TW201238452A - Heat dissipation module - Google Patents

Heat dissipation module Download PDF

Info

Publication number
TW201238452A
TW201238452A TW100106721A TW100106721A TW201238452A TW 201238452 A TW201238452 A TW 201238452A TW 100106721 A TW100106721 A TW 100106721A TW 100106721 A TW100106721 A TW 100106721A TW 201238452 A TW201238452 A TW 201238452A
Authority
TW
Taiwan
Prior art keywords
heat
heat dissipation
dissipation module
heat sink
air
Prior art date
Application number
TW100106721A
Other languages
Chinese (zh)
Inventor
Chih-Jen Chou
Original Assignee
Columbia technology co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia technology co ltd filed Critical Columbia technology co ltd
Priority to TW100106721A priority Critical patent/TW201238452A/en
Priority to US13/409,522 priority patent/US20120222842A1/en
Publication of TW201238452A publication Critical patent/TW201238452A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The invention discloses a heat dissipation module comprising heat sinks, a fan, heat conducting paint and a heat conduction piece, wherein heat conducting paint is used for increasing thermal radiation coefficient of the heat sinks. Therefore, when elements that is required to dissipate heat conducts heat to the heat sinks through the heat conduction piece, more heat is conducted to air through thermal radiation, and the fan sucks heated air to achieve the effect of dissipating heat.

