成為在二 具有2個之乙烯基之單體(含2官能乙稀基單體)。 含2官能乙稀基單 / ^早體成為交聯性單體(乙稀系交聯性單體 和石夕烧糸交聯性單體之總量 是50質量%以上、甚至最辟Β⑼ 以上(更加理想 至最好疋60質量%以上)係也 縮破壞變形率和20%〜4〇% κ # & & ▲、+、々 ,;壓 、 值成為則述範圍之方面。S 24 201241072 This is a value which causes the compression of the resin particles to deform the deformable body T, and therefore, for example, it may contain an Ethylene-anthracene-type pre-existing body for use as a real field, and, for example, to form a resin. The monomer component of the particles, in the ethylene crosslinkable monomer, is 50% or more (more reasonable = 60% by mass or more, even more preferably 70% by mass or more), and has two vinyl groups in two. Monomer (containing 2-functional ethylenic monomer). Containing 2-functional ethylidene single / early body to be a crosslinkable monomer (Ethylene crosslinkable monomer and Shiqi burnt crosslinkable monomer) The total amount is 50% by mass or more, and even the most ambiguous (9) or more (more desirable to preferably 疋60% by mass or more) is also reduced in deformation rate and 20% to 4%% κ# && ▲, +, 々 ,; pressure, value becomes the aspect of the scope.

作為前述樹脂粒子之M 乳化聚人、W取人 並無特別限制,列舉 種聚合法等,曰曰料合、溶膠凝膠晶 使得前述樹脂粒子之粒徑,成為 刖述之規定範圍,因此,最 ”、、 、土二入丄 好疋知用例如在藉由晶種聚人 法而3成樹脂粒子之後,進行分級 粒子之合成,採用晶種聚人法,而〜專。藉由在樹脂 粒子。此外,可以藉由八2人度分布小之樹脂 包早 3刀級在合成後之樹脂粒子,除去粗 粒子二而調整平均粒徑,成為希望之範圍。 于去粗 别述之晶種聚合法係包含晶 程、聚入制尸“…種粒子調整製程、吸收製 粒子之狀離下…丄一 ^由有機材料而構成之 子,在人成由右二彳“之乙烯系單體,來調製晶種粒 千在《成由有機材料和具有聚石夕 之粒子之壯能丁 工月& t材抖而構成 狀也下,可以由前述之矽烷系單體,來調贺曰接 粒子(聚矽氧烷粒子)。 》1日日種 25 201241072 由乙烯系單體來調製晶種粒子之 使用之方法,列蛊如 忒係了以知用向來 舉例如無皂化乳化聚合、 該狀態下,作為形士 刀散聚合等。在 乙稀等之苯乙浠d:單體成分係最好是使用笨 方法來調製晶種粒子(聚”燒粒子)之 作為前述之石夕料單體r中,進行水解而縮聚之方法。 體、矽烷糸韭六· 吏用刖述之矽烷系交聯性單 '、又性單體。此外,在聚矽氧烷骨格;^ r法 聚合物呈複合化之狀能下你“ &烷月格和乙烯 有自由基聚人性武之院系單體係可以使用具 卜 夕貌系交聯性單體,調製聚合性聚石夕 氧烷粒子(將且有白士甘w β叔不。性聚矽 備之粒子)心▲聚合性基之聚矽氧烷骨格予以具 備之粒子)。水解和縮 任奄方沐fj以採用總括、分割、連續等之 〜、方法。在進行水解 以使用氛、尿素、乙^ 觸媒係最好是可 氫負“ μ &醇胺、四甲基銨氫化氧化物、鹼金屬 、鹼土類金屬氫氧化物等之鹼性觸媒。 在前述之包含水之溶媒中, 媒中除了水或觸媒以外,還可 以包含有機溶劑。作為# _ '"糸可以列舉例如甲醇、乙 異丙醇、Π— 丁醇、異 醇、乙二醇、丙二醇、i4 丁/e…、"醇、戍 其7 A 丁烷二醇等之醇類;两酮、甲 基乙基甲酮等之_類;乙酸 俨笪夕,„、 义乙酉日4之酯類;異辛烷、環己 烷專之(¾)石蠟類;笨、甲笨 4方香族烴類等。這些係 早獨地使用,也可以併用2種以上。 在水解縮合,也還可以视田队仏 ^乂併用陰離子性、陽離子性、非 離子性之界面活性劑或者是聚乙稀醇、聚乙稀基吼略烧嗣The M-emulsified polycondensate of the resin particles is not particularly limited, and examples thereof include a seed polymerization method and the like, and the sol-gel crystals and the sol-gel crystals have a particle diameter of the resin particles in a predetermined range. The most ",", and the second is good, for example, after the resin particles are formed by the seed polymerization method, the synthesis of the classified particles is carried out, and the seed polymerization method is used, and the resin is used. In addition, it is possible to adjust the average particle diameter by removing the coarse particles by the resin particles having a small distribution of eight or two human degrees, and to remove the coarse particles, thereby achieving a desired range. The polymerization method consists of crystallizing, merging into the corpse, "...the particle-adjusting process, the absorption of the particles, the detachment...the 构成一^ is composed of organic materials, and the acetylene monomer in the right 彳" To modulate the seed crystals in the form of "organic materials and particles with the characteristics of the granules of the granules of the granules" Particles (polyoxane particles). 25 201241072 A method of modulating seed crystal particles by using a vinyl monomer, for example, a saponification polymerization, for example, a saponification-free emulsion polymerization. The phenethyl hydrazide d: monomer component is preferably a method of modulating the seed particles (poly"-fired particles of the above-mentioned lithium monomer r by a singular method to carry out hydrolysis and polycondensation.体, 矽 糸韭 · · · 吏 刖 刖 刖 矽 矽 矽 矽 矽 矽 交 交 交 交 交 交 、 、 、 、 In addition, in the polyoxane skeleton; ^ r method polymer in the form of a composite can you " & alkane lattice and ethylene have a free radical poly-humanity Wu Zhiyuan system can be used to cross-link a monomer, a polymerized polyoxan oxide particle (a particle having a white 聚合 w 。 。 性 ) ) ) ) ) ) ) 心 心 心 心 心 心 心 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Ren Yifang Mu fj adopts methods such as generalization, division, continuous, etc. The hydrolysis is carried out to use the atmosphere, urea, and the catalyst system is preferably hydrogen negative "μ & alkanolamine, tetramethylammonium hydrogenation An alkaline catalyst such as an oxide, an alkali metal or an alkaline earth metal hydroxide. In the above-mentioned solvent containing water, the medium may contain an organic solvent in addition to water or a catalyst. Examples of # _ '"糸 include methanol, ethyl isopropyl alcohol, butyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, i4 butyl/e..., "alcohol, 戍7 7 butane diol, and the like. Alcohols; ketones, methyl ethyl ketones, etc.; acetonitrile, „, yiyi 酉 4 esters; isooctane, cyclohexane (3⁄4) paraffin; stupid, A group of 4 aromatic hydrocarbons, etc. These systems are used alone or in combination of two or more. In the hydrolysis condensation, it is also possible to use an anionic, cationic or nonionic interfacial activity. Or a mixture of polyethylene glycol and polyethylene

S 26 201241072 等之高分子分散劑。這些係可以單獨地使用,也可以 2種二。水解縮合係可以在混合成為原料之矽烷系單體 。以及匕含觸媒或水和有機溶劑之溶媒之後,藉由在溫产 。。以上、loot以下、最好是。。。以上、7(rc以下,授二 分鐘以亡、10。小時以下,而進行水解縮合。 在月』述之吸收製程,在晶種粒子,吸收單體成分 收之方法係如果是在晶種粒子之存在下而以存在單體成八 之狀態來進行的話,則並無特別限定。因此,可^ 種粒子之溶媒中,加入單體成分,並且,也可以在:: 早=成分之溶媒中,加入晶種粒子。即使是在其中,也正 J者最好疋在預先分散晶種粒子之溶媒中,加入單 成分。特別是並無由反應液(晶種粒子分散液)而取 解、縮合製程來得到之晶種粒子,在該反應液來加入 成分之方法係製程不複雜,具有良好之生產性,因此,離 得理想。 ¥ 一在刖述之吸收製程,單體成分之添加時間係並無特別 限疋’可以總括地添加’並且’可以分成為數次而進行添 二:=’能夠以任意之速度’來進行供應。此外,在力: 早A分之時,皆可以僅添加單體成分,也可以添加單 成刀之各液’但是,預先藉由乳化劑而使得單體成分乳 化及分散於水或水性媒體之乳化液來混合於晶種粒子係效 率更加良好地進行對於日日日種粒子之吸收,因此變得理推。 前述之乳化劑係並無特別限定,但是,例如陰離子性 界面活性劑或聚氧化乙烯烷基醚、聚氧化乙烯烷基笨基 27 201241072 醚、聚氧化乙烯脂肪酸醋、山梨糖醇野脂肪酸醋、聚氧化 :梨糖醇野脂肪酸醋、聚氧化乙婦院基胺、丙三醇脂肪酸 酉曰氧化乙烯-氧化丙稀嵌段聚合物等之非離子性界面活 性劑係也可以使得在吸收晶種粒子、單體成分後之晶種粒 子之分散狀態呈安定化,因&,變得理想。這些乳化劑係 可以僅使用1種,也可以併用2種以上。 此外’在藉由乳化劑而乳化及分散單體成分之際,最 好是使用相對於單體成分之質量而成為〇 3倍以上、…立 以下之水或水溶性有機溶劑。作為前述之水溶性有機溶齊: 係列舉甲醇、乙醇、異丙醇、n 一丁醇、異丁醇、s 醇、t- 丁醇、戍醇、乙二醇、丙二醇、u—丁烷二醇等 之醇類;㈣、甲基乙基甲酮等之酮類;乙酸乙醋等之酿 類等。 曰 吸收製程係最好是在以上、6(rc以下之溫度範圍, 在5分鐘以上、720分鐘以下,進行攪拌,同時,進行吸 收製程。這些條件係可以由於使用之晶種粒子或單體之種 類等而適度地設定,這些條件係可以僅丨種或者是合併2 種以上而採用。在吸收製程,就單體成分如何吸收於晶種 粒子之判斷而言’例如可以藉由在加入單體成分之前以及 吸收階段結束後’以顯微鏡來觀察粒子,以單體成分之吸 收,來確認粒徑變大,而容易判斷。 在聚合製程,對於吸收在晶種粒子之單體成分,來進 行聚合反應。在此’在晶種粒子為聚合性聚矽氧烷之狀態 下’吸收之單體成分和聚合性聚矽氧烷骨格具有之自由基 28 201241072 聚合性基係進行聚合,聚坊〶 ^夕氧院骨格和乙烯聚合物呈複合 化。聚合方法係並無特別PP〜 行另】限久,但是,列舉例如使用自由 基聚合起始劑之方法,作A箭 下為則述之自由基聚合起始劑係並 無特別限定,但是,可以祐田 使用例如過氧化物系起始劑或偶 氣基系起始劑等。k些自由基聚合起始劑係可以單獨地使 用,也可以併用2種以上。 lit#自㈣聚合時之反應溫度係最好是飢以上, 更加理想是5(TC以上,最好是1〇〇t以下更加理想是8〇 °C以下。在反應溫度過度低之狀態下,有無法充分地提高 聚合度而使得複合粒子之機械特性呈不充分之傾向發生, 另-方面’在反應溫度過度高之狀態下,有在聚合中而容 易引起粒子間之凝隼之傾h,, 果之傾向發生。此外,在進行自由基聚 合時之反應時間係可以配合使用之聚合起始劑之種類而適 度地變更’但是,通常最好是5分鐘以上,更加理想是1〇 分鐘以上,最好是_分鐘以下,更加理想是_分鐘以 下。在反應時間過度短之狀態下,有無法充分地提高聚合 度之狀態發生,在反應時間過度長之狀態下,有在粒子間 而容易引起凝集之傾向發生。 b合成後之樹脂粒子之個數基準之平均分散粒徑係最好 是以上,更加理想是12em以上,甚至最好是 A m以上’最好是3.0/Z m以下,更加理想是28#m以下, 甚至最好是2.7//m以下。此外’分散粒徑之個數基準之變 動係數係最好是1〇%以下,更加理想是9%以下,甚至最好 是7%以下。 29 201241072 正如前面之敘述而合成之樹脂粒子係最好是配合需要 而供應至分級’來成為規定之粒徑。分級方法係並無特別 限定,列舉例如藉由電成篩等而造成之篩分;使用膜據器、 葉摺過濾器、陶瓷膜過濾器等之過濾器之過濾;使用藉由 質量差及流體抵抗差之相互作用而進行分級之習知裝置 (粒子之落下速度等之重力差成為原理之重力分級機、以藉 由自由漩渦或半自由旋渦而造成之離心力和空氣阻力之平 衡來作為原理之(半)自由漩渦離心分級、藉由旋轉之分級 扇葉(轉子)而製造之旋轉流來產生之離心力和空氣而造成 之阻力之平衡來作為原理之附加旋轉扇葉之離心分級)之 分級等。即使是在這些當中,也由分級精度和生產性之觀 點來看的話,則最好是使用電成篩之分級。 在使用電成篩而進行分級之狀態下,最好是使得樹脂 粒子分散於液體狀媒體之分散體,來通過電成篩。作為前 述之液體狀媒體係列舉例如水;曱醇、乙醇、丙醇、丁醇 等之醇類;己烷、辛烷等之烴類;笨、曱笨、二曱苯等之 芳香族烴類等。這些係可以單獨地使用,並且,也可以併 用2種以上。即使是在這些當中,也最好是醇類、烴類, 更加理想是甲醇、己烷。此外,為了提高樹脂粒子之分散 性,因此’可以在液體狀媒體,添加各種之分散劑。 前述液體狀媒體之使用量係最好是相對於樹脂粒子 100質量份而成為100質量份以上,更加理想是200質量 份以上,甚至最好是500質量份以上,最好是1 0000質量 份以下,更加理想是5000質量份以下’甚至最好是2000S 26 201241072 and other polymer dispersants. These lines can be used singly or in two. The hydrolysis condensation system may be a decane monomer which is mixed as a raw material. And after the solvent containing the catalyst or water and organic solvent, by means of warm production. . Above, loot below, preferably. . . Above 7 (rc below, giving two minutes to die, less than 10 hours, and then undergoing hydrolysis condensation. In the month of the absorption process, in the seed particles, the method of absorbing monomer components is if it is in the seed particles In the presence of the monomer in the presence of the monomer, it is not particularly limited. Therefore, the monomer component may be added to the solvent of the particle, and may be in the solvent of:: early = component In addition, it is preferable to add a single component to the solvent in which the seed particles are dispersed in advance, in particular, it is not removed from the reaction liquid (seed particle dispersion). The seed crystal particles obtained by the condensation process are not complicated in the process of adding the components in the reaction liquid, and have good productivity, so that they are ideally separated. ¥ One absorption process, the addition time of the monomer components There is no special restriction on 'can be added in abundance' and 'can be divided into several times and added two: = 'can be supplied at any speed'. In addition, in force: early A, you can only Adding monomer into It is also possible to add each of the liquids of the single-grinding knife. However, it is more efficient to carry out the mixing of the seed particles in the emulsion of the monomer component by emulsifying and dispersing the monomer component in water or an aqueous medium. The above-mentioned emulsifier is not particularly limited, but, for example, an anionic surfactant or a polyoxyethylene alkyl ether, a polyoxyethylene alkyl phenyl group 27 201241072 ether, polyoxidation Non-ionic properties of ethylene fatty acid vinegar, sorbitol wild fatty acid vinegar, polyoxidation: sorbitol wild fatty acid vinegar, polyoxyethylene ethoxylate amine, glycerol fatty acid oxime ethylene oxide-propylene oxide block polymer In the surfactant system, the dispersion state of the seed particles after absorbing the seed particles and the monomer component can be stabilized, and it is preferable to use the emulsifier. These emulsifiers may be used alone or in combination of two. In addition, when emulsification and dispersion of a monomer component by an emulsifier, it is preferable to use water which is 3 times or more, or less than the mass of a monomer component, or a water-soluble organic solvent. As the above-mentioned water-soluble organic solvent: a series of methanol, ethanol, isopropanol, n-butanol, isobutanol, s alcohol, t-butanol, decyl alcohol, ethylene glycol, propylene glycol, An alcohol such as u-butanediol; (4) a ketone such as methyl ethyl ketone; a brewing such as ethyl acetate; etc. The 曰 absorption process is preferably in the above temperature range of 6 (rc or less) The mixture is stirred for 5 minutes or more and 720 minutes or less, and the absorption process is carried out at the same time. These conditions can be appropriately set depending on the type of the seed crystal or the monomer to be used, and the conditions can be only smear or combined. In the absorption process, in terms of the judgment of how the monomer component is absorbed into the seed particles, 'for example, by observing the particles by a microscope before the monomer component is added and after the end of the absorption phase, the monomer is observed. The absorption of the components confirms that the particle size becomes large and is easy to judge. In the polymerization process, a polymerization reaction is carried out for the monomer component absorbed in the seed particles. Here, 'the monomer component absorbed in the state in which the seed particles are polymerized polyoxyalkylene oxides and the free radicals of the polymerizable polyoxyalkylene oxide skeleton 28 201241072 Polymerization base system is polymerized, and the polymerization is carried out. The hospital bone and ethylene polymer are composited. The polymerization method is not particularly limited to PP. However, for example, a radical polymerization initiator is used, and the radical polymerization initiator is not particularly limited. For example, a peroxide-based initiator or an azo-based initiator can be used. Some of the radical polymerization initiators may be used singly or in combination of two or more. Lit# The reaction temperature at the time of (four) polymerization is preferably hunger or higher, more preferably 5 (TC or more, preferably 1 〇〇t or less, more preferably 8 〇 ° C or less. In a state where the reaction temperature is excessively low, There is a tendency that the degree of polymerization is not sufficiently increased and the mechanical properties of the composite particles are insufficient. On the other hand, in the state where the reaction temperature is excessively high, there is a tendency to cause coagulation between particles during polymerization. In addition, the reaction time during the radical polymerization may be appropriately changed in accordance with the type of the polymerization initiator to be used. However, it is usually preferably 5 minutes or longer, more preferably 1 minute or longer. It is preferably _min or less, and more preferably _min or less. In a state where the reaction time is too short, there is a state in which the degree of polymerization cannot be sufficiently increased, and in the state where the reaction time is excessively long, there is a possibility between the particles. The tendency to cause agglomeration occurs. b The average dispersed particle diameter of the number of resin particles after synthesis is preferably at least, more preferably 12 em or more, and even more preferably A m or more. 3.0/Z m or less is more preferably 28#m or less, and even more preferably 2.7/m or less. Further, the variation coefficient of the number of the dispersed particle diameters is preferably 1% or less, more preferably 9%. In the following, it is even more preferable to be 7% or less. 29 201241072 The resin particles synthesized as described above are preferably supplied to the classification in order to meet the required particle size. The classification method is not particularly limited, and for example, Screening by electroforming or the like; filtration using filters of membranes, leaf-fold filters, ceramic membrane filters, etc.; using conventional methods of classification by interaction of poor quality and poor fluid resistance The gravity difference of the device (the falling speed of the particles, etc. becomes the principle of the gravity classifier, the balance of the centrifugal force and the air resistance caused by the free vortex or the semi-free vortex is used as the principle (semi) free vortex centrifugation, by rotation The classification of the fan blade (rotor) and the centrifugal force generated by the swirling flow and the resistance caused by the air are used as the principle of the classification of the centrifugal fan of the additional rotating blade. Among these, from the viewpoint of classification accuracy and productivity, it is preferable to use an electroforming sieve. In the state where the electroforming sieve is used for classification, it is preferable to disperse the resin particles in the liquid. The dispersion of the medium is passed through an electrophoretic sieve. Examples of the liquid medium described above include water; alcohols such as decyl alcohol, ethanol, propanol, butanol; hydrocarbons such as hexane and octane; An aromatic hydrocarbon such as a benzene or a diphenylbenzene, etc. These may be used singly or in combination of two or more kinds thereof. Among them, an alcohol or a hydrocarbon is preferable, and methanol is more preferable. In addition, in order to increase the dispersibility of the resin particles, it is possible to add various dispersing agents to the liquid medium. The amount of the liquid medium used is preferably 100 parts by mass based on 100 parts by mass of the resin particles. The above is more preferably 200 parts by mass or more, even more preferably 500 parts by mass or more, more preferably 1,000,000 parts by mass or less, more preferably 5,000 parts by mass or less or even more preferably 2000.

