TW201222949A - Electrode composite material of lithium ion battery, method for making the same, and battery - Google Patents

Electrode composite material of lithium ion battery, method for making the same, and battery Download PDF

Info

Publication number
TW201222949A
TW201222949A TW099140717A TW99140717A TW201222949A TW 201222949 A TW201222949 A TW 201222949A TW 099140717 A TW099140717 A TW 099140717A TW 99140717 A TW99140717 A TW 99140717A TW 201222949 A TW201222949 A TW 201222949A
Authority
TW
Taiwan
Prior art keywords
ion battery
lithium ion
modifier
lithium
electrode
Prior art date
Application number
TW099140717A
Other languages
Chinese (zh)
Other versions
TWI565125B (en
Inventor
xiang-ming He
Jian-Jun Li
li-chun Zhang
Jian-Guo Ren
Jian Gao
wei-hua Pu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099140717A priority Critical patent/TWI565125B/en
Publication of TW201222949A publication Critical patent/TW201222949A/en
Application granted granted Critical
Publication of TWI565125B publication Critical patent/TWI565125B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention relates to an electrode composite material of lithium ion battery. The electrode composite material includes an electrode active material particle and a protective film coated on the surface of the particle. The composition of the protective film is AlxMyPO4 and/or AlxMy(PO3)3. The valence of M is k, and M is one or more selected from the group consisting of Cr, Zn, Cu, Mg, Zr, Mo, V, Nb and Ta. 0 < x < 1, 0 < y < 1 and 3x+ky=3. The invention also relates to a method for making the electrode composite material above. The electrode composite material is applied to the lithium ion battery to increase the thermal stability of the lithium ion battery.

Description

201222949 本發明涉及-種鋰離子電池電極複合材料及其製備方法 ,以及包含該電極複合材料的鋰離子電池。 / 【先前技術】 電動汽車及可檇式電子設備如手機、數仙 機和筆記本電腦等的迅猛發展,市場對高功率、高能θ 密度電池的需求越來越大。鋰離子雷 四此置 離子電池係迄今為止已經201222949 The present invention relates to a lithium ion battery electrode composite material and a preparation method thereof, and a lithium ion battery including the electrode composite material. / [Prior Art] With the rapid development of electric vehicles and portable electronic devices such as mobile phones, digital amplifiers and notebook computers, the demand for high-power, high-energy θ-density batteries is increasing. Lithium-ion mine

κ用化的電池中電壓最高、能量密度最大的電池 良好的發展前景。 / ^ ^ ^ ^ ^ 、有The battery with the highest voltage and the highest energy density among the κ cells has a good development prospect. / ^ ^ ^ ^ ^, have

六、發明說明: 【發明所屬之技術領域】 [0001] [0002] 目前,隨著 [晒輯子電池主要由電極、隔膜以及電__。其卜 鐘離子電池的發驗大程度上取決於電極活性材料性二 的提高。目前’轉子電池的正極活性材料主要有b UC〇02、LiNi〇2、Li%、以及UFep〜等;負極活性 材料主要係碳材料如石墨等。傳統電極的製作方法係將 電極活性材料顆粒與導電劑以及黏結劑混合在一起製成 漿料然後塗覆於集流體表面,並熱處理塗覆後的集流體 製成電極。然而,這種電極穩定性不高,致使鋰離子電 池充放電性能較差,此外,應用該電極的鋰離子電池在 較向溫度下的循環過程中容量衰減較為嚴重。 [0004]先前技術中將磷酸鋁包覆於鋰離子電池正極活性物質表 面,提向鐘離子電池正極的熱穩定性(請參閱文獻“ Correlation between AlPO^nanoparticle coating thickness on LiCo〇2cathode and thermal stablility” J.Cho, Electrochimica Acta 48 099140717 表單編號A0101 第3頁/共42頁 〇99207〇875-〇 201222949 (2003) 2807-281 1 )。 [0005] 先前技術中用磷酸鋁包覆正極活性物質的方法係先製備 磷酸鋁顆粒分散於水中形成的分散液,並將正極活性物 質顆粒加入這種製備好的磷酸鋁顆粒的分散液中,藉由 吸附的作用使磷酸鋁顆粒吸附在正極活性物質大顆粒表 面,再將分散液中的水蒸乾,並在700°C下熱處理,形成 表面具有磷酸鋁顆粒的正極活性物質。然而,由於磷酸 鋁不溶於水,磷酸鋁顆粒在水中分散時可能形成團聚, 並且當將大量正極活性物質加入磷酸鋁分散液中時,先 加入的正極活性物質吸附大量磷酸鋁顆粒,後加入的正 極活性物質顆粒則可能吸附不到足夠的磷酸鋁顆粒。請 參閱圖9,即使能夠很好的包覆,上述方法決定該產物 600從微觀上看係磷酸鋁以小顆粒602的形態分佈在正極 活性物質大顆粒604表面,並非一層均勻磷酸鋁物質層。 故,藉由上述方法在正極活性物質表面形成的磷酸鋁包 覆層不夠均勻。從而使應用該正極活性物質的鋰離子電 池循環性能不好。 【發明内容】 [0006] 有鑒於此,提供一種鋰離子電池電極複合材料及其製備 方法,以及包含該電極複合材料的鋰離子電池,以提高 鋰離子電池的熱穩定性實為必要。 [0007] —種鋰離子電池電極複合材料,包括電極活性材料顆粒 以及包覆於該電極活性材料顆粒表面的保護膜。該保護 膜的成分為Α1 Μ PO,以及A1 M (POQ)Q中的一種或該兩種 X y 4 X y 3 3 物質的混合物;其中Μ的價態為k,Μ為Cr、Zn、Cu、Mg 099140717 表單編號A0101 0992070875-0 201222949 、Zr、Mo、V、Nb及Ta中的一種或複數種的混合;&amp; ,〇&lt;y&lt;l且3x+ky=3 。 X&lt;1 [0008] Ο [0009] [0010] ο [0011] 099140717 一種鋰離子電池電極複合材料的製備方法,包括如 驟:提供鋰離子電池改性劑和電極活性材料顆粒下步 該改性劑包括含磷酸根的磷源、三價鋁源以及金屬氡 物在液相溶劑中的混合;混合該電極活性材料顆粒和= 鋰離子電池改性劑,形成一混合物,以及 祀琛並熱處理 該混合物。 一種鐘離子電池,包括至少一玉極片和負極,上 乃’ 5亥正極 片包括至少一正極材料層,該負極片包括至少 料層’其中,該正極材料層和負極持料層中的至I 包含上述電極複合材料。 相較於先前技術’可較容易地在電極活性材料顆板表 均形成保護膜,還能使每個電極活性材料顆粒表面6面 被保護膜包覆,且包覆於電極活性材料顆粒表面的 骐厚度較薄且均勻速績’該保護膜可在隔絕鋰離子=護 電解液與電極活輯料顆粒之_電子遷移的同時使2 子藉由,從而-方面避免了_子電池電極與電解液離 間的副反應,提高了電池的熱穩定性以及電池容量保之 性能’另-方面由於該電極活性材料顆粒表面的保二持 較薄,不會降低裡離子電池的電化學性能。 、 【實施方式】 以下將結合附圖詳細說明本發明實施例鋰離子電池電參 複合材料及其製備方法,以及包含該電極複合材料的趣 離子電池。由於該鋰離子電池電極複合材料由一鋰 表單編號Α0101 第5頁/共42頁 硬避離 I極材 種 〇992〇7〇875-〇 201222949 子電池改性劑製成,故,以下首先對該鋰離子電池改性 劑及其使用方法進行介紹。 [0012] (一)鋰離子電池改性劑及其製備方法 [0013] 本發明實施例首先提供一種鋰離子電池改性劑,該改性 劑包括含磷酸根的磷源、三價鋁源以及金屬氧化物在液 相溶劑中的混合。 [0014] 該磷酸根可為正磷酸根(P〇43-)、磷酸二氫根(H2P〇4 —)及 磷酸一氫根(hp〇42_)中的一種或幾種的混合。其中,所 述含p〇 3_的磷源可為磷酸(i^po^)、磷酸三銨 4 3 4 ((NH4)3P〇4)及磷酸銘(Α1Ρ〇4)中的十種或複數種;所述 含112?〇4_的磷源可為磷酸二氫敍(NH4H2P〇4)及磷酸二氫 紹(Α1(Η2Ρ〇4)3)中的一種或複數種;所述含HP〇42-的 磷源可為磷酸一氫銨((抓_))。狀〇/1)及磷酸一氫鋁 4 2 4 (Α12(ΗΡ〇4)3)中的一種或複數種。該三價&amp;源可為氫氧 化鋁(Al(0H)q)、氧化鋁(Μ。。)、碘酸銘(A1P0J、磷 〇 2 3 4 τ 酸二氫鋁(AKHqPC^)。)以及磷酸二氣IS(A19(HP0 ))中 L 4 ο ώ 4 3 的一種或複數種。該含填酸根的填源和該三價铭源可同 時為Α1Ρ〇4、Α1(Η2Ρ〇4)3以及Α12(ΗΡ〇4)3中的一種或幾 種。該金屬氧化物包括三氧化鉻(Cr〇3)、氧化辞(ΖηΟ) 、氧化銅(CuO)、氧化鎂(MgO)、二氡化锆(Zr〇2)、三氧VI. Description of the Invention: [Technical Field to Be Invented by the Invention] [0001] At present, [the sub-battery battery mainly consists of an electrode, a diaphragm, and an electric__. The detection of its ion battery depends to a large extent on the improvement of the electrode active material properties. At present, the positive electrode active materials of the rotor battery mainly include b UC 〇 02, LiNi 〇 2, Li%, and UFep 〜, etc.; the negative electrode active material is mainly a carbon material such as graphite. Conventional electrodes are fabricated by mixing electrode active material particles with a conductive agent and a binder to form a slurry which is then applied to a surface of a current collector, and heat-treating the coated current collector to form an electrode. However, the stability of the electrode is not high, resulting in poor charge and discharge performance of the lithium ion battery. In addition, the capacity of the lithium ion battery using the electrode is more severe during the cycle of the temperature. [0004] In the prior art, aluminum phosphate is coated on the surface of a positive electrode active material of a lithium ion battery to improve the thermal stability of the positive electrode of the ion battery (refer to the literature "Correlation between AlPO^nanoparticle coating thickness on LiCo〇2cathode and thermal stablility" J.Cho, Electrochimica Acta 48 099140717 Form No. A0101 Page 3 of 42 〇99207〇875-〇201222949 (2003) 2807-281 1). [0005] A method of coating a positive electrode active material with aluminum phosphate in the prior art is to first prepare a dispersion formed by dispersing aluminum phosphate particles in water, and adding positive electrode active material particles to the dispersion of the prepared aluminum phosphate particles, The aluminum phosphate particles are adsorbed on the surface of the large particles of the positive electrode active material by the action of adsorption, and the water in the dispersion liquid is evaporated to dryness and heat-treated at 700 ° C to form a positive electrode active material having aluminum phosphate particles on the surface. However, since aluminum phosphate is insoluble in water, aluminum phosphate particles may form agglomeration when dispersed in water, and when a large amount of positive electrode active material is added to the aluminum phosphate dispersion, the first positive electrode active material is adsorbed to adsorb a large amount of aluminum phosphate particles, and then added. The positive electrode active material particles may not adsorb enough aluminum phosphate particles. Referring to Fig. 9, even if it is well coated, the above method determines that the product 600 is microscopically distributed in the form of small particles 602 on the surface of the positive active material large particles 604, not a layer of uniform aluminum phosphate. Therefore, the aluminum phosphate coating layer formed on the surface of the positive electrode active material by the above method is not uniform enough. Therefore, the lithium ion battery cycle performance to which the positive electrode active material is applied is not good. SUMMARY OF THE INVENTION [0006] In view of the above, it is necessary to provide a lithium ion battery electrode composite material and a preparation method thereof, and a lithium ion battery including the electrode composite material to improve the thermal stability of the lithium ion battery. [0007] A lithium ion battery electrode composite material comprising electrode active material particles and a protective film coated on a surface of the electrode active material particles. The composition of the protective film is Α1 Μ PO, and one of A1 M (POQ) Q or a mixture of the two X y 4 X y 3 3 materials; wherein valence of yttrium is k, lanthanum is Cr, Zn, Cu , Mg 099140717 Form No. A0101 0992070875-0 201222949, a mixture of one or more of Zr, Mo, V, Nb, and Ta; &, 〇&lt;y&lt;l and 3x+ky=3. X&lt;1 [0008] [0009] [0010] 099140717 A method for preparing a lithium ion battery electrode composite material, comprising: providing a lithium ion battery modifier and an electrode active material particle The agent comprises a phosphate source containing phosphoric acid, a source of trivalent aluminum, and a mixture of metal ruthenium in a liquid phase solvent; mixing the electrode active material particles and the = lithium ion battery modifier to form a mixture, and kneading and heat treating the agent mixture. A clock ion battery comprising at least one jade piece and a negative electrode, wherein the positive electrode piece comprises at least one positive electrode material layer, the negative electrode piece comprises at least a material layer, wherein the positive electrode material layer and the negative electrode material holding layer are I contains the above electrode composite. Compared with the prior art, it is relatively easy to form a protective film on the surface of the electrode active material, and the surface of each electrode active material particle is coated with a protective film and coated on the surface of the electrode active material particle. The thickness of the crucible is thin and uniform. 'The protective film can prevent the _ sub-cell electrode and electrolysis by isolating the lithium ion=protecting electrolyte and the electrophoretic particles of the electrode. The side reaction between the liquid separation improves the thermal stability of the battery and the performance of the battery capacity. In addition, since the surface of the electrode active material particles is relatively thin, the electrochemical performance of the ion battery is not lowered. [Embodiment] Hereinafter, a lithium ion battery electric ginseng composite material and a preparation method thereof according to an embodiment of the present invention, and an interesting ion battery including the electrode composite material will be described in detail with reference to the accompanying drawings. Since the lithium ion battery electrode composite material is made of a lithium form number Α0101, page 5 / total page 42 hard escape ion type 〇992〇7〇875-〇201222949 sub-battery modifier, therefore, the following first The lithium ion battery modifier and its method of use are described. [0012] (I) Lithium-ion battery modifier and preparation method thereof [0013] The embodiment of the invention first provides a lithium ion battery modifier, the modifier includes a phosphate source containing phosphoric acid, a source of trivalent aluminum, and Mixing of metal oxides in a liquid phase solvent. [0014] The phosphate may be a mixture of one or more of orthophosphate (P〇43-), dihydrogen phosphate (H2P〇4 —), and monohydrogen phosphate (hp〇42_). Wherein, the phosphorus source containing p〇3_ may be ten or plural of phosphoric acid (i^po^), triammonium phosphate 4 3 4 ((NH4)3P〇4) and phosphoric acid (Α1Ρ〇4) The phosphorus source containing 112?〇4_ may be one or more of dihydrogen phosphate (NH4H2P〇4) and dihydrogen phosphate (Α1(Η2Ρ〇4)3); the HP containing The phosphorus source of 42- may be ammonium monohydrogen phosphate ((grab_)). One or more of the conditions /1) and aluminum monohydrogenphosphate 4 2 4 (Α12(ΗΡ〇4)3). The trivalent &amp; source may be aluminum hydroxide (Al(0H)q), alumina (Μ..), iodic acid (A1P0J, phosphonium 2 3 4 τ acid dihydrogen aluminum (AKHqPC^)), and One or more of L 4 ο ώ 4 3 in the phosphoric acid secondary gas IS (A19(HP0 )). The acid-filled source and the trivalent source may be one or more of Α1Ρ〇4, Α1(Η2Ρ〇4)3, and Α12(ΗΡ〇4)3. The metal oxide includes chromium trioxide (Cr〇3), oxidized (ΖηΟ), copper oxide (CuO), magnesium oxide (MgO), zirconium dichloride (Zr〇2), and trioxane.