Description

201238452 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種散熱模組,特別是一種具有 熱塗料的散熱模組。 ^ 【先前技術】 現有散熱模組主要由散熱片、導熱片、散熱導管、 散熱鰭片以及風扇所組成,一般來說,散熱模^可以設 置在筆記型電腦的内部的熱源附近,舉例而言:中央處 理器、主機板、顯示卡、光碟機、晶片或硬碟等, 記型電腦内的此些元件運作時會產生熱能而使之溫;上 升,若是筆記型電腦内部的溫度過高,就很 = :型電腦當機的情況。然而,筆記型電腦目前都是往: 薄短二的方式設計,而傳統散熱導㈣項原理必 在散熱導管流動之故,因此現有的散熱模μ非常 【發明内容】 ,::於此,本發明之目的就是在提供—種散 、,且’ 1解決現有散熱模組佔太多空間的問題。…、 疋為達上述目的,依本發明之散埶模纽,勺人 位於散熱片的—導ΐ片。其中,導熱片係 熱兀件之熱量可以透 々上發 導熱塗料係形成於散執Γ「 散熱片。而 成於放熱以1來增加散Μ的熱輕射 201238452 係數’使熱量料Μ氣。此外,散熱片的—側設有風 扇’用來將熱空氣吸出。實際上,本發明之散熱模組亦 可透過在導熱塗料上設有泡棉或導熱泡棉,導熱泡棉係 在泡棉外層包覆導熱材料,藉此增加傳送熱量的效率, 亦可更透過此泡棉或導熱泡棉與另—泡棉或導熱泡棉的 搭配,藉以形成風道。另外,為增加排熱的效果,風扇 之設計可包含-吸風口以及-出風σ,用來排出熱風。 承上所述,依本發明之散熱模組,其可具下述優點: (1) 本發明之散熱模組在散熱片上形成導熱塗 料,並且可選擇不使用導熱導管及散熱鰭 片,因此散熱模組之散熱路徑設計較具彈性 且較不佔空間。 (2) 本發明之散熱模組可具有風道,因此易於將 熱風排出。 (3) 本發明之散熱模組可設計成預決形狀的散 熱路徑,而非限定於傳統式片狀之散熱路 徑。 敏為使貴審查委員對本發明之技術特徵及所達到 之功效有更進一步之瞭解與認識,謹佐以較佳之實施例 及配合詳細之說明如後。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之 散熱模組,為使便於理解,下述實施例中之相同元件係 4 201238452 以相同之符號標示來說明。 請參閱第1至3圖,第1圖係為本發明之散熱模組 之第一實施例之俯視圖、第2圖係為本發明之散熱模組 之第一實施例之側視圖以及第3圖係為本發明之散熱模 組之第二實施例之俯視圖。第1至3圖中,本發明之散 熱模組之第一實施例中包含散熱片200、風扇300、導熱 塗料400及導熱片500。其中,散熱片200可以是一平 板狀的結構,並且為了增加散熱效果,散熱片200可以 選用熱傳導較好的材質,例如金屬。而導熱片500係位 於散熱片200的一面,並且發熱元件係設於導熱片500 上,因此發熱元件的熱量就透過導熱片500傳送到散熱 片200上。另外,導熱塗料400係例如藉由喷塗或印刷 加工方式形成於散熱片200上,導熱塗料400可選用 OKITSUMO公司所提供的導熱塗料400,例如料號 CT200。導熱塗料400之材質亦選用Xylen、Toluol、 N-Butanol、Isobutyl alcohol 或 Diglyoidylethor of BPA 等 材料之導熱塗料400。導熱塗料400用來增加散熱片200 的熱輻射係數,使熱量傳導至空氣,其中散熱片200的 熱輻射係數係例如0.6,而具有導熱塗料400的散熱片 200的熱輻射係數係例如大於0.95。此外,在散熱片200 的一側設有風扇300,用來將熱空氣吹出,使發熱元件 得到散熱的效果。詳言之,本發明之散熱模組係透過增 加熱輻射的方式來達到散熱之功效。舉例而言,發熱元 件係例如晶片800,將晶片800設於導熱片500上,而 當晶片800運作時所產生的熱量就會透過導熱片500傳 201238452 ^有增加散敎散熱片2gg上的導熱塗料400 運作時所產生㈣量;= ㈣能,所以當晶片8〇0 時,會有W、曰 熱片500傳送到散熱片200 =例如被加熱到攝氏75度 位於散熱片200另一她沾门e 工乱沈會被 300吹屮沾n a柒的風扇3〇0吹出,換言之,風扇 人出的風就會是攝氏75度左右。 诱、要特職到的是,傳統的散熱模組中,主要是 =賴導管以熱料的方核減傳駭在散熱導管 的液體,而當液體受熱而變成氣體時,氣體就 =另一端移動’此時再透過風扇將空氣吸人並對導熱 =的另鈿σ人出,因此導熱導管内的氣體就會降溫變 而流回散熱導管内部一端’以達到循環降溫的效 Α中,散熱導官内的液體係例如汽化溫度為攝氏1〇〇 又,而傳統的散熱模組因為散熱片上沒有導熱塗料,所 ,空氣的溫度大約在攝氏45度左右,因此風扇吸入的空 氣係例如攝氏45度。由此可推知,風扇對散献導管 時,吹出來的空氣的溫度會介於攝氏4 “至、 間。為了確保低溫空氣能帶走熱源的熱,傳統上往往在 散熱導官之高溫端加入散熱鰭片。由此可見,傳統的散 熱模組的能量都會被集中在散熱導管的另一端,亦即散 熱鰭片端。因此傳統的散熱模組的風扇之功能係吸入相 對於散熱鰭片端較冷的空氣,並朝散熱導管或散熱鰭片 吹出所吸入的冷空氣,所以使用者可能會遭遇到局部區 域溫度’尤其是散熱‘鰭片區’很愛的問題。而本發明之 6 201238452 散熱模組㈣量可平均分散在接受到熱輕射的 再藉由風扇300將例如攝氏溫度75度左右的空氣、η , 亦即風扇直接吸入熱源加熱的熱空氣, 出。 :送出,因此使用者不會遭遇到局部區域;== 另^為增加散熱的效果,本發明之散熱模組 出第一貫施例,亦即在本發明之散熱模組中更 泡棉700,導熱泡棉係設於散熱片細之上二導熱201238452 VI. Description of the Invention: [Technical Field] The present invention relates to a heat dissipation module, and more particularly to a heat dissipation module having a thermal paint. ^ [Prior Art] The existing heat dissipation module is mainly composed of a heat sink, a heat conductive sheet, a heat dissipation duct, a heat sink fin and a fan. Generally, the heat sink mold can be disposed near the heat source inside the notebook computer, for example, for example : central processing unit, motherboard, display card, CD player, chip or hard disk, etc., these components in the notebook computer will generate heat to make it warm; rise, if the temperature inside the notebook computer is too high, It is very = : the situation of the computer crash. However, the notebook computer is currently designed to be: thin and short, and the traditional heat conduction guide (four) principle must flow in the heat dissipation duct, so the existing heat dissipation mode μ is very [invention],::: here, this The purpose of the invention is to provide a kind of dispersion, and to solve the problem that the existing heat dissipation module takes up too much space. ..., 疋 For the above purpose, according