S 30 201241072 質里伤以下。樹脂粒子分散於液體狀媒體之方 別限定,«例如照射超音波**散之方法=並無特 ♦墟她肢毋一 ’猎由例如通 中攪拌裝置、兩速度攪拌裝置、膠體磨機 〜一〃水益之前齡 分散裝置等而分散之方法等。 在通過電成筛時之分散體液溫係並無特別限定,可以 配合使用之液體狀媒體而適度地調整,但是,通常為〇= dm °此外’分散體之液溫係當然未滿液體狀 媒體之4點。電成筛之_孔尺寸係可錢合成為要求之平 均粒徑、變動係數而變更。能夠藉由進行以電成筛來造成 之分級,而除去粗大粒子’可以縮小樹脂粒子之粒徑之變 動係數。 d〇在T成後,配合需要而分級之樹脂粒子係通常進行乾 _ ’隨著狀態而附加於前述之燒成(加熱處理)。就乾燥或 ,成等之加熱處理而言,可以按照習知之方法而進行:但 疋,正如前面之敘述,纟用以形成樹脂粒子之單體成分中 之錢系交聯性單體和钱系非交聯性單體之含有比例來 :過規定量之狀態下’限制此種加熱處理之溫度在未滿· c ’變得重要。 之形狀係並無特別 、金平糖狀、薄板 ’最好是球狀,特S 30 201241072 The following is the cause of the injury. The resin particles are dispersed in the liquid medium. «For example, the method of irradiating the ultrasonic wave ** is not special. She is a stalker. For example, the stalking device, the two-speed stirring device, the colloid mill ~ A method in which water is dispersed in a pre-distribution device or the like. The temperature of the dispersion liquid when passing through the electroforming sieve is not particularly limited, and can be appropriately adjusted in accordance with the liquid medium to be used. However, usually 〇 = dm °, and the liquid temperature of the dispersion is of course not filled with liquid medium. 4 points. The pore size of the electroforming sieve can be changed to the required average particle diameter and coefficient of variation. It is possible to reduce the variation of the particle diameter of the resin particles by performing the classification by electroforming the sieve to remove the coarse particles. After the formation of T, the resin particles which are classified as needed are usually dried and added to the above-described baking (heat treatment). In the case of drying or heating treatment, it can be carried out according to a conventional method: However, as described above, the cross-linking monomer and money system used in the monomer component for forming the resin particles are used. The content ratio of the non-crosslinkable monomer is such that it is important to limit the temperature of such heat treatment to less than c c in a predetermined amount. The shape is not special, the gold flat sugar, the thin plate ‘preferably spherical, special

正如以上而得到之樹脂粒子(基材) p 艮 ,V ,例如可以是球狀、旋轉橢圓體狀 針狀'蠢繭狀等之任何一種,但是 別最好是真球狀。 形成於基材(樹脂粒子) 作為構成導電性金屬層 本發明之導電性微粒子係具有 表面之至少一層之導電性金屬層。 31 201241072 之金屬係並無牿Ει| κρ宋,& β 、另j限 仁疋’列舉例如金、銀、銅、白 金、鐵ϋ絡、把、錄、錢、釕、録、纽、鍺、錯、 錫、鈷、銦及鎳〜磷、鎳—硼等之金屬或金屬化合物、以 及這些之合金等。即使是在這些當中,也最好是由於金、 錄、把、銀、鋼、錫’成為導電性良好之導電性微粒子。 此外,在便宜之方面,最好是錦、鎳合金(Ni_虹、^一 Μ、 l-Pd-Au、Ni —Ag);鋼、銅合金(Cu 和由以、c〇、Ni、 Zn、Sn、In、Ga、Ti、Zr、W、Mo、Rh、Ru、Ir、Ag、Au、 Bi A1、Mn ' Mg、p、B而組成之群組來選出之至少一種金 屬元素之合金、最好是和Ag、Ni、Sn' &之合金);銀、 銀合金ug和由 Fe、C0、Nl、Zn、Sn、In、Ga、Ti、Zr、w、 M〇、Rh、Ru、Ir、Au、Bi、A1、Mn、Mg、p、“_q 組來選出之至少-種金屬元素之合金、最好是Ag_Ni、^ —Sn、Ag—Zn);錫、錫合金(例如Sn—“、如―Cu、如〜The resin particles (substrate) p 艮 , V obtained as described above may be, for example, any of a spherical shape, a spheroidal shape, or a needle-like shape, but it is preferably a true spherical shape. The substrate (resin particle) is formed as a conductive metal layer. The conductive fine particles of the present invention have at least one conductive metal layer on the surface. 31 201241072 The metal system does not have 牿Ει| κρ宋, & β, another j limited 疋 疋 ' enumeration such as gold, silver, copper, platinum, iron ϋ 、, 把, 录, 钱, 钌, 录, New Zealand, 锗, wrong, tin, cobalt, indium and metals such as nickel-phosphorus, nickel-boron or metal compounds, and alloys thereof. Even among these, it is preferable that gold, recording, silver, steel, and tin are conductive fine particles having good conductivity. In addition, in terms of cheap, it is best to be brocade, nickel alloy (Ni_虹, ^一Μ, l-Pd-Au, Ni-Ag); steel, copper alloy (Cu and y, c〇, Ni, Zn An alloy of at least one metal element selected from the group consisting of Sn, In, Ga, Ti, Zr, W, Mo, Rh, Ru, Ir, Ag, Au, Bi A1, Mn 'Mg, p, B, It is preferably an alloy of Ag, Ni, Sn' &alloy; silver, silver alloy ug and Fe, C0, Nl, Zn, Sn, In, Ga, Ti, Zr, w, M〇, Rh, Ru, Ir, Au, Bi, A1, Mn, Mg, p, "the alloy of at least one metal element selected from the group _q, preferably Ag_Ni, ^-Sn, Ag-Zn"; tin, tin alloy (for example, Sn- ", such as "Cu, such as ~

Cu-Ag'Sn-Zn、Sn—Sb、Sn—Bi — Ag、sn—Bi— ~ Au、Sn— Pb 等)等。 合金中,也特 是藉由鎳合金 粒子變硬而提 更加容易地發 導電性金屬層 。如果是藉由 現本發明之效 ’則作為構成 導電性金屬層係即使是在前述之金屬或 別最好是藉由鎳或鎳合金而構成,更加理想 而構成。本發明係藉由設計作為基材之樹脂 高壓痕形成能’得到希望之效果,但是,在 現該效果之方面,希望導電性微粒子表面之 係最好是具有可以追隨於基材之適當之硬度 錄或鎳合金而構成之金屬層的話,則藉由發 果而具有適當之硬度。由此種觀點來看的話Cu-Ag'Sn-Zn, Sn-Sb, Sn-Bi-Ag, sn-Bi-~ Au, Sn-Pb, etc.). In the alloy, it is also possible to make the conductive metal layer more easily by hardening the nickel alloy particles. More preferably, the conductive metal layer is formed of a nickel or a nickel alloy as the above-mentioned metal or the like. The present invention achieves the desired effect by designing a high-pressure mark forming property of a resin as a substrate. However, in view of the effect, it is desirable that the surface of the conductive fine particles have a suitable hardness which can follow the substrate. When a metal layer composed of a nickel alloy is recorded, it has an appropriate hardness by the fruit. From this point of view

