TW201228084A - Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery - Google Patents

Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery Download PDF

Info

Publication number
TW201228084A
TW201228084A TW100126497A TW100126497A TW201228084A TW 201228084 A TW201228084 A TW 201228084A TW 100126497 A TW100126497 A TW 100126497A TW 100126497 A TW100126497 A TW 100126497A TW 201228084 A TW201228084 A TW 201228084A
Authority
TW
Taiwan
Prior art keywords
positive electrode
ion battery
lithium
active material
electrode active
Prior art date
Application number
TW100126497A
Other languages
Chinese (zh)
Other versions
TWI520423B (en
Inventor
Shunsuke Kobayashi
Yoshio Kajiya
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW201228084A publication Critical patent/TW201228084A/en
Application granted granted Critical
Publication of TWI520423B publication Critical patent/TWI520423B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The positive electrode active material for lithium-ion batteries is represented by the composition formula Li(LixNi1-x-yMy)O2+a (in the formula, M is Co (as an essential component) and one or more elements selected from Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr, with 0 ≤ x ≤ 0.1, 0 < y ≤ 0.7, and α > 0), and has median diameter of the particle size distribution of 1-20 μm and an angle of repose of 80 DEG or less.

Description

201228084 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種鋰離子電池用正極活性物質、鐘離 子電池用正極、及鐘離子電池。 【先前技術】 鋰離子電池之正極活性物質,通常使用含鋰之過渡金 屬氧化物。具體而言,為鈷酸鋰(Lico〇2)、鎳酸鋰(LiNi=)、 錳酸鋰(LiMhO4)等,為了改善特性(高容量化、循環特1、 保存特性、降低内部電阻 '比率(rate)特性)或提高安全性而 將該等複合化之技術不斷發展。對於車㈣或負載調平 (load leveling)用等大型用途中之鐘離子電池課求與至今 為止之行動電話用或個人電腦用不同之特性。 為了改善電池特性,先前使用各種方法,例如於專利 文獻1中揭示有一種下述鋰二次電池用正極材料之製造方 法,其特徵在於:將LixNi^yMyOr^ (〇·8$χ$ 1.3 ’ 〇&lt;y$0 5,M 表示選自由Mn、Fe、 V Τι Cu、Α卜 Ga、Βι、Sn、Ζη、Mg、Ge、Nb、Ta、 〜、B、Ca、Sc及Zr所組成之群中的至少一種元素,占相 當於氧欠缺或氧過剩量,表示_〇 K 5 &lt;〇1)之組成所示的 鋰鎳複合氧化物通過分級機,以平衡分離粒徑Dh=1〜1〇 ㈣分離成粒徑較大者與較小者,以重量比為Q:⑽〜1〇〇: 〇摻合粒徑較大者與較小者。並且,記載有若根據該方法, 即可輕易製造比率特性與容量各項平衡的鋰二次電池用正 極材料。 201228084 [專利文獻1]曰本專利第4175026號公報 【發明内容】 專利文獻1中記載之鋰鎳複合氧化物係其組成式令之 氧量過剩者,但即便如此,對於作為高品質之鋰離子電池 用正極活性物質而言,仍然具有改善之餘地。 因此,本發明之課題在☆,提供一種具有良好電池特 性之經離子電池用正極活性物質。 本發明人經努力研究,結果發現正極活性物質之氧量 與電池特性之間存在緊密之相關關係。即,發現當正極活 性物質之氧量為某數值以上時,可獲得特別良好之電池特 性。又,發現於氧量為某個值以上的正極活性物質中於制 粉體的平均粒徑及靜止角,藉此可獲得更加良好之電:特 以上述見解為基礎而完成之本發明,於一態樣中為 種鐘離子電池用正極活性物f,其係以下述組成式表示201228084 VI. [Technical Field] The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a clock ion battery, and a clock ion battery. [Prior Art] A positive electrode active material of a lithium ion battery generally uses a lithium-containing transition metal oxide. Specifically, it is lithium cobaltate (Lico® 2), lithium nickelate (LiNi=), lithium manganate (LiMhO4), etc., in order to improve characteristics (higher capacity, cycle characteristics, storage characteristics, lower internal resistance ratio) (rate) characteristics or improve security and the technology of these composites continues to evolve. For the car (four) or load leveling, the clock ion battery in large-scale applications is different from the mobile phone or personal computer used so far. In order to improve the battery characteristics, various methods have been previously used. For example, Patent Document 1 discloses a method for producing a positive electrode material for a lithium secondary battery, which is characterized in that LixNi^yMyOr^ (〇·8$χ$ 1.3 ' 〇&lt;y$0 5,M represents a group selected from the group consisting of Mn, Fe, V Τι Cu, Α Ga, Βι, Sn, Ζη, Mg, Ge, Nb, Ta, 〜, B, Ca, Sc, and Zr At least one of the elements, which accounts for oxygen deficiency or oxygen excess, represents a lithium nickel composite oxide represented by the composition of _〇K 5 &lt;〇1), passes through a classifier to balance the separation particle diameter Dh=1~1 〇 (4) Separated into larger and smaller particles, with a weight ratio of Q: (10) ~ 1 〇〇: 〇 〇 blending larger and smaller. Further, it is described that, according to this method, a positive electrode material for a lithium secondary battery in which the balance between the ratio characteristics and the capacity can be easily produced. [Patent Document 1] Japanese Patent No. 4,175, 526. The content of the lithium-nickel composite oxide described in Patent Document 1 is such that the oxygen content is excessive, but even as such, it is a high-quality lithium ion. There is still room for improvement in the positive electrode active material for batteries. Therefore, the subject of the present invention is to provide a positive electrode active material for an ion battery having excellent battery characteristics. As a result of intensive studies, the inventors have found that there is a close correlation between the amount of oxygen of the positive electrode active material and the characteristics of the battery. That is, it was found that when the amount of oxygen of the positive electrode active material is a certain value or more, particularly excellent battery characteristics can be obtained. Further, it has been found that the average particle diameter and the angle of repose of the powder in the positive electrode active material having a certain amount or more of oxygen are obtained, whereby more excellent electricity can be obtained: the present invention based on the above findings, In one aspect, it is a positive electrode active material f for a seed ion battery, which is represented by the following composition formula