化鉬(M〇0Q)、五氧化二釩、五氧化二鈮(NbJJ 〇 Zb L 5 及五氧化二钽中的一種或幾種。 L 〇 [0015] 該改性劑為一種有一定黏性的澄清溶液。該液相溶劑可 為水或N-曱基°比°各烧酮(NMP)等,該璘源、三價紹源以及 099140717 表單編號A0101 第6頁/共42頁 0992070875-0 201222949 Ο [0016] 〇 [0017] [0018] 金屬氧化物的摩爾比優選為(Α1+Μ):Ρ=1:2.5至1:4。其 中,該A1、Μ和Ρ分別為該铭源中的銘元素、金屬氧化物 中的金屬元素以及該磷源中的磷元素的摩爾數。更為優 選地,該比例為(Α1+Μ):Ρ=1:2. 5至1:3。當該金屬氧化 物為(:1*〇3時,該改性劑為紅色的澄清溶液。可以理解, 為利於塗覆形成薄且均勻的塗層,可製備濃度較低的改 性劑,或者在使用時將該改性劑稀釋成較小的濃度,所 述磷源的磷酸根、三價鋁源中的鋁元素和金屬氧化物中 的金屬元素的總質量佔所述改性劑總體積的體積密度優 選為0.02g/ml 至0.08g/ml。 該改性劑可均勻塗覆於鋰離子電池集流體或電極片表面 。該改性劑受熱(大於100°C )後發生反應,受熱生成物 的成分為Α1 Μ PO,以及A1 M (POQ)Q中的一種或該兩種物 質的混合物;其中Μ的價態為k,Μ可為Cr、Zn、Cu、Mg 、Zr、Mo、V、Nb及Ta中的一種或複數種的混合;0&lt;χ&lt;1 ,0&lt;y〈l且3x + ky = 3 〇優選地,戶斤述Μ為Cr,k = 3,所述 受熱生成物的成分為A1 C' P0/以及A1 C' (PO,),* X 1-X 4 X 1 -X 3 3 的一種或該兩種的混合。 所述鋰離子電池改性劑可藉由如下方法來製備,包括如 下步驟: 步驟一,提供含磷酸根的磷源、三價鋁源和金屬氧化物 ,以及 步驟二,在液相溶劑中混合該磷源、鋁源和所述金屬氧 化物,反應生成一澄清溶液。 099140717 表單編號A0101 第7頁/共42頁 0992070875-0 [0019] 201222949 [0020] 上述澄清溶液即為本發明實施例鋰離子電池改性劑。 [0021] 在上述步驟一中,所述磷酸根可為正磷酸根(p〇43 — )、磷 酸二氫根(H2P〇4-)及磷酸一氫根(Hp〇42-)中的一種或幾 種的混合。其中,所述含p〇 3-的磷源可為磷酸(H p〇 ) 4 3 4 、磷酸三錢((NH4)3P〇4)及磷酸紹(Α1Ρ〇4)中的一種或複 數種;所述含Η PO —的磷源可為磷酸二氫銨(NH H PO ) &lt; 4 4 2 4 及磷酸二氫紹(Α1(Η2Ρ〇4)3)中的一種或複數種;所述含 2 - ΗΡ〇4的磷源可為磷酸一氫銨((NWHPOJ及磷酸一氫 fs L· rr 銘(Al2(HP〇4)3)中的一種或複數種。該三價銘源可為氫 氧化銘(A1(0H)3)、氧化|g(Ai2〇3)、磷酸銘(Α1Ρ〇4)、 磷酸二氫銘(Α1(Η2Ρ〇4)3)以及磷酸一氫銘(Α12(ΗΡ〇4)3) 中的一種或複數種。優選地,所述磷源的磷酸根、三價 銘源中的鋁元素和金屬氧化物中的金屬元素的總質量佔 所述改性劑總體積的體積密度為0. 0 2g/ml至0. 0 8g/ml 。可以理解’該含磷酸根的磷源和該三價鋁源可同時為 aip〇4、ai(h2p〇4)3以及ai2(hp〇4)3中的一種或幾種。 該金屬氧化物包括三氧化鉻(Cr03)、氧化鋅(Zn〇)、氧 化銅(CuO)、氧化鎂(MgO)、二氧化锆(zr〇 )、三氧化翻 (Mo〇3)、五氧化二叙(ν2〇5)、五氧化二銳(Ν、〇5)及五 氧化二组(Ta2〇5)中的一種或幾種。本發明實施例中採用 Η/。4為所述磷源,該H3P〇4的濃度優選為6〇%至9〇% ;採 用ai(oh)3粉末作為所述鋁源;採用Cr〇3粉末作為所述金 屬氧化物。 [0022] 在上述步驟二中,所述液相溶劑可為水或NMP等;該磷源 、三價鋁源以及金屬氧化物的摩爾比優選為 099140717 表單編號A0101 第8頁/共42頁 0992070875-0 201222949 (αι+μ)·ρ_1:2 5至1:4。其中該μ、μ和ρ分別為該紹 源十馳元素、該金屬氡化物中的金屬元素以及該雄源 中的璘元素的摩爾數。更為優選地,該摩爾比為 (Α1+Μ):Ρ=1:2.5至1:3 。 [0023] Ο 所述在液相溶财混合可為將該磷源、㈣和金屬氧化 物同時或逐—加人到該液相溶劑中現合;也可將所述填 源先配置成溶液,再將所述_和所述金屬氧化物同時 或先後加人到該麟溶液中混合。其中,所賴源和所 述金屬氧化物加人的卿最終的反應生成物。本 發明實施例中先配置_4水溶液,然後將αι(οη)3粉末 加入到邊113?〇4水溶液中,反應一段時間後,生成Alp〇4 白色懸濁液,接著在該白色懸濁液中加人Cr(^粉末,一4 段時間後’白色懸濁液逐漸消失,最終溶液變3成一種紅 色澄清溶液。 [0024] Ο [0025] [0026]Molybdenum (M〇0Q), vanadium pentoxide, antimony pentoxide (NbJJ 〇Zb L 5 and antimony pentoxide. L 〇 [0015] The modifier is a certain viscosity a clear solution. The liquid solvent may be water or N-sulfonium ratio ° ketone (NMP), etc., the source, the trivalent source and the 099140717 form number A0101 page 6 / total 42 page 0992070875-0 201222949 Ο [0016] [0018] The molar ratio of the metal oxide is preferably (Α1+Μ): Ρ=1:2.5 to 1:4, wherein the A1, Μ and Ρ are respectively in the source The inscription element, the metal element in the metal oxide, and the number of moles of the phosphorus element in the phosphorus source. More preferably, the ratio is (Α1+Μ): Ρ=1:2.5 to 1:3. When the metal oxide is (1*〇3, the modifier is a red clear solution. It is understood that in order to facilitate coating to form a thin and uniform coating, a lower concentration modifier may be prepared, or When used, the modifier is diluted to a smaller concentration, and the total mass of the phosphate of the phosphorus source, the aluminum element of the trivalent aluminum source, and the metal element of the metal oxide accounts for the total amount of the modifier. The bulk density of the volume is preferably from 0.02 g/ml to 0.08 g/ml. The modifier can be uniformly applied to the surface of the lithium ion battery current collector or the electrode sheet. The modifier reacts after being heated (greater than 100 ° C), The composition of the heat-generating product is Α1 Μ PO, and one of A1 M (POQ) Q or a mixture of the two substances; wherein valence of yttrium is k, lanthanum may be Cr, Zn, Cu, Mg, Zr, Mo a mixture of one or more of V, Nb, and Ta; 0 &lt; χ &lt; 1 , 0 &lt; y < 1 and 3 x + ky = 3 〇 Preferably, the household is Cr, Cr, k = 3, the heat is The composition of the product is one of A1 C' P0/ and A1 C' (PO,), * X 1-X 4 X 1 -X 3 3 or a mixture of the two. The lithium ion battery modifier can be borrowed. Prepared by the following method, comprising the steps of: Step 1: providing a phosphate-containing phosphorus source, a trivalent aluminum source, and a metal oxide, and Step 2, mixing the phosphorus source, the aluminum source, and the metal in a liquid phase solvent The oxide is reacted to form a clear solution. 099140717 Form No. A0101 Page 7 / Total 42 Page 0992070875-0 [0019] 201222949 [0020] The above clear solution is an embodiment of the present invention Lithium Ion Battery Modifier [0021] In the above step 1, the phosphate may be orthophosphate (p〇43 — ), dihydrogen phosphate (H 2 P〇 4−), and monohydrogen phosphate (Hp〇). a mixture of one or more of 42-), wherein the phosphorus source containing p〇3- may be phosphoric acid (H p〇) 4 3 4 , phosphoric acid tris((NH4)3P〇4), and phosphoric acid One or more of (Α1Ρ〇4); the phosphorus source containing ΗPO- may be ammonium dihydrogen phosphate (NH H PO ) &lt; 4 4 2 4 and dihydrogen phosphate (Α1Η2Ρ〇4) One or more of 3); the phosphorus source containing 2 - ΗΡ〇4 may be one of NWHPOJ and monohydrogen fs L·rr (Al2(HP〇4)3) Or a plurality of species. The trivalent source can be chlorinated (A1(0H)3), oxidized|g(Ai2〇3), phosphoric acid (Α1Ρ〇4), dihydrogen phosphate (Α1(Η2Ρ〇4)3), and phosphoric acid. One or a plurality of one hydrogen (Α12(ΗΡ〇4)3).至至0至0至0至0至0至0至0至0至0至0至0至0至0. . 0 8g/ml. It is to be understood that the phosphate-containing phosphorus source and the trivalent aluminum source may be one or more of aip〇4, ai(h2p〇4)3, and ai2(hp〇4)3 at the same time. The metal oxide includes chromium trioxide (Cr03), zinc oxide (Zn〇), copper oxide (CuO), magnesium oxide (MgO), zirconium dioxide (zr〇), trioxide (Mo〇3), and pentoxide. One or more of two (v2〇5), pentoxide (Ν, 〇5) and pentoxide (Ta2〇5). In the embodiment of the present invention, Η/ is used. 4 is the phosphorus source, and the concentration of the H3P〇4 is preferably 6〇% to 9〇%; ai(oh)3 powder is used as the aluminum source; and Cr〇3 powder is used as the metal oxide. [0022] In the above step two, the liquid phase solvent may be water or NMP, etc.; the molar ratio of the phosphorus source, the trivalent aluminum source and the metal oxide is preferably 099140717. Form No. A0101 Page 8 / Total 42 Page 0992070875 -0 201222949 (αι+μ)·ρ_1: 2 5 to 1:4. Wherein μ, μ, and ρ are the number of moles of the element, the metal element in the metal halide, and the germanium element in the male source, respectively. More preferably, the molar ratio is (Α1 + Μ): Ρ = 1:2.5 to 1:3. [0023] Ο the liquid phase in the liquid mixture can be the phosphorus source, (four) and the metal oxide simultaneously or by adding to the liquid phase solvent; can also be configured as a solution And adding the _ and the metal oxide to the lin solution simultaneously or sequentially. Among them, the source and the metal oxide add a final reaction product. In the embodiment of the present invention, the aqueous solution of _4 is firstly disposed, and then the powder of αι(οη)3 is added to the aqueous solution of 113??4, and after a certain reaction, a white suspension of Alp〇4 is formed, followed by the white suspension. The addition of human Cr (^ powder, after a period of 4 'white suspension gradually disappeared, the final solution became 3 into a red clear solution. [0024] [0026]