to the invention, the scoop man is located on the heat sink - the guide piece. Among them, the heat of the thermal conductive sheet of the thermal element can be formed by the thermal conductive coating on the heat dissipation film. The heat sink is formed by the exothermic heat radiation to increase the heat dissipation of the 201238452 coefficient to make the heat charge. In addition, the heat sink is provided with a fan for sucking hot air. In fact, the heat dissipation module of the present invention can also be provided with foam or thermal foam on the heat conductive paint, and the thermal foam is attached to the foam. The outer layer is coated with a heat-conducting material, thereby increasing the efficiency of heat transfer, and further forming a air duct by using the foam or heat-conductive foam together with another foam or heat-conductive foam. In addition, in order to increase the heat-discharging effect The fan design may include an air suction port and an air outlet σ for discharging hot air. As described above, the heat dissipation module according to the present invention has the following advantages: (1) The heat dissipation module of the present invention is The heat-dissipating coating is formed on the heat sink, and the heat-dissipating duct and the heat-dissipating fin are not selected, so the heat-dissipating path design of the heat-dissipating module is more flexible and less space-consuming. (2) The heat-dissipating module of the present invention can have a air duct, so Easy to arrange hot air (3) The heat dissipation module of the present invention can be designed as a heat dissipation path of a predetermined shape, and is not limited to the heat dissipation path of the conventional sheet shape. The sensitivity is to make the reviewer have more technical features and effects achieved by the present invention. Further understanding and understanding of the preferred embodiments and the detailed description are as follows. [Embodiment] Hereinafter, a heat dissipation module according to a preferred embodiment of the present invention will be described with reference to the related drawings. The same components in the following embodiments are denoted by the same reference numerals. Please refer to Figures 1 to 3. Figure 1 is a plan view and a second diagram of the first embodiment of the heat dissipation module of the present invention. The side view of the first embodiment of the heat dissipation module of the present invention and the third embodiment are top views of the second embodiment of the heat dissipation module of the present invention. In the first to third embodiments, the heat dissipation module of the present invention In one embodiment, the heat sink 200, the fan 300, the heat conductive paint 400, and the heat conductive sheet 500 are included. The heat sink 200 may be a flat plate structure, and the heat sink 200 may be selected for heat conduction. A good material, such as a metal, is disposed on one side of the heat sink 200, and the heat generating component is disposed on the heat conductive sheet 500, so that heat of the heat generating component is transmitted to the heat sink 200 through the heat conductive sheet 500. The coating 400 is formed on the heat sink 200 by spraying or printing, for example, and the thermal conductive coating 400 can be selected from the thermal conductive coating 400 provided by OKITSUMO Co., for example, the material number CT200. The material of the thermal conductive coating 400 is also selected from Xylen, Toluol, N. a thermal conductive coating 400 of a material such