JPWO2012073551A1 - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JPWO2012073551A1
JPWO2012073551A1 JP2012546714A JP2012546714A JPWO2012073551A1 JP WO2012073551 A1 JPWO2012073551 A1 JP WO2012073551A1 JP 2012546714 A JP2012546714 A JP 2012546714A JP 2012546714 A JP2012546714 A JP 2012546714A JP WO2012073551 A1 JPWO2012073551 A1 JP WO2012073551A1
Authority
JP
Japan
Prior art keywords
lithium ion
positive electrode
ion battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012546714A
Other languages
Japanese (ja)
Other versions
JP5973352B2 (en
Inventor
小林 俊介
俊介 小林
梶谷 芳男
芳男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JPWO2012073551A1 publication Critical patent/JPWO2012073551A1/en
Application granted granted Critical
Publication of JP5973352B2 publication Critical patent/JP5973352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

リチウムイオン電池用正極活物質は、組成式:Li(LixNi1-x-yy)O2+α(前記式において、Mは必須成分としてのCo、及び、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0≦x≦0.1であり、0<y≦0.7であり、α>0である。)で表され、粒度分布のメディアン径が1〜20μmであって、安息角が80°以下である。Cathode active material for lithium ion batteries, the composition formula: in Li (Li x Ni 1-xy M y) O 2 + α ( the equation, M is Co as essential components, and, Sc, Ti, V, Cr, One or more selected from Mn, Fe, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr, 0 ≦ x ≦ 0.1, and 0 <y ≦ 0 7 and α> 0), the median diameter of the particle size distribution is 1 to 20 μm, and the angle of repose is 80 ° or less.

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

電池特性の改善には、従来、種々の方法が用いられており、例えば特許文献1には、
LixNi1-yy2-δ
(0.8≦x≦1.3、0<y≦0.5であり、Mは、Co、Mn、Fe、Cr、V、Ti、Cu、Al、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、B、Ca、Sc及びZrからなる群から選ばれる少なくとも一種の元素を示し、δは酸素欠損又は酸素過剰量に相当し、−0.1<δ<0.1を表す。)の組成で表されるリチウムニッケル複合酸化物を分級機に通し、粒子径の大きい物と小さい物とに平衡分離粒子径Dh=1〜10μmで分離し、粒子径の大きい物と小さい物を、重量比で0:100〜100:0で配合することを特徴とするリチウム二次電池用正極材料の製造方法が開示されている。そして、これによれば、レート特性と容量のさまざまなバランスのリチウム二次電池用正極材料を容易に製造できる、と記載されている。
Various methods have been conventionally used to improve battery characteristics. For example, Patent Document 1 discloses:
Li x Ni 1- y My O 2- δ
(0.8 ≦ x ≦ 1.3, 0 <y ≦ 0.5, and M is Co, Mn, Fe, Cr, V, Ti, Cu, Al, Ga, Bi, Sn, Zn, Mg, It represents at least one element selected from the group consisting of Ge, Nb, Ta, Be, B, Ca, Sc and Zr, δ corresponds to oxygen deficiency or oxygen excess, and −0.1 <δ <0.1 The lithium nickel composite oxide represented by the composition is passed through a classifier and separated into a large particle size and a small particle size with an equilibrium separation particle size Dh = 1 to 10 μm, and a large particle size A method for producing a positive electrode material for a lithium secondary battery, characterized in that small substances are blended at a weight ratio of 0: 100 to 100: 0. And according to this, it is described that the positive electrode material for lithium secondary batteries with various balance of rate characteristics and capacity can be easily manufactured.

特許第4175026号公報Japanese Patent No. 4175026

特許文献1に記載のリチウムニッケル複合酸化物は、その組成式中の酸素量が過剰のものであるが、それでもなお高品質のリチウムイオン電池用正極活物質としては改善の余地がある。   Although the lithium nickel composite oxide described in Patent Document 1 has an excessive amount of oxygen in its composition formula, there is still room for improvement as a high-quality positive electrode active material for a lithium ion battery.

そこで、本発明は、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。   Then, this invention makes it a subject to provide the positive electrode active material for lithium ion batteries which has a favorable battery characteristic.