Jl述步驟1可進-步&amp;括㈣和/或加熱的步驟來使該碌 源、鋁源和金屬氧化物在所述液相溶劑中的混合更加均 勻,反應更加完全。所述加熱的溫度優選為60。(:至100。(:: ,所述反應的時間優選為2至3小時。 實施例1 :鋰離子電池改性劑的製備 將34. 5克濃度為85%的H3P〇4*14克去離子水加入燒杯中 配置成溶液;80°C下磁力攪拌該溶液5分鐘;將59克 Α1(ΟΗ)3加入到上述燒杯中,反應2小時,所述燒杯中溶 液生成一溶膠狀液體;接著,在該燒杯中加入2. 5克(&gt;〇3 粉末,繼續反應2小時,使燒杯中的產物變為澄清的紅色 099140717 表單煸號A0101 第9頁/共42頁 0992070875-0 201222949 溶液。 [0027] [0028] [0029] [0030] [0031] [0032] [0033] (二)鋰離子電池改性劑的應用 (1)用於鋰離子電池集流體 上述鋰離子電池改性劑可用來提高鋰離子電池的穩定性 。以鋰離子電池集流體為例,由於該改性劑為—種澄清 溶液,故易於在裡離子電池集流體表面均勻塗覆,且塗 覆後經過乾燥等處理可在該集流體表面形成均勻且薄的 保護獏,該保護膜可阻止集流體與鋰離子電池電解液之 間的副反應且不影響該集流體的導電性。 本發明實施例進一步提供一種上述鋰離子電池改性劑的 使用方法,該方法包括如下步帮: S11,將上述鋰離子電池改性劑塗覆於鋰離子電池集流體 表面形成一塗覆層,以及 S12,熱處理該塗覆後的鋰離子電池集流體。 在上述步細中’所述鍾離子電池集流體材料可為紹、 銅或錄等齡屬或含有㉝、_絲㈣合金。健離子 電池改性劑可藉由刮塗、刷塗、喷塗、靜電塗覆(elec. ⑽Ung)、黏_(r〇ll coating)、絲 網印刷或提餘等方柄Μ覆於所述_子電池集流、J1 describes that step 1 may be carried out by step-by-step (4) and/or heating to make the mixing of the source, aluminum source and metal oxide in the liquid phase solvent more uniform and more complete. The temperature of the heating is preferably 60. (: to 100. (::, the reaction time is preferably 2 to 3 hours. Example 1: Preparation of a lithium ion battery modifier: 34.5 g of 85% concentration of H3P〇4*14 g Ionized water was added to the beaker and configured as a solution; the solution was magnetically stirred at 80 ° C for 5 minutes; 59 g of Α 1 (ΟΗ) 3 was added to the above beaker, and the reaction was carried out for 2 hours, and the solution in the beaker formed a sol-like liquid; Add 2.5 g (&gt; 〇3 powder to the beaker and continue the reaction for 2 hours to make the product in the beaker clear to the red 099140717 Form No. A0101 Page 9 / Total 42 page 0992070875-0 201222949 solution. [0028] [0033] [0033] (2) Application of Lithium Ion Battery Modifier (1) For Lithium Ion Battery Current Collector The above lithium ion battery modifier is available To improve the stability of the lithium ion battery. Taking the lithium ion battery current collector as an example, since the modifier is a clear solution, it is easy to uniformly coat the surface of the current collector of the inner ion battery, and is dried after being coated. A uniform and thin protective flaw can be formed on the surface of the current collector, which prevents the current collecting The side reaction between the body and the lithium ion battery electrolyte does not affect the conductivity of the current collector. Embodiments of the present invention further provide a method for using the above lithium ion battery modifier, the method comprising the following steps: S11, The lithium ion battery modifier is coated on the surface of the current collector of the lithium ion battery to form a coating layer, and S12 is used to heat treat the coated lithium ion battery current collector. In the above step, the clock ion battery current collector is The material may be of the same age or copper, or contains 33, _ silk (four) alloy. The health ion battery modifier can be applied by blade coating, brushing, spraying, electrostatic coating (elec. (10) Ung), sticky _ ( R〇ll coating), screen printing or raffinate, etc.

體一個或兩個表面。該塗L 謂層〗能太厚,太厚會降低該 集流體的導電性°所述料法可使在所述集流體的兩個 表面形成的塗覆層均句連續,且可較好地控制所述塗覆 層的厚度’故本制實施例_提料在賊離子電池 099140717 表單編號A0101 第10頁/共42頁 0992070875-0 201222949 [0034] Ο [0035] [0036]One or two surfaces. The coating layer can be too thick, too thick to reduce the conductivity of the current collector. The material method can make the coating layer formed on both surfaces of the current collector continuous, and can be better Controlling the thickness of the coating layer, so the present embodiment _ the material is in the thief ion battery 099140717 Form No. A0101 Page 10 / Total 42 Page 0992070875-0 201222949 [0034] [0036]

集流體的兩個表面塗覆所述鋰離子電池改性劑。 本發明實施例提拉法的具體過程包括:將該鋰離子電池 集流體完全浸潤到已配置好的所述鋰離子電池改性劑中 ;並將該浸潤後的鋰離子電池集流體提拉出所述改性劑 外。在提拉時,可使該裡離子電池集流體與改性劑頁面 基本垂直。上述浸潤和提拉的步驟可重複複數次以控制 所述集流體表面塗覆層的厚度以及均勻性。可以理解, 上述鋰離子電池改性劑的濃度越小,以及將該浸潤後的 集流體提拉出所述改性劑外的速度越快,形成的所述塗 覆層的厚度越薄。 上述步驟S12中,在進行所述熱處理步驟前可進一步包括 預先乾燥該塗覆後的鋰離子電池的步驟來蒸乾該塗覆層 中的溶劑,該乾燥的方式可為常溫自然晾乾也可為加熱 烘乾。 所述熱處理步驟一方面可進一步蒸乾該塗覆層中的溶劑 ;另一方面可使該蒸乾後的塗覆層轉化為連續的保護膜 形成於所述鋰離子電池集流體表面,該保護膜可保護該 集流體免受鋰離子電池電解液的腐蝕。所述熱處理的溫 度為100°C至350°C,優選地,該溫度為150°C至250°C。 熱處理的時間優選為1小時至3小時。該保護膜的厚度可 為 10nm至200nm,優選為50nm至60nm。 [0037] 099140717 請參閱圖1,本發明實施例還利用上述鋰離子電池改性劑 製備了一種鋰離子電池集流體100,該鋰離子電池集流體 100包括一金屬片102和一保護膜106設置於該金屬片102 表單編號A0101 第11頁/共42頁 0992070875-0 201222949 表面。其中’該保護膜106的成分為A1 M P0以及 x y 4 A1XMy(P03)3中的一種或該兩種物質的混合物;其中Μ的 4貝態為k ’ Μ可為Cr、Zn、Cu、Mg、Zr、Mo、V、Nb及Ta 中的一種或複數種的混合;〇&lt;x&lt;l,〇&lt;y&lt;l且3x + ky = 3。 [0038] 所述金屬片102的材料可為鋁、銅或鎳等純金屬或含有鋁 、銅或鎳等的合金。該金屬片1〇2的厚度優選為5/ζιη至60 ’寬度優選為10mm至300nm。所述保護膜106的厚度 可為10nm至200nm,優選為50nm至60nm。優選地,所述 保護膜的成分為A1 Cr POj以及A1 Cr, 中的一 ^ 1 X 4 X 1 ~ X ο 〇 種或该兩種的混合b [0039] 該鋰離子電池集流體1〇〇可藉由如下方法製備: [0040] S21,提供上述方法製備的鋰離子電池改性劑和金屬片 102 ; [0041] S22 ’將該鋰離子電池改性劑塗覆於該金屬片表面形成塗 覆層,以及 [0042] S23 ’熱處理該塗覆後的金屬片丨〇2,上述塗覆層轉化為 保護膜106形成於金屬片1〇2表面。 [0043] 在上述步驟S21中,所述金屬片1〇2可為鋁、銅或鎳等純 金屬或含有鋁、銅或鎳等的合金。該金屬片1〇2的厚度優 選為5/zm至60 ;zm,寬度優選為l〇mm至300ηπη。本發明實 施例中採用鋁箔作為所述金屬片J 02 ^ [0044] 上述步驟S 2 2可藉由刮塗、刷塗、噴塗、靜電塗覆( electrostatic coating)、黏親(roll coating) 099140717 表單編號A0101 第12頁/共42頁 0992070875-0 201222949 [0045] Ο [0046] 〇 [0047] 、絲網印刷或提拉法等方式將所述鋰離子電池改性劑均 勻塗覆於所述金屬片102—個或兩個表面。該塗覆層不能 太厚,太厚會降低該金屬片102的導電性。所述提拉法可 使在所述金屬片102的兩個表面形成的塗覆層均勻連續, 且可較好地控制所述塗覆層的厚度,故本發明實施例採 用提拉法來在該金屬片102的兩個表面塗覆所述鋰離子電 池改性劑。 該提拉法的具體過程包括:將該金屬片102浸潤到已配置 好的所述鋰離子電池改性劑中;並將該浸潤後的金屬片 102提拉出所述改性劑外。在提拉時,可使該金屬片102 與改性劑液面基本垂直。上述浸潤和提拉的步驟可重複 複數次以控制所述金屬片102表面塗覆層的厚度以及均勻 性。可以理解,上述鋰離子電池改性劑的濃度越小,以 及將該浸潤後的所述金屬片102提拉出所述改性劑外的速 度越快,形成的所述塗覆層的厚度越薄。 上述步驟S23中,在進行熱處理步驟前可進一步包括預先 乾燥該塗覆後的金屬片102的步驟來除去該塗覆層中的溶 劑,該乾燥的方式可為常溫自然晾乾也可為加熱烘乾。 所述熱處理步驟一方面可進一步蒸乾該塗覆層中的液相 溶劑;另一方面可使該蒸乾後的塗覆層轉化為連續的保 護膜106形成於該金屬片102表面,該保護膜106可保護 該金屬片102免受鋰離子電池電解液的腐蝕。該保護膜 106的厚度可為10nm至200nm,優選為50nm至60nm。所 述熱處理的溫度為100°C至350°C,優選地,該溫度為 150°C至250°C。熱處理的時間優選為1小時至3小時。 099140717 表單編號A0101 第13頁/共42頁 0992070875-0 201222949 [0048] 由於本發明實施例中所述鋰離子電池改性劑為一種澄清 溶液,可較容易地在所述鋰離子電池集流體100的金屬片 102表面形成薄且均勻連續的保護膜106,從而能更好地 保護所述鋰離子電池集流體100免受腐蝕,且對所述鋰離 子電池集流體100的導電性能影響不大。 [0049] 本發明實施例利用上述方法製備了鋰離子電池改性劑和 具有保護膜的鋰離子電池集流體,並在酸性環境下測試 該具有保護膜的鋰離子電池集流體與未塗覆保護膜的鋰 離子電池集流體的穩定性。 [0050] 實施例2 :鋰離子電池集流體的製備 [0051] 本發明實施例利用上述鋰離子電池改性劑來製備具有保 護膜的鋰離子電池集流體。本發明實施例中選用鋁箔為 所述金屬片,該金屬片的厚度為20/zm,寬度為3 0mm。該 鋰離子電池集流體的製備過程為:向上述製備好的鋰離 子電池改性劑中加入0.5ml的曲拉通和30ml水,超聲震 盪20分鐘使其混合均勻;然後用提拉法將該改性劑塗覆 於鋁箔表面形成塗覆層;接著將該具有塗覆層的鋁箔放 入烘箱中80°C下乾燥0. 5小時,最後再將該具有塗覆層的 鋁箔放入馬弗爐中,於200°C下保溫1小時,即得到本發 明實施例製備的具有保護膜的鋰離子電池集流體。所述 保護膜的厚度為52nm。所述鋰離子電池改性劑的濃度為 0. 0432g/ml,該濃度為上述磷源的磷酸根、三價鋁源中 的铭和金屬氧化物中的金屬的總質量佔該改性劑總體積 的體積密度。 099140717 表單編號A0101 第14頁/共42頁 0992070875-0 201222949 [0052] [0053] [0054] [0055] Ο [0056] ❹ [0057] [0058] 請參閱圖2和圖3,在掃描電鏡下觀察可發現,傳統的鋁 集流體表面有許多缺陷的坑洞;而本發明具有保護膜的 集流體表面緻密平滑。 測試實驗 將本發明實施例所述鋰離子電池集流體與未塗覆所述改 性劑的鋁集流體分別放入稀鹽酸溶液中浸泡觀察。本測 試實驗中稀鹽酸的濃度為lmol/L。 觀察發現,未塗覆改性劑的鋁集流體放入稀鹽酸中靜置 一段時間後產生氣泡,表明該集流體已被腐蝕;而本發 明實施例鋰離子電池集流體在稀鹽酸中浸泡4小時後,未 發現該集流體表面有氣泡產生,表明該集流體未受到腐 蝕。另外,將該具有保護膜的集流體進行導電性能測試 ,證明該集流體仍具有較好的導電性,能夠滿足鋰離子 電池集流體的要求。 (2)用於鋰離子電池電極 請參閱圖4,本發明實施例提供一種鋰離子電池電極200 ,其包括鋰離子電池集流體202,電極材料層204以及設 置於該電極材料層上的保護膜206。其中,該保護膜206 的成分為Α1 Μ P0,以及A1 M (P0Q)。中的一種或該兩種物 質的混合物;其中Μ的價態為k,Μ可為Cr ' Zn、Cu、Mg 、Zr、Mo、V、Nb及Ta中的一種或複數種的混合;0&lt;χ&lt;1 ,0&lt;y&lt;l且3x + ky = 3。該保護膜206由前述鋰離子電池改 性劑製成。 所述鋰離子電池集流體202的材料可為鋁、銅或鎳等純金 099140717 表單編號A0101 第15頁/共42頁 0992070875-0 201222949 屬或含有鋁、銅或鎳等的合金。所述電極材料層204包括 電極活性材料、導電劑以及黏結劑。所述電極活性材料 可為正極活性材料或負極活性材料,所述正極活性材料 可為未摻雜或掺雜的尖晶石結構的锰酸鋰、層狀錳酸鋰 、鎳酸鋰、鈷酸鋰、磷酸鐵鋰、鋰鎳錳氧化物及鋰鎮姑 猛氧化物中的一種或複數種。具體地,該尖晶石結構的 猛酸链可由化學式LixMn2 yLy〇4表示,該鎳酸鐘可由化 學式示’該姑酸鋰的化學式可由 LixCoi-yLy〇2表示’該層狀錳酸鋰的化學式可由The two surfaces of the current collector coat the lithium ion battery modifier. The specific process of the pulling method of the embodiment of the present invention includes: completely infiltrating the lithium ion battery current collector into the prepared lithium ion battery modifier; and pulling out the infiltrated lithium ion battery current collector The modifier is external. At the time of pulling, the current collector of the ion battery can be made substantially perpendicular to the modifier page. The above steps of wetting and pulling may be repeated a plurality of times to control the thickness and uniformity of the surface coating of the current collector. It will be understood that the lower the concentration of the above-described lithium ion battery modifier, and the faster the rate at which the infiltrated current collector is pulled out of the modifier, the thinner the thickness of the coating layer formed. In the above step S12, before the performing the heat treatment step, the method further includes the step of pre-drying the coated lithium ion battery to evaporate the solvent in the coating layer, and the drying method may be naturally dried at normal temperature. Dry for heating. The heat treatment step may further evaporate the solvent in the coating layer on the one hand; on the other hand, the evaporated coating layer may be converted into a continuous protective film formed on the surface of the lithium ion battery current collector, the protection The membrane protects the current collector from corrosion by the lithium ion battery electrolyte. The heat treatment has a temperature of from 100 ° C to 350 ° C, preferably, the temperature is from 150 ° C to 250 ° C. The heat treatment time is preferably from 1 hour to 3 hours. The protective film may have a thickness of 10 nm to 200 nm, preferably 50 nm to 60 nm. [0037] Referring to FIG. 1, a lithium ion battery current collector 100 is further prepared by using the above lithium ion battery modifier, and the lithium ion battery current collector 100 includes a metal piece 102 and a protective film 106. On the metal sheet 102 Form No. A0101 Page 11 / Total 42 Page 0992070875-0 201222949 Surface. Wherein the composition of the protective film 106 is one of A1 M P0 and xy 4 A1XMy (P03) 3 or a mixture of the two substances; wherein the four-shell state of yttrium is k ' Μ may be Cr, Zn, Cu, Mg , a mixture of one or more of Zr, Mo, V, Nb, and Ta; 〇 &lt;x&lt;l, 〇&lt;y&lt;l and 3x + ky = 3. [0038] The material of the metal piece 102 may be a pure metal such as aluminum, copper or nickel or an alloy containing aluminum, copper or nickel. The thickness of the metal piece 1 〇 2 is preferably 5/ζι to 60 Å, preferably 10 mm to 300 nm. The protective film 106 may have a thickness of 10 nm to 200 nm, preferably 50 nm to 60 nm. Preferably, the composition of the protective film is A1 Cr POj and A1 Cr, a ^ 1 X 4 X 1 ~ X ο 〇 or a mixture of the two b [0039] The lithium ion battery current collector 1 〇〇 The method can be prepared as follows: [0040] S21, providing a lithium ion battery modifier prepared by the above method and a metal sheet 102; [0041] S22 'coating the lithium ion battery modifier on the surface of the metal sheet to form a coating The coating, and [0042] S23 'heat-treating the coated metal sheet 2, the coating layer is converted into a protective film 106 formed on the surface of the metal sheet 1〇2. [0043] In the above step S21, the metal piece 1〇2 may be a pure metal such as aluminum, copper or nickel or an alloy containing aluminum, copper or nickel. The thickness of the metal piece 1〇2 is preferably 5/zm to 60; zm, and the width is preferably from 10 mm to 300 ηπη. In the embodiment of the present invention, an aluminum foil is used as the metal piece J 02 ^ [0044] The above step S 2 2 can be formed by knife coating, brush coating, spray coating, electrostatic coating, roll coating 099140717 No. A0101 Page 12 of 42 0992070875-0 201222949 [0045] 锂 [0047], screen printing or pulling method, etc., uniformly apply the lithium ion battery modifier to the metal Sheet 102 - one or two surfaces. The coating layer should not be too thick, too thick to reduce the electrical conductivity of the metal sheet 102. The pulling method can make the coating layer formed on the two surfaces of the metal piece 102 uniform and continuous, and can better control the thickness of the coating layer, so the embodiment of the invention adopts the pulling method to Both surfaces of the metal sheet 102 are coated with the lithium ion battery modifier. The specific process of the pulling process includes: wetting the metal sheet 102 into the prepared lithium ion battery modifier; and pulling the wetted metal sheet 102 out of the modifier. The metal sheet 102 can be made substantially perpendicular to the level of the modifier during pulling. The above steps of wetting and pulling may be repeated a plurality of times to control the thickness and uniformity of the surface coating layer of the metal piece 102. It can be understood that the smaller the concentration of the above lithium ion battery modifier, and the faster the speed of pulling the wetted metal sheet 102 out of the modifier, the more the thickness of the coating layer formed. thin. In the above step S23, before the heat treatment step, the step of drying the coated metal sheet 102 may be further included to remove the solvent in the coating layer, and the drying method may be natural drying at room temperature or heating. dry. The heat treatment step may further evaporate the liquid phase solvent in the coating layer on the one hand; on the other hand, the evaporated coating layer may be converted into a continuous protective film 106 formed on the surface of the metal sheet 102, the protection. The membrane 106 protects the metal sheet 102 from corrosion by the lithium ion battery electrolyte. The protective film 106 may have a thickness of 10 nm to 200 nm, preferably 50 nm to 60 nm. The heat treatment temperature is from 100 ° C to 350 ° C, preferably, the temperature is from 150 ° C to 250 ° C. The heat treatment time is preferably from 1 hour to 3 hours. 099140717 Form No. A0101 Page 13 / Total 42 Page 0992070875-0 201222949 [0048] Since the lithium ion battery modifier described in the embodiment of the present invention is a clear solution, the lithium ion battery current collector 100 can be easily used. The surface of the metal sheet 102 forms a thin and uniform continuous protective film 106, thereby better protecting the lithium ion battery current collector 100 from corrosion and having little effect on the electrical conductivity of the lithium ion battery current collector 100. [0049] In the embodiment of the present invention, a lithium ion battery modifier and a lithium ion battery current collector having a protective film are prepared by the above method, and the lithium ion battery current collector with protective film and uncoated protection are tested under an acidic environment. The stability of the lithium ion battery current collector of the membrane. Example 2: Preparation of Lithium Ion Battery Current Collector [0051] The present invention utilized a lithium ion battery modifier as described above to prepare a lithium ion battery current collector having a protective film. In the embodiment of the present invention, an aluminum foil is selected as the metal piece, and the metal piece has a thickness of 20/zm and a width of 30 mm. The lithium ion battery current collector is prepared by adding 0.5 ml of Triton and 30 ml of water to the prepared lithium ion battery modifier, and ultrasonically shaking for 20 minutes to make the mixture uniform; and then using a pulling method to The coating is applied to the surface of the aluminum foil to form a coating layer; the aluminum foil having the coating layer is then placed in an oven at 80 ° C for 0.5 hours, and finally the coated aluminum foil is placed in the muffle. In the furnace, the lithium ion battery current collector having the protective film prepared in the examples of the present invention was obtained by holding at 200 ° C for 1 hour. The thickness of the protective film was 52 nm. The concentration of the lithium ion battery modifier is 0. 0432 g / ml, the concentration of the phosphate source of the above phosphorus source, the source of the trivalent aluminum source and the total mass of the metal in the metal oxide account for the total amount of the modifier. Volume density of volume. 099140717 Form No. A0101 Page 14 of 42 0992070875-0 201222949 [0054] [0055] [0055] [0058] [0058] Please refer to FIG. 2 and FIG. 3 under scanning electron microscopy It can be observed that the surface of the conventional aluminum current collector has many defective pits; and the surface of the current collector having the protective film of the present invention is dense and smooth. Test Experiment The lithium ion battery current collector of the embodiment of the present invention and the aluminum current collector not coated with the modifier were respectively placed in a dilute hydrochloric acid solution for observation. The concentration of dilute hydrochloric acid in this test was 1 mol/L. It was observed that the aluminum current collector not coated with the modifier was placed in dilute hydrochloric acid for a period of time to generate bubbles, indicating that the current collector had been corroded; whereas the lithium ion battery current collector of the present invention was soaked in dilute hydrochloric acid. After hours, no bubbles were found on the surface of the current collector, indicating that the current collector was not corroded. In addition, the current collector of the protective film was tested for electrical conductivity, and it was proved that the current collector still has good conductivity and can meet the requirements of the current collector of the lithium ion battery. (2) Electrode for Lithium Ion Battery Referring to FIG. 4, an embodiment of the present invention provides a lithium ion battery electrode 200 including a lithium ion battery current collector 202, an electrode material layer 204, and a protective film disposed on the electrode material layer. 206. The composition of the protective film 206 is Α1 Μ P0, and A1 M (P0Q). One or a mixture of the two; wherein the valence of ruthenium is k, and Μ may be a mixture of one or more of Cr'Zn, Cu, Mg, Zr, Mo, V, Nb, and Ta; χ &lt;1 , 0 &lt; y &lt; l and 3x + ky = 3. The protective film 206 is made of the aforementioned lithium ion battery modifier. The material of the lithium ion battery current collector 202 may be pure gold such as aluminum, copper or nickel. 099140717 Form No. A0101 Page 15 of 42 0992070875-0 201222949 is an alloy containing aluminum, copper or nickel. The electrode material layer 204 includes an electrode active material, a conductive agent, and a binder. The electrode active material may be a positive electrode active material or a negative electrode active material, and the positive electrode active material may be undoped or doped spinel structure lithium manganate, layered lithium manganate, lithium nickelate, cobalt acid One or a plurality of lithium, lithium iron phosphate, lithium nickel manganese oxide, and lithium eutrophic oxide. Specifically, the acid chain of the spinel structure may be represented by a chemical formula of LixMn2 yLy〇4, which may be represented by a chemical formula: 'The chemical formula of the lithium niobate may be represented by LixCoi-yLy〇2' The chemical formula of the layered lithium manganate Can be