as Butanol, Isobutyl alcohol or Diglyoidylethor of BPA. The thermal conductive coating 400 is used to increase the heat emissivity of the heat sink 200 to conduct heat to the air, wherein the heat radiation coefficient of the heat sink 200 is, for example, 0.6. The heat radiation coefficient of the heat sink 200 of the thermal conductive paint 400 is, for example, greater than 0.95. Further, a fan 300 is provided on one side of the heat sink 200 for blowing hot air to obtain a heat radiating effect. In detail, the heat dissipation module of the present invention achieves heat dissipation by increasing heat radiation. For example, the heating element is, for example, a wafer 800, and the wafer 800 is disposed on the thermal conductive sheet 500, and the heat generated when the wafer 800 operates is transmitted through the thermal conductive sheet 500. 201238452 ^The heat conduction on the heat sink 2gg is increased. The amount of material produced by the coating 400 is (4); = (4) can, so when the wafer is 8〇0, there will be W, the hot sheet 500 is transferred to the heat sink 200 = for example, it is heated to 75 degrees Celsius, and the heat sink 200 is another. The door e-worker will be blown out by the 300 〇0 blowing fan, in other words, the wind of the fan will be about 75 degrees Celsius. Inducing, to be special, is that in the traditional heat-dissipation module, the main reason is that the sluice tube reduces the liquid in the heat-dissipating duct with the square core of the hot material, and when the liquid is heated to become a gas, the gas moves at the other end. 'At this time, the air is sucked by the fan and the other one of the heat conduction is discharged, so the gas in the heat conduction conduit will be cooled and flow back to the inner end of the heat dissipation duct to achieve the effect of circulating cooling. The liquid system in the official, for example, has a vaporization temperature of 1 摄 Celsius, while the conventional heat dissipation module has no heat transfer coating on the heat sink. The temperature of the air is about 45 degrees Celsius, so the air sucked by the fan is, for example, 45 degrees Celsius. . It can be inferred that when the fan is used to scatter the duct, the temperature of the blown air will be between 4 and 10,000 Celsius. In order to ensure that the low temperature air can take away the heat of the heat source, it is often added at the high temperature end of the heat guide. The heat sink fins can be seen. The energy of the conventional heat dissipation module is concentrated on the other end of the heat dissipation duct, that is, the heat sink fin end. Therefore, the function of the fan of the conventional heat dissipation module is relatively cold compared with the heat sink fin end. The air blows the inhaled cold air toward the heat dissipation duct or the heat sink fin, so the user may encounter the problem that the local area temperature 'especially the heat sink 'fin area' is very loved. The 6 201238452 heat sink module of the present invention (4) The amount can be evenly distributed and received by the fan 300, and the air, for example, about 75 degrees Celsius, η, that is, the fan is directly sucked into the hot air heated by the heat source, and is sent out, so that the user does not A local area is encountered; == Another effect is to increase the heat dissipation. The heat dissipation module of the present invention has a first embodiment, that is, a foam 700 in the heat dissipation module of the present invention. Foam-based heat fins disposed on the thermally conductive fine titanium