Li(LixNi!-x_yMy)〇2+ α (上述式中,Μ為作為必須成份之c〇,及選自&amp;、τί V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、A1、Bi、Sn、Mg、Ca r 中之 1 種以上,〇$χ^〇1,〇&lt;Μ〇7,α&gt;〇), 粒度分布之中值粒徑為1〜2〇&quot;m,靜止角為8〇。以下 本發明之鋰離子電池用正極活性物質,於一實施形^ 中’靜止角為30〜80。。 ^本發明之鋰離子電池用正極活性物質,於另一實施形 態中,靜止角為50〜80。。 201228084 於再另一實施 於另一實施形 於再另一實施 於再另一實施 本發明之鋰離子電池用正極活性物質 形態中’中值粒徑為5〜i7ym。 本發明之鋰離子電池用正極活性物質 恝中,Μ為選自Μη及Co中之1種以上 本發明之鋰離子電池用正極活性物質 形態中,組成式中,α &gt; 0.05。 本發明之鋰離子電池用正極活性物質 形態中’組成式中,α &gt; 0.1。 本發明之鋰離子電池用正極活 . L ± 4 ,古性物質’於再另一實施 形悲中,比表面積為0 2〜! 0cm2/g。 本發明之鐘離子電池用正極活 ^ 往,古性物質,於再另一實施 形匕中,比表面積為〇 3〜〇 7cm2//g。 本發明於另-態樣中為-種鐘離子電池用正極,立係 使用有本發明之鋰離子電池用正極活性物質。 本發明於再另一態樣中為一種鋰離子電 有本發明之鋰離子電池用正極。 便 根據本發明,可提供—鍤 捉仏種具有良好電池特性之鋰離子 電池用正極活性物質。 【實施方式】 (鐘離子電池用正極活性物質之構成) 本發明之鐘離子電池用正極活性物質之材料,可廣泛 使用適用作為-般鐘離子電池用正極用之正極活性物質的 化合物,尤佳使用鈷酸鋰(Lic〇〇2)、鎳酸鋰、錳酸 裡(1^她2〇4)等含鐘之過渡金屬氧化物。使用上述材料而製 201228084 作之本、明之鋰離子電池用正極活性物質係以下述組成式 表示: .’Li(LixNi!-x_yMy)〇2+ α (In the above formula, Μ is c必须 as an essential component, and is selected from &amp;, τί V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, A1. One or more of Bi, Sn, Mg, and Ca r, 〇$χ^〇1, 〇&lt;Μ〇7,α&gt;〇), the median diameter of the particle size distribution is 1 to 2 〇&quot;m, still The angle is 8 inches. Hereinafter, the positive electrode active material for a lithium ion battery of the present invention has an angle of repose of 30 to 80 in one embodiment. . The positive electrode active material for a lithium ion battery of the present invention, in another embodiment, has an angle of repose of 50 to 80. . 201228084 In yet another embodiment, in another embodiment, the positive electrode active material for a lithium ion battery of the present invention has a median diameter of 5 to i7 μm. In the positive electrode active material for a lithium ion battery of the present invention, yttrium is one or more selected from the group consisting of Μη and Co. In the form of the positive electrode active material for a lithium ion battery of the present invention, α = 0.05 in the composition formula. In the form of the positive electrode active material for a lithium ion battery of the present invention, in the 'composition formula, α &gt; 0.1. The positive electrode of the lithium ion battery of the present invention is L ± 4 , the ancient substance is in another embodiment, and the specific surface area is 0 2~! 0cm2/g. The positive electrode for the ion battery of the present invention is an active material, and in another embodiment, the specific surface area is 〇 3 to 〇 7 cm 2 //g. The present invention is a positive electrode for a lithium ion battery of the present invention, and a positive electrode active material for a lithium ion battery of the present invention. In still another aspect, the present invention is a lithium ion battery having the positive electrode for a lithium ion battery of the present invention. According to the present invention, it is possible to provide a positive electrode active material for a lithium ion battery which has good battery characteristics. [Embodiment] (Structure of Positive Electrode Active Material for Clock Ion Battery) The material of the positive electrode active material for a positive ion battery of the present invention can be widely used as a compound for a positive electrode active material for a positive electrode for a plasma battery. A transition metal oxide containing a clock such as lithium cobaltate (Lic® 2), lithium nickelate or manganic acid (1^her 2〇4) is used. Using the above materials, the cathode active material for lithium ion batteries made in 201228084 is expressed by the following composition formula: .’