LixMm-yL 〇 ’該磷酸鐵鐘的化學式可由Li Fe l p〇 y x l-y y 4 表示’該鋰鎳錳氧化物的化學式可由LixMm-yL 〇 ' The chemical formula of the iron phosphate clock can be represented by Li Fe l p 〇 y x l-y y 4 'The chemical formula of the lithium nickel manganese oxide can be

LlxNlQ.5 + z-aMn1.5 —z-bLaRb〇4表示,該經錄銘猛氧化物 的化學式可由LixNicC〇dMneLf〇2表示,其中〇. ! 1· 1 ’ 〇Sy&lt;l,0Sz&lt;l. 5,0Sa-z&lt;0. 5,〇Sb+z&lt;l. 5 ,〇&lt;c&lt;l,〇&lt;d&lt;l,0&lt;e&lt;l,〇sfs〇.2,c + d + e + f = l。 L和R選自鹼金屬元素、鹼土金屬元素、第;丨3族元素、第 14族元素、過渡族元素及稀土元素中的一種或複數種, 優選地 ’ L和R選自 Mn ' Ni ' Cr、Co、V、Ti、Al、Fe、LlxNlQ.5 + z-aMn1.5 —z-bLaRb〇4 indicates that the chemical formula of the recorded immortal oxide can be represented by LixNicC〇dMneLf〇2, where 〇. ! 1· 1 ' 〇Sy&lt;l,0Sz&lt;l 5,0Sa-z&lt;0. 5,〇Sb+z&lt;l. 5,〇&lt;c&lt;l,〇&lt;d&lt;l,0&lt;e&lt;l,〇sfs〇.2,c + d + e + f = l. L and R are selected from one or more of an alkali metal element, an alkaline earth metal element, a lanthanide 3 group element, a group 14 element, a transition group element, and a rare earth element, preferably 'L and R are selected from Mn 'Ni ' Cr, Co, V, Ti, Al, Fe,

Ga、Nd及Mg中的至少一種。所述負極材料可為鈦酸鋰、 石墨、有機裂解碳及中間相碳微球(MCMB)中的一種或複 數種。具體地,該鈦酸鋰可由化學式Li A Ti 0志 (4-g) g 5 12^At least one of Ga, Nd, and Mg. The negative electrode material may be one or a plurality of lithium titanate, graphite, organically cracked carbon, and mesocarbon microbeads (MCMB). Specifically, the lithium titanate can be represented by the chemical formula Li A Ti 0 (4-g) g 5 12^

Li4AhTi(5-h)〇i2 表示,其中 〇〈g$〇.33,且 〇&lt;hg〇.5 ; A選自鹼金屬元素、鹼土金屬元素、第13族元素、第14族 元素、過渡族元素及稀土元素中的一種或複數種,優選 為Mn'Ni、Cr、Co、V、Al、卩6、6&amp;、财、此及1^中的 至少一種。所述導電劑可為石墨、乙炔黑及奈米碳管中 099140717 表單編號A0101 第16頁/共42頁 0992070875-0 201222949 的一種或複數種;所述黏結劑可為PVDF、聚四氣乙稀 (PTFE)及SBR中的一種或複數種。可以理解,該電極活 性材料、導電劑以及黏結劑也可採用其他常用的材料。 所述保護膜206的成分優選為A1 Cr pn nLi4AhTi(5-h)〇i2 represents 〇<g$〇.33, and 〇&lt;hg〇.5 ; A is selected from the group consisting of alkali metal elements, alkaline earth metal elements, group 13 elements, group 14 elements, transition One or a plurality of the group element and the rare earth element are preferably at least one of Mn'Ni, Cr, Co, V, Al, 卩6, 6&amp;, Cai, and 1^. The conductive agent may be one or more of graphite, acetylene black and carbon nanotubes 099140717 Form No. A0101 Page 16 / Total 42 Page 0992070875-0 201222949; the binder may be PVDF, polytetraethylene One or more of (PTFE) and SBR. It is to be understood that the electrode active material, the conductive agent, and the binder may be other commonly used materials. The composition of the protective film 206 is preferably A1 Cr pn n

x l'X A1xCri-x(P〇3)3中的一種或該兩種的混合。 [0059] [0060] Ο [0061] [0062] [0063] Ο [0064] 上述鋰離子電池電極200可藉由如下步驟來製備. S31,在裡離子電池集流體202表面形成一電極材料層 204 ; S32 ’將該經離子電池改性劑塗覆於上述電極材料層2〇4 表面形成一塗覆層,以及 , S33,熱處理該塗覆後的鐘離子電池集流體2〇2,所述塗 覆層轉化為保護膜206形成於該電極材料層2〇4表面。 上述步驟S31可進一步包括·將電極活:性材料顆粒、導電 劑以及黏結劑製成聚料,以及將該漿料塗覆於所述链離 子電池集流體2 0 2表面形成電極材料層204。此外,可對 該電極材料層2.04進行熱處理.的幾聲來使其更好地黏結於 所述鋰離子電池集流體202表面。 上述步驟S32中’由於所述改性劑為一澄清的溶液,故易 於在上述電極材料層204表面均勻的塗覆,所述塗覆的方 法可為刮塗、刷塗、喷塗、靜電塗覆(electr〇static C〇ating)、黏輥(ro11 coating)或絲網印刷。該塗 覆層不此太厚,太厚會降低該鋰離子電池電極2〇〇的導電 性。 099140717 表單編號A0101 第17頁/共42頁 0992070875-0 201222949 [0065] [0066] [0067] 099140717 在上述步驟S33中,所述熱處理一方面可蒸乾該塗覆層中 的溶劑;另一方面可使該蒸乾後的塗覆層轉化為連續的 保護膜206形成於所述電極材料層204表面來保護該電極 材料層204。所述熱處理的溫度為1〇0。(:至2〇〇。(:,熱處 理的時間優選為1小時至3小時。該保護膜2〇6的厚度可為 l〇nm至200nm,優選為50nm至60nm。由於該保護膜 报薄,故對該鋰離子電池電極2〇〇的導電性影響不大。 請參閱圖5,本發明實施例還提供一種鋰離子電池電極複 合材料300,該電極複合材料300包括電極活性材料顆粒 302以及包覆於該電極活性材料顆粒表面的保護膜3㈣。 該保護膜306的成分為Α1 Μ P0以及A1 Μ “ x y 4 中的一 種或該兩種物質的混合物;其中,M的價態為[^,^{為^^、One of x l'X A1xCri-x(P〇3)3 or a mixture of the two. [0060] [0064] The above lithium ion battery electrode 200 can be prepared by the following steps. S31, forming an electrode material layer 204 on the surface of the inner ion battery current collector 202. S32 'coating the ion battery modifier to the surface of the electrode material layer 2〇4 to form a coating layer, and, S33, heat treating the coated clock ion battery current collector 2〇2, the coating The cladding layer is converted into a protective film 206 formed on the surface of the electrode material layer 2〇4. The above step S31 may further comprise: forming an electrode material: a material particle, a conductive agent, and a binder into a polymer, and applying the slurry to the surface of the chain current collector 220 to form an electrode material layer 204. In addition, the electrode material layer 2.04 may be heat treated several times to better adhere to the surface of the lithium ion battery current collector 202. In the above step S32, since the modifier is a clear solution, it is easy to uniformly coat the surface of the electrode material layer 204, and the coating method may be blade coating, brush coating, spray coating or electrostatic coating. Coating (electr〇static C〇ating), adhesive roller (ro11 coating) or screen printing. The coating layer is not too thick, and too thick will lower the conductivity of the electrode of the lithium ion battery. 099140717 Form No. A0101 Page 17 of 42 0992070875-0 201222949 [0067] [0067] In the above step S33, the heat treatment may evaporate the solvent in the coating layer on the one hand; The evaporated coating layer can be converted into a continuous protective film 206 formed on the surface of the electrode material layer 204 to protect the electrode material layer 204. The temperature of the heat treatment is 1〇0. (: to 2 〇〇. (: The heat treatment time is preferably from 1 hour to 3 hours. The thickness of the protective film 2〇6 may be from 10 nm to 200 nm, preferably from 50 nm to 60 nm. Since the protective film is thin, Therefore, the lithium ion battery electrode composite material 300 includes the electrode active material particles 302 and the package. a protective film 3 (4) covering the surface of the electrode active material particle. The protective film 306 has a composition of Α1 Μ P0 and A1 Μ "xy 4" or a mixture of the two substances; wherein the valence state of M is [^, ^{为^^,