要特別提到,亦可利用泡棉取代上開所述之J :泡棉·。在散熱片塗佈導熱塗料彻之 ^在=置導熱泡棉之前,或於設置導熱泡棉彻之 ί發明之第二實施·在設置導熱泡棉之前, ^于塗佈導熱塗料儀於散熱片細之上,使散 上之導熱塗料400更能均勺务砧泠社 …片2〇〇 材料之功.化地㈣’以達成節省導熱 外,除了做為散熱模組組装時的緩衝部之 2泡棉700與另一導熱泡棉71〇的位置上㈣:透: 與另-導熱泡棉71。‘於散熱 使空氣的二:::道^:詳細來說’所述之風道可以 的效果。二=0〇Γ風扇3〇°將熱風送出 社二 亦可更^有出風口 _及吸風 6〇卜使得熱風可自吸風口 及風 送出,藉此達到散熱效果。 1入並從出風口 600 201238452 本發明之第三實施例如圖4所示,第4圖係為本發 明之散熱模組之第三實施例之俯視圖。在第4圖中,本 么月更包含連結複數個導熱片5〇〇的預決形狀散熱片 2〇卜該些導熱片500位於預決形狀散熱片201之下方, 並且可各自連結熱源元件,例如中央處理器、主機板、 顯示卡、光碟機、晶片或硬碟等熱源。塗佈導熱塗料4〇〇 之時機’可選擇先行塗佈導熱塗料400於預決形狀散熱片 μ上4依所需要的散熱路彳f刪定義出預決形狀 月/、、' 201之形狀。亦可先定義預決形狀散熱片2〇1之 形狀後再行塗佈導熱塗料400 〇 —此外’塗佈導熱塗料_於預決形狀散熱片201之 選則於設置導熱泡棉之前,或選擇於設置導 :f Ϊ 7 〇 〇之後。本發明之第三實施例導熱塗料彻之 :佈時機係於設置導熱泡棉之前,亦即先行塗佈導 =:=熱片2〇°之上,俾利於同時達成= _之功二 0之塗佈均句化,以及節省導熱塗料 ώ f ^ ^彳各元件所產生之熱源可透過複數個導熱片 =專散熱片2G1,#由熱輻射或-部份之熱傳 肩300將上、狀散熱片2〇1上方之空氣,並藉由風 /的^直接吸出’以達成散熱的目 之护狀2貫把例之散熱路徑_與預決形狀散熱片201 且因散熱路徑_可連結至風扇300,並 明::二 出熱空氣而達成散熱之㈣,故本發 明無需於出風口_另以散熱鯖片輔助散熱。此外,如 201238452 於本毛明之出風口 _處再加人散熱韓片,更 風之虞。 。本f施例之預決形狀散熱片2〇1可以為樹狀、爪狀 或扇形等等形狀,使散熱路徑900亦類似於樹狀、爪狀 或扇形狀’更明確的說,預決形狀散熱片201更可以依 …、使用者之兩求決定其形狀。預決形狀散熱片加除塗 佈導熱塗料400之外,並可於預決形狀散熱片2〇1之上設 置複數個V熱泡棉7G0,藉由此些導熱泡棉7GG位置上 的搭配形成風道,以確紐熱路徑_之形狀與預決形 狀散熱片201類似。 ’ 第三實施例中之預決形狀散熱片201除了可減少散 ”、、片使用面積之外’更可藉由此一預決形狀散熱片201 以彈性控制散熱路徑9〇〇。傳統上内含液體 導:導官因導官之存在而佔空間且成本較高,因此盔 f二實施例可隨著使用者之需求而彈性設計散敎途 ’本發明與傳統散熱模組相比,第三實施例 :::=3開熱敏感的工作元件並改善散熱路 仏900 5又计的弹性度、可選擇省略散熱鰭片,且 本發明之散熱模組所佔據之空間。 / 综上開所述,本發明之散__透 形成於散熱片細上藉以增加熱輜射係數,藉= 的元件的熱量以熱輻射的方式傳送予空氣,接 者再透過風扇3GG將接㈣熱量的空 出’以達到散熱的效果。換言之,本發明二 201238452 傳統的散熱模組相比而言,一方面因為少了散熱導管, 所以本發明之散熱模組較不佔空間,有利於各種電^模 組的縮小化,·另-方面,由於傳輸熱量的方式不同,因 此本發明具有將熱量均句分散在空氣中,以達到 電子模組中產生局部區域溫度過高的效果。 以上所述僅為舉例性,而非為限制性者。任何未 ,本發明之精神與料,而對其㈣之等效修改或變 更,均應包含於後附之申請專利範圍中。 一 【圖式簡單說明】 第1圖係為本發明之散熱模組之第一 視圖 實施例之俯 視圖 第2圖係為本發明之散熱模組之第一 第一實施例之側 視圖 第3圖係為本發明之散熱模組之第二實 第4圖係為本發明之散熱模組之第 施例之俯 三實施例之俯 【主要元件符號說明】 200 :散熱片 201 :預決形狀散熱片 300 :風扇 400 :導熱塗料 201238452 500 :導熱片 600 :出風口 601 :吸風口 700 :導熱泡棉 710 :另一導熱泡棉 800 :晶片 900 :散熱路徑In particular, it is also possible to use a foam instead of the J: foam described above. Applying the heat-conducting coating on the heat sink before the heat-dissipating foam, or setting the heat-conductive foam to the second implementation of the invention. Before setting the thermal foam, the coating is applied to the heat sink. On top of the fine, the thermal conductive coating 400 can be evenly distributed to the anvil. The film 2 is the material of the material. (4) 'To achieve the saving of heat, in addition to the buffer part of the heat module assembly The position of the 2 foams 700 and the other heat-conductive foam 71 ( (4): transparent: and the other - thermal foam 71. ‘In the heat dissipation, the air of the second::: road ^: in detail, the effect of the described air duct. Two = 0 〇Γ fan 3 〇 ° will send hot air out. The second can also have more air outlet _ and suction 6 〇 使得 使得 使得 使得 使得 使得 使得 使得 使得 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热1 and from the air outlet 600 201238452 A third embodiment of the present invention is shown in Fig. 4, and Fig. 4 is a plan view showing a third embodiment of the heat dissipation module of the present invention. In FIG. 4, the month further includes a predetermined shape heat sink 2 connecting a plurality of heat conductive sheets 5〇〇, wherein the heat conductive sheets 500 are located below the predetermined shape heat sink 201, and may respectively connect the heat source elements. For example, a heat source such as a central processing unit, a motherboard, a display card, a CD player, a chip, or a hard disk. The timing of applying the thermal conductive coating 4 ’ can be selected by first coating the thermal conductive coating 400 on the pre-determined shape heat sink μ 4 to define the shape of the pre-determined shape according to the required heat dissipation path 月, /, '201 shape. It is also possible to define the shape of the pre-determined shape fins 2〇1 and then apply the thermal conductive coating 400 〇—in addition to the 'coated thermal conductive coating _ the pre-determined shape fins 201 are selected before the thermal foam is set, or