Li(LixNi,,x_yMy)〇2+ α (上述式中,Μ為作為必須成份之c〇,及選 M、Mn、Fe、Cu、Zn、Ga、Ge、Ai、Bi、SnMgCa、 B及Zr中之i種以上,〇_〇1,〇&lt;d7 , ^ &gt;㈨。 中如Π明之鐘離子電池用正極活性物質之氡,於組成式 離子“’係表示為KG0)’過剩地含有,當用於銀 特性變^情形時,容量、比率特性及容量保持率等電池 :。广,良好。此處,關於^,較佳為。。。5,更佳“ 本發明之鐘離子電池用正極活性物質係由—次粒子、 一次粒子凝聚而形成之-次4 的m 域之-人粒子、或-次粒子及二次粒子 的此S物所構成。該等一次粒子、一 二次粒子、或—次粒子及二次粒子的聚而形成之 士伯1 , 了十的混合物之粒度分布的 〜2:役(平均粒徑的中央值)為1〜2。…中值粒徑為i 〇心,則會成為不均被抑制之粉體,而可在鐘離子電池 之電極製作時均勻地塗佈活性物 m 質進而可抑制電極組成 不句1此’於使用於輯子電料,比率特性及 特性變得良好。中值粒徑較佳為5〜1 7以爪^ 本二月之鐘離子電池用正極活性物質之靜止角為, = 靜止角係指使粉體自上方靜靜地落下而生成 =::Γ與水平面間所產生的傾斜角。靜止角係表 … 間之附著力的指標,該靜止角的值越小之粉體 201228084 f子’則凝純㈣域純較佳,㈣ 易糾纏之性質。藉由將靜止角設為8〇 可說是具有不 可在鐘離子電池之電極製作時均勾 、壬可抑制不均而 可抑制電極組成之不均。因此,於使用質,進而 比率特性及猶環特性變得良好。然而,也時, 易純化。因此,需要適當的糾纏二子二黏著劑而* 。,較佳為30〜8〇。,更佳為n 本=之輯子電池用正極活性物質之比表〇2 之=比表面積為〇.2〜一&quot;與電解液 反應曰Μ㈣’循環特性會獲得改善。比表面積較佳 為 0·3〜〇.7cm2/g。 (鋰離子電池用正極及使用其之鋰離子電池之構成) 、本發明之實施形態之鋰離子電池用正極,例如具有下 述構造:將混合上述構成之鋰離子電池用正極活性物質、 導電助劑及黏合劑而製備成之正極合劑,設置於由紹落等 構成之集電體的單面或雙面。又,本發明之實施形態之鋰 離子電池,具備有上述構成之鐘離子電池用正極。 (經離子電池用正極活性物質之製造方法) 其次’詳細說明本發明之實施形態之鋰離子電池用正 極活性物質的製造方法。 首先’製作金屬鹽溶液。該金屬為Ni,及選自Sc、Ti、 V、Cr、Μη、Fe、Co、Cu、Zn、Ga、Ge、a卜 Bi、Sn、Mg、Li(LixNi,,x_yMy)〇2+ α (In the above formula, Μ is c必须 as an essential component, and M, Mn, Fe, Cu, Zn, Ga, Ge, Ai, Bi, SnMgCa, B, and Zr are selected. In the case of i or more, 〇_〇1, 〇&lt;d7, ^ &gt; (9). The enthalpy of the positive active material for the ion battery of the Π 之 氡 氡 氡 过 过 过 过 过 组成 组成 组成 组成 组成 过 过 过 过 过 过 过 过 过 过 过 过 过 过 过 过 过 过 过 组成 过When used for the case where the silver property is changed, the battery such as the capacity, the ratio characteristic, and the capacity retention ratio is wide and good. Here, regarding ^, preferably... 5, more preferably "the clock ion battery of the present invention" The positive electrode active material is composed of -sub particles, primary particles formed by the -4 m-domain-human particles, or -sub-particles and secondary particles. The primary particles, the secondary particles, or the secondary particles and the secondary particles are formed to form a warburger 1 , and the particle size distribution of the mixture of ten is 2: the median (the median value of the average particle diameter) is 1~ 2. When the median diameter is i 〇, it becomes a powder whose unevenness is suppressed, and the active substance m can be uniformly applied during the production of the electrode of the ion battery, and the composition of the electrode can be suppressed. Used in the series of materials, the ratio characteristics and characteristics become good. The median diameter is preferably 5 to 1 7 in terms of claws. The angle of repose of the positive active material for the ion battery of the second month is =, and the angle of rest means that the powder falls silently from above to form =::Γ The angle of inclination produced between the horizontal planes. The index of the adhesion between the angles of the angle of repose, the smaller the value of the angle of repose is, the powder 201228084 f sub-' is pure (4) domain is better, and (4) is entangled. By setting the angle of repose to 8 〇, it can be said that it is possible to suppress unevenness in the composition of the electrode of the ion battery, and it is possible to suppress the unevenness of the electrode composition. Therefore, in terms of the quality of use, the ratio characteristics and the heptacyclic properties become good. However, when it is, it is easy to purify. Therefore, it is necessary to properly entangle the two sub-adhesives*. Preferably, it is 30 to 8 inches. More preferably, the ratio of the positive active material of the sub-battery of the battery is 〇2 = the specific surface area is 〇.2~1&quot; and the electrolyte reaction 曰Μ(4)' cycle characteristics are improved. The specific surface area is preferably from 0·3 to 7.7 cm 2 /g. (Position of a positive electrode for a lithium ion battery and a lithium ion battery using the same) The positive electrode for a lithium ion battery according to the embodiment of the present invention has a structure in which a positive electrode active material for a lithium ion battery having the above-described configuration and a conductive auxiliary are mixed. The positive electrode mixture prepared by the agent and the adhesive is disposed on one side or both sides of the current collector composed of Shaolin or the like. Further, the lithium ion battery according to the embodiment of the present invention includes the positive electrode for a clock ion battery having the above configuration. (Manufacturing method of positive electrode active material for ion battery) Next, a method for producing a positive electrode active material for a lithium ion battery according to an embodiment of the present invention will be described in detail. First, make a metal salt solution. The metal is Ni and is selected from the group consisting of Sc, Ti, V, Cr, Μη, Fe, Co, Cu, Zn, Ga, Ge, ab Bi, Sn, Mg,