32 201241072 導電性金屬層之鎳合金係特別最好是能夠以磷(p)和硼(B) 之至少種來作為合金成分之Ni合金(Ni — p合金、Ni — B 合金、Ni — P_B合金),更加理想是包含磷(p)之合金。藉 由含有磷(P)或硼(B)而使得鎳合金變軟,導電性金屬層容 易追隨於基材。 在構成導電性金屬層之鎳合金來包含磷(p)或硼(B)之 狀態下,磷(P)和硼(B )之合計含有量係最好是相對於合金 中之Ni、P、B之合計1〇〇質量%而成為4質量%以上,更加 理想是5質量%以上,甚至最好是6質量%以上。磷(。單獨 之含有量係最好是相對於合金中之Ni、p、B之合計1〇〇質 量%而成為4質量%以上,更加理想是5質量%以上,甚至最 好是6質量%以上。硼(B)單獨之含有量係最好是相對於合 金中之Ni、P、B之合計1〇〇質量%而成為4質量%以上,更 加理想是5質量%以上,甚至最好是6質量%以上。磷(p) 或硼(B)之含有量係越多而鎳合金越加柔軟,容易發揮本發 明之效果。但是,在鎳合金中之磷(p)或硼之含有量過 度多之時,有導電性金屬層之電阻值變高之狀態發生。因 此’鎳合金中之磷(P)和硼之合計含有量係最好是在合 金中之Νι、Ρ、β之合計質量成為1〇〇質量%之時,成為15 質量%以下,由於相同之理由,因此,鎳合金中之ρ含有量 係最好是1 5質量%以下,鎳合金中之Β含有量係最好是丄〇 質量%以下。此外,鎳合金中之P含有量及B含有量係可以 藉由調整使用於形成導電性金屬層時之無電解鎳電鍍液之 P濃度、B濃度、PH值等之進行控制。 33 201241072 此外,構成導電性金屬層之錄合金係可以包含磷(p) 或硼(B)以外之其他金屬成分。作為其他金屬成分係由不損 害錄合金效果之方面來看的話’則最好是Au、pd等之難氧 化性金屬元素。 此外,導電性金屬層係可以是單層,並且,也可以是 複數層,在複數層之狀態下,最好是列舉例如錄(錄合金) —金^⑽合金卜纪、錄⑽合金)—把一金、錄(錄合金) —銀等之組合。 前述導電性金屬層之厚度係最好是〇〇1“以上,更 加理想是〇.03…上’甚至最好是0.05…上,最好 是。.20…下,更加理想是。·18“以下,甚至最好是 0.15”以下’更加最好是0·12…下特別最好是。_ “以下。在作為基材之樹脂粒子來成為微細粒徑之 :之導電性金屬層,如果是導電性金屬層之厚度為前述範 =的話/在使料電性微粒子來作為異方性導電材料 、S 則了以維持安定之電連接。 導電性金屬層之开彡&古、也於 芡肜成方法係並無特別限定,可以 :如在基材之表面以無電解電錄法、電解電二 電錄之方法、在基材之表面以真空蒸鍵、離子植入= 賤錄等之物理蒸鑛方法來形成導電性金屬層之方法等 形成導電性金屬層。即使是在這些當中二 裝置而可以容易地形成導電性金屬層之方面來看=大型 特別最好是無電解電鍍法。 ’ 5 則 此外,前述之導電性金屬層係可以被覆樹脂粒子表面 34 201241072 之至少-部分,但是,在導電性金屬層 存在實質之破表 最好是不 「實質之破裂或無形成導電性金屬此’所謂 電子顯微鏡(仵率曰之面」係表示在使用 微粒子之^之時 察任意之_個之導電性 之破聲以;^ 實質地藉由目視而觀察導電性金屬声 之破裂以及樹脂粒子表面之露出。 4屬層 別述之導電性金屬層係最好是平滑而不具 體也說由導電性金屬層之表 以上之突起部之數目户畏… 〜度為0.05㈣ 二土# 取好是相對於每H®導電性微叙工 / 1。個’更加理想是未滿5個’特別最 =全所謂突起部係表示藉由相同於導電性金屬層之:屬 或〇金而構成,該導電性 屬 金來η一- 電佳金屬層和構成突起部之金屬或合 ⑯之部分。在存在藉由相同於導電性金屬層之 而“體之突起部之時,恐怕該突起 ’’’’裂縫之基點而使得金屬層破裂,在電連接時 , 高。此外,最好是在前述之導電性=接=變 里Α把山 守电性金屬層,並無附著由於 里吊^出而造成之金屬微粒,或者即使是附著,也最好是 其附者數變少。呈辦认% . 疋 八-也說,金屬微粒之附著數係最好 對於每1個導電性微粒子而未滿2個。 本發月之導電性微粒子之個數平均粒徑係最好是 “以上,更加理想是U“以上,甚至最好是i . 以上,特別最好是Η“以上,最好是2 8“以下m 加理想是2.6#m以下,甚至最 炅 好暑” < 好疋2.4"以下’特別最 “以下。如果是個數平均粒徑為該範圍内的話, 201241072 則可以躲微細化•狹小化之電極或配狀電連接而適度 地使用。 此外,作為導電性微粒子之個數平均粒徑係最好是將 使用流動式粒子圖像解析裝置(Sysmex公司製、ΓρρΐΑ(註 冊商標)一3000」)而求出之3〇〇〇個粒子之個數基準之平均 粒徑予以採用。 本發明之導電性微粒子係最好是在其直徑位移丨〇%時 之壓縮彈性率(10% κ值)為1 2,000N/mm2以上、2〇〇〇〇〇n / mm以下。更加理想是2 4,〇 〇 〇N/龍2以上,甚至最好是 1 5,000N/mm2以上,更加最好是17〇〇〇Ν/_2以上,甚至 理想疋20,000N/mm2以上,更加理想是15〇,〇〇〇/_2以 下,甚至最好是1 00,000N/inm2以下,更加最好是75,〇〇〇n /mm2以下。如果是導電性微粒子之1〇% κ值為該範圍的 話,則可以對於被連接體(電極)而形成充分之壓痕’可以 藉此而提高導電性金屬層和被連接體之密合性,並且,確 保大連接面積。此外’導電性微粒子之1G% κ值係可以相 同於樹脂粒子之1 〇% Κ值而進行測定。 本發明之導電性微粒子係也可以在表面之至少—部 分’具有絕緣性樹脂層。也就是說,以是在前述導電性 金屬層之表面還設置絕緣性樹脂層之形態。在像這樣而在 表面之導電性金屬層還層積絕緣性樹脂層之時可以防止 今易產生於高密度電路之形成時或端子連接時等之橫向導 通。 作為 月1J述之絕緣性樹脂層係可 以確保導電性微粒子之32 201241072 The nickel alloy of the conductive metal layer is particularly preferably a Ni alloy capable of using at least one of phosphorus (p) and boron (B) as an alloy component (Ni-p alloy, Ni-B alloy, Ni-P_B alloy) More preferably, it is an alloy containing phosphorus (p). The nickel alloy is softened by the inclusion of phosphorus (P) or boron (B), and the conductive metal layer is easily followed by the substrate. In a state in which the nickel alloy constituting the conductive metal layer contains phosphorus (p) or boron (B), the total content of phosphorus (P) and boron (B) is preferably relative to Ni, P in the alloy. The total of B is 1% by mass, and is 4% by mass or more, more preferably 5% by mass or more, and even more preferably 6% by mass or more. The phosphorus content is preferably 5% by mass or more, more preferably 5% by mass or more, even more preferably 6% by mass based on 1% by mass of the total of Ni, p, and B in the alloy. In addition, the content of the boron (B) alone is preferably 4% by mass or more, more preferably 5% by mass or more, even more preferably 5% by mass based on the total of Ni, P, and B in the alloy. 6 mass% or more. The more the content of phosphorus (p) or boron (B) is, the softer the nickel alloy is, and the effect of the present invention is easily exhibited. However, the content of phosphorus (p) or boron in the nickel alloy is high. When the amount is too large, the resistance value of the conductive metal layer becomes high. Therefore, the total content of phosphorus (P) and boron in the nickel alloy is preferably the total of Ν, Ρ, and β in the alloy. When the mass is 1% by mass, it is 15% by mass or less. For the same reason, the ρ content in the nickel alloy is preferably 15% by mass or less, and the niobium content in the nickel alloy is preferably the same. It is 丄〇% by mass or less. In addition, the P content and the B content in the nickel alloy are The P concentration, the B concentration, the pH value, and the like of the electroless nickel plating solution used for forming the conductive metal layer are controlled. 33 201241072 Further, the alloy alloy constituting the conductive metal layer may contain phosphorus (p). Or a metal component other than boron (B). The other metal component is preferably a non-oxidizable metal element such as Au or pd, insofar as it does not impair the effect of recording the alloy. It may be a single layer, and may also be a plurality of layers. In the state of a plurality of layers, it is preferable to enumerate, for example, a recording (recording alloy) - a gold ^ (10) alloy, and a recording (10) alloy) - a gold, a record Alloy) - a combination of silver and the like. The thickness of the conductive metal layer is preferably 〇〇1" or more, more preferably 〇.03...upper or even preferably 0.05..., preferably. .20..., more preferably.·18" Below, it is even better to be 0.15" or less" more preferably 0.12...the best is below._"The following. In the conductive metal layer which is a fine particle diameter of the resin particles as the substrate, if the thickness of the conductive metal layer is the above-mentioned range = when the electrically conductive fine particles are made as an anisotropic conductive material, S In order to maintain the stability of the electrical connection. The opening of the conductive metal layer is not particularly limited, and may be, for example, a method of electroless recording on the surface of the substrate, a method of electrolysis, or a substrate. The conductive metal layer is formed by a method of forming a conductive metal layer by a physical vapor deposition method such as vacuum evaporation, ion implantation, or lithography. Even in the case where two of these devices can be easily formed into a conductive metal layer, it is preferable that the large-sized one is electroless plating. In addition, the conductive metal layer described above may be coated on at least a portion of the surface of the resin particle 34 201241072. However, it is preferable that the conductive metal layer has a substantial fracture or not. This so-called electron microscope (the surface of the 曰 曰 表示 表示 察 察 察 察 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用The surface of the particle is exposed. The conductive metal layer of the 4th layer is preferably smooth and not specifically said by the number of protrusions above the surface of the conductive metal layer. The degree is 0.05 (four) two soil # Good is relative to each H® conductive micro-synthesis / 1. One is more ideally less than 5 'special most = full so-called protrusions are represented by the same as the conductive metal layer: genus or sheet metal The conductivity is a part of the gold-to-metal layer and the metal or junction 16 constituting the protrusion. When there is a protrusion of the body by the same layer as the conductive metal layer, the protrusion may be feared. '''crack The base layer causes the metal layer to be broken, and is high when electrically connected. In addition, it is preferable to use the electric conductivity of the metal layer in the above-mentioned conductivity=connection=variation, and there is no metal particle attached due to the hanging. Or, even if it is attached, it is preferable that the number of the attached ones is reduced. It is considered to be %. In the eighth place, it is preferable that the number of adhesion of the metal particles is preferably less than two for each conductive fine particle. The number average particle diameter of the conductive fine particles of the lunar month is preferably "above, more preferably U" or more, and even more preferably i. Above, particularly preferably "above, preferably 2 8" or less m. The ideal is 2.6#m or less, and even the best summer. <Good 疋2.4" The following 'specially the most' below. If the average number of particles is within this range, 201241072 can be subtle and narrow. In addition, it is preferable to use a flow type particle image analyzer (manufactured by Sysmex Corporation, ΓρρΐΑ (registered trademark) - 3000" as the number average particle diameter of the conductive fine particles. And find 3 pieces of grain The average particle diameter of the number-based reference is preferably used. The conductive fine particle system of the present invention preferably has a compressive modulus (10% κ value) of 1 2,000 N/mm 2 or more and 2 在 when the diameter is displaced by 丨〇%. 〇〇〇n / mm or less. More ideally 2 4, 〇〇〇N/龙2 or more, even better, 1 5,000 N/mm2 or more, more preferably 17 〇〇〇Ν/_2 or more, even ideal 疋More than 20,000 N/mm2, more preferably 15 〇, 〇〇〇 / _2 or less, even more preferably 1 00,000 N / inm 2 or less, more preferably 75, 〇〇〇 n / mm 2 or less. If it is conductive microparticles When the κ% κ value is in this range, a sufficient indentation can be formed for the connected body (electrode), whereby the adhesion between the conductive metal layer and the connected body can be improved, and a large connection area can be secured. . Further, the 1 G% κ value of the conductive fine particles can be measured in the same manner as the 〇% Κ value of the resin particles. The conductive fine particle system of the present invention may have an insulating resin layer on at least a portion of the surface. In other words, the insulating resin layer is further provided on the surface of the conductive metal layer. When the insulating resin layer is laminated on the conductive metal layer on the surface as described above, it is possible to prevent the lateral conduction of the high-density circuit or the terminal connection. As the insulating resin layer described in the month 1J, it is possible to ensure conductive fine particles.

S 36 201241072 粒子間之絕緣性,如果是容易由於一定之壓力及/或加熱 而崩壞或剝離其絕緣性樹脂層的話,則並無特別限定,列 舉例如聚乙烯等之聚烯烴類;聚曱基(甲基)丙烯酸酯等之 (曱基)丙烯酸酯聚合物及共聚物;聚笨乙烯等之熱塑性樹 月曰或其父聯物;環氧樹脂、苯酚樹脂、胺基樹脂(三聚氰胺 樹脂等)等之熱固性樹脂;$乙烯醇等之水溶性樹脂及這些 之混〇物等。但是,在絕緣性樹脂層比起基材粒子而還過 度硬之狀態下’恐怕會比起絕緣性樹脂層之破壞,還先破 壞純粒子之本m,最好是在絕緣性樹脂層,使用 未交聯或交聯度比較低之樹脂。 别迷之絕緣性樹脂層 〜T /日 l q μ疋田複 層而組成。例如可以形成單一或複數皮膜狀之層,並且 也可以是具有絕緣性之粒狀、球狀、塊狀、鱗片狀之复 形狀::子來附著於導電性金屬層之表面之層,而且, 稭由對於導電性金屬層之表面來進行化學修飾而 伤备 二之層。絕緣性樹脂層之厚 係最好疋〇.〇l#m以上、丨 以上、n R ㈣以下,更加理想是0.02“ 以上0.5“·π以下,甚至最好 T , ® a 疋1^ 03# m 以上、0. 4// m ,S 36 201241072 The insulating property between the particles is not particularly limited as long as it is easily broken or peeled off by a certain pressure and/or heating, and examples thereof include polyolefins such as polyethylene; (Mercapto) acrylate polymers and copolymers such as (meth) acrylate; thermoplastic tree ruthenium or its parent conjugate such as polystyrene; epoxy resin, phenol resin, amine resin (melamine resin, etc.) And other thermosetting resins; water-soluble resins such as vinyl alcohol and the like, and the like. However, when the insulating resin layer is excessively harder than the substrate particles, it is likely that the m of the pure particles is destroyed first, and the insulating resin layer is used. A resin that is not crosslinked or has a low degree of crosslinking. Don't be fascinated by the insulating resin layer ~T / day l q μ 疋田复层. For example, a single or plural film-like layer may be formed, and may also have an insulating granular shape, a spherical shape, a block shape, and a scaly shape: a layer attached to the surface of the conductive metal layer, and The straw is chemically modified on the surface of the conductive metal layer to damage the second layer. The thickness of the insulating resin layer is preferably 〇l#m or more, 丨above or more, n R (four) or less, more preferably 0.02" or more and 0.5"·π or less, and even more preferably T, ® a 疋1^ 03# m or more, 0. 4// m ,

下如果疋絕緣性樹脂層之厚卢A ‘、+.卜 ,,. ,, ,, ^ 与度為則述之範圍内的話M 良好地..隹持由於導電性粒 子間之電絕緣性變得良好,成之導通特性,並且1 2.異方性導電材料 本發明之異方性導電材料 子,分散;^翔人&& '、刖述本發明之導電性微粒 卞刀敖於黏合劑樹脂。 37 1 王導電材料之形態係並無特 201241072 別限定,列舉例如異方性導電薄膜、異方性導電糊膏、異 方性導電接著劑、異方性導電油墨等之各種形態。可以藉 由這些異方性導電材料,設置於相對向之基材間或電極端 子間❿成為良好之電連接。此外,在使用本發明之導電 性微粒子之異方生蕊雷# # ,, f导電材科,也包含液晶顯示元件用導通 材料(導通間隔部及其組成物)。 作為前述之黏合劑樹脂係如果是絕緣性樹脂的話,則 f無特別限定,列舉例如丙烯樹脂'乙烯-乙酸乙烯樹脂、 笨乙稀丁 一稀嵌段共聚物等之熱塑性樹脂;藉由具有環 氧丙基之單體或寡聚物和異氰酸酯等之硬化劑之反應而進 行硬化之硬化性樹脂組成物;藉由光或熱而進行硬化之硬 化性樹脂組成物等。 此外,本發明之異方性導電材料係藉由在前述之黏合 劑樹脂中,分散本發明之導電性微粒子,成為要求之形態 而得到’自是’例如可以藉由分別使用黏合劑樹脂和導電 性微粒子,在企圖連接之基材間或電極端子間,一起存在 導電性微粒子和黏合劑樹脂,而進行連接。 在本發明之異方性導電材料,導電性微粒子之含有 係可以配合用途而適度地決定,但是,例如最好是相對: 異方性導電材料之全量而成為1體《以上,更加理相是 :積:以上,甚至最好是5體積%以上,最好是5。謙 势更加理想是3。體積%以下,甚至最好是2。體積%以下 在導電性微粒子之含有量過度少 之雷h 有里、没^之時’有不容易得到充 、之狀態發生’另一方面’在導電性微粒子之含If the thickness of the insulating resin layer is a 、, A, 卜, , , , , , ^ and the degree is within the range of the range, M is good.. Because of the electrical insulation between the conductive particles Good, into conduction characteristics, and 1 2. anisotropic conductive material, the anisotropic conductive material of the present invention, dispersed; ^ Xiangren &&>, describe the conductive particles of the present invention Adhesive resin. 37 1 The form of the conductive material of the king is not limited. For example, various forms such as an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, and an anisotropic conductive ink are exemplified. These anisotropic conductive materials can be disposed between the substrates or between the electrode terminals to form a good electrical connection. Further, in the case of using the conductive fine particles of the present invention, the conductive material of the invention has a conductive material for a liquid crystal display element (a conduction gap portion and a composition thereof). f is not particularly limited as long as it is an insulating resin, and examples thereof include a thermoplastic resin such as an acrylic resin, an ethylene-vinyl acetate resin, or a styrene-diene-small block copolymer; A curable resin composition which is cured by reaction of a monomer or oligomer of oxypropyl group with a curing agent such as isocyanate; a curable resin composition which is cured by light or heat, or the like. Further, the anisotropic conductive material of the present invention is obtained by dispersing the conductive fine particles of the present invention in the above-mentioned binder resin to obtain a desired form, for example, by using a binder resin and conducting electricity, respectively. The fine particles are connected to each other between the substrates to be joined or between the electrode terminals with conductive fine particles and a binder resin. In the anisotropic conductive material of the present invention, the content of the conductive fine particles can be appropriately determined depending on the application. For example, it is preferable that the total amount of the anisotropic conductive material is one body or more. : Product: Above, even better than 5% by volume, preferably 5. Modesty is more ideal. Below volume%, even better. When the amount of the conductive fine particles is too small, the amount of the conductive fine particles is too small, and when there is no such thing, the state in which the charge is not easily obtained is formed.