Zn、Cu、Mg、Zr、m。、V、,以中的―種或複數種的 混合’· 〇&lt;x&lt;b 0&lt;7&lt;1且仏+ 1^=3。該保護膜3〇6由前述 鋰離子電池改性劑塗覆於該電極活性材料顆粒3〇2表面並 藉由熱處理製成。 : .: ;:i 該保護膜連續地包電極活性材料顆粒 302表面,該保護膜3〇6在該電極複合材料3〇〇中的質量 刀比優選為〇. 51至3%,厚度優選為5nm至 雷η 王iUUnm。所述 °〉性材料顆粒302的材料可為正極活性材 性去士少丨 4貝極法 鈇枓。所述正極活性材料可為未摻雜或摻雜的尖晶石 、、。構的錳酸鋰、層狀錳酸鋰、鎳酸鋰、 鋰、吹矬磷酸鐵 、娌鎳錳氧化物及鋰鎳鈷錳氧化物中的—種戈複數種 具體地,該尖晶石結構的錳酸鋰可由化學式 LlxMn2_yLy〇4表示’該鎳酸链可由化學式u 表置姐 X ll~yLy°2 表單蝙號A0101 第18頁/共42頁 0992( 201222949 Ο 0 表示’該鈷酸鋰的化學式可由Li Co, L 0表示,該芦 X 1 -y y 2 么’曰 狀猛酸鐘的化學式可由LixMnl yLy〇2,該填酸鐵鐘的化 學式可由LixFelyLyP〇4表示,該ϋ錄猛氧化物的化學式 可由L^o.s+z-aMni.s-z-bLaW表示,該链錄姑短氧 化物的化學式可由LixNicC〇dMneLf02表示,其中ojsx $1.1 ’ 〇Sy&lt;l ’ 〇$z&lt;1.5,0Sa-z&lt;0.5,0S b + z&lt;1.5,0&lt;c&lt;l,〇&lt;d&lt;l,0&lt;e&lt;l,〇SfS〇.2, c + d + e + f = l « L和R選自鹼金屬元素、鹼土金屬元素、第 13族元素、第14族元素、過渡族元素及稀土元素中的一 種或複數種’優選地,L和R選自Mrv、Ni、Cr、Co、V、 Ti、A1、Fe、Ga、Nd及Mg中的至少一種。所述負極活性 材料可為鈦酸鋰、石墨、有機、裂解碳及中間相碳微球 (MCMB)中的一種或複數種。具體地’該鈦酸裡可由化學 式Ll(4-g)AgTi50124Li4AhTi(5_h)0l2表示,其中0&lt;g$ 〇· 33,且〇&lt;h$〇. 5 ; A選自鹼金屬元素、鹼土金屬元素 、第13族元素、第14族元素、過渡族元素及稀土元素中 的一種或複數種,優選為趾、Ni、Cr、c〇、v、A1、Fe 、Ga、Nd、Nb及Mg中的至少一種〇所述電極活性材料顆 粒302的粒徑優選為i00奈米至ι〇〇微米。可以理解所 述電極活性材料也可用其他常用的材料。本發明實施例 中採用粒徑為8微米至12微米的石墨粉末作為負極活性材 料顆粒。所述保護膜3〇6的成分為A1 Cr P0以及 A1xCri-x(P03)3中的一種或該兩種的混合。 [0068] 本發明實施例進一步提供一種使用上述鋰離子電池改性 劑來製備該鋰離子電池電極複合材料3〇〇的方法’具體包 099140717 表單編號 _! ^ 19 I/* 42 I 0992070875-0 201222949 括以下步驟: [0069] [0070] [0071] [0072] B1 1,提供上述鋰離子電池改性劑和上述 粒302 ; 電極活性材料顆 B12,混合該電極活性材料顆粒3〇2和該鋰離子電池改性 劑’形成一混合物,以及 B13 ’乾燥並熱處理該混合物。 在上述步驟Ml中,所述電極活性材料難咐的材料可 為正極活性材料或負極活性材料。所述正極活性材料可 為未摻雜或摻雜的尖晶石結構祕_、層狀猛酸鐘、 鎳酸鋰、鈷酸鋰、磷酸鐵鋰、鋰鎳錳氧化物及鋰鎳鈷錳 氧化物中的-種或複數種。具體地,該尖“結構的猛 酸链可由化學式uxMVyLyG4表示,該錄她可由化學 SLlxNil-yLy〇2表示,該銘酸链的化學式可由Zn, Cu, Mg, Zr, m. , V, , or a mixture of a plurality or a plurality of '' 〇 &lt;x&lt;b 0&lt;7&lt;1 and 仏+1^=3. The protective film 3〇6 is coated on the surface of the electrode active material particles 3〇2 by the aforementioned lithium ion battery modifier and is produced by heat treatment. : . : ;: i The protective film continuously encloses the surface of the electrode active material particles 302, and the mass ratio of the protective film 3〇6 in the electrode composite 3〇〇 is preferably 〇51 to 3%, and the thickness is preferably 5nm to Lei η Wang iUUnm. The material of the particles of the material material 302 may be a positive electrode active material. The positive active material may be undoped or doped spinel, . a lithium manganate, a layered lithium manganate, a lithium nickelate, a lithium, a boiled iron phosphate, a lanthanum manganese oxide, and a lithium nickel cobalt manganese oxide, specifically, the spinel structure Lithium manganate can be represented by the chemical formula LlxMn2_yLy〇4 'The nickel acid chain can be represented by the chemical formula u X X ll~yLy ° 2 form bat number A0101 page 18 / total 42 page 0992 (201222949 Ο 0 means 'the lithium cobaltate The chemical formula can be represented by Li Co, L 0 , and the chemical formula of the X 猛 猛 猛 猛 可由 can be obtained by LixMnl yLy 〇 2, the chemical formula of the iron-filled iron clock can be represented by LixFelyLyP 〇 4, which is a ruthenium oxide The chemical formula can be represented by L^o.s+z-aMni.sz-bLaW, and the chemical formula of the chain short oxide can be represented by LixNicC〇dMneLf02, where ojsx $1.1 ' 〇Sy&lt;l ' 〇$z&lt;1.5,0Sa- z&lt;0.5,0S b + z&lt;1.5,0&lt;c&lt;l,〇&lt;d&lt;l,0&lt;e&lt;l,〇SfS〇.2, c + d + e + f = l « L and R One or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition group element, and a rare earth element. Preferably, L and R are selected from the group consisting of Mrv, Ni, and C. At least one of r, Co, V, Ti, Al, Fe, Ga, Nd, and Mg. The negative active material may be lithium titanate, graphite, organic, pyrolysis carbon, and mesocarbon microbeads (MCMB). One or more kinds. Specifically, the titanic acid can be represented by the chemical formula L1(4-g)AgTi50124Li4AhTi(5_h)0l2, wherein 0 &lt;g$ 〇·33, and 〇&lt;h$〇. 5 ; A is selected from a base One or more of a metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition group element, and a rare earth element, preferably a toe, Ni, Cr, c〇, v, A1, Fe, Ga, Nd The particle size of the electrode active material particles 302 is preferably from i00 nm to ι μm. It is understood that the electrode active material may also be used in other commonly used materials. Graphite powder having a particle diameter of 8 μm to 12 μm is used as the negative electrode active material particles. The composition of the protective film 3〇6 is one of A1 Cr P0 and A1xCri-x(P03) 3 or a mixture of the two. The embodiment of the invention further provides a method for preparing the lithium ion battery by using the lithium ion battery modifier described above. Method for electrode composite 3〇〇 'Specific package 099140717 Form number_! ^ 19 I/* 42 I 0992070875-0 201222949 The following steps are included: [0070] [0072] B1 1, providing the above lithium ion A battery modifier and the above-mentioned particles 302; an electrode active material particle B12, which is mixed with the electrode active material particles 3?2 and the lithium ion battery modifier' to form a mixture, and B13' is dried and heat-treated. In the above step M1, the material in which the electrode active material is difficult to be used may be a positive electrode active material or a negative electrode active material. The positive active material may be undoped or doped spinel structure secret, layered acid clock, lithium nickelate, lithium cobaltate, lithium iron phosphate, lithium nickel manganese oxide and lithium nickel cobalt manganese oxide - or a plurality of species. Specifically, the sharp "structured acid chain can be represented by the chemical formula uxMVyLyG4, which can be represented by the chemical SLlxNil-yLy〇2, the chemical formula of the acid chain can be

LixC〇l-yLy〇2表示,該層狀猛酸鐘的化學式可由 LixMm-yLy〇2,該磷酸鐵經的化學式可由u ^ l p〇 表示,該鋰鎳錳氧化物的化學式可由 y yLixC〇l-yLy〇2 indicates that the chemical formula of the layered acid clock can be LixMm-yLy〇2, and the chemical formula of the iron phosphate can be represented by u ^ l p〇, and the chemical formula of the lithium nickel manganese oxide can be y y

LixNi〇.5+z-aMni.5—z-bLaRb〇4 表示, 的化學式可由LixNicC〇dMneLf02表示LixNi〇.5+z-aMni.5—z-bLaRb〇4 indicates that the chemical formula can be represented by LixNicC〇dMneLf02

該鋰鎳鈷錳氧化物 ’其中〇. ISxS 1. 1 · 〇^y&lt;l &gt; 0^ζ&lt;1. 5 * 0^a-z&lt;〇. ,〇Sb + z&lt;l. 5 ,〇&lt;c&lt;l,〇&lt;d&lt;l,〇&lt;e&lt;l, c+d+e+f=l ° L和K選自鹼金屬元素、驗土金屬元素、第咖元素第 14族元素、過渡族元素及稀土^素中的_種或複數種, 優選地,L和R選自 Mn、Ni、Cr、Co、V、Ti、Al、Fe、The lithium nickel cobalt manganese oxide 'where 〇. ISxS 1. 1 · 〇^y&lt;l &gt;0^ζ&lt;1. 5 * 0^a-z&lt;〇. ,〇Sb + z&lt;l. 5 ,〇 &lt;c&lt;l,〇&lt;d&lt;l,〇&lt;e&lt;l, c+d+e+f=l ° L and K are selected from the group consisting of alkali metal elements, soil test metal elements, and group 14 An element, a transition element, and a plurality or a plurality of rare earth elements, preferably, L and R are selected from the group consisting of Mn, Ni, Cr, Co, V, Ti, Al, Fe,