Ca、B及Zr中之1種以上。又,金屬鹽為硫酸鹽、氯化物、 201228084 硝酸鹽、乙酸鹽等,尤佳為硝酸鹽。其原因在於:即便是 以雜質的形態混入燒成原料中,亦可直接燒成,故可省去 清洗步驟;硝酸鹽會作為氧化劑而發揮功能,具有促進燒 成原料中之金屬之氧化的功能。預先調整金屬鹽中所含各 金屬成為所欲莫耳比率。藉此,決定正極活性物質中之各 金屬的莫耳比率。 其次,使碳酸鋰懸浮於純水,其後投入上述金屬之金 屬鹽溶液而製作金屬碳酸鹽溶液漿料。此時,漿料中會析 出微小粒之含鋰碳酸鹽。再者,於作為金屬鹽之硫酸鹽或 氯化物等之熱處理時其鋰化合物不進行反應之情形時:利 用飽和碳酸鋰溶液清洗後進行過濾分離。如硝酸鹽或乙酸 鹽,其鋰化合物於熱處理過程中作為鋰原料進行反應之^ 形夺可不進行清洗,而直接過濾分離並加以乾燥,藉此 使用作為燒成前驅物。 其次,藉由將過濾分離之含鋰碳酸鹽加以乾燥,而垆 得鋰鹽之複合體(鋰離子電池正極材料用前驅物)之粉末。又 其次,使用筛子$戈市售之分級裝置將乾燥而得之鐘離 子電池正極材料用前驅物之粉末分級,而僅得到% 之粒徑的粉末。 m 其次’準備具有特定大小之容量之燒成容器,於該力 =器中填充經分級之丨〜心m之粒徑㈣離子電池^ 材料用前驅物之粉末。其次’將填充有貍離子電池正極木 抖用前驅物之粉末的燒成容器搬移至燒成爐,進行炉成 燒成係藉由在氧氣環境下加熱保持特定時間來進行二又 8 201228084 若於 加組 101〜202KPa之加壓下進行 成中之氧量,故較佳。 燒成,則由於會進一 步增 然後’自燒成容器取出 進行粉碎’藉此獲得正極活 以可得到所需之中值粒徑及 碎強度及粉碎時間而進行。 【實施例】 粉末,使用市售之粉碎裝置等 性物質之粉體。此時之粉碎係 靜止角之方式來調整適當的粉 以下,提供用以更好地理解本發明及其優點之實扩 例,但本發明並不限定於此等實施例。 (實施例1〜1 5) 首先,使表1中記載之投入量之碳酸鋰懸浮於純水3 2 公升後’投人4.8公升金屬鹽溶液。此處,金屬鹽溶液係調 整各金屬之硝酸鹽之水合物,使各金屬成為表丨中記載之 組成比,又’調整成使全部金屬莫耳數為14莫耳。 ,再者,碳酸鋰之懸浮量為以LKLixNh —x—yMy)〇2+e表示 製品(鋰離子二次電池正極材料,即正極活性物質)且χ為表 1之值的量,分別由下式算出者。 W(g)= 73.9x 14x( 1 + 0.5((1 + X)/(l - Χ)}χΑ 上述式中,「A」係除了作為析出反應必需之量外,用 以預先自懸浮量減去過濾後原料中殘留之碳酸鋰以外的鐘 化口物之鐘量而乘的數值。「A」,如硝酸鹽或乙酸鹽於鐘 鹽作為燒成原料進行反應之情形時為〇·9,如硫酸鹽或氯化 物於ϋ鹽未作為燒成原料進行反應之情形時為1 .〇。 藉由該處理,於溶液中會析出微小粒之含鋰碳酸鹽, 201228084 使用壓濾機將該析出物過濾分離。 繼m斤出物加以乾燥而獲得含經碳酸鹽(裡離子電 池正極材料用前驅物)。 其次,將乾燥而獲得之含鋰碳酸鹽經由篩子而分級成i 〜3 0 # m之粒徑者。 其次,準Ϊ肴燒成纟器,冑含鐘碳酸鹽填充於該燒成容 器内。其次,將燒成容器於大氣壓下放入氧氣環境爐,以 表1中記載之燒成溫度加熱保持1〇小時後,進行冷卻,而 獲得氧化物。 其炙,使用小型粉碎機(hos〇kawamicr()n acm _ 2ec) 將所獲得之氧化物粉碎成中值粒徑1〜2〇//m,而獲得鋰離 子一次電池正極材料之粉末。 (實施例16) 實施例16,係使原料之各金屬為表丨所示組成,使金 屬鹽為氣化物’析出含經碳酸鹽後,利用飽和碳酸鋰溶液 進行清洗、過濾,除此之外,皆進行與實施例丨〜15相同 之處理。 (實施例1 7 ) 實施例17,係使原料之各金屬為表丨所示組成,使金 屬鹽為硫酸鹽,析出含鋰碳酸鹽後,利用飽和碳酸鋰溶液 進行清洗、過濾,除此之外,皆進行與實施例丨〜丨5相同 之處理。 (實施例18) 實施例18,係使原料之各金屬為纟丄所示組成並非 10 201228084 於大氣壓下而是於120KPa之加壓下進行燒成,除此之外, 皆進行與實施例1〜15相同之處理。 (比較例1〜3 ) 比較例1,係使原料之各金屬為表i所示組成,不進行 前驅物乾燥後之分級,且使中值粒徑為1 # m以下或20以m 以上來進行最後之氧化物之粉碎,除此之外,皆進行與實 施例1〜1 5相同之處理。 (比較例4〜7) 比較例4〜7,係使原料之各金屬為表丨所示組成,並 非於氧氣環境爐中,而是於空氣環境爐中進行燒成步驟, 除此之外,皆進行與比較例1相同之處理。 (評價) (正極材料組成之評價) 各正極材料中之金屬含量係利用感應耦合電漿發射光 譜分析儀(ICP— 0ES)測量,而算出各金屬之組成比(莫耳 比)’且確認如纟i所示。又,含氧量係利用Lec〇法測量 並算出0:。 (中值粒徑之評價) 一採集各正極材料之粉末,藉由雷射繞射型粒度分布測 定裝置(島津製作所SALD _ 3000)來測定粒度分布之中值 粒徑。 (靜止角之評價) #採集各正極材料之粉末,使依據JISZ 8801而規定之標 準師子震動’將粉體投人該標㈣子。將通過標準筛子的 201228084 粉體通過漏斗而落在水平的鱼 j呆于上。此時之禪 動幅度為2_,過筛時間為4分鐘 T子的震 ^ jz. l 斗之口徑為 8mm。 對洛在桌子上的粉體堆測定靜止 :吏用:據半導體雷射(波長67一)之位移:應器:::: 其方式(最小平方法)而進行,最小讀取分解能力為0.丨度: (比表面積之評價) 進行藉φ BET法之比表面積測定。(參照爪_ z — 8請)。測定係使用Yuasa_i〇nics公司製造之流動法耐單 點法比表面積測定裝置MONOSORB。 (電池特性之評價) 以85 . 8 . 7之比例秤量各正極材料、導電材料與黏合 劑’將黏合劑溶解於有機溶劑(N_甲基吡咯啶嗣(n 一 methylpyrrohdone))後,再將正極材料與導電材料混合於其 中進行桌料化,塗佈於A1箔上加以乾燥後進行壓製而製成 正極繼而,製作相對電極為Li之評價用2032型硬幣電池 (coin cell) ’ 使用 1M_ LipF6 溶解於 — dmC(1 : 1)而成者 作為電解液,測量電流密度〇 2C時之放電容量。又,算出 電&quot;IL雄度2C時相對於電流密度〇 2C時之電池容量的放電 容量之比’獲得比率特性。並且,容量保持率,係藉由在 室溫下將1c之放電電流所獲得之初始放電容量與100循環 後之放電容量加以比較而測得。 該等之結果示於表1。 12 201228084 Γ—1 ♦ 1容量G 保持# -1 (%), § 5; CS ON CN ON (N 〇\ 00 oo &lt;N OS § oo oo s (N oo &lt;N OO oo § § P〇 ON CO OO § 00 &lt;N 比率特性 (%) &lt;N ON S &lt;N ON Os ON C7S a\ m σ\ g m 00 ON CO oo 5; On oo oo CS oo JO 〇\ oo jn OS 放電容量 (mAh/g) m ΓΟ W-i 2 2 «η Vi § § m 〇\ § ξ 1 〇 oo CO &lt;N r—&lt; g TO o v〇 〇 比表面積 (cm2/g) 0.96 0.31 0.78 1 °·43 0.65 0.66 1 0.67 I 0.61 0.70 1 °·59 1 | 0.73 | 0.63 1 0.72 | | 0.67 I 0.66 0.58 0.58 0.60 ON 0.19 0.26 0.57 0.55 0.64 0.69 靜止角 C) f〇 m v〇 v〇 &lt;N s ON V〇 CS o - o 5: W) oo 00 un VO 中值 粒徑 (ym); 寸 (N 18.3 v〇 1 13·4Ί 1 10.8 1 10.0 1 10.6 Π p &lt; 1 13-° 1 | lo.o 1 VO 00 CN OO O) 00 1 120 1 124 1 00 On oo o 283 1 27.5 14.8 10.5 CN OO oo ¢3 0.05 0.12 i 0.12 i 1 〇·12 1 0.16 1 0.18 [0.06 1 | 0.04 I 0.13 1 o·1^ 1 0.16 | 0.18 1 i °·17 1 卜.17 1 I °·15 1 | o.io | o.ii 1 0.21 0.18 | 0.13 ! 0.15 1 -0.02 0.00 -0.01 0.00 X 0.00 ! o.oo ! 0.00 0.00 0.00 0.00 | 0.025 1 | 0.05 I 0.00 0.00 | o.oo | 0.00 I o.oo | 0.00 0.00 0.00 | o.oo | 0.00 ! 0.00 0.00 0.00 0.00 0.00 0.00 0.00 保持 温度 ΓΟ 1000 1000 1000 1000 1 970 1 1 950 1 1000 1000 | looo | 1 750 1 Lzi〇 … O JO 〇 jn o jn 1000 1000 O ON o ON 1000 o JO 1100 o JO 750 o jn 蹲 W (S «〇 &lt;N — &lt; w-&gt; 0) tL, »〇 r4 u-» CN C 33.3 33.3 333 33.3 1 33·3 1 33.3 33.3 | 33.3 I o ! 33.3 33.3 33.3 33.3 33.3 o 33.3 o 33.3 33.3 33.3 33.3 33.3 ! 33.3 | .333„ | 33.3 1 c**&gt; CO o m Ό 33.3 33.3 33.3 33.3 33.3 o 33.3 o 2 33.3 ; 33·3.. J 1 33.3 1 33.3 33.3 33.3 | 33.3 1 33.3 m s o 00 g g g S | 33.3 | ! 33.3 33.3 33.3 33.3 g 33.3 g § 碳酸鋰 懸浮量 (g) 1393 1393 1393 1393 1393 1393 , 1442 1490 \ 1393 I | 1393 | 1393 1393 1393 | 1393 1 | 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 實施例1 實施例2 i 實施例3 實施例4 實施例5 |實施例6 I 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 |實施例14 | 實施例15 |實施例16 I 實施例17 實施例18 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 201228084 【圖式簡單說明】 無 【主要元件符號說明】 無 14One or more of Ca, B and Zr. Further, the metal salt is sulfate, chloride, 201228084 nitrate, acetate, etc., and particularly preferably nitrate. The reason for this is that even if it is mixed into the calcined raw material in the form of impurities, it can be directly calcined, so that the washing step can be omitted; the nitrate functions as an oxidizing agent and has a function of promoting oxidation of the metal in the calcining raw material. . The metal contained in the metal salt is adjusted in advance to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined. Next, lithium carbonate was suspended in pure water, and then a metal salt solution of the above metal was introduced to prepare a metal carbonate solution slurry. At this