S 38 201241072 而不容易發揮作 量過度多之時,有導電性微粒子間呈接觸 為異方性導電材料之機能之狀態發生。 就本發明之異方性導電材料之薄膜之膜厚、糊膏或接 者劑之塗佈膜厚、印刷膜厚等而t ’最好是考慮使用之本 發明之導電性微粒子之粒徑以及應該連接之電極之規格, 適度地進行設定’而在應該連接之電極間,夾持導電性微 粒子’並且,#由接著劑樹脂層’來充分地充滿形成應該 連接之電極之接合基板間之空隙。 實施例 在以下,列舉實施例而更加具體地說明本發明但是, 本發明係並非由於下列之實施例而受到限定,%能夠在可 以適3於則述•後述之主旨之範圍而適度地進行變更及實 施,這些係皆包含在本發明之技術範圍。此外,在以下, %」係表示「質 並無特別限定,「份」係表示「質量份 量%」。 1.物性測定方法 各種物性之測定係藉由以下之方法而進行。 &lt;薄片粒子及樹脂粒子之平均分散粒徑&gt; 在樹脂粒子〇. 005質量份’加入成為乳化劑之聚經乙 烯烷基醚硫酸酯銨鹽(第一工業製藥股份有限公司製、 「HITEN0L(註冊商標)N—08」)之1%水溶液2〇質量份,在 藉由超音波而分散1 〇分鐘之後,使用粒度分布測定裝置 (beckmancoulter 公司製、「Coultermultisizer m 型」), 測定30000個粒子之粒徑(μ m),求出個數基準之平均分散 39 201241072 粒徑。 &lt;導電性微粒子之個數平均粒徑&gt; 在導電性微粒子〇 暂番八 ,質1伤,加入成為乳化劑之聚殘 乙烯,由烯基醚(「EMALGEN 430 ^ τ 別、 ^ , ,n/ . 4d(j」、化王股份有限公司製&gt; 之1. 4 %水溶液1 7 5皙 ^ '質知’在藉由超音波而分散10分鐘 之後’使用流動式粒子像解 解析裝置(Sysmex公司製、 FPIA(註冊商標、、, 30〇〇」)’測定3000個粒子之粒徑(# m )’求出個數平均粒徑。 &lt;導電性金屬層之膜厚&gt; 使用流動式粒子像解析裝置(Sysmex公司製、「FpiA(註 冊商標)-3_」)’測定基材粒子(樹脂粒子)3剛個之個 數平均㈣XUni)及導電性微粒子30()()個之個數平均粒 徑K㈣)。接著,按照下列之公式而算出導電性金屬層之 膜厚。 導電性金屬層之膜厚(# m) = (γ_χ)/2 &lt;導電性金屬層之磷(Ρ)含有量&gt; 使用王水而溶解導電性微粒子之導電性金屬層(電鍍 層),藉由感應耦合電漿發光分光分析裝置(Icp)(島津製作 所公司製、「ICPE- 9GGG」)而進行分析,藉由得到之定量 結果而求出包含於每lg之導電性金屬層之Ni質量和p質 量,根據下列之公式而算出P含有量(%)β此外,在以下之 實施例來形成之導電性金屬層,皆不包含硼(Β)。 Ρ含有量(質量%)=Ρ質量xl〇0/(Nl質量+ ρ質量) &lt;樹脂粒子之1 〇%〜40% K值及壓縮破壞變形率〉S 38 201241072 When the amount of electricity is too large, the contact between the conductive particles is a state in which the function of the anisotropic conductive material occurs. The film thickness of the film of the anisotropic conductive material of the present invention, the coating film thickness of the paste or the carrier, the thickness of the printing film, etc., t 'preferably, the particle size of the conductive fine particles of the present invention to be used and The specifications of the electrodes to be connected are appropriately set, and the conductive fine particles are sandwiched between the electrodes to be connected, and # is filled with the adhesive resin layer to sufficiently fill the gap between the bonded substrates forming the electrodes to be connected. . EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by the following examples, and % can be appropriately changed within the scope of the following description. And implementation, these are all included in the technical scope of the present invention. In addition, in the following, "%" means "the quality is not particularly limited, and the "part" means "mass portion%". 1. Physical Property Measurement Method Various physical properties were measured by the following methods. &lt;Average Dispersion Particle Diameter of the Flake Particles and the Resin Particles&gt; 005 mass parts of the resin particles are added to the polyalkylene ether ether sulfate ammonium salt which is an emulsifier (manufactured by Dai-Il Pharmaceutical Co., Ltd., "HITEN0L 2 parts by mass of a 1% aqueous solution of (registered trademark) N—08”), which was dispersed by ultrasonic waves for 1 minute, and then measured by a particle size distribution measuring apparatus ("Coulter multisizer m type" manufactured by Beckman Coulter Co., Ltd.). The particle size (μm) of the particles was determined and the average dispersion of the number of bases was 39 201241072. &lt;Number average particle diameter of conductive fine particles&gt; In the case of conductive fine particles, the mass of one is broken, and the residual ethylene which is an emulsifier is added, and the alkenyl ether is added ("EMALGEN 430 ^ τ , ^ , , , n/. 4d(j", manufactured by Kasei Co., Ltd.) 1. 4% aqueous solution 1 7 5皙^ 'Quality' after being dispersed by ultrasonic for 10 minutes' using a flow particle image decomposing device (The FPIA (registered trademark, 30 〇〇)) Measured by the particle size (# m ) of 3000 particles to obtain the number average particle diameter. <Thickness of the conductive metal layer> The flow particle image analysis device ("FpiA (registered trademark)-3_")" manufactured by Sysmex Co., Ltd. measures the number of base particles (resin particles) 3 (4) XUni) and the conductive particles 30 () The number average particle diameter K (four)). Next, the film thickness of the conductive metal layer was calculated according to the following formula: Film thickness of the conductive metal layer (# m) = (γ_χ)/2 &lt; Phosphorus of the conductive metal layer ( Ρ)Content> A conductive metal layer (electroplated layer) in which conductive particles are dissolved by aqua regia, by induction The coupled plasma luminescence spectroscopic analyzer (Icp) ("ICPE-9GGG", manufactured by Shimadzu Corporation) was analyzed, and the mass of Ni and the mass of p contained in the conductive metal layer per lg were determined by the quantitative results obtained. The P content (%) β was calculated according to the following formula. Further, the conductive metal layer formed in the following examples did not contain boron (Β). Ρ content (% by mass) = Ρ mass xl 〇 0 /(Nl mass + ρ mass) &lt;1 〇%~40% of resin particles K value and compression failure deformation rate>

S 40 201241072 使用微小壓縮試驗機(島津製作所公司製、「Μ。?— W500」),在室溫(25。〇,就散佈於試料台(材質:sks材 平板)上之粒子1個而言,使用直徑5〇//11]之圓形平板壓子 (材質:鑽石),在「標準表面檢測」模式,以一定之負荷 速度(2. 2295mN/秒),來施加荷重至粒子之中心方向。接 著,測定在壓縮位移成為粒徑之1〇%、2⑽、3〇%及4〇%時之 荷重(mN)以及在由於變形而破壞粒子時之位移量(以…。由 得到之壓縮荷重、粒子之壓縮荷重及粒徑而算出κ值。此 外,就各試料而言,測定係對於不同丨〇個之粒子而進行, 以平均之值,來作為測定值。 2 _導電性微粒子之製造 2 — 1.基材粒子(樹脂粒子)之製作 (製造例1) 在具備冷卻管、溫度計和滴下口之四口燒航,加入離 子乂換水180質量份、25%氨水24質量份和曱醇6〇〇質量 份’在攪拌下,由滴下口開始’添加3_甲基丙烯醯氧基 丙基三甲氧基石夕烧(MPTMS)4〇質量份,來作為聚合性石夕烧 化合物(單體成分),進# 3—甲基丙稀醯氧基丙基三甲氧 基石夕院之水解•縮合反應,調製具有甲基丙稀酿基之聚石夕 氧烷粒子(薄片粒子)之乳濁液。該聚矽氧烷粒子之個數基 準之平均分散粒徑係〇. 94以m。 接著’在作為乳化劑之聚經基乙烯笨乙稀化笨基喊硫 曰録鹽(第—工業製藥公司製、「HITENOL(註冊商標)NF 」)之20%水溶液3 〇質量份來溶解於離子交換水Mo 41 201241072 質量伤之溶液’加入溶解吸收用脑 (早體成分)之苯乙烯 (St)60質量份和 _ _ ,ττν„, 也一私一甲基丙烯酸酯 (HXDMA)60質量份及2 2’ 一偲氣|雔广0 叹z,z 偶虱基雙(2, 4 —二甲某a 腈)(和光純藥工業公司製、「 戊 ^ b5」)1. 6質量份之溶液, 订乳化分散而調製吸收用單,夕λ丨#、六 及收用早體之礼化液。在乳化分 開始2小時後,將得到激 于到之礼化液,添加於聚矽氧烷粒子(薄 片粒子)之乳濁液中,廿Η ^ y 並且,還進订攪拌。確認在乳化液之S 40 201241072 Using a small compression tester ("Shimadzu?", W500" manufactured by Shimadzu Corporation), at room temperature (25. 〇, it is spread on the sample table (material: sks material plate) Use a circular plate press (material: diamond) with a diameter of 5 〇//11], and apply the load to the center of the particle at a certain load speed (2.295 mN/s) in the "standard surface detection" mode. Next, the load (mN) when the compression displacement becomes 1%, 2 (10), 3〇%, and 4〇% of the particle diameter, and the amount of displacement when the particle is destroyed by the deformation (the compression load obtained by ...) is measured. The κ value was calculated from the compression load and the particle diameter of the particles. In addition, for each sample, the measurement system was performed for different particles, and the average value was used as the measurement value. 2 _Manufacture of conductive fine particles 2 - 1. Preparation of substrate particles (resin particles) (Production Example 1) In a four-port furnace equipped with a cooling tube, a thermometer, and a dropping port, 180 parts by mass of ion-exchanged water, 24 parts by mass of 25% ammonia water, and sterol were added. 6 〇〇 mass parts 'under stirring, by drops Starting from the bottom of the mouth, add 3 methacryloxypropyltrimethoxy zebra (MPTMS), 4 parts by mass, as a polymerizable stone compound (monomer component), into #3-methyl propylene The hydrolysis/condensation reaction of methoxypropyltrimethoxy sylvestre to prepare an emulsion of polyoxan oxide particles (flake particles) having a methyl propylene oxide group. The average particle size of the dispersion is 94. 94 in m. Next, in the emulsifier, the polyvinylidene-ethyl sulphate is used as a emulsifier, and the HITENOL (registered trademark) NF is manufactured by the Industrial Pharmaceutical Co., Ltd. ) 20% aqueous solution 3 〇 mass parts to be dissolved in ion-exchanged water Mo 41 201241072 Mass-injured solution '60 parts by mass of styrene (St) added to the brain for dissolving absorption (early body component) and _ _ , ττν „ 60 parts by mass of a private monomethacrylate (HXDMA) and 2 2' anthraquinone | 雔广0 sigh z, z 虱 虱 bis (2, 4 - dimethyl a nitrile) (made by Wako Pure Chemical Industries, Ltd.) , "penta b5") 1. 6 parts by mass of the solution, emulsified and dispersed to prepare the absorption sheet, 丨λ丨#, six and the use of early body After 2 hours from the start of the emulsification, the liquefied liquid will be added, added to the emulsion of polysiloxane beads (flake particles), 廿Η ^ y, and also ordered to stir. Confirmed in the emulsion

添加開始1小時之你 如免以 A 灸,在取樣〜合液而藉由顯微鏡來進行 觀察之時,聚石夕氧、卢#三α 7軋坑粒子係將吸收用單體予以吸 肥大化。 叮 接者,加入聚經基乙烯苯乙稀化笨基越硫酸 20%水溶液8. 0質詈份,户备^㈤ 肌々 。 在氮氦圍下,將反應液升溫至65 C為止,在6 5 °C保牲9 I^ 持2小時,進行單體成分之自由基聚合。 對於在自由基聚合後之受丨:路 口後之礼/蜀液’進行固液分離,在藉由離 子交換水、曱醇而洗潘怨5丨丨七,各&gt;, 到之濾餅之後,在氮氛圍下、12〇 °C,進行2小時之直光私β 真二乾燥,得到樹脂粒子(1)。得到之樹 脂粒子之平均分散粒徑、1 〇 % 1U/° Κ 值、2〇% Κ 值、30% Κ 值、 40% Κ值及壓縮破壞變形率係正如表丨所示。 (製造例2) 除了正如表1所+ t w 所不而改變吸收用單體之種類和使用量 (質量份),同時,在進杆妒 里 氛圍下、280t,施行丨小日车夕士勒未 定在氮 y| ,, ]時之加熱處理以外,其餘係相同 於製造例1而製作樹脂粒 孤于付到之樹脂粒子之平 散粒徑、10%g值、2〇%卩i _ 值3(U K值、40% K值及壓縮 42 201241072 破壞變形率係正如表i所示。 (製造例3 ) 矛'了在調製聚石夕氧燒粒子 &gt; 孔/蜀液之時,分別改變離子 父換水之使用量成為1 750 f量 暂曰八t ^ 之使用置成為650 質置伤料,其餘餘同於製造们而製作樹㈣ ^時氧❹子乳濁液中之W粒子之個數基 準之平均分散粒徑係1.丨7 件到之树脂粒子之平均分 散粒徑、10% K 值、20% ί(值、μ。/ ,Λ 值3(U Κ值、40% Κ值及壓縮 破壞變形率係正如表1所示。 、·· (製造例4) 除了正如表i所示而改變吸收用單體之種類和使用量 (質置份)以外,其餘係相同於贺If you add 1 hour, you can avoid the A moxibustion. When you take a sample and mix it and observe it with a microscope, the Ju Shi Xi Oxygen and Lu #3α 7 crater particles will absorb the monomer for absorption. .叮 接 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The reaction solution was heated to 65 C under a nitrogen atmosphere, and maintained at 6 5 ° C for 2 hours to carry out radical polymerization of the monomer component. For the solid-liquid separation of the sputum after the radical polymerization: the ritual/sputum after the intersection, the sputum is washed by ion exchange water and decyl alcohol, each &gt;, after the filter cake Under a nitrogen atmosphere at 12 ° C, 2 hours of direct light private β-true drying was carried out to obtain resin particles (1). The average dispersed particle size of the obtained resin particles, 1 〇 % 1U/° Κ value, 2〇% Κ value, 30% Κ value, 40% Κ value, and compression failure deformation rate are shown in the table. (Manufacturing Example 2) In addition to changing the type and amount of the absorbing monomer (parts by mass) as shown in Table 1, + tw, at the same time, in the atmosphere of the rod, 280t, the implementation of the small Japanese car Xi Shile Other than the heat treatment at the time of nitrogen y| , , , the same as in Production Example 1, the resin particles were obtained by the resin particles, the dispersed particle diameter, the 10% g value, and the 2%% 卩i _ value. 3 (UK value, 40% K value, and compression 42 201241072 The deformation deformation rate is shown in Table i. (Manufacturing Example 3) The spear 'has changed when modulating the poly-stone burning particles> hole/sputum The amount of water used by the ion father is 1 750 f, and the amount of the water is 650 t t t 成为 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 The average dispersed particle size of the number reference is 1. The average dispersed particle size of the resin particles, 10% K value, 20% ί (value, μ./, Λ value 3 (U Κ value, 40% Κ value) And the compression-deformation deformation rate is as shown in Table 1. (Production Example 4) Except that the type and amount of the monomer for absorption are changed as shown in Table i, He at the same Department