Ga、Nd及Mg中的至少一種 所述負極活性材料可為鈦酸 099140717 表單編號A0101 第20頁/共42頁 0992070875-0 201222949 Ο [0073] ❹ _4] [0075] 鋰、石墨、有機裂解碳及中間相碳微球(MCMB)*的—種 或複數種。具體地,該欽酸鐘可由化學式 Ll(4-g)AgTi5〇i2 或 Li4AhTi(5h)〇i2 表示,其中 0&lt;gS 〇. 33,且〇&lt;hg〇. 5 ; A選自鹼金屬元素、鹼土金屬元素 、第13族兀素、第14族元素、過渡族元素及稀土元素中 的一種或複數種’優選為Mn、Ni、Cr、Co、V、Al、Fe 、Ga、Nd、Mb及Mg中的至少—種。所述電極活性材料顆 粒302的粒徑優選為1〇〇奈米至100微米。可以理解,所 述電極活性材料顆粒3〇2的材料也可用其他常用的材料。 本發明實施例中採用粒徑為8微米至12擻米的石墨粉末作 為負極活性材料顆粒。 在上述步驟2巾,所述混合為㈣混合,該電極活性材 料顆粒3G2不溶於所述_子電錢,_。餐所述鐘離 子電池改性劑為—澄清的溶液且具有—相黏性,故, 該改性劑易於㈣鋪於所述電極祕材卿粒奶表面 形成一層厚度較薄的改性劑層。 ^外’將該電極活翁料顆粒3,G2與該改性劑混合時只 需2該改性劑能夠覆蓋該電極活性材料顆粒3〇2表 面即可 ’得到的所錢合物成轉狀,浙獲得表面包覆較薄 的電極活性材料顆粒3〇2。 述後’可進—步包括過渡的步驟來滤除該混 0物中多餘的鐘離子電池改性劑。 在上述步細3中,所述乾燥處理可為常溫自_乾或加 熱供乾來絲觀合物巾的㈣,所述加純乾的溫度 099140717 表單編號A0101 第21頁/共42頁 0992070875-0 [0076] 201222949 優選為60 C〜1〇〇。(^ 混合物。料熱處理I發明實施财在8G°C下來埃乾該 粒3〇2表_改性^ _錢制述電極活性材料賴 地包覆於該電㈣化辆料續㈣賴_更好 實施例所述_子電/驗奶表面’從而獲得本發明 度優選為3〇rc,v電極複合材料_。該熱處理的温 L ’熱處理的時間優選為1小時 日守。本發明實施例中,該熱處理的溫度為·。c 3小 的時間為3小時。所奸* ‘、、、處理 Μ保護膜306在該電極複合材料3〇〇中 貝里刀比優選為0. Μ至3%,厚度優選為5nm-i0n 。 ιυ〇ηηι [0077] [0078] [0079] [0080] 由於本發明實施例中所述鋰離子電池改性劑為—澄清且 具有一定黏性的溶液,玎較容易崦在所有電極活性村料 顆粒表面均形成保護膜,還能使每個電極活性材料顇粒 表面完全被保護獏包覆,且包覆於電極活性材料顆粒表 面的保護膜厚度較薄且均勻連續’該保護膜可在隔絕鋰 離子電池電解液與電極活性材料勒粒之間的電子遷移的 同時使離子藉由,從而一方面綱免了鋰離子電池電極與 電解液之間的副反應,提高了電池的熱穩定性以及電池 容量保持性能,另一方面由於該電極活性材料顆粒表面 的保護膜較薄,不會降低鋰離子電池的電化學性能。 (3)用於鋰離子電池隔膜 本發明實施例還提供一種使用所述鋰離子電池改性劑來 製備鋰離子電池隔膜的方法,包括如下步驟: Β21,提供用於鐘離子電池隔膜的多孔膜以及上述鋰離子 099140717 表單煸號Α0101 第22頁/共42頁 0992070875-0 201222949 電池改性劑; [0081] [0082] B22,將該改性劑塗覆於該多孔膜表面形成塗覆層,以及 從而在該多孔膜表 B23,乾燥塗覆有該改性劑的多孔膜 面形成改性劑層。 [0083] 在上述步驟B21中,所述多孔膜可為習知的 池的隔膜,如純聚合物隔膜、 用於鋰離子電 陶究隔膜或含有陶竟材料 的聚合物隔膜等。該多孔膜的厚度可為5微米〜At least one of the negative electrode active materials of Ga, Nd and Mg may be titanic acid 099140717 Form No. A0101 Page 20 / Total 42 Page 0992070875-0 201222949 Ο [0073] ❹ _4] [0075] Lithium, graphite, organic cracked carbon And one or more species of mesocarbon microbeads (MCMB)*. Specifically, the acid clock can be represented by the chemical formula L1(4-g)AgTi5〇i2 or Li4AhTi(5h)〇i2, wherein 0 &lt;gS 〇. 33, and 〇&lt;hg〇. 5 ; A is selected from alkali metal elements One or more of the alkaline earth metal element, the 13th element halogen, the group 14 element, the transition element, and the rare earth element 'preferably Mn, Ni, Cr, Co, V, Al, Fe, Ga, Nd, Mb And at least one of Mg. The particle diameter of the electrode active material particles 302 is preferably from 1 nanometer to 100 micrometers. It is to be understood that the material of the electrode active material particles 3 〇 2 can also be used in other commonly used materials. In the embodiment of the present invention, graphite powder having a particle diameter of 8 μm to 12 μm is used as the negative electrode active material particles. In the above step 2, the mixing is (4) mixing, and the electrode active material particles 3G2 are insoluble in the _ sub-money, _. The bell ion battery modifier is a clear solution and has a phase viscosity. Therefore, the modifier is easy to be deposited on the surface of the electrode secret material to form a thin layer of modifier layer. . ^External 'the electrode material particles 3, G2 and the modifier are mixed only when the modifier can cover the surface of the electrode active material particles 3〇2 can be obtained. , Zhejiang obtained a thin surface of the electrode active material particles 3 〇 2. The latter step includes a transition step to filter out excess clock ion battery modifier in the mixture. In the above step 3, the drying treatment may be (4) at room temperature from dry or heated to dry the silk fabric, the temperature of the pure dry 099140717 Form No. A0101 Page 21 / Total 42 Page 0992070875- 0 [0076] 201222949 is preferably 60 C~1〇〇. (^ mixture. Material heat treatment I invention implementation at 8G °C down Eggan the grain 3 〇 2 table _ modified ^ _ money description electrode active material lie on the electricity (four) chemical vehicle continued (four) Lai _ more In the preferred embodiment, the _ sub-electric/test surface is obtained to obtain the present invention, preferably 3 〇 rc, v-electrode composite _. The temperature of the heat-treated heat treatment is preferably 1 hour. The 热处理 3 3 3 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' %, the thickness is preferably 5 nm-i0n. ιυ〇ηηι [0080] [0080] Since the lithium ion battery modifier in the embodiment of the present invention is a clear and viscous solution, 玎It is easier to form a protective film on the surface of all the electrode active material particles, and the surface of each electrode active material particle is completely covered by the protective layer, and the thickness of the protective film coated on the surface of the electrode active material particle is thin and Uniform continuous 'this protective film can isolate lithium ion battery electrolyte and electrode activity The electron migration between the particles is accompanied by ions, thereby eliminating the side reaction between the electrode of the lithium ion battery and the electrolyte, improving the thermal stability of the battery and the capacity retention performance of the battery. Since the protective film on the surface of the electrode active material particle is thin, the electrochemical performance of the lithium ion battery is not lowered. (3) For a lithium ion battery separator, an embodiment of the present invention further provides a lithium ion battery modifier. A method for preparing a lithium ion battery separator, comprising the steps of: Β21, providing a porous membrane for a separator of a plasma battery, and the above lithium ion 099140717 Form No. 1010101 Page 22 of 42 0992070875-0 201222949 Battery modifier; [0082] B22, applying a modifier to the surface of the porous film to form a coating layer, and thereby forming a modifier layer on the porous film surface of the porous film table B23 by drying the surface of the porous film coated with the modifier [0083] In the above step B21, the porous membrane may be a separator of a conventional cell, such as a pure polymer membrane, a lithium ion electric ceramic membrane or a polymerization containing a ceramic material. Diaphragms, etc. The thickness of the porous film may be 5 microns

優選地,該多孔膜的厚度為15微米〜40微米。該多 孔隙率可為2 0 % ~ 9 0 %,孔徑可為〇. 01微米〜8 〇微米。 ' 優選 地,該孔隙率為40%〜80%,孔徑為0. 1微米〜丨〇微米本 發明實施例採用聚丙烯(PP)微孔膜作為所述多孔膜 該微孔膜的孔隙率為60% ’平均孔徑為7微米。該多孔 可藉由習知的熔融拉伸法或熱致相分離法等方法來製備 〇 [0084] 在上述步驟B22中,可錯由刷塗、喷塗、靜電塗覆黏觀 、絲網印刷或提終法屬方式將所述鋰離子電池改性劑均 勻塗覆於所述多孔膜一個或兩個表面。由於該塗覆過程 為溶液塗覆,所述提拉法可使在所述多孔膜的兩個表面 形成的塗覆層均勻連續,且可較好地控制所述塗覆層的 厚度,故本發明實施例採用提拉法在該多孔膜兩個表面 塗覆所述鋰離子電池改性齊丨。 [0085] 該提拉法的具體過程包括:將該多孔膜完全浸潤到已配 置好的所述鋰離子電池改性劑巾;以及將該浸潤後的多 孔膜提拉iB所述改性劑外。在提拉時可使該多孔膜與 099140717 表單編號A0101 第23頁/共42頁 0992070875-0 201222949 改性劑液面基本垂直。上述浸潤和提拉的步驟可重複複 數次,以控制所述多孔膜表面的塗覆層的厚度以及均勻 性。可以理解,上述鋰離子電池改性劑的濃度越小,以 及將該浸潤後的多孔膜提拉出所述改性劑外的速度越快 ,形成的所述塗覆層的厚度越薄。本發明實施例中該改 性劑的濃度為0. 〇lmol/L。 [0086] 在上述步驟B23中,所述乾燥步驟可去除所述鋰離子電池 改性劑中的溶劑並使形成的該改性劑層更好地與所述多 孔膜表面結合。該乾燥的方式可為常溫自然晾乾也可為 加熱烘乾,所述烘乾的溫度不高於70°C。所述改性劑層 的厚度可為l〇nm〜100nm,優選地,所述改性劑層的厚度 為10nm〜40nm。本發明實施例在40°C下烘乾該塗覆後的 多孔膜,使形成的所述改性劑層更好地與所述多孔膜表 面結合。 [0087] 由於所述鋰離子電池改性劑為一澄清的溶液,且形成的 改性劑層厚度較薄,故該改性劑層對所述多孔膜的孔隙 率以及孔徑影響不大,即將該具有改性劑層的多孔膜應 用於鋰離子電池中時,不會影響到該鋰離子電池中的鋰 離子遷移率。 [0088] 請參閱圖6,本發明實施例進一步利用上述方法製備了一 種鋰離子電池隔膜400,該隔膜400包括一多孔膜402以 及設置於該多孔膜402表面的改性劑層404。該改性劑層 404藉由將上述鋰離子電池改性劑塗覆於該多孔膜402表 面形成塗覆層,並乾燥處理該塗覆層後形成。 099140717 表單編號 A0101 第 24 頁/共 42 頁 0992070875-0 201222949 [0089] 所述多孔膜4G2可為習知的用於祕子電ν也的&amp;膜’如純 聚合物隔膜m膜或含有n材料的聚合物膜等 。該多孔膜402的厚度可為5微米~6〇微米優=地:亥夕 孔膜的厚度為15微米〜4G微米。該多孔膜的孔隙率可為、 2〇%~90%,孔徑可為0. 01微米~8〇微米。優i^地該孔隙 ~ 。本發明實施例 率為40%〜80%,孔徑為〇. 1微米~104支木 採用聚丙烯(PP)微孔膜作為所述多孔_4Q2 微孔膜 的孔隙率為60%,平均孔徑為7微米。該多孔膜權可藉由 習知的烙融拉伸法或熱致相分離法等方/表來裝備所述 Ο 改性劑層4 0 4設置所述多孔膜4 〇 2的兩個表面該改陡劑 層404的厚度可為lH()QnI„,優選地,所述改性劑層 的厚度為ΙΟηπι〜40πιπ。 [0090] ❹ 由於所述链離子電池改性劑為一澄清的洛液且具有定 的黏性,故,該改性劑易於均勻塗覆於所述多孔膜402表 面形成一層厚度較薄的改性劑層404。由於所述改性劑層 404的厚度較薄,可提高所述隔膜400的機械強度又不會 使所述塗覆後的隔膜4Θ〇變脆,在鋰離子電池的使用過程Preferably, the porous film has a thickness of from 15 micrometers to 40 micrometers. The porosity may be from 20% to 90%, and the pore diameter may be from 0.01 μm to 8 μm. Preferably, the porosity is 40% to 80%, and the pore diameter is 0.1 μm to 丨〇 micrometer. The embodiment of the present invention uses a polypropylene (PP) microporous membrane as the porous membrane. The porosity of the microporous membrane is 60% 'average pore size is 7 microns. The porous material can be prepared by a conventional melt stretching method or a thermally induced phase separation method. [0084] In the above step B22, the coating can be wrongly applied by brushing, spraying, electrostatic coating, screen printing. Or the final method of applying the lithium ion battery modifier uniformly to one or both surfaces of the porous membrane. Since the coating process is solution coating, the pulling method can make the coating layer formed on both surfaces of the porous film uniform and continuous, and can better control the thickness of the coating layer, so In the embodiment of the invention, the lithium ion battery is modified on both surfaces of the porous film by a pulling method. [0085] The specific process of the pulling method comprises: completely infiltrating the porous film into the prepared lithium ion battery modifier towel; and pulling the infiltrated porous film to the outside of the modifier . The porous film can be made to be substantially perpendicular to the level of the modifier when it is pulled. 099140717 Form No. A0101 Page 23 of 42 0992070875-0 201222949 The above steps of wetting and pulling may be repeated a plurality of times to control the thickness and uniformity of the coating layer on the surface of the porous film. It can be understood that the smaller the concentration of the above-mentioned lithium ion battery modifier, and the faster the speed at which the infiltrated porous film is pulled out of the modifier, the thinner the thickness of the coating layer formed. 〇lmol/L。 The concentration of the modifier in the embodiment of the present invention is 0. 〇lmol / L. [0086] In the above step B23, the drying step may remove the solvent in the lithium ion battery modifier and better form the modifier layer to be bonded to the surface of the porous film. The drying method may be naturally dried at room temperature or dried by heating, and the drying temperature is not higher than 70 °C. The thickness of the modifier layer may be from 10 nm to 100 nm, and preferably, the thickness of the modifier layer is from 10 nm to 40 nm. In the embodiment of the present invention, the coated porous film was dried at 40 ° C to better bond the formed modifier layer to the surface of the porous film. [0087] Since the lithium ion battery modifier is a clear solution and the thickness of the modifier layer formed is relatively thin, the modifier layer has little effect on the porosity and pore diameter of the porous membrane, When the porous film having the modifier layer is applied to a lithium ion battery, the lithium ion mobility in the lithium ion battery is not affected. Referring to FIG. 6, a lithium ion battery separator 400 is further prepared by the above method, and the separator 400 includes a porous film 402 and a modifier layer 404 disposed on the surface of the porous film 402. The modifier layer 404 is formed by applying the above-described lithium ion battery modifier to the surface of the porous film 402 to form a coating layer, and drying the coating layer. 099140717 Form No. A0101 Page 24 of 42 0992070875-0 201222949 [0089] The porous membrane 4G2 may be a conventional &amp; membrane such as a pure polymer membrane m membrane or containing n Polymer film of materials, etc. The porous film 402 may have a thickness of 5 μm to 6 μm μm. The thickness of the porous film is 15 μm to 4 μm. The microporous film may have a porosity of from 2% to 90%, and a pore diameter of from 0.01 μm to 8 μm. Excellent i ^ the pore ~. The ratio of the embodiment of the present invention is 40% to 80%, and the pore diameter is 〇. 1 micron to 104 pieces of wood using a polypropylene (PP) microporous membrane as the porous _4Q2 microporous membrane has a porosity of 60%, and the average pore diameter is 7 microns. The porous film may be equipped with the Ο modifier layer 104 by a conventional method such as a melt-stretching method or a thermally induced phase separation method, and the two surfaces of the porous film 4 〇 2 are disposed. The thickness of the sharpener layer 404 may be 1H()QnI, preferably, the thickness of the modifier layer is ΙΟηπι 4040ππ. [0090] ❹ Since the chain ion battery modifier is a clarified liquid And having a certain viscosity, the modifier is easy to uniformly apply to the surface of the porous film 402 to form a thinner modifier layer 404. Since the thickness of the modifier layer 404 is thin, Increasing the mechanical strength of the diaphragm 400 does not cause the coated diaphragm 4 to become brittle during use of the lithium ion battery