本発明者らは、鋭意検討した結果、正極活物質の酸素量と電池特性との間に密接な相関関係があることを見出した。すなわち、正極活物質の酸素量がある値以上であるとき、特に良好な電池特性が得られることを見出した。また、酸素量がある値以上である正極活物質において、粉体の粒度分布及び安息角を制御することにより、より良好な電池特性が得られることを見出した。   As a result of intensive studies, the present inventors have found that there is a close correlation between the amount of oxygen of the positive electrode active material and the battery characteristics. That is, it has been found that particularly good battery characteristics can be obtained when the amount of oxygen in the positive electrode active material is greater than or equal to a certain value. Further, it has been found that better battery characteristics can be obtained by controlling the particle size distribution and angle of repose of the powder in a positive electrode active material having an oxygen amount of a certain value or more.

上記知見を基礎にして完成した本発明は一側面において、
組成式:Li(LixNi1-x-yy)O2+α
(前記式において、Mは必須成分としてのCo、及び、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0≦x≦0.1であり、0<y≦0.7であり、α>0である。)
で表され、
粒度分布のメディアン径が1〜20μmであって、安息角が80°以下であるリチウムイオン電池用正極活物質である。
In one aspect of the present invention completed based on the above knowledge,
Composition formula: Li (Li x Ni 1- xy M y) O 2 + α
(In the above formula, M is selected from Co as an essential component and Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. 1 or more selected from the above, 0 ≦ x ≦ 0.1, 0 <y ≦ 0.7, and α> 0.)
Represented by
It is a positive electrode active material for a lithium ion battery having a median diameter of 1 to 20 μm and a repose angle of 80 ° or less.

本発明に係るリチウムイオン電池用正極活物質は一実施形態において、安息角が30〜80°である。   In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention has an angle of repose of 30 to 80 °.

本発明に係るリチウムイオン電池用正極活物質は別の実施形態において、安息角が50〜80°である。   In another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has an angle of repose of 50 to 80 °.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、メディアン径が5〜17μmである。   In still another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a median diameter of 5 to 17 μm.

本発明に係るリチウムイオン電池用正極活物質は別の実施形態において、Mが、Mn及びCoから選択される1種以上である。   In another embodiment of the positive electrode active material for a lithium ion battery according to the present invention, M is at least one selected from Mn and Co.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、組成式において、α>0.05である。   In still another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has α> 0.05 in the composition formula.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、組成式において、α>0.1である。   In still another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has α> 0.1 in the composition formula.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、比表面積が0.2〜1.0cm2/gである。In yet another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a specific surface area of 0.2 to 1.0 cm 2 / g.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、比表面積が0.3〜0.7cm2/gである。In yet another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a specific surface area of 0.3 to 0.7 cm 2 / g.

本発明は、別の側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.

本発明は、更に別の側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.

本発明によれば、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries which has a favorable battery characteristic can be provided.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
組成式:Li(LixNi1-x-yy)O2+α
(前記式において、Mは必須成分としてのCo、及び、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0≦x≦0.1であり、0<y≦0.7であり、α>0である。)
で表される。
(Configuration of positive electrode active material for lithium ion battery)
As a material of the positive electrode active material for lithium ion batteries of the present invention, compounds useful as a positive electrode active material for general positive electrodes for lithium ion batteries can be widely used. In particular, lithium cobaltate (LiCoO 2 ), It is preferable to use lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery of the present invention produced using such a material is
Composition formula: Li (Li x Ni 1- xy M y) O 2 + α
(In the above formula, M is selected from Co as an essential component and Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. 1 or more selected from the above, 0 ≦ x ≦ 0.1, 0 <y ≦ 0.7, and α> 0.)
It is represented by

本発明のリチウムイオン電池用正極活物質は、酸素が組成式において上記のようにO2+α(α>0)と示され、過剰に含まれており、リチウムイオン電池に用いた場合、容量、レート特性及び容量保持率等の電池特性が良好となる。ここで、αについて、好ましくはα>0.05であり、より好ましくはα>0.1である。The positive electrode active material for a lithium ion battery according to the present invention has oxygen as O 2 + α (α> 0) as described above in the composition formula, and is contained excessively. Battery characteristics such as rate characteristics and capacity retention are improved. Here, α is preferably α> 0.05, and more preferably α> 0.1.