time, lithium carbonate containing fine particles is precipitated in the slurry. Further, when the lithium compound is not reacted during heat treatment such as a sulfate or a chloride of a metal salt, it is washed with a saturated lithium carbonate solution and then subjected to filtration separation. For example, nitrate or acetate, the lithium compound is reacted as a lithium raw material during the heat treatment without being washed, and is directly separated by filtration and dried to be used as a firing precursor. Next, by filtering the separated lithium-containing carbonate to obtain a powder of a lithium salt composite (precursor for a lithium ion battery positive electrode material). Further, the powder of the precursor of the clock-ion battery positive electrode material was fractionated using a sieve unit sold by a sieve, and only a powder having a particle diameter of % was obtained. m Next, a firing vessel having a capacity of a specific size is prepared, and the particle size of the classified crucible to the core m (four) ion battery is used to fill the powder for the material precursor. Next, 'the firing container filled with the powder of the precursor for shaking the positive electrode of the raccoon ion battery is transferred to the firing furnace, and the firing is performed by heating in an oxygen atmosphere for a certain period of time to perform the second and the second 201228084. It is preferred to carry out the amount of oxygen in the formation under the pressure of 101 to 202 KPa. In the case of firing, the film is further increased and then "pulverized from the firing container" to obtain a positive electrode activity to obtain a desired median diameter, crushing strength and pulverization time. [Examples] As the powder, a powder of a substance such as a commercially available pulverizing device was used. In this case, the pulverization is an angle of repose to adjust the appropriate powder, and a practical example for better understanding of the present invention and its advantages is provided, but the present invention is not limited to the embodiments. (Examples 1 to 1 5) First, the amount of lithium carbonate described in Table 1 was suspended in 3 2 liters of pure water, and 4.8 liters of the metal salt solution was injected. Here, the metal salt solution adjusts the nitrate hydrate of each metal so that each metal becomes a composition ratio described in the surface, and is adjusted so that the total metal mole number is 14 moles. Furthermore, the amount of lithium carbonate suspended is represented by LKLixNh — x — yMy) 〇 2+e (the positive electrode material of the lithium ion secondary battery, that is, the positive electrode active material) and the amount of lanthanum is the value of Table 1, respectively Formula calculation. W(g)= 73.9x 14x( 1 + 0.5((1 + X)/(l - Χ)}) In the above formula, "A" is used to reduce the amount of self-suspension in addition to the amount necessary for the precipitation reaction. The value obtained by multiplying the amount of the bellows other than the lithium carbonate remaining in the raw material after filtration. "A", such as nitrate or acetate, is 〇·9 when the bell salt is reacted as a raw material for baking. For example, when the sulfate or the chloride is not reacted as a raw material for the calcination, it is 1. 〇. By this treatment, the lithium carbonate containing fine particles is precipitated in the solution, and 201228084 is precipitated using a filter press. The material is separated by filtration. The m-cracked product is dried to obtain a carbonate-containing (precursor for the positive electrode material of the ionic battery). Next, the lithium-containing carbonate obtained by drying is classified into i 〜3 0 # m by a sieve. The particle size is as follows: Next, the quasi-dish cooking is baked into a crucible, and the niobium-containing carbonate is filled in the firing vessel. Next, the firing vessel is placed in an oxygen atmosphere furnace at atmospheric pressure, and the calcination is as shown in Table 1. After heating at a temperature for 1 hour, cooling is performed to obtain an oxide. A pulverizer (hos〇kawamicr() n acm _ 2ec) The obtained oxide was pulverized to a median diameter of 1 to 2 Å/m to obtain a powder of a lithium ion primary battery positive electrode material. (Example 16) In Example 16, the metal of the raw material was a composition shown in Table ,, and the metal salt was vaporized. After the precipitation of the carbonate-containing carbonate, the solution was washed and filtered with a saturated lithium carbonate solution, and all were carried out and carried out. Example 1 is the same treatment as in Example 15. (Example 1 7) In Example 17, the metal of the raw material was a composition shown in Table ,, the metal salt was a sulfate, and after the lithium-containing carbonate was precipitated, a saturated lithium carbonate solution was used. The same treatment as in Examples 丨 to 丨5 was carried out except that the cleaning and filtration were carried out. (Example 18) Example 18 was such that the respective metals of the raw materials were 纟丄 and the composition was not 10 201228084 at atmospheric pressure. The same treatments as in Examples 1 to 15 were carried out except that the firing was carried out under a pressure of 120 KPa. (Comparative Examples 