L 中,當該隔膜400受熱溫度較高時(大於loot),該改 性劑詹404會轉化為_連續的保護膜更好地阻止該隔膜 400的熱收縮’提* 了該隔膜侧的熱穩定性。該保護膜 的成分為AlxMyP〇4以及Α1χ〜(ρ〇Λ中的一種或該兩種物 質的混合物;其中_價態為k,Μ為Cr、Zn、Cu、Mg、In L, when the separator 400 is heated to a higher temperature (greater than loot), the modifier 404 is converted into a continuous protective film to better prevent the heat shrinkage of the separator 400. stability. The composition of the protective film is AlxMyP〇4 and one of 〇Λ1χ~(ρ〇Λ or a mixture of the two substances; wherein _ valence state is k, Μ is Cr, Zn, Cu, Mg,

Zr、Mo、V、Nb及Ta中的一種或複數種的混合;〇〈χ〈卜 〇&lt;y〈l且3x+ky = 3。優選地,該保護膜的成分為 ^以卜又⑼彳以及^以卜乂⑽么中的一種或該兩種的混 099140717 表單編號A0101 第25頁/共42頁 0992070875-0 201222949 合。 [0091] 本發明實施例利用上述方法製備了鋰離子電池隔膜(多 孔膜為聚丙烯),並對該隔膜以及未塗覆該改性劑的聚 丙烯隔膜分別在不同溫度下保溫1小時,來測定其熱收縮 率。由於本發明實施例隔膜以及未塗覆該改性劑的聚丙 烯隔膜在橫向幾乎沒有收縮,故,本發明實施例中主要 對兩種隔膜縱向的熱收縮率進行了測試。請參閱圖7,從 圖中可看出,與未塗覆該改性劑的聚丙烯隔膜相比,本 發明實施例所述鋰離子電池隔膜的在不同溫度下具有較 好地抗熱收縮性。 [0092] 此外,本發明實施例將上述兩種隔膜分別組裝到磷酸鐵 鋰電池中測試其電化學性能以及安全性能,發現在該隔 膜表面塗覆所述改性劑應用到鋰離子電池中並未降低該 鋰離子電池的電化學性能,且該鋰離子電池具有較好的 熱穩定性,提高了鋰離子電池的安全性。 [0093] (4)用於鋰離子電池 [0094] 請參閱圖8,本發明實施例還提供一鋰離子電池500,該 鋰離子電池500包括正極片502、負極片504、隔膜506、 非水性電解液以及外部封裝結構508。該外部封裝結構 508將該正極片502、負極片504、隔膜506以及非水性電 解液封裝其中,該隔膜506設置於所述正極片502與負極 片504之間。所述正極片502包括一正極集流體512及形 成於該正極集流體512表面的正極材料層522 ;所述負極 片504包括一負極集流體514及形成於該負極集流體514 099140717 表單編號A0101 第26頁/共42頁 0992070875-0 201222949 [0095] Ο [0096] Ο [0097] 099140717 表面的負極材料層524。其中,該鋰離子電池5〇 〇的正極 集流體512、正極材料層522、負極集流體514、負極材 料層524以及隔膜506中的至少一個元件包括上述鋰離子 電池改性劑的成分或該改性劑在1〇(rc以上受熱反應後生 成物的成分。 &quot;亥改性劑為所述含填酸根的鱗源、三價紹源以及金屬氧 化物在所述液相溶劑中的混合。該改性劑在丨以上受 熱反應後生成物的成分為AlxMyP〇4以及Α1χ、(ρ〇3)3中的 —種或該兩種物質的混合物;其中丛的價態為k,Μ為Cr、 Zn、Cu、Mg、Zr ' Mo、V、Nb及Ta中的一種或複數種的 混合;0&lt;χ&lt;1,〇&lt;y&lt;l且3x+ky = 3。優選地,該生成物的 成分為aixcVxp〇4以及Α1χ(:Γι_χ(Ρ〇3)3中的_種或該兩 種的混合。 該正極片502和/或負極片504可為上述實施例中具有對應 正極材料層和/或負極材料層的鐘離子電池電極。該 正極集流體512和/或負極集流體5丨4可為上述實施例中所 述鋰離子電池集流體1〇〇或鋰離子電池集流體2〇2。 進一步地,該正極材料層522包括均勻混和的正極活性物 質、導電劑及黏結劑。該負極材料層524包括均勻混合的 負極活性物質、導電劑及黏結劑。該正極材料層⑴包含 的正極活性物質可包括上述實施例中所述的具有正極活 性材料顆粒的電極複合材料_,同樣地,該負極㈣層 524包含的負極活性物質可包括上述實施例中所述的具有 負極活性材料顆粒的電極複合材料3〇〇。該導電劑可為乙 炔黑或碳纖維等,該黏結劑可為聚偏氟乙烯(pVDF )或聚 表單編號A0101 第27頁/共42頁 0992070875-0 201222949 四氟乙烯(PTFE)等。可以理解,該正極活性物質、負極 活性物質、導電劑及黏結劑也可採用其他常用的材料。 [0098] 該隔膜506可為習知的鋰離子電池隔膜,如純聚合物隔膜 、陶瓷隔膜或含有陶瓷材料的聚合物隔膜等,也可為上 述實施例中所述鋰離子電池隔膜400。 [0099] 所述電解液中的電解質鹽可為六氟磷酸鋰、四氟硼酸鋰 或雙草酸硼酸鋰等,所述電解液中的有機溶劑可為碳酸 乙烯酯、碳酸二乙酯或碳酸二甲酯等。所述外部封裝結 構508可為硬質電池殼或軟封裝袋。此外該鋰離子電池 500還包括實現該電池内部與外電路電連接的元件(圖未 示)。 [0100] 將上述鋰離子電池改性劑應用於該鋰離子電池可提高該 鋰離子電池的安全性能。 [0101] 可以理解,該改性劑不僅可用於保護集流體、電極活性 材料以及隔膜,只要鋰離子電池中包括該改性劑或將該 改性劑熱處理後形成保護膜的應用均在本發明保護範圍 内。 [0102] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0103] 圖1為本發明實施例提供的鋰離子電池集流體結構側視示 099140717 表單編號A0101 第28頁/共42頁 0992070875-0 201222949 意圖。 [0104] 圖2為傳統鋰離子電池集流體的SEM照片。 [0105] 圖3為本發明實施例提供的鋰離子電池集流體的SEM照片 〇 [0106] 圖4為本發明實施例提供的鋰離子電池電極結構側視示意 圖。 [0107] 圖5為本發明實施例提供的鋰離子電池電極複合材料結構 示意圖。 [0108] 圖6為本發明實施例提供的鋰離子電池隔膜側視示意圖。 [0109] 圖7為本發明實施例提供的鋰離子電池隔膜與傳統隔膜熱 收縮性測試圖。 [0110] 圖8為本發明實施例提供的鋰離子電池的結構局部剖視示 意圖。 [0111] 圖9為先前技術中磷酸鋁包覆正極活性物質的結構示意圖 Ο 。 【主要元件符號說明】 [0112] 鋰離子電池集流體:100,202 [0113] 金屬片:102 [0114] 保護膜:106,206,306 [0115] 鋰離子電池電極:200 [0116] 電極材料層:204 099140717 表單編號A0101 第29頁/共42 1 0992070875-0 201222949 [0117] 電極複合材料 :300 [0118] 電極活性材料顆粒:30 2 [0119] 隔膜:400, ! 506 [0120] 多孔膜:402 [0121] 改性劑層:4 0 4 [0122] 鋰離子電池: 500 [0123] 正極片:502 [0124] 負極片:504 [0125] 外部封裝結構 :508 [0126] 正極集流體: 512 [0127] 正極材料層: 522 [0128] 負極集流體: 514 [0129] 負極材料層: 524 [0130] 產物:600 [0131] 小顆粒:602 [0132] 大顆粒:604 099140717 表單編號A0101 苐30頁/共42頁 0992070875-0a mixture of one or more of Zr, Mo, V, Nb, and Ta; 〇 <χ < Bu 〇 &lt;y<l and 3x+ky = 3. Preferably, the composition of the protective film is one of or a combination of (9) 彳 and ^ 乂 (10) or a mixture of the two. 099140717 Form No. A0101 Page 25 / Total 42 Page 0992070875-0 201222949. [0091] In the embodiment of the present invention, a lithium ion battery separator (the porous membrane is polypropylene) is prepared by the above method, and the separator and the polypropylene separator not coated with the modifier are respectively kept at different temperatures for 1 hour. The heat shrinkage rate was measured. Since the separator of the embodiment of the present invention and the polypropylene separator not coated with the modifier hardly shrink in the transverse direction, the longitudinal heat shrinkage ratio of the two separators was mainly tested in the examples of the present invention. Referring to FIG. 7, it can be seen from the figure that the lithium ion battery separator of the embodiment of the present invention has better heat shrinkage resistance at different temperatures than the polypropylene separator not coated with the modifier. . [0092] In addition, in the embodiment of the present invention, the above two kinds of separators are respectively assembled into a lithium iron phosphate battery to test their electrochemical performance and safety performance, and it is found that the surface of the separator is coated with the modifier and applied to a lithium ion battery. The electrochemical performance of the lithium ion battery is not lowered, and the lithium ion battery has better thermal stability and improves the safety of the lithium ion battery. [0093] (4) For Lithium Ion Battery [0094] Referring to FIG. 8, an embodiment of the present invention further provides a lithium ion battery 500 including a positive electrode sheet 502, a negative electrode sheet 504, a separator 506, and a non-aqueous battery. The electrolyte and the outer package structure 508. The outer package structure 508 encloses the positive electrode sheet 502, the negative electrode sheet 504, the separator 506, and the non-aqueous electrolyte solution, and the separator 506 is disposed between the positive electrode sheet 502 and the negative electrode sheet 504. The positive electrode sheet 502 includes a positive electrode current collector 512 and a positive electrode material layer 522 formed on the surface of the positive electrode current collector 512. The negative electrode plate 504 includes a negative electrode current collector 514 and is formed on the negative electrode current collector 514 099140717 Form No. A0101 26 pages/total 42 pages 0992070875-0 201222949 [0095] Ο [0097] 099140717 The surface of the negative electrode material layer 524. Wherein, at least one of the positive electrode current collector 512, the positive electrode material layer 522, the negative electrode current collector 514, the negative electrode material layer 524, and the separator 506 of the lithium ion battery 5 包括 includes the composition of the lithium ion battery modifier or the modification The agent is a component of the product after being subjected to a heat reaction at rc (the above) is a mixture of the acid-containing scaly source, the trivalent source, and the metal oxide in the liquid solvent. The modifier is a component of AlxMyP〇4 and Α1χ, (ρ〇3)3 or a mixture of the two substances after the heat reaction of the modifier; wherein the valence of the cluster is k and Μ is Cr , a mixture of one or more of Zn, Cu, Mg, Zr ' Mo, V, Nb, and Ta; 0 &lt; χ &lt;1, 〇 &lt; y &lt; l and 3x + ky = 3. Preferably, the product The composition of aixcVxp〇4 and Α1χ(:Γι_χ(Ρ〇3)3 or a mixture of the two. The positive electrode sheet 502 and/or the negative electrode sheet 504 may have a corresponding positive electrode material layer in the above embodiment and / or a clock ion battery electrode of the anode material layer. The cathode current collector 512 and / or the anode current collector 5 丨 4 can be In the embodiment, the lithium ion battery current collector 1〇〇 or the lithium ion battery current collector 2〇2. Further, the positive electrode material layer 522 includes a uniformly mixed positive electrode active material, a conductive agent, and a binder. The negative electrode active material, the conductive agent, and the binder are uniformly mixed. The positive electrode active material contained in the positive electrode material layer (1) may include the electrode composite material having the positive electrode active material particles described in the above embodiments, and similarly, the negative electrode (four) The negative electrode active material contained in the layer 524 may include the electrode composite material 3 having the negative electrode active material particles described in the above embodiments. The conductive agent may be acetylene black or carbon fiber, etc., and the binder may be polyvinylidene fluoride ( pVDF ) or poly form number A0101 page 27 / total 42 page 0992070875-0 201222949 tetrafluoroethylene (PTFE), etc. It is understood that the positive electrode active material, the negative electrode active material, the conductive agent and the binder may also be other commonly used materials. [0098] The membrane 506 can be a conventional lithium ion battery separator, such as a pure polymer membrane, a ceramic membrane, or a polymerization containing a ceramic material. The separator or the like may also be the lithium ion battery separator 400 described in the above embodiment. [0099] The electrolyte salt in the electrolyte may be lithium hexafluorophosphate, lithium tetrafluoroborate or lithium bis(oxalate)borate, etc., in the electrolyte The organic solvent may be ethylene carbonate, diethyl carbonate or dimethyl carbonate, etc. The outer package structure 508 may be a hard battery case or a soft package bag. In addition, the lithium ion battery 500 further includes internal and external circuits of the battery. Electrically connected components (not shown) [0100] Applying the above-described lithium ion battery modifier to the lithium ion battery can improve the safety performance of the lithium ion battery. [0101] It can be understood that the modifier can be used not only for protecting the current collector, the electrode active material, and the separator, but the application of the modifier in the lithium ion battery or the heat treatment of the modifier to form a protective film is in the present invention. Within the scope of protection. [0102] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0103] FIG. 1 is a side view of a current collector structure of a lithium ion battery according to an embodiment of the present invention. 099140717 Form No. A0101 Page 28 of 42 0992070875-0 201222949 Intention. 2 is a SEM photograph of a conventional lithium ion battery current collector. 3 is a SEM photograph of a lithium ion battery current collector according to an embodiment of the present invention. [0106] FIG. 4 is a side elevational view showing the electrode structure of a lithium ion battery according to an embodiment of the present invention. 5 is a schematic structural view of a lithium ion battery electrode composite material according to an embodiment of the present invention. 6 is a schematic side view of a lithium ion battery separator according to an embodiment of the present invention. 7 is a test chart of heat shrinkage of a lithium ion battery separator and a conventional separator according to an embodiment of the present invention. 8 is a partial cross-sectional view showing the structure of a lithium ion battery according to an embodiment of the present invention. 9 is a schematic view showing the structure of an aluminum phosphate-coated positive electrode active material in the prior art. [Explanation of main component symbols] [0112] Lithium-ion battery current collector: 100, 202 [0113] Metal piece: 102 [0114] Protective film: 106, 206, 306 [0115] Lithium-ion battery electrode: 200 [0116] Electrode material Layer: 204 099140717 Form No. A0101 Page 29/Total 42 1 0992070875-0 201222949 [0117] Electrode composite material: 300 [0118] Electrode active material particles: 30 2 [0119] Separator: 400, ! 506 [0120] Porous film :402 [0121] Modifier layer: 4 0 4 [0122] Lithium ion battery: 500 [0123] Positive electrode sheet: 502 [0124] Negative electrode sheet: 504 [0125] External package structure: 508 [0126] Positive current collector: 512 [0127] Positive material layer: 522 [0128] Anode current collector: 514 [0129] Anode material layer: 524 [0130] Product: 600 [0131] Small particles: 602 [0132] Large particles: 604 099140717 Form No. A0101 苐30 pages / total 42 pages 0992070875-0