本発明のリチウムイオン電池用正極活物質は、一次粒子、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。これらの一次粒子、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物の粒度分布のメディアン径(平均粒径の中央値)は1〜20μmである。メディアン径が1〜20μmであれば、ばらつきが抑制された粉体となり、リチウムイオン電池の電極作製時の活物質の均一な塗布が可能となり、さらに電極組成のばらつきを抑制することができる。このため、リチウムイオン電池に用いたときに、レート特性及びサイクル特性が良好となる。メディアン径は、好ましくは5〜17μmである。   The positive electrode active material for a lithium ion battery of the present invention is composed of primary particles, secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles. The median diameter (median value of the average particle diameter) of the particle size distribution of these primary particles, secondary particles formed by aggregation of the primary particles, or a mixture of primary particles and secondary particles is 1 to 20 μm. If the median diameter is 1 to 20 μm, the powder is suppressed in variation, the active material can be uniformly applied during the production of the electrode of the lithium ion battery, and variation in the electrode composition can be further suppressed. For this reason, when it uses for a lithium ion battery, a rate characteristic and cycling characteristics become favorable. The median diameter is preferably 5 to 17 μm.

本発明のリチウムイオン電池用正極活物質は、安息角が80°以下である。ここで、安息角とは、粉体を上方から静かに落下させて生じる円錐状堆積層が、水平面との間に作る傾斜角である。安息角は粉体粒子間の付着力を表す指標であり、この安息角の値が小さい粉体粒子ほど、凝集性が弱く流動性がよい、即ち、まとわりつきにくい性質を有しているといえる。安息角を80°以下とすることで、ばらつきを抑制してリチウムイオン電池の電極作製時の活物質の均一な塗布を可能とし、さらに電極組成のばらつきを抑制することができる。従って、リチウムイオン電池に用いたときに、レート特性及びサイクル特性が良好となる。ただし、凝集性が弱すぎると、分散されやすいが、電極のスラリーを製造する際各粒子がバインダーによって失活されやすくなる。このため、適度なまとわりつきやすさが必要となる。このような観点から、安息角は、典型的には15〜80°であり、好ましくは30〜80°、より好ましくは50〜80°である。   The positive electrode active material for lithium ion batteries of the present invention has an angle of repose of 80 ° or less. Here, the angle of repose is an angle of inclination formed between a horizontal plane and a conical sedimentary layer generated by gently dropping powder from above. The angle of repose is an index representing the adhesive force between the powder particles, and the smaller the angle of repose angle, the weaker the cohesiveness and the better the fluidity, that is, it can be said that the repose angle has a property that is difficult to cling. By setting the angle of repose to 80 ° or less, it is possible to suppress variation and enable uniform application of the active material during the production of an electrode of a lithium ion battery, and further suppress variation in electrode composition. Therefore, when used in a lithium ion battery, rate characteristics and cycle characteristics are improved. However, if the cohesiveness is too weak, the particles are easily dispersed, but each particle is easily deactivated by the binder when the slurry of the electrode is produced. For this reason, a moderate ease of attachment is required. From such a viewpoint, the angle of repose is typically 15 to 80 °, preferably 30 to 80 °, and more preferably 50 to 80 °.

本発明のリチウムイオン電池用正極活物質は、比表面積が0.2〜1.0cm2/gである。比表面積が0.2〜1.0cm2/gであれば、電解液との反応が抑制されサイクル特性が改善される。比表面積は、好ましくは0.3〜0.7cm2/gである。The positive electrode active material for a lithium ion battery of the present invention has a specific surface area of 0.2 to 1.0 cm 2 / g. When the specific surface area is 0.2 to 1.0 cm 2 / g, reaction with the electrolytic solution is suppressed and cycle characteristics are improved. The specific surface area is preferably 0.3 to 0.7 cm 2 / g.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni、及び、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metal is at least one selected from Ni and Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. It is. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.