例1而製作樹脂粒子 )。得到之樹脂粒子之平均分散粒徑、10% κ值H 值、30%κ值、·Κ值及壓縮破壞變形率係正如表。 (製造例5) ^ 除了正如表1所示而改 (質量份),同時,在進行乾 行1 2小時之真空乾燥以外, 樹脂粒子(5)。得到之樹脂粒 20% Κ 值、30% Κ 值、40% Κ 1所示。 (製造例6) 變吸收用單體之種類和使用量 燥時,於氮氛圍下、8(rc,進 其餘係相同於製造例1而製作 子之平均分散粒徑、10% κ值、 值及壓縮破壞變形率係正如表 用 除了正如表1所示而改變聚合性石夕 單體之種類和使用量(質量份),同時 貌化合物以及 ’在進行乾燥 吸收 而得 43 201241072In Example 1, resin particles were produced). The average dispersed particle diameter, 10% κ value H value, 30% κ value, Κ value, and compression failure deformation rate of the obtained resin particles are as shown in the table. (Production Example 5) ^ Resin particles (5) were prepared in addition to vacuum drying for 12 hours while changing (parts by mass) as shown in Table 1. The obtained resin pellets are 20% Κ, 30% Κ, 40% Κ 1. (Production Example 6) When the type of the monomer for the absorption and the amount of the monomer to be used are dry, the average dispersed particle diameter, 10% κ value, and value of the produced product are the same as in the production example 1 in the nitrogen atmosphere at 8 (rc). And the compression failure rate is as shown in the table except that as shown in Table 1, the type and amount of the polymerized stone monomer are changed (parts by mass), while the compound and the 'drying absorption are obtained 43 201241072

到之樹脂粒子,還在氮氛圍下、320t,施行i小時之加熱 處理以外,其餘係相同於製造例i而製作樹脂粒子(6^得 到之樹脂粒子之平均分散粒徑、丨〇% κ值、2〇% κ值、3⑽K 值、40% Κ值及壓縮破壞變形率係正如表1所示。 (製造例7) 除了無施行加熱處理以外,其餘係相同於製造例6而 得到樹脂粒子(7)。得到之樹脂粒子之平均分散粒徑、ι〇%κ 值、20% Κ值、30% Κ值、40% Κ值及壓縮破壞變形率係正 如表1所示。 (製造例8) 除了正如表丨所示而改變吸收用單體之種類和使用量 (質量份)’同時,在進行乾燥而得狀樹脂粒子,還在氮 氛圍下、28(TC,施行η、時之加熱處理以外,其餘係相同 於製造例1而製作樹脂粒子(8)。得到之樹脂粒子之平均分 散粒徑、1〇%κ值、20%κ值、繼值、船值及壓縮 破壞變形率係正如表1所示。 (製造例9) 除了在调製聚石夕氧燒粒子乳濁液之時,分別改變離子 交,水之使用1:成為21 GG質量份,甲醇之使用量成為3〇〇 質里伤以外’其餘係相同於製造例8而製作樹脂粒子(9)。 在此時’聚矽氧烷粒子乳濁液中之聚矽氧烷粒子之個數基 準之平均分散粒徑係、〇. 83“。得到之樹脂粒子之平均分 散粒徑、10% Κ值、20% I(值、30% κ值、機κ值及壓縮 破壞變形率係正如表i所示。The resin particles obtained were also subjected to the heat treatment for i hours under a nitrogen atmosphere at 320 t, and the resin particles were produced in the same manner as in Production Example i (the average dispersed particle diameter, 丨〇% κ value of the obtained resin particles) 2% κ value, 3 (10) K value, 40% Κ value, and compression failure deformation rate are shown in Table 1. (Production Example 7) Resin particles were obtained in the same manner as in Production Example 6 except that no heat treatment was performed ( 7) The average dispersed particle diameter, ι〇%κ value, 20% enthalpy value, 30% enthalpy value, 40% enthalpy value, and compression failure deformation rate of the obtained resin particles are as shown in Table 1. (Manufacturing Example 8) In addition to changing the type and amount of the monomer to be used (parts by mass) as shown in Table ', the resin particles obtained by drying are also subjected to heat treatment at 28 (TC, η, and under nitrogen atmosphere). The resin particles (8) were produced in the same manner as in Production Example 1. The obtained resin particles had an average dispersed particle diameter, a 〇% κ value, a 20% κ value, a success value, a ship value, and a compression fracture deformation rate. Table 1 is shown. (Manufacturing Example 9) In addition to modulating the polyoxo oxy-fired particle emulsion In the case of the ion exchange, the use of water is 1: 21 GG parts by mass, and the amount of methanol used is 3 〇〇 里 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 树脂 树脂 树脂The average dispersed particle diameter of the number of polyoxymethane particles in the emulsion of the polyoxyalkylene oxide emulsion, 〇 83 ". The average dispersed particle diameter of the obtained resin particles, 10% enthalpy, 20% I ( The value, 30% κ value, machine κ value, and compression failure deformation rate are shown in Table i.