After setting the guide: f Ϊ 7 〇〇. In the third embodiment of the present invention, the heat-conducting coating is completely: before the heat-dissipating foam is set, that is, the coating is first: == the hot sheet is 2〇°, and the advantage is achieved at the same time. Coating uniformity, and saving thermal conductive coatings ^ f ^ ^ 热 The heat source generated by each component can pass through a plurality of thermal conductive sheets = special heat sink 2G1, # by heat radiation or - part of the heat transfer shoulder 300 will be The air above the heat sink 2〇1 is directly sucked out by the wind/^ to achieve the heat-dissipating protection. The heat dissipation path _ and the predetermined shape heat sink 201 are connected to the heat dissipation path 201. The fan 300, and the following: (2) the heat is released by the hot air, so that the present invention does not need to be used for the air outlet _, and the heat dissipation fins are used to assist heat dissipation. In addition, as in 201238452, at the outlet of Ben Maoming, _ add a cooling Korean film, which is even more windy. . The pre-determined shape fins 2〇1 of the present embodiment may be in the shape of a tree, a claw or a fan, etc., so that the heat dissipation path 900 is also similar to a tree shape, a claw shape or a fan shape. More specifically, the shape is predetermined. The heat sink 201 can further determine its shape according to both the user and the user. In addition to the coated heat-conducting coating 400, a plurality of V-hot foams 7G0 may be disposed on the pre-determined shape fins 2〇1, thereby forming a wind by the combination of the heat-conductive foams 7GG positions. The shape of the track is similar to the shape of the heat sink 201. The pre-determined shape fins 201 in the third embodiment can be used to elastically control the heat dissipation path 9 by using the pre-determined shape fins 201 in addition to the reduction in the area of the sheet. Containing liquid guide: The guide has space and cost because of the presence of the guide. Therefore, the second embodiment of the helmet can be flexibly designed according to the needs of the user. The present invention is compared with the conventional heat dissipation module. The third embodiment:::=3 opens the heat sensitive working element and improves the heat dissipation of the heat sink 900 5 , and the heat dissipation fin can be omitted, and the space occupied by the heat dissipation module of the invention is used. In the above, the dispersion of the present invention is formed on the heat sink to increase the thermal radiance coefficient, and the heat of the component of the borrowing is transmitted to the air by heat radiation, and then the heat is transmitted through the fan 3GG. In order to achieve the effect of heat dissipation. In other words, the conventional heat dissipation module of the invention No. 201238452, on the one hand, the heat dissipation module of the invention has less space, which is beneficial to various electric modes. Group reduction, · another-party Because of the different ways of transferring heat, the present invention has the effect of dispersing the heat in the air to achieve an excessive temperature in the local area of the electronic module. The above is merely an example, not a limitation. Any failure or modification of the invention may be included in the scope of the appended patent application. [1] 2 is a side view of a first embodiment of a heat dissipation module of the present invention. FIG. 3 is a second embodiment of the heat dissipation module of the present invention. For the third embodiment of the heat dissipation module of the present invention, the main component symbol description 200: heat sink 201: predetermined shape heat sink 300: fan 400: thermal conductive coating 201238452 500: thermal conductive sheet 600: Tuyere 601: suction port 700: thermal foam 710: another thermal foam 800: wafer 900: heat dissipation path