次に、乾燥して得られたリチウムイオン電池正極材用前駆体の粉末を、篩、又は、市販の分級装置等を用いて分級し、1〜30μmの粒径の粉末のみを得る。   Next, the powder of the precursor for a lithium ion battery positive electrode material obtained by drying is classified using a sieve, a commercially available classifier, or the like to obtain only a powder having a particle diameter of 1 to 30 μm.

次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器に分級した1〜30μmの粒径のリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下で所定時間加熱保持することにより行う。また、101〜202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
その後、焼成容器から粉末を取り出し、市販の粉砕装置等を用いて解砕を行うことにより正極活物質の粉体を得る。このときの解砕は、所望のメディアン径及び安息角が得られるように、適宜粉砕強度及び粉砕時間を調整して行う。
Next, a firing container having a capacity of a predetermined size is prepared, and the powder of a precursor for a lithium ion battery positive electrode material having a particle diameter of 1 to 30 μm is filled in the firing container. Next, the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is performed by heating and holding in an oxygen atmosphere for a predetermined time. Further, it is preferable to perform baking under pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases.
Thereafter, the powder is taken out from the firing container and pulverized using a commercially available pulverizer or the like to obtain a positive electrode active material powder. The crushing at this time is performed by appropriately adjusting the crushing strength and crushing time so that a desired median diameter and angle of repose can be obtained.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1〜15)
まず、表1に記載の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、すなわち正極活物質)をLi(LixNi1-x-yy)O2+αでxが表1の値となる量であって、それぞれ次式で算出されたものである。
W(g)=73.9×14×(1+0.5{(1+X)/(1−X)}×A
上記式において、「A」は、析出反応として必要な量の他に、ろ過後の原料に残留する炭酸リチウム以外のリチウム化合物によるリチウムの量をあらかじめ懸濁量から引いておくために掛ける数値である。「A」は、硝酸塩や酢酸塩のように、リチウム塩が焼成原料として反応する場合は0.9であり、硫酸塩や塩化物のように、リチウム塩が焼成原料として反応しない場合は1.0である。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、乾燥して得たリチウム含有炭酸塩を篩にかけて、1〜30μmの粒径のものに分級した。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、大気圧下、酸素雰囲気炉に入れて、表1に記載の焼成温度で10時間加熱保持した後冷却して酸化物を得た。
次に、得られた酸化物を小型粉砕機(ホソカワミクロンACM-2EC)を用いてメディアン粒径1〜20μmに解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Examples 1 to 15)
First, after suspending lithium carbonate of the input amount shown in Table 1 in 3.2 liters of pure water, 4.8 liter of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
Incidentally, a suspension of lithium carbonate, the product (lithium ion secondary battery positive electrode material, i.e. a cathode active material) x with Li (Li x Ni 1-xy M y) O 2 + α becomes a value shown in Table 1 Each of which is calculated by the following equation.
W (g) = 73.9 × 14 × (1 + 0.5 {(1 + X) / (1-X)} × A
In the above formula, “A” is a numerical value to be multiplied in order to subtract the amount of lithium from the lithium compound other than lithium carbonate remaining in the raw material after filtration from the amount of suspension in addition to the amount necessary for the precipitation reaction. is there. “A” is 0.9 when lithium salt reacts as a firing raw material such as nitrate or acetate, and “1” when lithium salt does not react as a firing raw material such as sulfate or chloride. 0.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, the lithium-containing carbonate obtained by drying was sieved and classified into particles having a particle size of 1 to 30 μm.
Next, a firing container was prepared, and this firing container was filled with a lithium-containing carbonate. Next, the firing container was placed in an oxygen atmosphere furnace under atmospheric pressure, heated and held at the firing temperature shown in Table 1 for 10 hours, and then cooled to obtain an oxide.
Next, the obtained oxide was pulverized to a median particle size of 1 to 20 μm using a small pulverizer (Hosokawa Micron ACM-2EC) to obtain a powder of a lithium ion secondary battery positive electrode material.

(実施例16)
実施例16として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜15と同様の処理を行った。
(Example 16)
Example 16 was carried out except that each raw material had a composition as shown in Table 1, the metal salt was chloride, lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 15 was performed.