Claims (1)

201222949 七、申請專利範圍:201222949 VII. Patent application scope: 二種鐘離子電池電極複合材料,包括電極活性材料顆粒, '、在於進步包括包覆於該電極活性材料顆粒表面 的保護膜’該保護膜的成分為Α1χΜ/(νχ及AlM(p〇) 中的-種或該兩種物質的混合物;其中M的價態 L tCU、心、&amp;、M。、V、騎以中的—種或複數 、此 σ,〇&lt;x&lt;i,〇&lt;y&lt;1a3x+ky=3 〇 如申明專利範圍第1項所述的_子電池電極複合材料, 其中’所述保護膜在該電極複合材料中的質量百分比 〇. 5¾«至3%。 两 如申4專贿㈣1項料⑽離子電料極複合材料, /、中,所述保護膜的厚度為5奈米至丨⑽奈米。 如申明專利範圍第丨項所述_離子㈣電極複合材料, 其中’所述電極祕_雌為正極祕材_ 活性材料難。 貝独 •如申4專利制第4項所述的趣離子電池電極複合柯料,Two kinds of ion battery electrode composite materials, including electrode active material particles, ', in progress, including a protective film coated on the surface of the electrode active material particles', the composition of the protective film is Α1χΜ/(νχ and AlM(p〇) a species or a mixture of the two; wherein the valence state of M L tCU, heart, &, M, V, riding in the species or plural, this σ, 〇 &lt; x &lt; i, 〇 &lt;y&lt;1a3x+ky=3 The _ sub-cell electrode composite according to claim 1, wherein the mass percentage of the protective film in the electrode composite is 53. 53⁄4« to 3%. Such as Shen 4 special bribe (four) 1 item (10) ion battery material composite material, /, the thickness of the protective film is 5 nm to 丨 (10) nanometer. As described in the scope of the patent scope _ ion (four) electrode composite Materials, in which 'the electrode secret _ female is the positive secret material _ active material is difficult. Bei Du • such as Shen 4 patent system item 4 of the interesting ion battery electrode composite material, 其卜所述正齡崎卿料㈣為未摻㈣穆雜的尖 晶石結構的錳酸鋰、層狀錳酸鋰、鎳酸鋰、鈷酸 * 王、鱗酸 鐵鋰、鋰鎳錳氧化物及鋰鎳鈷錳氧化物中的一種或複數種 6 .如申請專利範圍第4項所述的鋰離子電池電極複合材料 其中,所述負極活性材料顆粒的材料包括鈦酸鋰、 有機裂解碳以及中間相碳微球中的一種或複數種。 7 .如申請專利範圍第1項所述的經離子電池電極複合材料 其中,所述保s蔓膜的成分為a丨Cr PO以及 x 1 -X 4 099140717 表單編號A0101 第31頁/共42頁 0992070875-0 201222949 ίο 11 12 13 099140717 (P〇3 )3中的'''種 一種鋰離子電、、也本z兩種的混合。 : ^複合材料的製備方法,包括如下步驟 提供鋰離子電池改性激 劑包括含磷醪根的*劑和電極活性材料顆粒,其令該改性 溶劑中的混合; 源、二價鋁源以及金屬氧化物在液相 混合該電極活性枒 混合物,以及/顆粒和該鋰離子電池改性劑,形成— 乾燥並熱處理該返合 如申請專利範圍第8 製備方法,其中,所述驗離子電池電極複合材料的 «二氫錢1酸所料源為魏、魏三敍、填酸銘、 的-種或複數種。n镇—氫銨以及雜—氫銘中 如申請專利範圍 MM h 述的崎子電㈣極複合材料的 製備方法’其中, e 述鋁源為氫氧化鋁、氧化鋁、磷酸鋁 、::風銘以及碟酸_氫結中的一種或複數種。 二《 y範圍第8項所述的雜子電池電極複合材料的 製備 I中’所述嶙源與所述IS源均為填酸紹、碟酸 二氫銘以及碟酸—氫財的—種或複數種。 如申請專利範圍第8項所述的鐘離子電池電極複合材料的 製備方法’其中’所述液相溶劑為水或N—甲基料燒納。 如申明專利範圍第8項所述的鋰離子電池電極複合材料的 製備方法,其中,所述金屬氧化物包括三氧化鉻、氧化鋅 、軋化銅、氧化鎂、二氧化錯、三氧化鉬、五氧化二鈒、 五氧化二銳及五氧化二组中的一種或複數種。 如申請專利範圍第8項所述的鋰離子電池電極複合材料的 表單編號A0101 第32 ΐ/共42頁 〇992〇 14 201222949 製備方法,其中,所述磷源、所述鋁源以及所述金屬氧化 物的摩爾比滿足:(Al+M) :P = 1 : 2. 5至1 :4,其中,該A1 、Μ和P分別為該銘源中的铭元素、該金屬氧化物中的金屬 元素以及該磷源中的磷元素的摩爾數。 15 .如申請專利範圍第8項所述的鋰離子電池電極複合材料的 製備方法,其中,所述磷源的磷酸根、三價鋁源中的鋁元 素和金屬氧化物中的金屬元素的總質量佔所述改性劑總體 積的體積密度為0.02g/ml至0.08g/ml。 16 .如申請專利範圍第8項所述的鋰離子電池電極複合材料的 〇 製備方法,其中,在所述乾燥之前對該混合物進行過渡, 去除多餘的所述改性劑。 17 .如申請專利範圍第8項所述的鋰離子電池電極複合材料的 製備方法,其中,所述熱處理的溫度為300°C〜800°C。 18 . —種鋰離子電池,包括至少一正極片和負極片,該正極片 包括至少一正極材料層,該負極片包括至少一負極材料層 ,其改良在於,該正極材料層和負極材料層中的至少一種 包含上述申請專利範圍第1項至第7項任一項所述電極複合 Ο 材料。 0992070875-0 099140717 表單編號A0101 第33頁/共42頁The above-mentioned Zhengsianqiqing material (4) is lithium manganate, layered lithium manganate, lithium nickelate, cobalt acid*, lithium iron hydride, lithium nickel manganese oxide which is not doped with (tetra) And a lithium ion battery electrode composite material according to claim 4, wherein the material of the negative electrode active material particle comprises lithium titanate, organic cracked carbon And one or more of the mesophase carbon microspheres. 7. The ion battery electrode composite according to claim 1, wherein the composition of the smear film is a 丨Cr PO and x 1 -X 4 099140717 Form No. A0101 Page 31 of 42 0992070875-0 201222949 ίο 11 12 13 099140717 (P〇3 ) 3 ''' kinds of a kind of lithium ion electricity, also the combination of the two. : ^ A method for preparing a composite material, comprising the steps of providing a lithium ion battery modified activator comprising a phosphorus-containing ruthenium-based agent and electrode active material particles, which allows mixing in the modified solvent; source, divalent aluminum source, and The metal oxide is mixed in the liquid phase with the electrode active ruthenium mixture, and/or the particles and the lithium ion battery modifier are formed to dry and heat treat the return as in the preparation method of the eighth scope of the patent application, wherein the ion battery electrode is The composite material of the "dihydrogen 1 acid" source is Wei, Wei Sanxu, filled with acid, the species or a plurality of species. n town-hydrogen ammonium and hetero-hydrogen in the preparation method of the Qizi electric (four) pole composite material as described in the patent application scope MM h 'where the aluminum source is aluminum hydroxide, aluminum oxide, aluminum phosphate,:: wind One or more of the sulphur_hydrogen junctions. In the preparation of the hetero-cell battery electrode composite according to item 8 of the y range, the source and the source of the IS are both acid-filled, dihydrogen-disc, and acid-hydrogen. Or a plurality of species. The method for producing a composite material for a clock ion battery according to the invention of claim 8 wherein the liquid phase solvent is water or N-methylate. The method for preparing a lithium ion battery electrode composite material according to claim 8, wherein the metal oxide comprises chromium trioxide, zinc oxide, rolled copper, magnesium oxide, dioxin, and molybdenum trioxide. One or more of the two groups of antimony pentoxide, pentoxide, and pentoxide. Form No. A0101 of the lithium ion battery electrode composite material of claim 8 of claim 8 of the present invention, wherein the phosphorus source, the aluminum source, and the metal are prepared. The molar ratio of the oxide satisfies: (Al + M) : P = 1 : 2. 5 to 1: 4, wherein the A1, Μ, and P are the inscription elements in the source, and the metal in the metal oxide, respectively. The element and the number of moles of phosphorus in the phosphorus source. The method for producing a lithium ion battery electrode composite according to claim 8, wherein the phosphoric acid source, the aluminum element in the trivalent aluminum source, and the metal element in the metal oxide are total. The bulk density of the total volume of the modifier is from 0.02 g/ml to 0.08 g/ml. The method of preparing a lithium ion battery electrode composite according to claim 8, wherein the mixture is subjected to a transition before the drying to remove excess modifier. The method for producing a lithium ion battery electrode composite according to claim 8, wherein the heat treatment temperature is from 300 ° C to 800 ° C. 18. A lithium ion battery comprising at least one positive electrode sheet and a negative electrode sheet, the positive electrode sheet comprising at least one positive electrode material layer, the negative electrode sheet comprising at least one negative electrode material layer, the improvement being in the positive electrode material layer and the negative electrode material layer At least one of the electrode composite crucible materials according to any one of items 1 to 7 of the above-mentioned patent application. 0992070875-0 099140717 Form No. A0101 Page 33 of 42
TW099140717A 2010-11-25 2010-11-25 Electrode composite material of lithium ion battery, method for making the same, and battery TWI565125B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099140717A TWI565125B (en) 2010-11-25 2010-11-25 Electrode composite material of lithium ion battery, method for making the same, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099140717A TWI565125B (en) 2010-11-25 2010-11-25 Electrode composite material of lithium ion battery, method for making the same, and battery

Publications (2)

Publication Number Publication Date
TW201222949A true TW201222949A (en) 2012-06-01
TWI565125B TWI565125B (en) 2017-01-01

Family

ID=46725369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099140717A TWI565125B (en) 2010-11-25 2010-11-25 Electrode composite material of lithium ion battery, method for making the same, and battery

Country Status (1)

Country Link
TW (1) TWI565125B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496547B2 (en) 2012-12-25 2016-11-15 Industrial Technology Research Institute Composite electrode material of lithium secondary battery and lithium secondary battery
WO2017118348A1 (en) * 2016-01-08 2017-07-13 江苏华东锂电技术研究院有限公司 Coating liquid for positive electrode active material, preparation method therefor, and coating method for positive electrode active material
US9899681B2 (en) 2012-06-27 2018-02-20 Toyo Aluminium Kabushiki Kaisha Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11715850B2 (en) 2021-03-17 2023-08-01 Genovation Cars, Inc. Battery thermal management system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899681B2 (en) 2012-06-27 2018-02-20 Toyo Aluminium Kabushiki Kaisha Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
TWI625886B (en) * 2012-06-27 2018-06-01 東洋鋁股份有限公司 Cathode for secondary battery, secondary battery, and method for manufacturing the same
US9496547B2 (en) 2012-12-25 2016-11-15 Industrial Technology Research Institute Composite electrode material of lithium secondary battery and lithium secondary battery
WO2017118348A1 (en) * 2016-01-08 2017-07-13 江苏华东锂电技术研究院有限公司 Coating liquid for positive electrode active material, preparation method therefor, and coating method for positive electrode active material
CN106960958A (en) * 2016-01-08 2017-07-18 江苏华东锂电技术研究院有限公司 The method for coating of positive electrode active materials covering liquid and preparation method thereof and positive electrode active materials
CN106960958B (en) * 2016-01-08 2020-05-26 江苏华东锂电技术研究院有限公司 Positive electrode active material coating liquid, preparation method thereof and coating method of positive electrode active material

Also Published As

Publication number Publication date
TWI565125B (en) 2017-01-01

Similar Documents

Publication Publication Date Title
CN105470576B (en) A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery
CN102479952B (en) Lithium ion battery electrode composite material and preparation method and battery thereof
WO2014111791A1 (en) All-solid battery and method for manufacturing the same
CN110121799B (en) Electrode for secondary battery, and methods for producing them
EP2909879A1 (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
CN105304860B (en) A kind of method for preparing graphene-based hearth electrode and battery and ultracapacitor
JP5365107B2 (en) Method for producing electrode for electrochemical device
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
JP2015109214A (en) Collector and lithium ion secondary battery
CN102479932B (en) Using method of lithium ion battery modifying agent, lithium ion battery diaphragm, and battery
JP2016009651A (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP6167726B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery including the same
TW201222949A (en) Electrode composite material of lithium ion battery, method for making the same, and battery
Feng et al. Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate
Zhang et al. Laser ablation of pristine Fe foil for constructing a layer-by-layer SiO 2/Fe 2 O 3/Fe integrated anode for high cycling-stability lithium-ion batteries
CN116845235B (en) Positive electrode material, positive electrode sheet and battery
JP2020017493A (en) Manufacturing method of solid state battery electrode
JP6674072B1 (en) Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
WO2014003034A1 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
JPWO2015198519A1 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP6898731B2 (en) Positive electrode for lithium secondary battery
CN115152049A (en) Negative electrode for secondary battery, method for producing same, and secondary battery
JP2017098181A (en) All-solid-state battery
CN109935831B (en) Electrode inert material, composite electrode, manufacturing method and lithium ion battery