Claims (1)

201238452 七、申請專利範圍: ^ 一種散熱模組,包含: 一散熱片; 一導熱片,位於該散熱片之一面,其中,一發熱 元件係设於該導熱片上,該發熱元件之一熱量係透過 該導熱片傳送至該散熱片; 一導熱塗料,形成於該散熱片上,用以增加該散 熱片之一熱輻射係數,使該熱量傳導至一空氣;以及 一風扇,設於該散熱片之一侧,用來將該空氣吸 出’使該發熱元件散熱。 2. 如申請專利範圍第1項所述之散熱模組,更包含一導 熱泡棉’該導熱泡棉係設於該導熱塗料上。 3. 如申請專利範圍第2項所述之散熱模組,更包含另一 導熱泡棉’該另一導熱泡棉係與該導熱泡棉形成一風 道。 4. 如申請專利範圍第1項所述之散熱模組,其中該風扇 更設有一出風口及一吸風口,用以吸入並排出該空 氣。 5. 如申請專利範圍第4項所述之散熱模組,其中該空氣 之溫度係攝氏75度。 6·如申請專利範圍第1項所述之散熱模組,其令具該導 熱塗料之該散熱片之該熱輻射係數係大於0.95。 7.如申請專利範圍第1項所述之散熱模組,其中該散熱 12 201238452 片係平板狀。 8·如申請專利範圍第丨項所述之散熱模組,其中該散熱 片之材質係金屬。 9.如申請專利範圍第1項所述之散熱模組,其中該導熱 塗料係藉由噴塗或印刷方式形成於該散熱片上。 1〇.如申請專利範圍第1項所述之散熱模組,其中該導熱 塗料之材質係 Xylen、Toluol、N_Butanol、Isobutyl alcohol 或 Digly〇idyieth〇r of BPA。 申明專利範圍第丨項所述之散熱模組,其中該散熱 片係一預決形狀散熱片。 13201238452 VII. Patent application scope: ^ A heat dissipation module comprising: a heat sink; a heat conductive sheet on one side of the heat sink, wherein a heat generating component is disposed on the heat conductive sheet, and one of the heat generating components is thermally transmitted The heat conducting sheet is transferred to the heat sink; a heat conductive coating is formed on the heat sink to increase a heat radiation coefficient of the heat sink to conduct the heat to an air; and a fan is disposed on the heat sink The side is used to suck the air out to dissipate the heat generating element. 2. The heat dissipation module according to claim 1, further comprising a heat conductive foam, wherein the heat conductive foam is disposed on the heat conductive paint. 3. The heat dissipation module of claim 2, further comprising another thermally conductive foam. The further thermally conductive foam forms an air duct with the thermally conductive foam. 4. The heat dissipation module of claim 1, wherein the fan further has an air outlet and a suction port for taking in and discharging the air. 5. The heat dissipation module of claim 4, wherein the temperature of the air is 75 degrees Celsius. 6. The heat dissipation module according to claim 1, wherein the heat radiation coefficient of the heat sink having the heat conductive coating is greater than 0.95. 7. The heat dissipation module according to claim 1, wherein the heat dissipation 12 201238452 is a flat plate shape. 8. The heat dissipation module of claim 2, wherein the heat sink is made of metal. 9. The heat dissipation module of claim 1, wherein the heat conductive coating is formed on the heat sink by spraying or printing. The heat dissipation module of claim 1, wherein the material of the thermal conductive coating is Xylen, Toluol, N_Butanol, Isobutyl alcohol or Digly〇idyieth〇r of BPA. The heat dissipation module of claim </ RTI> wherein the heat sink is a pre-determined shape heat sink. 13
TW100106721A 2011-03-01 2011-03-01 Heat dissipation module TW201238452A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100106721A TW201238452A (en) 2011-03-01 2011-03-01 Heat dissipation module
US13/409,522 US20120222842A1 (en) 2011-03-01 2012-03-01 Heat dissipation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100106721A TW201238452A (en) 2011-03-01 2011-03-01 Heat dissipation module