(実施例17)
実施例17として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜15と同様の処理を行った。
(Example 17)
Example 17 was carried out except that each material of the raw material had the composition shown in Table 1, the metal salt was sulfate, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 15 was performed.

(実施例18)
実施例18として、原料の各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1〜15と同様の処理を行った。
(Example 18)
As Example 18, the same processing as in Examples 1 to 15 was performed except that each metal of the raw material had a composition as shown in Table 1 and firing was performed under a pressure of 120 KPa instead of atmospheric pressure.

(比較例1〜3)
比較例1〜3として、原料の各金属を表1に示すような組成とし、前駆体乾燥後の分級を行わず、且つ、最後の酸化物の解砕をメディアン径が1μm以下もしくは20μm以上になるまで行った点以外は、実施例1〜15と同様の処理を行った。
(Comparative Examples 1-3)
As Comparative Examples 1 to 3, the raw materials have a composition as shown in Table 1, the classification after drying the precursor is not performed, and the final oxide is crushed to a median diameter of 1 μm or less or 20 μm or more. The same processing as in Examples 1 to 15 was performed except for the points performed until the end.

(比較例4〜7)
比較例4〜7として、原料の各金属を表1に示すような組成とし、酸素雰囲気炉ではなく空気雰囲気炉で焼成工程を行った点以外は、比較例1と同様の処理を行った。
(Comparative Examples 4-7)
As Comparative Examples 4 to 7, the same processing as in Comparative Example 1 was performed, except that each metal of the raw material had a composition as shown in Table 1 and the firing step was performed in an air atmosphere furnace instead of an oxygen atmosphere furnace.

(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出し、表1の通りとなったことを確認した。また、酸素含有量はLECO法で測定しαを算出した。
(Evaluation)
-Evaluation of composition of positive electrode material-
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated to confirm that it was as shown in Table 1. . The oxygen content was measured by the LECO method and α was calculated.

−メディアン径の評価−
各正極材の粉末を採取し、粒度分布のメディアン径をレーザー回折型粒度分布測定装置(島津製作所 SALD−3000)によって測定した。
-Evaluation of median diameter-
The powder of each positive electrode material was sampled, and the median diameter of the particle size distribution was measured with a laser diffraction type particle size distribution measuring apparatus (Salazu Corporation SALD-3000).

−安息角の評価−
各正極材の粉末を採取し、JISZ 8801で規定された標準篩を振動させ、該標準篩へ粉体を投入した。標準篩を通った粉体をロートを通して水平なテーブル上へ落とした。このときの標準篩の振動幅は2mm、篩にかけた時間は4分間、ロートの口径は8mmであった。
テーブル上に落下させた粉体の山に対して、安息角を測定した。安息角の測定は、半導体レーザー(波長670nm)の変位センサーによる角度計算方式(最小二乗法)を用いて行い、最小読み取り分解能は0.1度とした。
-Evaluation of angle of repose-
The powder of each positive electrode material was collected, the standard sieve specified in JISZ 8801 was vibrated, and the powder was put into the standard sieve. The powder that passed through the standard sieve was dropped onto a horizontal table through a funnel. At this time, the vibration width of the standard sieve was 2 mm, the time applied to the sieve was 4 minutes, and the diameter of the funnel was 8 mm.
The angle of repose was measured on the pile of powder dropped on the table. The angle of repose was measured using an angle calculation method (least square method) using a semiconductor laser (wavelength 670 nm) displacement sensor, and the minimum reading resolution was 0.1 degree.

−比表面積の評価−
BET法による比表面積測定をおこなった。(JIS−Z−8830参照)。測定にはユアサ・アイオニクス社製流動法BET一点法比表面積測定装置MONOSORBを用いた。
-Evaluation of specific surface area-
Specific surface area was measured by the BET method. (See JIS-Z-8830). For the measurement, a flow method BET single point method specific surface area measuring device MONOSORB manufactured by Yuasa Ionics Co., Ltd. was used.