S 44 201241072 (製造例1 o) 除了正如表1所示而改變吸收用單體之種類和使用量 (質量份)’同時’在進行乾燥而得到之樹脂粒子,還在^ 氛圍下、28(TC,施们小時之加熱處理以外,其餘係相同 於製造例1而製作樹脂粒子(1〇)。得到之樹脂粒子之平均 分散粒徑、而U、mK值、3〇%κ值、復κ值及壓 縮破壞變形率係正如表1所示。 (製造例11) 除了無施行加熱處理以外,其餘係相同於製造例10而 得到樹脂粒子(⑴。得到之樹脂粒子之平均分散粒徑、ln κ值、20% Κ值' 3G% κ值、權κ值及壓縮破壞變形率係 正如表1所示。 (製造例1 2 ) 除了在调製聚石夕氧烧粒子乳濁液之時,分別改變離子 乂 =之使用里成為21。〇質量份,甲醇之使用量成為_ 質量份以外’其餘係相同於製造例1。而製作樹脂粒子 ()在lit日寺’聚石夕氧烧粒子乳濁〉夜中之聚石夕氧院粒子之 個數基準之平均分散粒徑係&quot;3“。得到之樹脂粒子之 平均刀散粒徑、1〇% K值m值、30% K值、40% κ值 及壓縮破壞變形率係正如表丨所示。 (製造例13) 除了正如矣 9 όϊί. — -T- 表2所不而改變吸收用單體之種類和 (質量份)以外,14 史用重 曰 /、餘如相同於製造例1而製作樹脂粒子 。仔到之樹脂粒子之平均分散粒徑、1G% Κ值、20% κ 45 201241072 值、30% K值、40% K值及壓縮破壞變形率係正如表2所示。 (製造例14) 除了正如表2所示而改變吸收用單體之種類和使用量 (質量份)以外,其餘係相同於製造例丨而製作樹脂粒子 (14)。得到之樹脂粒子之平均分散粒徑、1()% κ值、2〇% κ 值、30%Κ值、40% Κ值及壓縮破壞變形率係正如表2所示。 (製造例1 5 ) 除了正如表2所示而改變吸收用單體之種類和使用量 (質量份)’同時’在進行乾燥而得到之樹絲子,還在氛 氛圍下、2紙’施行i小時之加熱處理以外,其餘係相同 於製造例i而製作樹脂粒子(15)。得到之樹脂粒子之平均 值、40% K值及壓 分散粒徑、10% K值、20% K值、30% 縮破壞變形率係正如表2所示。 (製造例16) 除了無施行加熱處理以外,其餘係相同於製造例15而 付到樹脂粒子(16)。得到之樹脂粒子之平均分散粒徑、1〇% K值、20% K值、30% κ值、4。% κ值及壓縮破壞變形率係 正如表2所示。 (製造例17) /于、 表2所示而改變吸收用單體之種類和使 一質量知)同時,在進行乾燥而得到之樹脂粒子,還 氛圍下' 23(Γ(: ’施行1小時之加熱處理以外,其餘係 於製造例1而製作樹脂粒子(Π)。得到之樹脂粒子之 /刀散粒徑、m K值、2。% κ值、30% κ值、40% κ值 〇 46 201241072 縮破壞變形率係正如表2所示。 (製造例18) 除了正如表2所示而改變吸收用單體之種類和使用量 (質直份),同時,在進行乾燥而得到之樹脂粒子,還在氮 氛圍下、300°C,施行1小時之加熱處理以外,其餘係相同 於製造例1而製作樹脂粒子(18)。得到之樹脂粒子之平均 分散粒徑、10% K值、20¾ K值、30% K值、40% K值及壓 縮破壞變形率係正如表2所示。 (製造例19) 除了無施行加熱處理以外,其餘係相同於製造例18而 得到樹脂粒子(19)。得到之樹脂粒子之平均分散粒徑、1〇% K值、2(U K值、30% K值、40% K值及壓縮破壞變形率係 正如表2所示。 (製造例20) 除了正如表2所示而改變吸收用單體之種類和使用量 (質畺伤),同時,在進行乾燥而得到之樹脂粒子,還在氮 氛圍下、2 3 0 C ’施行1小時之加熱處理以外’其餘係相同 於製造例1而製作樹脂粒子(2〇)。得到之樹脂粒子之平均 为散粒徑、10% K值、20% K值、30% K值、40% K值及壓 縮破壞變形率係正如表2所示。 (製造例21) 除了正如表2所示而改變吸收用單體之種類和使用量 (質量份)’同時’在進行乾燥而得到之樹脂粒子,還在氮 氛圍下、2 3 0 °C ’施行1小時之加熱處理以外,其餘係相同 47 201241072 於製造例1而製作樹脂粒子(21)。得到之樹脂粒子之平均 分散粒徑、10% K值、20% K值、30% K值、40% K值及壓 縮破壞變形率係正如表2所示。 (製造例22) 除了在調製聚矽氧烷粒子乳濁液之時,分別改變離子 交換水之使用量成為16〇〇質量份,曱醇之使用量成為 質量份,正如表2所示而改變吸收用單體之種類和使用量 (質量份)以外,其餘係相同於製造例i而製作樹脂粒子 (22)。在此時,聚矽氧烷粒子乳濁液中之聚矽氧烷粒子之 個數基準之平均分散粒徑係、143&quot;。得到之樹脂粒子之 平均分散粒控、10% κ值、20% κ值、30% κ值、K值 及壓縮破壞變形率係正如表2所示。 (製造例23) 在作為乳化劑之聚經基乙稀苯乙烯化苯基喊硫酸醋錄 鹽(第一工業製藥公司製、「HITENOL(註冊商標)NF—〇8」) 之20%水溶液10質量份來溶解於離子交換水3〇〇質量份之 液力入由I,9 —壬烷二醇二甲基丙烯酸酯50質量份和 本乙烯50質量份而組成之單體成分以及2, 2,—偶氮基雙 (2, 4 一甲基戊腈)(和光純藥工業公司製' 「v—65」)2 〇 貝里份之混合溶液’進行乳化分散而調製單體成分之乳化 液。在具備冷卻管、溫度計和滴下口之四口燒瓶,加入得 到之礼化液,在加人離子交換水_質量份 後,在氮氛圍了,將反應液升溫至价為止,在65 =: 2小時,進仃早體成分之自由基聚合。對於在自由基聚合 48 201241072 後之乳濁&amp;,進行固液分離,在藉由離子交換水、甲醇而 洗淨得到之渡餅之後,重複地進行濕式分級,在12代 進行2小時之真空乾燥,製作樹脂粒子⑵)。得到之樹脂 粒子之平均分散粒徑、m κ值、m κ值、m κ值、4〇% κ值及壓縮破壞變形率係正如表3所示。 (製造例24) 除了改變單體成分而成為1&gt;9—壬烷二醇二甲基丙稀 酸醋10G質量份以外,其餘係相同於製造例23而製作樹脂 粒子(24)。得到之樹脂粒子之平均分散粒徑Μ⑽κ值、 20% Κ值、30% Κ值、40% κ值及壓縮破壞變形率係正如表 3所示。 (製造例25) 除了改變單體成分而成為三羥甲基丙烷三甲基丙烯酸 酯75質量份和二乙烯基苯(新曰鐵化學公司製、 「DVB960」:含有二乙烯基苯96%和乙基乙烯基苯4%之含 有品)25質量份以外,其餘係相同於製造例23而製作樹脂 粒子(25)。得到之樹脂粒子之平均分散粒徑、1〇% κ值、 20% Κ值、30% Κ值、40% Κ值及壓縮破壞變形率係正如表 3所示。 (製造例26) 除了改變單體成分而成為乙二醇二甲基丙烯酸酯4〇 質量份、苯乙烯40質量份和t — 丁基曱基丙烯酸酯2〇質 量份以外’其餘係相同於製造例23而製作樹脂粒子(26)。 得到之樹脂粒子之平均分散粒徑、1 〇% j(值、20% K值、30% 49 201241072 K值、40% K值及壓縮破壞變形率係正如表3所示。 2 — 2.導電性微粒子之製作(導電性金屬層之形成) (實施例1) 藉由在作為基材之樹脂粒子(1)來施行由於氫氧化鈉 而造成之蝕刻處理之後’接觸到二氯化錫溶液,來進行感 光’接著,藉由以浸潰於二氣化鈀溶液來進行活化之方法 (感光一活化法)’而形成鈀核。接著’在離子交換水4 ο 〇 質量份’添加形成鈀核之樹脂粒子2質量份,在進行超音 波分散處理之後’於7 0。(:之溫浴,加溫得到之樹脂粒子懸 濁液。藉由以像這樣加溫懸濁液之狀態,另外加入加溫至 70C之無電解電鍍液(日本Kanigen(股)公司製、「Sumer S680」)600質量份,而產生無電解鎳電鍍反應。在確認結 束氫氣之產生後,進行固液分離,以離子交換水、曱醇之 順序,來進行洗淨’在100。。,進行2小時之真空乾燥, 得到施行錄電锻之粒子。接著’ H由在含有氰化金鉀之取 代金電錢液,加人得到之鎳電鍵粒子,在錄層之表面,還 施行金電鍍’而得,電性微粒子。在得到之導電性微粒 子之導電性金屬層之膜厚係正如表4所示。 (實施例2〜2 0及比較例1〜2) 除了使用表4或表5 外,其餘係相同於實施例1 導電性微粒子之導電性金屬 示。 (實施例21) 所不之樹脂粒子來作為基材以 而製作導電性微粒子。得到之 層之膜厚係正如表4或表5所 201241072 除了使用樹脂粒子(23)來作為基材,使用硫酸錄六水 合物濃度為50g/L,次磷酸鈉一水合物濃度為,浐 檬酸納濃度為50g/L,藉由氫氧化鈉水溶液而調整 成為7.5之無電解鎳電鍍液,來作為無電解電鍍液以外, 其餘係相同於實施例1而製作導電性微粒子。得到之導電 性微粒子之導電性金屬層之膜厚及磷含有量係正如表6所 示。 (實施例22) 除了使用樹脂粒子(24)來作為基材以外,其餘係相同 於實施例21而製作導電性微粒子。得到之導電性微粒子之 導電性金屬層之膜厚及磷含有量係正如表6所示。 (實施例23) 除了使用樹脂粒子(25)來作為基材以外,其餘係相同 於實施例2!而製作導電性微粒子。得到之導電性微粒子之 導電性金屬層之膜厚及磷含有量係正如表6所示。 (實施例24) 除了使用樹脂粒子(26)來作為基材以外,其餘係相同 於實施例21而製作導電性微粒子。得到之導電性微粒子之 導電性金屬層之膜厚及磷含有量係正如表6所示。 (實施例2 5) 除了使用樹脂粒子(26)來作為基材,改變無電解電鍵 液之pH值成為11.0(藉由氫氧化鈉水溶液而進行調整)以 外,其餘係相同於實施例21而製作導電性微粒子。得到之 導電性微粒子之導電性金屬層之膜厚及碟含有量係正如表 51 201241072 6所示。 3.異方性Μ材料之製作和評價 二得-—子,藉 藉由下列之方法而評價其::電材料(異方性導電薄-, 也就是說’在導電性微粒子 劑樹脂之環氧樹脂( 乃’加入作為黏合 量份、硬化劑J_8」)100質 標)SH5。」)&quot;::广…、、“ ld(註冊商 」厂質置份和甲苯1〇〇蜇 1mm之氧化錯顆粒5 乃,、,且,加入0 用扇葉,以心來二。::不銹鋼製之… 藉由桿條塗“而將Γ到丁刀‘之撹拌及分散。接著, 剝離處理之ΡΠ薄膜1膏狀組成物,來塗佈於施行 膜。 , ' 進行乾燥,來得到異方性導電薄 藉=在=有電阻測定用線之全面紹蒸錄玻璃基板和以 間距來形成銅圖案之聚醒亞胺薄膜基板之間,夹入 二Ρ Γ ’、方14導電薄膜,在2個之壓力(高壓:7MPa'低壓: 播a下、185t,進行壓合,而製作連接構造體(高a連接 構造體及低壓連接構造體)。 —st彳牙之連接構造體而言測定電極間之初期 電阻值A’將初期電阻值A未滿3Ω之狀態,評價為「◎」, 將3Ω以上、5Q以下之狀態’評價為「〇」,將超過5。 狀心°平知為X」。此外,藉由金屬顯微鏡(倍率:1〇〇〇 倍)而觀察在低壓(2Mpa)屋合後之異方性導電薄模來接觸S 44 201241072 (Manufacturing Example 1 o) In addition to the type and amount of the absorbing monomer (parts by mass) as shown in Table 1, the resin particles obtained by drying are also under the atmosphere, 28 ( In the same manner as in the production example 1, the resin particles (1 Å) were produced in the same manner as in the production example 1. The average dispersed particle diameter of the obtained resin particles, and the U, mK value, 3〇% κ value, and complex κ were obtained. The value and the compression-deformation rate are shown in Table 1. (Production Example 11) Resin particles were obtained in the same manner as in Production Example 10 except that no heat treatment was performed ((1). The average dispersed particle diameter of the obtained resin particles, ln κ value, 20% Κ value '3G% κ value, weight κ value, and compression failure deformation rate are shown in Table 1. (Manufacturing Example 1 2 ) In addition to the preparation of the poly-stone oxy-fired particle emulsion, When the ion 乂 = is changed, the amount of use is 21. The mass of methanol is _ mass part, and the rest is the same as in the production example 1. The resin particle () is produced in the litji temple The average score of the number of bases of the turbidity The particle size system &quot;3". The average particle size of the obtained resin particles, 1% K value m value, 30% K value, 40% κ value and compression failure deformation rate are shown in the table. Example 13) A resin particle was produced in the same manner as in Production Example 1 except that the type and mass (ppm) of the absorbing monomer were changed as in 矣9 όϊί. - -T- Table 2. The average dispersed particle size of the resin particles, 1 G% enthalpy, 20% κ 45 201241072 value, 30% K value, 40% K value, and compression failure rate are shown in Table 2. (Manufacturing Example 14) The resin particles (14) were produced in the same manner as in the production example except that the type and amount of the monomer to be used (parts by mass) were changed as shown in Table 2. The average particle diameter of the obtained resin particles was 1, (1) % κ value, 2〇% κ value, 30% Κ value, 40% Κ value, and compression failure deformation rate are shown in Table 2. (Manufacturing Example 1 5) Except for the absorption monomer as shown in Table 2 The type and amount of use (mass parts) 'at the same time' is obtained by drying the tree shreds, under the atmosphere, 2 papers for 1 hour heating The resin particles (15) were produced in the same manner as in Production Example i. The average value of the obtained resin particles, the 40% K value and the pressure dispersion particle diameter, the 10% K value, the 20% K value, and the 30% shrinkage deformation. The rate is as shown in Table 2. (Production Example 16) The resin particles (16) were obtained in the same manner as in Production Example 15 except that the heat treatment was not carried out. The average dispersed particle diameter of the obtained resin particles, 1% by K Value, 20% K value, 30% κ value, 4.% κ value, and compression failure deformation rate are shown in Table 2. (Production Example 17) / As shown in Table 2, the type of the monomer for absorption and the mass of one of the monomers were changed, and the resin particles obtained by drying were also subjected to an atmosphere of '23 (Γ': 1 hour) In addition to the heat treatment, resin particles (Π) were produced in Production Example 1. The obtained resin particles had a particle size, m K value, 2% κ value, 30% κ value, and 40% κ value. 46 201241072 The shrinkage deformation rate is as shown in Table 2. (Manufacturing Example 18) In addition to the type and amount of the absorbing monomer (the straight component) as shown in Table 2, the resin obtained by drying was obtained. The particles were also subjected to heat treatment at 300 ° C for 1 hour in a nitrogen atmosphere, and the resin particles (18) were produced in the same manner as in Production Example 1. The obtained resin particles had an average dispersed particle diameter, a 10% K value, and The 203⁄4 K value, the 30% K value, the 40% K value, and the compression failure deformation rate are as shown in Table 2. (Manufacturing Example 19) Resin particles were obtained in the same manner as in Production Example 18 except that no heat treatment was performed. The average dispersed particle size of the obtained resin particles, 1% K value, 2 (UK value, 30% K value) 40% K value and compression failure deformation rate are shown in Table 2. (Manufacturing Example 20) In addition to changing the type and amount of the absorbing monomer (quality smash) as shown in Table 2, at the same time, drying was carried out. The resin particles obtained were also subjected to heat treatment at 1300 °C for 1 hour in a nitrogen atmosphere, and the same was carried out in the same manner as in Production Example 1 to prepare resin particles (2 Å). The average of the obtained resin particles was a particle size. , 10% K value, 20% K value, 30% K value, 40% K value, and compression failure deformation rate are shown in Table 2. (Manufacturing Example 21) Except that the monomer for absorption was changed as shown in Table 2. The type and the amount of use (parts by mass) 'at the same time' the resin particles obtained by drying were also subjected to a heat treatment at 1300 ° C for 1 hour in a nitrogen atmosphere, and the rest were the same 47 201241072 in Production Example 1. Resin particles (21) were produced, and the obtained resin particles had an average dispersed particle diameter, a 10% K value, a 20% K value, a 30% K value, a 40% K value, and a compression failure deformation ratio as shown in Table 2. Example 22) In addition to the modulation of the ion exchange water emulsion, the ion exchange water was changed separately. The amount used is 16 parts by mass, and the amount of decyl alcohol used is a part by mass. The resin particles are produced in the same manner as in Production Example i except that the type and amount of the monomer for use (parts by mass) are changed as shown in Table 2. (22) At this time, the average dispersed particle diameter of the number of polysiloxane particles in the emulsion of the polyoxyalkylene oxide particles is 143 &quot; the average dispersed particle size of the obtained resin particles, 10% κ Value, 20% κ value, 30% κ value, K value, and compression failure deformation rate are shown in Table 2. (Production Example 23) 20% aqueous solution 10 of a polyvinylidene styrene phenyl sulfate sulphate ("HITENOL (registered trademark) NF-〇8" manufactured by Daiichi Kogyo Co., Ltd.) as an emulsifier a mass fraction of 3 parts by mass of ion-exchanged water, a monomer component composed of 50 parts by mass of I,9-decanediol dimethacrylate and 50 parts by mass of the present ethylene, and 2, 2 ,-Azobis(2,4-methylvaleronitrile) ("V-65" manufactured by Wako Pure Chemical Industries, Ltd.) 2 Mixed solution of mussels' emulsion is prepared by emulsifying and dispersing to prepare monomer components. . In a four-necked flask equipped with a cooling tube, a thermometer, and a dropping port, the obtained liquefied liquid was added, and after adding _ part by mass of ion-exchanged water, the reaction liquid was heated to a price, at 65 =: 2 In the hour, the free radical polymerization of the early body ingredients. For the opacity after the radical polymerization 48 201241072, the solid-liquid separation was carried out, and after the cake obtained by washing with ion-exchanged water or methanol, the wet classification was repeated, and the generation was carried out for 2 hours in 12 generations. The resin particles (2) were produced by vacuum drying. The average dispersed particle diameter, m κ value, m κ value, m κ value, 4〇% κ value, and compression fracture deformation ratio of the obtained resin particles are shown in Table 3. (Production Example 24) Resin particles (24) were produced in the same manner as in Production Example 23 except that 10 parts by mass of 1&gt;9-nonanediol dimethyl acrylate vinegar was changed. The average dispersed particle size Μ(10)κ, 20% Κ, 30% 、, 40% κ, and compression failure rate of the obtained resin particles are shown in Table 3. (Production Example 25) In addition to changing the monomer component, it was 75 parts by mass of trimethylolpropane trimethacrylate and divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd., "DVB960": containing divinylbenzene 96% and Resin particles (25) were produced in the same manner as in Production Example 23 except that the ethyl vinylbenzene 4% product was contained in an amount of 25 parts by mass. The average dispersed particle diameter, 1% κ value, 20% enthalpy value, 30% enthalpy value, 40% enthalpy value, and compression failure deformation rate of the obtained resin particles are shown in Table 3. (Production Example 26) The same applies to the production except that the monomer component was changed to 4 parts by mass of ethylene glycol dimethacrylate, 40 parts by mass of styrene, and 2 parts by mass of t-butyl methacrylate. In Example 23, resin particles (26) were produced. The average dispersed particle diameter of the obtained resin particles, 1 〇% j (value, 20% K value, 30% 49 201241072 K value, 40% K value, and compression failure deformation rate are shown in Table 3. 2 - 2. Conductive Production of the fine particles (formation of the conductive metal layer) (Example 1) After the etching treatment by sodium hydroxide is performed on the resin particles (1) as the substrate, the contact with the tin dichloride solution is performed. Photosensitive 'Next, a palladium core is formed by a method of performing activation by immersion in a di-palladium-palladium solution (photosensitive-activation method). Then, a palladium nucleus is formed by adding 'in the ion-exchanged water 4 ο mass parts' 2 parts by mass of the resin particles, after the ultrasonic dispersion treatment, the resin particle suspension obtained by heating at 70° (in a warm bath) is additionally added by heating the suspension in this manner. 600 parts by mass of an electroless plating solution ("Sumer S680" manufactured by Kanigen Co., Ltd., Japan) heated to 70 C, and an electroless nickel plating reaction was produced. After confirming the completion of hydrogen generation, solid-liquid separation was performed to ion Exchange the order of water and sterols The net 'at 100%., vacuum drying for 2 hours, and the particles for electric forging are obtained. Then 'H is replaced by gold in the form of gold carbonate containing potassium cyanide. The surface of the surface was also subjected to gold plating, and the thickness of the conductive metal layer of the obtained conductive fine particles was as shown in Table 4. (Examples 2 to 20 and Comparative Examples 1 to 2) Except that Table 4 or Table 5 was used, the conductive metal was the same as that of the conductive fine particles of Example 1. (Example 21) The resin particles were not used as a substrate to prepare conductive fine particles. The film thickness is as shown in Table 4 or Table 5, 201241072, except that the resin particles (23) are used as the substrate, and the concentration of the sulfuric acid recorded hexahydrate is 50 g/L, the concentration of sodium hypophosphite monohydrate is, and the concentration of sodium citrate is 50 g/L, an electroless nickel plating solution adjusted to 7.5 by an aqueous sodium hydroxide solution, and the electroconductive fine particles were prepared in the same manner as in Example 1 except for the electroless plating solution. The conductivity of the obtained conductive fine particles was obtained. Film thickness of metal layer The phosphorus content is shown in Table 6. (Example 22) Conductive fine particles were produced in the same manner as in Example 21 except that the resin particles (24) were used as the base material. The conductive metal of the obtained conductive fine particles was obtained. The film thickness and the phosphorus content of the layer are shown in Table 6. (Example 23) Conductive fine particles were produced in the same manner as in Example 2 except that the resin particles (25) were used as the substrate. The film thickness and the phosphorus content of the conductive metal layer of the fine particles are as shown in Table 6. (Example 24) Conductivity was produced in the same manner as in Example 21 except that the resin particles (26) were used as the substrate. Microparticles. The film thickness and phosphorus content of the conductive metal layer of the obtained conductive fine particles are as shown in Table 6. (Example 2 5) The same procedure as in Example 21 was carried out, except that the resin particles (26) were used as the substrate, and the pH of the electroless key solution was changed to 11.0 (adjusted with an aqueous sodium hydroxide solution). Conductive microparticles. The film thickness and the dish content of the conductive metal layer of the obtained conductive fine particles are as shown in Table 51 201241072. 3. The production and evaluation of the anisotropic bismuth material is evaluated by the following method:: Electrical material (isoelectric conductive thin - that is, 'in the ring of conductive microparticle resin) Oxygen resin (is 'added as a binding component, hardener J_8)) 100 mass standard) SH5. ")&quot;::广...," ld (Registry) factory material and toluene 1 〇〇蜇1mm oxidized granules 5,,,,,,,,,,,,,,,,,, : Made of stainless steel... The mixture is spread and dispersed by the bar coating. Then, the treated film 1 is peeled off and applied to the film. ' Drying is obtained. Anisotropic conductive thin l = in the = resistance-measuring line of the full-scale steam-recording glass substrate and the distance between the copper pattern of the polyimide film substrate, sandwiched between the two Γ ', 14 conductive film, In the case of two pressures (high pressure: 7 MPa' low pressure: under a 185 Torr, press-bonding is performed to produce a joint structure (a high-connected structure and a low-pressure joint structure). The initial resistance value A' between the electrodes was measured and the initial resistance value A was less than 3 Ω, and it was evaluated as "◎", and the state of 3 Ω or more and 5 Ω or less was evaluated as "〇", which exceeded 5. It is X. In addition, it is observed in a low pressure (2Mpa) house by a metal microscope (magnification: 1〇〇〇) After the anisotropic conductive sheet to contact the mold

S 52 201241072 ,之側之電極表面,將觀察到壓痕者,評價為「〇」,將無 確認到壓痕者,評價為「X」。 此外’在85°C、85%RH之氛圍下而放置得到之低壓連 接構造體500小時之後’相同於前述之初期電阻值a而測 定電阻值B,根據下列之公式而求出電阻值上升率(%)。將 電阻值上升率(%)為1%以下之狀態,評價為「◎」,將超 過1%、3%以下之狀態,評價為「〇」,將超過3%之狀態, 評價為「X」。 電阻值上升率(%)=[(B—A)/A]xl〇〇 此外,在表1、表2、表3,使用下列之縮寫。 MPTMS: 3 —曱基丙烯醯氧基丙基三曱氧基矽烷(信越矽 酮公司製、「KBM503」) VTMS ·乙烯基三曱氧基矽烷(信越矽酮公司製、 「KBM1 003」)On the surface of the electrode on the side of S 52 201241072, if the indentation is observed, it is evaluated as "〇", and if it is not confirmed to be indented, it is evaluated as "X". In addition, after the low-voltage connection structure placed in an atmosphere of 85 ° C and 85% RH for 500 hours, the resistance value B was measured in the same manner as the initial resistance value a described above, and the resistance value increase rate was determined according to the following formula. (%). The state in which the resistance value increase rate (%) was 1% or less was evaluated as "◎", and the state exceeding 1% or less was evaluated as "〇", and the state exceeding 3% was evaluated as "X". . Resistance increase rate (%) = [(B - A) / A] xl 〇〇 In addition, in Table 1, Table 2, and Table 3, the following abbreviations are used. MPTMS: 3 - mercapto propylene methoxy propyl trimethoxy decane ("KBM503", manufactured by Shin-Etsu Chemical Co., Ltd.) VTMS · Vinyl trimethoxy decane (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM1 003")