1 to 3) In Comparative Example 1, each metal of the raw material was made in Table i. The composition is shown, the classification of the precursor is not dried, and the median particle is obtained. The same treatment as in Examples 1 to 15 was carried out except that the final oxide was pulverized to 1 m or less or 20 or more. (Comparative Examples 4 to 7) Comparative Examples 4 to 7, The same treatment as in Comparative Example 1 was carried out except that each of the metals of the raw materials was a composition shown in Table ,, and the firing step was carried out in an air atmosphere furnace, not in an oxygen atmosphere furnace. (Evaluation of composition of positive electrode material) The metal content in each positive electrode material was measured by an inductively coupled plasma emission spectrometer (ICP-0ES), and the composition ratio (mol ratio) of each metal was calculated and confirmed as 纟i Show. Further, the oxygen content was measured by the Lec method and calculated to be 0:. (Evaluation of median diameter) A powder of each positive electrode material was collected, and the median particle size distribution was measured by a laser diffraction type particle size distribution measuring device (Shimadzu Corporation SALD _ 3000). (Evaluation of the angle of repose) #The powder of each positive electrode material was collected, and the standard vibration of the standard according to JIS Z 8801 was applied to the powder (4). The fish that passed the standard sieve of 201228084 through the funnel and fell to the level of the fish j stayed on top. At this time, the zen motion amplitude is 2_, the sieving time is 4 minutes, the T sub-shock is ^ jz. l The bucket's caliber is 8 mm. Determination of static on the powder pile on the table: 据: According to the displacement of the semiconductor laser (wavelength 67): the device:::: its mode (minimum flat method), the minimum read decomposition ability is 0 .丨: (Evaluation of specific surface area) The specific surface area measured by the φ BET method was measured. (Refer to the claw _ z - 8 please). For the measurement, a flow-resistant single-point specific surface area measuring device MONOSORB manufactured by Yuasa_i〇nics Co., Ltd. was used. (Evaluation of battery characteristics) Weigh each positive electrode material, conductive material and binder at a ratio of 85.8. 7 'By dissolving the binder in an organic solvent (N-methylpyrrolidone), and then The positive electrode material and the conductive material were mixed therein to be table-formed, coated on an A1 foil, dried, and then pressed to form a positive electrode, followed by preparation of a 2032 coin cell for evaluation of the opposite electrode Li. Using 1M_ LipF6 Dissolved in -dmC (1:1) as an electrolyte, measuring the discharge capacity at a current density of 〇2C. Further, the ratio characteristic was obtained by calculating the ratio of the discharge capacity of the battery capacity with respect to the current density 〇 2C when the electric &lt;IL male 2C. Further, the capacity retention ratio was measured by comparing the initial discharge capacity obtained by the discharge current of 1 c at room temperature with the discharge capacity after 100 cycles. The results of these are shown in Table 1. 12 201228084 Γ—1 ♦ 1 Capacity G Hold # -1 (%), § 5; CS ON CN ON (N 〇\ 00 oo &lt;N OS § oo oo s (N oo &lt;N OO oo § § P〇 ON CO OO § 00 &lt;N ratio characteristic (%) &lt;N ON S &lt;N ON Os ON C7S a\ m σ\ gm 00 ON CO oo 5; On oo oo CS oo JO 〇\ oo jn OS Discharge capacity (mAh/g) m ΓΟ Wi 2 2 «η Vi § § m 〇\ § ξ 1 〇oo CO &lt;N r-&lt; g TO ov〇〇 specific surface area (cm2/g) 0.96 0.31 0.78 1 °·43 0.65 0.66 1 0.67 I 0.61 0.70 1 °·59 1 | 0.73 | 0.63 1 0.72 | | 0.67 I 0.66 0.58 0.58 0.60 ON 0.19 0.26 0.57 0.55 0.64 0.69 Angle of repose C) f〇mv〇v〇&lt;N s ON V〇 CS o - o 5: W) oo 00 un VO median particle size (ym); inch (N 18.3 v〇1 13·4Ί 1 10.8 1 10.0 1 10.6 Π p &lt; 1 13-° 1 | lo.o 1 VO 00 CN OO O) 00 1 120 1 124 1 00 On oo o 283 1 27.5 14.8 10.5 CN OO oo ¢3 0.05 0.12 i 0.12 i 1 〇·12 1 0.16 1 0.18 [0.06 1 | 0.04 I 0.13 1 o·1 ^ 1 0.16 | 0.18 1 i °·17 1 卜.17 1 I °·15 1 | o.io | o.ii 1 0.21 0.18 | 0.13 ! 0.15 1 -0.02 0.00 -0.01 0.0 0 X 0.00 ! o.oo ! 0.00 0.00 0.00 0.00 | 0.025 1 | 0.05 I 0.00 0.00 | o.oo | 0.00 I o.oo | 0.00 0.00 0.00 | o.oo | 0.00 ! 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ΓΟ 1000 1000 1000 1000 1 970 1 1 950 1 1000 1000 | looo | 1 750 1 Lzi〇... O JO 〇jn o jn 1000 1000 O ON o ON 1000 o JO 1100 o JO 750 o jn 蹲W (S «〇&lt ;N — &lt;w-&gt; 0) tL, »〇r4 u-» CN C 33.3 33.3 333 33.3 1 33·3 1 33.3 33.3 | 33.3 I o ! 33.3 33.3 33.3 33.3 33.3 o 33.3 o 33.3 33.3 33.3 33.3 33.3 33.3 | .333„ | 33.3 1 c**&gt; CO om Ό 33.3 33.3 33.3 33.3 33.3 o 33.3 o 2 33.3 ; 33·3.. J 1 33.3 1 33.3 33.3 33.3 | 33.3 1 33.3 mso 00 ggg S | 33.3 | 33.3 33.3 33.3 33.3 g 33.3 g § Lithium carbonate suspension (g) 1393 1393 1393 1393 1393 1393 , 1442 1490 \ 1393 I | 1393 | 1393 1393 1393 | 1393 1 | 393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 Example 1 Example 2 i Example 3 Example 4 Example 5 | Example 6 I Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 | Example 14 | Example 15 | Example 16 I Example 17 Example 18 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 201228084 [Simple Description of the Drawing] No [Main component symbol description] No 14