Publications (1)

Publication Number Publication Date
TW201238452A true TW201238452A (en) 2012-09-16

Family

ID=46752564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106721A TW201238452A (en) 2011-03-01 2011-03-01 Heat dissipation module

Country Status (2)

Country Link
US (1) US20120222842A1 (en)
TW (1) TW201238452A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745774B (en) * 2019-11-01 2021-11-11 宏碁股份有限公司 Remote heat exchanging module and composite thin-layered heat conduction structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829515A (en) * 1996-05-10 1998-11-03 Dell U.S.A., L.P. Heat dissipator with multiple thermal cooling paths
DE20015931U1 (en) * 2000-09-14 2001-01-04 Lin, Liken, Tu-Cheng, Taipeh CPU cooling device
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
US6958912B2 (en) * 2003-11-18 2005-10-25 Intel Corporation Enhanced heat exchanger
US20070121291A1 (en) * 2005-11-30 2007-05-31 Inventec Corporation Heat sink module of a notebook computer

Also Published As

Publication number Publication date
US20120222842A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
CN206865924U (en) Unmanned plane and radiator structure
TWI274985B (en) Extendable cooling apparatus
JP2001267771A (en) Electronic apparatus
TW200541445A (en) System for efficiently cooling a processor
US9210832B2 (en) Thermal buffering element
US8297062B2 (en) Heat-dissipating device for supplying cold airflow
TW201329679A (en) Electronic device having a passive heat exchange device
TW201108928A (en) Heat dissipating module
TWM426987U (en) Electronic apparatus with heat-dissipation structure
TW201209364A (en) Heat dissipation device and electronic device having the same
US6359781B1 (en) Apparatus for cooling heat generating devices
TW200903236A (en) Heat dissipation module
TW200823642A (en) Centrifugal blower, thermal module having the centrifugal blower and electronic assembly incorporating the thermal module
TWM410247U (en) Electronic device
TWM434430U (en) Heat dissipating module adapted to an electronic device and electronic device therewith
TW201238452A (en) Heat dissipation module
CN209474657U (en) Portable ultrasonic device
JP2004200586A (en) Cooling device and electronic apparatus with cooling device
TW200910070A (en) Heat dissipation module
TW201028639A (en) Heat fin, heat sink and the method for increasing heat dissipation of the heat fin
TWI308954B (en) Heat dissipation device
TW200911099A (en) Heat dissipation module
TWM368296U (en) Heat dissipation device
TW201021678A (en) Heat sink structure of an electronic means
TWI301572B (en) Spray film cooling system