St :苯乙烯 HXDMA : 1,6 —己烷二醇二甲基丙烯酸酯 DVB ·二乙烯基苯(新日鐵化學公司製、「DVB96〇」: 含有二乙婦基苯96%和乙基乙烯基苯4%之含有品;接著’ 在表中’記載作為DVB使用量之數值係實際地使用之 「DVB960」之量’記載作為組成之數值係根據實質地含有 之二乙烯基苯而算出之值。) TMP— 3EO~~ a :三羥甲基丙烷E〇變形(3莫爾)三丙烯 酸醋 TMP- 6E0~~ a :三羥甲基丙烷E〇變形(6莫爾)三丙烯 53 201241072 酸酯 HXM : 1,6_己烷二醇二丙烯酸酯 MPMDMS : 3—甲基丙烯醯氧基丙基曱基二曱氧基矽烷 (信越矽酮公司製、「KBM502」) 1,9 — ND: 1,9 —壬烷二醇二甲基丙烯酸酯 TMP—A :三經甲基丙烧三丙稀酸酉旨 EGDMA :乙二醇二曱基丙烯酸酯 tBMA : t — 丁基曱基丙烯酸酯St : Styrene HXDMA : 1,6 -hexanediol dimethacrylate DVB · Divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd., "DVB96〇": contains diethylbenzene 96% and ethyl vinyl 4% of the base benzene product; the following is a description of the quantity of DVB used as the amount of DVB used. The amount of "DVB960" actually used as the composition is calculated based on the substantially contained divinylbenzene. Value.) TMP-3EO~~ a: Trimethylolpropane E〇 deformation (3 mole) triacrylate vinegar TMP-6E0~~ a: Trimethylolpropane E〇 deformation (6 mole) tripropylene 53 201241072 Acid ester HXM : 1,6-hexanediol diacrylate MPMDMS : 3-methyl propylene methoxy propyl decyl decyl oxane (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM502") 1,9 — ND : 1,9-decanediol dimethacrylate TMP-A: trimethyl methacrylate triacetate EGDMA: ethylene glycol dimercapto acrylate tBMA : t - butyl methacrylate

S 54 201241072 5 樹脂粒子之物性 壓縮破壞 變形率 ⑻ CO CM C.O 卜 od CO I無破壞點I oo CO CO CO CO lO 兮 oo oo CO csj LO 03 oo LO &lt; 1 oo LD 〇 I 1 05 LT5 CD CO C5 1 CO C5 1 〇 C3 s C5 C \ 〇 LO 〇 o g o 0¾ C5 05 CD CD 呀 CD 〇 05 m CD CD o CO CD 〇 CO CO o CO o CQ (Ν1 卜 〇 oo CO c&gt; £5 o CO &lt;=&gt; 00 00 o in CD o CO CO o Οί CO o LO CD o* CO CO c&gt; CO ς〇 o CO o s g _ ^ ^ \ S—X 1 15068 1 1 05 o 另 15477 1 11254 1 | 12722 1 | 11437 1 14443 g迴画 W CO 乂 \ S: S-X 20953 1 17242 | 20326 21740 § LO CO 15290 13422 oo 03 15047 11359 CO in oo CT&gt; 14552 £ g ^ S 一 CN1 乂 \ 20166 1 17570 1 | 22738 | 20067 o CO 呀 15666 16957 CO CO 05 15394 11419 oo &lt;x&gt; 15216 ^ \ 28027 25925 | 33984 | 27464 CO 03 LO 24018 27181 15365 23593 ! 18146 15654 23929 平均分散 粒徑 (y m) 卜 * ( CT&gt; CO 5 cvi 1—^ CO 〇j CO OJ 封脂粒子之調製 加熱 處理 (°C) 碟 ◦ OO OJ O oo oa s CO o oo CN3 § oa § CM #- § oa ί 矽烷系非交 聯性單體 (質量《 &lt;=5 c&gt; o o C5 〇* 〇 o o C5 CD o GJ* o o o o o CD o c&gt; 矽烷系交 聯性單體 (質量%) 〇 m 〇〇 oo oo LO oo oo LO o lo Cv5 CO 一 〇 § 〇 § 卜 cd 卜 ς〇 卜 CO cd 卜 cd 乙烯系交 聯性單體 (質量%) LO LT5 ai CO id ai CO o o (N1 CJ5 c&lt;i CT5 r—&lt; o o o § o § o § 使用量 吸收用單體 (質量份) St=60 HXONA=60 I DVB-28 I DVB=28 St=97. 2 HXONA=23 St=240 DVB=17.5 DVB=17.5 DVB=100 St=100 DVB=100 St二100 ! DVB=200 DVB=200 DVB=200 聚合性矽烷 化合物 (質量份) MPTMS=40 | MPTMS:40 I I MPTMS=40 I MPTMS=40 I MPTMS=40 I MPTMS=28.5 VTMS=41.5 HPTMS=28.5 VTMS=41.5 MPTMS=40 MPTMS-40 MPTMS=40 MPTMS=40 MPTMS=40 15^ /-N c5 CO S e g /-N g s? /-&quot;N /-~N ^·_·/ 製造例1 製造例2 製造例3 製造例4 |製造例5 I 製造例6 製造例7 製造例8 製造例9 製造例10 製造例11 製造例12 201241072 樹脂粒子之物性 壓缩破壞 變形率 (%) in 'rr LO CO 00 01 LO CO tNI* CO LO LO 00 oi CO uo LO 05 OO CO 03 — &lt; \ 〇 卜 CN1 Η CO 00 o OO ΟΪ d 1 S T—H 1 CO 00 o 1 OO \ 〇 05 cri c&gt; o CO G&gt; § o CO o OO c=&gt; CO CD CO o 寸 σί ο \ CQ oo o ^-- CO CD 〇 f 1 &lt; &lt;=j CO o o C=j oo CD a&gt; 05 CD o r-- C5 £ g ^ i w ^ \ Ο 21968 25842 10901 15483 1 | 11403 1 1 14625 i 1 17017 G § _、昌 w CO ^ \ &quot;ZL Sw/ 18263 18796 11830 12693 14293 S oo oo 12087 12982 13483 13462 r~N -Hnl £ CQ &lt;=5 ^ \= N'—/ CN] ^ X z s_x 12520 14598 10723 11189 14410 CN1 o 卜 | 12645 | 12059 12807 11096 Q姿域麵 一 —乂 \ 5 17273 18834 10176 15848 19699 | 10892 1 | 18111 | 17701 18437 14395 平均分散 粒徑 (//m) 03 ψ—^ cvi S c&lt;i LO oi CvJ oa S cm' LD cd oo TO csi oo 05 CO 〇j 射脂粒子之調製 加熱 處理 ΓΟ 瑞 另 CS3 璀 o CO CO C5 〇 CO 遲 另 OJ 另 Cvl 2 矽烷系非交 聯性單體 (f*%) o O C=5 〇 o o o o C5 o o o o o o o o C5 矽烷系交 聯性單體 (質量%) 卜 CD r·&quot;·' 〇» cd 卜 cd 卜 CD 卜 cd oo I loo.o | o g 卜 cd T—^ CO oo LO CO CO CO 乙炼系交 聯性單體 (質量%) 卜 'ΤΓ 卜 卜 CO 卜 co CO CO T—H O o o 卜 oo 〇0 o CO CO CO 使用量 吸收用單體 (質量份) St=100 TMP3EOA=100 St=100 HXDA=50 TMP6EOA=50 DVB:80 St=20 HXDA=100 DVB=80 St=20 HXDA=100 MPMDMS=188 HXDA=32 MPMDMS=180 MPMDMS=180 DVB=100 HXDA=100 MPMDMS=100 DVB=50 HXDA=50 St-40 IIXDA=40 聚合性矽 烧化合物 (質量份) MPTMS=40 MPTMS=40 MPTMS=40 MPTMS=40 MPTMS=40 MPTMS-40 | MPTMS=40 I MPTMS=40 MPTMS=40 MPTMS-40 /—N CO r&quot;N H /-N ΙΛ »*·&lt; /-N CO Nw/ /—N 卜 TO s—/ O Cvi /—s CsJ Vw/ /—N CO oa 製造例13 製造例14 製造例15 CO 製造例Π |製造例18| 製造例19 製造例20 製造例21 製造例22 201241072 樹脂粒子之物性 壓縮破壞 變形率 (¾) CO· CO Ο CO LO CO CO D/A 1 0.94 0.72 1 C/A S 0.76 0.80 0.77 B/A £5 G&gt; ;0.72 0.70 0.68 (D) 40% K值 (N/mm2) 1 1 ;32635 26244 1 cO G §迴1 一 \ 43003 26405 29126 15467 £ g ^ J 00 乂 \ 36452 25225 25549 13590 =0 Q g _圍 w ^ fad \ 'S-/ 41946 34890 36319 19967 平均分散 粒徑 (卵) LO LO LO r·^ CO 05 加熱 處理 (°C) 难 碟 組成 矽烷系非交 聯性單體 (質量%) 〇 cz&gt; 〇 CD C5 〇 o o 矽烷系交聯 性單體 (質量%) ο ο o C3 CD CD o ^ ® ^ &lt; ‘ _ ^ ^ ^ tO ο S 100.0 o ai CD o 使用量 吸收用單體 (質量份) 1,9-ND/St =50 o z o 1 o 0¾ e. II TMP-A/DVB =75/25 EGDMA/St/tBMA =40/40/20 鹊屮 . (23) r---- — (24) (25) (26) 製造例23 製造例24 製造例25 製造例26 201241072 表4 作為基材之 樹脂粒子 No. 導電性金屬層之 膜厚 (卵) 導電性微粒子之評價 壓痕 初期電阻值 電阻值上升率 高壓 低壓 實施例1 (1) 0.10 〇 ◎ ◎ ◎ 實施例2 (2) 0.11 〇 ◎ ◎ ◎ 實施例3 (3) 0.10 〇 ◎ ◎ ◎ 實施例4 (4) 0.09 〇 ◎ ◎ ◎ 比較例1 (5) 0.12 X X X X 實施例5 (6) 0.11 〇 ◎ ◎ ◎ 實施例6 (7) 0.10 〇 ◎ ◎ ◎ 實施例7 (8) 0.09 〇 ◎ ◎ 〇 實施例8 (9) 0.11 〇 ◎ ◎ ◎ 實施例9 (10) 0.12 〇 ◎ ◎ ◎ 實施例10 (11) 0.11 〇 ◎ ◎ 〇 實施例11 (12) 0.10 〇 ◎ ◎ ◎ 表5 作為基材之 樹脂粒子 No. 導電性金屬層之 膜厚 (//m) 評價 壓痕 初期電阻值 電阻值上升率 高壓 低壓 實施例12 (13) 0.09 〇 ◎ 〇 ◎ 實施例13 (14) 0.12 〇 ◎ 〇 ◎ 實施例14 (15) 0.11 〇 ◎ ◎ 〇 實施例15 (16) 0.10 〇 ◎ ◎ 〇 實施例16 (17) 0.11 〇 ◎ ◎ ◎ 比較例2 (18) 0.10 X X X X 實施例+17 (19) 0.10 〇 ◎ ◎ ◎ 實施例18 (20) 0.12 〇 ◎ ◎ ◎ 實施例19 (21) 0.10 〇 ◎ ◎ ◎ 實施例20 (22) 0.10 〇 ◎ 〇 〇 58 201241072 表6 實施例21 作為基材之 樹脂粒子 No. (23) ^施例22 (24) 實施例23 ~~725)~ 實施例24 (26) 實施例25 (26) 導電性金屬層 膜厚 (_£m) 0.10 ).10 3.1 構含有量 (質量%) —_ mn 壓痕電阻值 Έ 電阻值上升率 ◎ ◎ ◎ 【產業上之可利用性】 劑、異方性導電 油墨等之異方性導電材料 本電性微粒子係適合使用在例如異方性導電 溥膜、異方性導電糊膏、異方性導電接著 圖式簡單說明 益 〇 【主要元件符號說明】 fe 0 59S 54 201241072 5 Physical compressive deformation rate of resin particles (8) CO CM CO od CO I no damage point I oo CO CO CO CO lO 兮oo oo CO csj LO 03 oo LO &lt; 1 oo LD 〇I 1 05 LT5 CD CO C5 1 CO C5 1 〇C3 s C5 C \ 〇LO 〇ogo 03⁄4 C5 05 CD CD 呀CD 〇05 m CD CD o CO CD 〇CO CO o CO o CQ (Ν1 〇oo oo CO c&gt; £5 o CO &lt;=&gt; 00 00 o in CD o CO CO o Οί CO o LO CD o* CO CO c&gt; CO ς〇o CO osg _ ^ ^ \ S-X 1 15068 1 1 05 o Another 15477 1 11254 1 | 12722 1 | 11437 1 14443 g画画W CO 乂\ S: SX 20953 1 17242 | 20326 21740 § LO CO 15290 13422 oo 03 15047 11359 CO in oo CT&gt; 14552 £ g ^ S 一CN1 乂\ 20166 1 17570 1 | 22738 | 20067 o CO 呀15666 16957 CO CO 05 15394 11419 oo &lt;x&gt; 15216 ^ \ 28027 25925 | 33984 | 27464 CO 03 LO 24018 27181 15365 23593 ! 18146 15654 23929 Average Dispersion Particle Size (ym) Bu* (CT> CO 5 cvi 1—^ CO 〇j CO OJ Modification and heat treatment of the sealing particles (°C) ◦ O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Alkene non-crosslinkable monomer (mass &lt;=5 c&gt; oo C5 〇* 〇oo C5 CD o GJ* ooooo CD o c&gt; decane crosslinkable monomer (% by mass) 〇m 〇〇oo oo LO oo oo LO o lo Cv5 CO 一〇§ 〇§ Bu cd Bu Bu Bu CO cd Bu cd Ethylene cross-linking monomer (% by mass) LO LT5 ai CO id ai CO oo (N1 CJ5 c&lt;i CT5 r —&lt; ooo § o § o § Usage absorption monomer (parts by mass) St=60 HXONA=60 I DVB-28 I DVB=28 St=97. 2 HXONA=23 St=240 DVB=17.5 DVB=17.5 DVB=100 St=100 DVB=100 St=100 ! DVB=200 DVB=200 DVB=200 Polymeric decane compound (parts by mass) MPTMS=40 | MPTMS:40 II MPTMS=40 I MPTMS=40 I MPTMS=40 I MPTMS=28.5 VTMS=41.5 HPTMS=28.5 VTMS=41.5 MPTMS=40 MPTMS-40 MPTMS=40 MPTMS=40 MPTMS=40 15^ /-N c5 CO S eg /-N gs? /-&quot;N /-~N Manufactured Example 2 Production Example 2 Production Example 3 Production Example 4 Production Example 5 Production Example 6 Production Example 7 Production Example 8 Production Example 9 Production Example 10 Production Example 11 Production Example 12 201241072 Physical property compression fracture of resin particles Deformation rate (%) in 'rr LO CO 00 01 LO CO tNI* CO L O LO 00 oi CO uo LO 05 OO CO 03 — &lt; \ 〇 CN CN1 Η CO 00 o OO ΟΪ d 1 ST—H 1 CO 00 o 1 OO \ 〇05 cri c&gt; o CO G&gt; § o CO o OO c=&gt; CO CD CO o inch σί ο \ CQ oo o ^-- CO CD 〇f 1 &lt;&lt;=j CO oo C=j oo CD a&gt; 05 CD o r-- C5 £ g ^ iw ^ \ Ο 21968 25842 10901 15483 1 | 11403 1 1 14625 i 1 17017 G § _, Chang w CO ^ \ &quot;ZL Sw/ 18263 18796 11830 12693 14293 S oo oo 12087 12982 13483 13462 r~N -Hnl £ CQ &lt; =5 ^ \= N'—/ CN] ^ X z s_x 12520 14598 10723 11189 14410 CN1 o Bu | 12645 | 12059 12807 11096 Q posture domain one — 乂 \ 5 17273 18834 10176 15848 19699 | 10892 1 | 18111 | 17701 18437 14395 Average dispersed particle size (//m) 03 ψ—^ cvi S c&lt;i LO oi CvJ oa S cm' LD cd oo TO csi oo 05 CO 〇j Modification heat treatment of the greased particles ΓΟ Rui another CS3 璀o CO CO C5 〇CO Late OJ Another Cvl 2 decane non-crosslinkable monomer (f*%) o OC=5 〇oooo C5 oooooooo C5 decane cross-linking monomer (% by mass) Bu CD r·&quot; ·' 〇» cd cd cd CD Cd oo I loo.o | og cd T-^ CO oo LO CO CO CO Ethylene cross-linking monomer (% by mass) Bu 'ΤΓ Bu Bu CO Bu CO CO CO T-HO oo Bu oo 〇0 o CO CO CO Usage Absorption monomer (parts by mass) St=100 TMP3EOA=100 St=100 HXDA=50 TMP6EOA=50 DVB:80 St=20 HXDA=100 DVB=80 St=20 HXDA=100 MPMDMS=188 HXDA =32 MPMDMS=180 MPMDMS=180 DVB=100 HXDA=100 MPMDMS=100 DVB=50 HXDA=50 St-40 IIXDA=40 Polymeric smoldering compound (parts by mass) MPTMS=40 MPTMS=40 MPTMS=40 MPTMS=40 MPTMS=40 MPTMS-40 | MPTMS=40 I MPTMS=40 MPTMS=40 MPTMS-40 /—N CO r&quot;NH /-N ΙΛ »*·&lt; /-N CO Nw/ /—N 卜 TO s—/ O Cvi / -s CsJ Vw / / - N CO oa Production Example 13 Production Example 14 Production Example CO Production Example 制造 Production Example 18 Production Example 19 Production Example 20 Production Example 21 Production Example 22 201241072 Physical property compression fracture of resin particles Deformation rate (3⁄4) CO·CO Ο CO LO CO CO D/A 1 0.94 0.72 1 C/AS 0.76 0.80 0.77 B/A £5 G&gt;;0.72 0.70 0.68 (D) 40% K value (N/mm2) 1 1 ;32635 26244 1 cO G §Back 1 1 \ 43003 26405 29126 15467 £ g ^ J 00 \ 36452 25225 25549 13590 =0 Q g _ circumference w ^ fad \ 'S-/ 41946 34890 36319 19967 average dispersion particle size (egg) LO LO LO r·^ CO 05 heat treatment (°C) difficult dish composition decane system Crosslinkable monomer (% by mass) 〇cz&gt; 〇CD C5 〇oo decane crosslinkable monomer (% by mass) ο ο o C3 CD CD o ^ ® ^ &lt; ' _ ^ ^ ^ tO ο S 100.0 o Ai CD o Absorption monomer (parts by mass) 1,9-ND/St =50 ozo 1 o 03⁄4 e. II TMP-A/DVB =75/25 EGDMA/St/tBMA =40/40/20 鹊(23) r---- (24) (25) (26) Production Example 23 Production Example 24 Production Example 25 Production Example 26 201241072 Table 4 Resin Particles as Substrate No. Film Thickness of Conductive Metal Layer (egg) Evaluation of conductive fine particles Indentation initial resistance value Resistance value increase rate High pressure and low pressure Example 1 (1) 0.10 〇 ◎ ◎ ◎ Example 2 (2) 0.11 〇 ◎ ◎ ◎ Example 3 (3) 0.10 〇 ◎ ◎ ◎ Example 4 (4) 0.09 〇 ◎ ◎ ◎ Comparative Example 1 (5) 0.12 XXXX Example 5 (6) 0.11 〇 ◎ ◎ ◎ Example 6 (7) 0.10 〇 ◎ ◎ ◎ Example 7 (8) 0.09◎ ◎ 〇 Example 8 (9) 0.11 〇 ◎ ◎ 例 Example 9 (10) 0.12 〇 ◎ ◎ ◎ Example 10 (11) 0.11 〇 ◎ ◎ 〇 Example 11 (12) 0.10 〇 ◎ ◎ ◎ Table 5 Resin Particles of Substrate No. Conductive Metal Layer Thickness (//m) Evaluation of Indentation Initial Resistance Value Resistance Value Increase Rate High Pressure Low Pressure Example 12 (13) 0.09 〇◎ 〇◎ Example 13 (14) 0.12 〇 ◎ 〇 ◎ Example 14 (15) 0.11 〇 ◎ ◎ 〇 Example 15 (16) 0.10 〇 ◎ ◎ 〇 Example 16 (17) 0.11 〇 ◎ ◎ ◎ Comparative Example 2 (18) 0.10 XXXX Example +17 (19 0.10 〇 ◎ ◎ 例 Example 18 (20) 0.12 〇 ◎ ◎ ◎ Example 19 (21) 0.10 〇 ◎ ◎ ◎ Example 20 (22) 0.10 〇 ◎ 〇〇 58 201241072 Table 6 Example 21 As a substrate Resin Particle No. (23) ^Example 22 (24) Example 23 ~~725)~ Example 24 (26) Example 25 (26) Conductive metal layer film thickness (_£m) 0.10 ).10 3.1 Structure content (% by mass) —_ mn Indentation resistance value 电阻 Resistance value increase rate ◎ ◎ ◎ [Industrial availability] Anisotropic conductive material such as an anisotropic conductive ink. The electrical microparticles are suitable for use in, for example, an anisotropic conductive ruthenium film, an anisotropic conductive paste, and an anisotropic conductive pattern. Explanation of symbols] fe 0 59