−電池特性の評価−
各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また電流密度0.2Cのときの電池容量に対する電流密度2Cのときの、放電容量の比を算出してレート特性を得た。さらに、容量保持率は、室温で1Cの放電電流で得られた初期放電容量と100サイクル後の放電容量を比較することによって測定した。
これらの結果を表1に示す。
-Evaluation of battery characteristics-
Each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. The discharge capacity was measured. Further, a rate characteristic was obtained by calculating a ratio of the discharge capacity when the current density was 2C to the battery capacity when the current density was 0.2C. Furthermore, the capacity retention was measured by comparing the initial discharge capacity obtained with a 1 C discharge current at room temperature with the discharge capacity after 100 cycles.
These results are shown in Table 1.

Figure 2012073551
Figure 2012073551

Claims (11)

組成式:Li(LixNi1-x-yy)O2+α
(前記式において、Mは必須成分としてのCo、及び、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0≦x≦0.1であり、0<y≦0.7であり、α>0である。)
で表され、
粒度分布のメディアン径が1〜20μmであって、安息角が80°以下であるリチウムイオン電池用正極活物質。
Composition formula: Li (Li x Ni 1- xy M y) O 2 + α
(In the above formula, M is selected from Co as an essential component and Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. 1 or more selected from the above, 0 ≦ x ≦ 0.1, 0 <y ≦ 0.7, and α> 0.)
Represented by
A positive electrode active material for a lithium ion battery having a median diameter of particle size distribution of 1 to 20 μm and an angle of repose of 80 ° or less.
前記安息角が30〜80°である請求項1に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein the angle of repose is 30 to 80 °. 前記安息角が50〜80°である請求項2に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 2, wherein the angle of repose is 50 to 80 °. 前記メディアン径が5〜17μmである請求項1〜3のいずれかに記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein the median diameter is 5 to 17 μm. 前記Mが、Mn及びCoから選択される1種以上である請求項1〜4のいずれかに記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein the M is one or more selected from Mn and Co. 前記組成式において、α>0.05である請求項1〜5のいずれかに記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein α> 0.05 in the composition formula. 前記組成式において、α>0.1である請求項6に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 6, wherein α> 0.1 in the composition formula. 比表面積が0.2〜1.0cm2/gである請求項1〜7のいずれかに記載のリチウムイオン電池用正極活物質。The positive electrode active material for a lithium ion battery according to claim 1, wherein the specific surface area is 0.2 to 1.0 cm 2 / g. 比表面積が0.3〜0.7cm2/gである請求項8に記載のリチウムイオン電池用正極活物質。The positive electrode active material for a lithium ion battery according to claim 8, which has a specific surface area of 0.3 to 0.7 cm 2 / g. 請求項1〜9のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries in any one of Claims 1-9. 請求項10に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode for lithium ion batteries of Claim 10.
JP2012546714A 2010-12-03 2011-07-22 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP5973352B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010270586 2010-12-03
JP2010270586 2010-12-03
PCT/JP2011/066727 WO2012073551A1 (en) 2010-12-03 2011-07-22 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Publications (2)

Publication Number Publication Date
JPWO2012073551A1 true JPWO2012073551A1 (en) 2014-05-19
JP5973352B2 JP5973352B2 (en) 2016-08-23

Family

ID=46171507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012546714A Active JP5973352B2 (en) 2010-12-03 2011-07-22 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (3)

Country Link
JP (1) JP5973352B2 (en)
TW (1) TWI520423B (en)
WO (1) WO2012073551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829306B (en) * 2019-12-17 2024-03-01 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP2006127955A (en) * 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
US20090011334A1 (en) * 2005-02-08 2009-01-08 Mitsubishi Chemical Corporation Lithium secondary battery and positive electrode material thereof
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
KR20080038163A (en) * 2006-06-09 2008-05-02 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP4211865B2 (en) * 2006-12-06 2009-01-21 戸田工業株式会社 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2009099158A1 (en) * 2008-02-06 2011-05-26 Agcセイミケミカル株式会社 Method for producing granulated powder for positive electrode active material of lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829306B (en) * 2019-12-17 2024-03-01 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
TWI520423B (en) 2016-02-01
TW201228084A (en) 2012-07-01
WO2012073551A1 (en) 2012-06-07
JP5973352B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5368627B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819199B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5985818B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026404B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5805104B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6030546B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6243600B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5973352B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5985819B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI469934B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI460912B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250