Claims (1)

201228084 七、申請專利範圍: 一独離子電池用正極活性物質,其係以下述組成式 表不: Li(LixNi卜 x_yMy)〇2+ α (上述式中,Μ為作為必須成份之Co,及選自s τ. = r、Fe、CU、Zn、Ga、Ge、A1、Bl、SnU:: :八之1種以上,0如·1,0……〇), 又刀布之中值粒徑為卜…爪,靜止角為,以下。 質 申請專利範圍第1項之鐘離子電池用正極活性物 八中’該靜止角為30〜8〇。。 質 it申請專利範圍第2項之鋰離子電池用正極活性物 具中’該靜止角為50〜80。。 4·如巾請專利範圍第1至3項中任—項之鐘離子電池用 物質’其中,該中值粒徑為5〜丨7// m。 5‘如申請專利範圍第!至3項中任之鋰 正極活性物質,其中,該Μ為選自一中之丨種電:上用 正極=: 二專Γ圍第1至3項中任—項之链離子電池用 物負’其中,該組成式中,α &gt;〇〇5。 7复如申請專利範圍…之鐘離子電池用正極活性物 ”中’該組成式中,α &gt; 0.1。 正極請專利範圍第1至3項中任-項之鋰離子電池用 物質’其中,比表面積為〇 2〜i 〇cm2/ g。 質,9其:申請專利嶋8項之鐘離子電池用正極活性物 、’比表面積為0.3〜〇.7cm2/g。 15 £ 201228084 ίο. —種鋰離子電池用正極,其係使用有申請專利範圍 第1至3項中任一項之鋰離子電池用正極活性物質。 11 _ 一種鋰離子電池,其係使用有申請專利範圍第10項 之鋰離子電池用正極。 16201228084 VII. Patent application scope: The positive electrode active material for a single ion battery is expressed by the following composition formula: Li(LixNibx_yMy)〇2+α (In the above formula, Μ is the Co as an essential component, and From s τ. = r, Fe, CU, Zn, Ga, Ge, A1, Bl, SnU:: : one or more of eight, 0 such as 1,0...〇), and the median diameter of the knife For the claws, the angle of repose is, below. Qualifications Patent application No. 1 of the positive electrode active material for the clock ion battery 八中' The angle of repose is 30~8〇. . In the positive electrode active material for lithium ion batteries of the second aspect of the patent application scope, the angle of repose is 50 to 80. . 4. In the case of the towel, the material for the ion battery of any one of the first to third aspects of the patent range, wherein the median diameter is 5 to 丨7//m. 5 ‘If you apply for a patent range! The lithium positive electrode active material of any one of the three items, wherein the lanthanum is selected from the group consisting of: a positive electrode =: a secondary ion battery of the first to third items 'Where, in the composition formula, α &gt; 〇〇 5. (7) In the composition of the patent, the positive electrode active material for the ion battery is used in the composition formula, α &gt; 0.1. For the positive electrode, please refer to the material of the lithium ion battery according to any of the first to third aspects of the patent range ' The specific surface area is 〇2~i 〇cm2/g. Qualitative, 9: It is a patent application 嶋8 item of positive electrode active material for ion battery, 'specific surface area is 0.3~〇.7cm2/g. 15 £ 201228084 ίο. A positive electrode for a lithium ion battery, which uses the positive electrode active material for a lithium ion battery according to any one of claims 1 to 3. 11 _ A lithium ion battery using lithium as claimed in claim 10 Positive electrode for ion batteries. 16
TW100126497A 2010-12-03 2011-07-27 A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery TWI520423B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270586 2010-12-03