Claims (1)

201241072 七、申請專利範圍: 1. 種導電性微粒子,具有由樹脂粒子而組成之基材 以及形成於該基材表面之至少一層之導電性金屬層, 其特徵在於: 前述樹脂粒子之個數基準之平均分散粒徑係〜 2· 5 y m,在前述樹脂粒子之直徑位移} 時之壓縮彈性率 (10% K 值)係 i2,〇〇〇N/_2以上。 2. 如申請專利範圍第1項之導電性微粒子,其中,前 j樹脂粒子之個數基準之平均分散粒徑係2.。…上,在 前述樹脂粒子之直徑位移1〇%時之壓縮彈性率(ι〇% κ值) 係 17, 00ON/mm2 以上。 3. 如申請專利範圍第丨項之導電性微粒子其中,前 述樹脂粒子之個數基準之平均分散粒徑係未滿2〇//m,在 刖述樹脂粒子之直徑位移i 〇%時之壓縮彈性率(丨〇% κ值) 係超過 1 9, 600N/mm2。 4. 如申請專利範圍第丨至3項中任一項之導電性微粒 子’其中’刖述樹脂粒子之壓縮破壞變形率係3 〇 %以上。 5·如申請專利範圍第1至4項中任一項之導電性微粒 子’其中’在則述樹脂粒子之直徑位移3 〇 %時之壓縮彈性 率(30% K值)係小於前述之丨κ值。 6. 如申請專利範圍第1至5項中任一項之導電性微粒 子,其中,在表面之至少一部分,具有絕緣性樹脂層。 7. —種樹脂粒子,使用作為導電性微粒子之基材之粒 子, S 60 201241072 其特徵在於: Ί同$隹 &quot; 平均分散粒徑係l.〇#m〜2.5从111,在粒子 之直從位移10%時之壓縮彈性率(ι〇%κ值)係ι2〇〇〇Ν/_2 以上。 , 如申叫專利範圍第7項之樹脂粒子,其中,個數基 準之平均刀散粒徑係2. 〇 # m以上,在粒子之直徑位移i 〇% 時之壓縮彈性率(10% K值)係π, OOON/mm2以上。 9. 如申請專利範圍第7項之樹脂粒子,其中,個數基 平句刀政粒瓜係未滿2. 0 μ m,在粒子之直徑位移1 〇 % 時之壓縮彈性率(1〇% κ值)係超過19, 6〇〇N/_2。 10. 如申請專利範圍第7至9項中任一項之樹脂粒子, 其中’壓縮破壞變形率係3〇%以上。 11. 如申請專利範圍帛7至10項中任一項之樹脂粒 子,其中,在粒子之直徑位移30%時之壓縮彈性率κ 值)係小於前述之1 0 % Κ值。 12. —種異方性導電材料’其特徵在於:申請專利範圍 第1至6項中任-項所述之導電性微粒子係分散於黏合劑 樹脂。 61201241072 VII. Patent application scope: 1. A conductive microparticle having a substrate composed of resin particles and a conductive metal layer formed on at least one surface of the substrate, wherein: the number of the resin particles is based on The average dispersion particle diameter is ~5·ym, and the compression modulus (10% K value) at the diameter displacement of the resin particles is i2, 〇〇〇N/_2 or more. 2. The conductive fine particles according to claim 1, wherein the average dispersed particle diameter of the number of the first j resin particles is 2. In the case where the diameter of the resin particles is displaced by 1%, the compression modulus (% 〇 κ value) is 17, 00ON/mm2 or more. 3. The conductive fine particles according to the ninth aspect of the invention, wherein the average dispersed particle diameter of the number of the resin particles is less than 2 Å/m, and the compression is performed when the diameter displacement of the resin particles is i 〇 % The modulus of elasticity (丨〇% κ value) is more than 196,600 N/mm2. 4. The conductive fine particles of any one of the above-mentioned claims, wherein the resin particles have a compression-deformation deformation ratio of 3 〇 % or more. 5. The conductive microparticles of any one of claims 1 to 4, wherein the compressive modulus of elasticity (30% K value) when the diameter of the resin particles is displaced by 3% is less than 前述 κ value. 6. The conductive fine particles according to any one of claims 1 to 5, wherein at least a part of the surface has an insulating resin layer. 7. A resin particle using particles as a substrate of conductive fine particles, S 60 201241072, characterized in that: Ί 隹 隹 quot quot 平均 平均 平均 平均 平均 平均 平均 平均 m m m m m m m m m m m m m m m m m m m The compression modulus (ι 〇 % κ value) at a displacement of 10% is ι 2 〇〇〇Ν / _2 or more. For example, the resin particles of the seventh item of the patent scope, wherein the average number of knives of the number of bases is 2. 〇# m or more, the compressive modulus of elasticity at the diameter displacement i 〇% of the particles (10% K value) ) is π, OOON/mm2 or more. 9. For the resin particles in the scope of patent application No. 7, wherein the number of bases is less than 2.0 μm, and the compression modulus is 1%% when the diameter of the particles is displaced by 1%. The κ value is more than 19, 6〇〇N/_2. 10. The resin particles according to any one of claims 7 to 9, wherein the 'compression failure deformation ratio is 3% or more. 11. The resin pellet of any one of claims 7 to 10, wherein the compressive modulus of elasticity κ value when the diameter of the particle is displaced by 30% is less than the aforementioned 10% enthalpy. 12. An anisotropic conductive material </ RTI> characterized in that the conductive fine particles according to any one of Items 1 to 6 are dispersed in a binder resin. 61
TW101102433A 2011-01-25 2012-01-20 Conductive microparticle, resin particle, and anisotropic conductive material using same TW201241072A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013403 2011-01-25

Publications (1)

Publication Number Publication Date
TW201241072A true TW201241072A (en) 2012-10-16

Family

ID=46580768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102433A TW201241072A (en) 2011-01-25 2012-01-20 Conductive microparticle, resin particle, and anisotropic conductive material using same

Country Status (5)

Country Link
JP (1) JP5140209B2 (en)
KR (1) KR101454194B1 (en)
CN (1) CN103329217B (en)
TW (1) TW201241072A (en)
WO (1) WO2012102199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643213B (en) * 2016-01-13 2018-12-01 日商山王股份有限公司 Conductive microparticle and method of making conductive microparticle

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534841B1 (en) * 2012-11-07 2015-07-07 제일모직주식회사 Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP6374689B2 (en) * 2013-04-04 2018-08-15 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR101676527B1 (en) * 2013-06-25 2016-11-16 제일모직주식회사 Anisotropic conductive film, image display device and semiconductor device comprising the same
JP6737566B2 (en) * 2014-01-14 2020-08-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
CN107849428B (en) * 2015-11-20 2021-09-28 积水化学工业株式会社 Particle, connecting material, and connecting structure
JP2017147163A (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Conductive paste and conductive film formed using the same
WO2018181694A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP2019179647A (en) * 2018-03-30 2019-10-17 デクセリアルズ株式会社 Conductive material, and manufacturing method of connection body
JP7352608B2 (en) * 2020-12-17 2023-09-28 ドク サン ネオルクス カンパニー リミテッド High-strength beads and conductive particles using them

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP3581618B2 (en) * 1999-11-29 2004-10-27 積水化学工業株式会社 Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
CN100594223C (en) * 2004-05-27 2010-03-17 株式会社Pi技术研究所 Block copolymerized polyimide ink composition for printing
JP2006028242A (en) * 2004-07-13 2006-02-02 Tomoegawa Paper Co Ltd Adhesive tape for electronic part, and electronic part
JP2006040546A (en) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd Conductive particulate
SG119379A1 (en) * 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
JP4662748B2 (en) * 2004-10-04 2011-03-30 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP4950451B2 (en) * 2005-07-29 2012-06-13 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure
CN101153212A (en) * 2006-09-14 2008-04-02 信越化学工业株式会社 Set of resin compositions for preparing system-in-package type semiconductor device
JP5024260B2 (en) * 2007-11-01 2012-09-12 日立化成工業株式会社 Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643213B (en) * 2016-01-13 2018-12-01 日商山王股份有限公司 Conductive microparticle and method of making conductive microparticle

Also Published As

Publication number Publication date
WO2012102199A1 (en) 2012-08-02
CN103329217A (en) 2013-09-25
CN103329217B (en) 2016-06-29
JP5140209B2 (en) 2013-02-06
JPWO2012102199A1 (en) 2014-06-30
KR20130114188A (en) 2013-10-16
KR101454194B1 (en) 2014-10-27

Similar Documents

Publication Publication Date Title
TW201241072A (en) Conductive microparticle, resin particle, and anisotropic conductive material using same
JP5841319B2 (en) Polymer fine particles and conductive fine particles
JP5563232B2 (en) Core-shell type organic-inorganic composite particle production method, core-shell type organic-inorganic composite particle, and conductive fine particle
TW200826120A (en) Conductive particles and method of preparing the same
JP5583647B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014192051A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP5998048B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5956906B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5998032B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6002026B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5856379B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014207193A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP5952553B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP6719859B2 (en) Polymer fine particles, conductive fine particles and anisotropic conductive materials
JP2012221952A (en) Conductive particulate and anisotropic conductive material using the same
JP5998018B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6397552B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583654B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP7220548B2 (en) Substrate particles for conductive particles and use thereof
JP7241526B2 (en) Substrate Particles for Conductive Particles, Use and Production Method Thereof
JP6446514B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5667555B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP2020119878A (en) Base particle for conductive particle, use thereof and production method