Publications (2)

Publication Number Publication Date
TW201228084A true TW201228084A (en) 2012-07-01
TWI520423B TWI520423B (en) 2016-02-01

Family

ID=46171507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126497A TWI520423B (en) 2010-12-03 2011-07-27 A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Country Status (3)

Country Link
JP (1) JP5973352B2 (en)
TW (1) TWI520423B (en)
WO (1) WO2012073551A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804625B1 (en) * 2019-12-17 2020-12-23 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP2006127955A (en) * 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
WO2006085467A1 (en) * 2005-02-08 2006-08-17 Mitsubishi Chemical Corporation Lithium secondary battery and positive electrode material thereof
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
WO2007142275A1 (en) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP4211865B2 (en) * 2006-12-06 2009-01-21 戸田工業株式会社 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery

Also Published As

Publication number Publication date
JP5973352B2 (en) 2016-08-23
WO2012073551A1 (en) 2012-06-07
JPWO2012073551A1 (en) 2014-05-19
TWI520423B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US10122012B2 (en) Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
TWI254479B (en) Electrode active material powder with size dependent composition and method to prepare the same
TWI453981B (en) A lithium ion battery positive electrode active material, positive electrode for a lithium ion battery, and a lithium ion battery
TWI453982B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5934089B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5985818B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20120136381A (en) Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
TW201205942A (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6030546B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI459619B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TW201228084A (en) Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP6243600B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5985819B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TW201240201A (en) Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell