TW201217306A - Core-shell geopolymer composite and fabrication method thereof - Google Patents

Core-shell geopolymer composite and fabrication method thereof Download PDF

Info

Publication number
TW201217306A
TW201217306A TW99137155A TW99137155A TW201217306A TW 201217306 A TW201217306 A TW 201217306A TW 99137155 A TW99137155 A TW 99137155A TW 99137155 A TW99137155 A TW 99137155A TW 201217306 A TW201217306 A TW 201217306A
Authority
TW
Taiwan
Prior art keywords
core
inorganic polymer
polymer composite
shell type
type inorganic
Prior art date
Application number
TW99137155A
Other languages
Chinese (zh)
Other versions
TWI400218B (en
Inventor
Ching-Chyi Chen
Tian-Yi Chang
Tsung-Yin Yang
Chia-Hsin Pai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99137155A priority Critical patent/TWI400218B/en
Priority to CN201110003850.3A priority patent/CN102463090B/en
Publication of TW201217306A publication Critical patent/TW201217306A/en
Application granted granted Critical
Publication of TWI400218B publication Critical patent/TWI400218B/en

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a core-shell geopolymer composite, comprising a core containing a aluminum rich material and additive; and a geopolymer shell layer encapsulating the core and the layer having a Si-O-Al bonding. The shell layer of the geopolymer composite of the invention is constituted by geopolymers that helps reducing the use of material and manufacturing costs while having better cylindrical compress strength and bulk density.

Description

201217306 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種無機聚合物複合材料及其製造方 法,特別是一種核殼式無機聚合物複合材料及其製造方法。 【先前技術】 無機聚合物(Geopolymer)是一種以石夕氧紹結構為基 礎之高性能膠結劑,無機聚合反應是以例如,富含氧化鋁 之高溫灰渣為主要起始原料,以矽氧鋁(Si-0-Al)結構所組 φ 成的聚合材料,由於矽氧(Si-Ο)四面體與鋁氧(A卜0)四面 體在重新鍵結後,會形成三維網狀結構,使得無機聚合材 料具有優異的物性與化性,包括絕熱、耐熱、不燃、不發 煙、耐震、耐候、抗浸蝕等特性,可替代水泥膠結劑,並 具有更優異的物性。 此外,為了替代市售預鑄式輕質外牆板使用的陶粒產 品,第201022159號台灣專利已開發出無機聚合物與紙渣 複合的技術,並製成紙渣輕質隔熱粒料產物,可以不需經 ® 高溫燒成情況下,製成低耗能的紙渣無機聚合物複合材 料。但是因無機聚合反應使用的主要原料(如水玻璃等)成 本,比較起傳統膠結原料(如水泥等),相對顯得非常昂貴, 影響到產品在市場的推展成效。 是以,如何有效降低原料的使用量及產製成本,並開 發出具有優異結構強度之無機聚合物複合材料,實為目前 亟欲解決的課題。 【發明内容】 3 111811 201217306 聚合目的’本發明提供-種核殼式無機 及添加物;1機二^核芯’係包括富含氧化銘之材料 合物係具有錢邮^^^包覆該㈣’且該無機聚 結二==無,合物複合材料中,該権鍵 鋁鍵結之發原子^之备含氧化麵之材料所提供,·該石夕氧 '、于係由石夕醆鹽所提供。 提供二種核料無機聚合物複合材料,本發明復 現合富含氣聚合物複合材料之製造方法,包栝: 加工該混合原料/4及添加物,以得到混合原料; 用㈣鹽水溶液,複:顆粒;於該複數顆粒表面施 粒表層;對表二 石夕酸鹽水溶液渗入該顆 以於該滲切二水冷7水顆容液之該顆粒施以熱處理, 層且該無機聚合物係具有梦氧!呂鍵結。 前述之核殼式無_合物複歸狀製衫法,以 痛水溶液之步驟前,以驗性水溶液活化該 料,其中’該驗性水溶液係驗金屬氫氧化 至ιοΓ液通* ’該驗金屬氫氧化物水溶液之濃度為0.1 主10N ’並以1至5N為佳。 q 法中另二視==式無機聚合物複合材料之製造方 :=例=::原:激體。然若使用之添加物含水 b則可不添加水份直接混合富含氧 111811 4 .201217306 化鋁之材料及添加物。 曬社另^方面為使經造粒而得之複數顆粒定形且不彼此 兄後匕括於得到複數顆粒後及施用石夕酸鹽水溶液之 剛’乾燥朗叙魏顆粒。 人^據本發明之製造方*所得之核殼式無機聚合物複 合材料,係以富含童&Α ^ _ yv 乳化叙之材料及添加物作為核芯,殼層201217306 VI. Description of the Invention: [Technical Field] The present invention relates to an inorganic polymer composite material and a method for producing the same, and more particularly to a core-shell type inorganic polymer composite material and a method for producing the same. [Prior Art] The inorganic polymer (Geopolymer) is a high-performance cement based on the structure of the sulphuric acid. The inorganic polymerization reaction is based on, for example, high-temperature ash rich in alumina as the main starting material. The φ-forming polymeric material of the aluminum (Si-0-Al) structure forms a three-dimensional network structure after the helium-oxygen (Si-Ο) tetrahedron and the aluminum-oxygen (Ab0) tetrahedron are re-bonded. The inorganic polymeric material has excellent physical properties and chemical properties, including thermal insulation, heat resistance, non-combustible, non-smoke, shock resistance, weather resistance, corrosion resistance, etc., can replace cement cement, and has more excellent physical properties. In addition, in order to replace the ceramsite products used in the commercial 預鑄-type lightweight façade, the Taiwan patent No. 201022159 has developed a technology of composite of inorganic polymer and paper slag, and made a light-weight heat-insulating pellet product of paper slag. Low-energy paper-slag inorganic polymer composites can be produced without the need for high-temperature firing. However, due to the cost of the main raw materials used in the inorganic polymerization (such as water glass), compared with the traditional cement raw materials (such as cement), it is relatively expensive, which affects the product's progress in the market. Therefore, how to effectively reduce the amount of raw materials used and the cost of production, and to develop inorganic polymer composite materials with excellent structural strength is a problem that is currently being solved. SUMMARY OF THE INVENTION 3 111811 201217306 The purpose of polymerization 'The present invention provides - a kind of core-shell type inorganic and additive; 1 machine 2 core" is a material rich in oxidized crystals with a package of money (4) 'and the inorganic coalescence two == no, in the composite material, the atomic bond of the yttrium bond aluminum bond is provided by the material containing the oxidation surface, · the Shi Xi oxygen', the system is from Shi Xi Provided by strontium salt. Providing two kinds of core inorganic polymer composite materials, the present invention reproduces a gas-rich polymer composite material manufacturing method, including: processing the mixed raw material / 4 and additives to obtain a mixed raw material; using (iv) a saline solution, a particle: a surface layer is applied to the surface of the plurality of particles; and the particles are infiltrated into the aqueous solution of the aqueous solution of the water, and the inorganic polymer is applied to the particle. Have dream oxygen! The above-mentioned core-shell type non-compound complex-type shirt making method activates the material with an aqueous test solution before the step of painful aqueous solution, wherein 'the test aqueous solution is metal hydroxide to ιοΓ liquid pass*' The concentration of the aqueous metal hydroxide solution is 0.1 main 10N 'and preferably 1 to 5N. In the q method, the other two == type inorganic polymer composites are manufactured: = example =:: original: excimer. However, if the additive used contains water b, it can be directly mixed with oxygen without adding water. 111811 4 .201217306 Aluminum material and additives. In other aspects, the plurality of granules obtained by granulation are shaped and not entangled with each other to obtain the granules of the granules of the aqueous solution. The core-shell type inorganic polymer composite material obtained by the manufacturer of the present invention is made of a material and an additive rich in children & Α ^ _ yv as a core, a shell layer

= = ::所構成,且透過核芯之富含_ 件下,得到具於降低原料及製作成本的條 合物複合材料。強度及總體密度的核殼式無機聚 【實施方式】 以下猎由特定的具體實施例說明本發 ;’熟習此技藝之人士可由本說明書所揭示之内容:易: ,、解本發明之優點及功效。本發财可藉由其它不同之 施方式加以施行或應用’本說明書中的各項細節亦可基於 不同觀點與應用’在不㈣本發明所揭示之精神二石 同之修飾與變更。 '為符合㈣再湘、節省能源耗費之要求,並得到具 f本優勢及良好結構強度之無機聚合物複合材料,本發明 提供提供一種核殼式無機聚合物複合材料之製造方法,包 括:混合富含氧化鋁之材料及添加物,以得到混合原料^ 加工該混合原料,以得到複數軸;於該複數顆:表面施 用石夕酸鹽水溶液,俾使至少部分該賴鹽水溶液滲入該顆 粒表層;對表層滲有矽酸鹽水溶液之該顆粒施以熱處=, 111811 5 201217306 以於該滲有矽酸鹽水溶液之顆粒表層形成無機聚合物殼 層,且該無機聚合物係具有矽氧鋁鍵結。 本文中,「富含氧化鋁之材料」亦有稱為「富含鋁氧」 之情況,亦即通常係指經培燒過之富含氧化鋁之材料,舉 例而言,前述之核殼式無機聚合物複合材料之製造方法 中,該富含氧化鋁之材料包括選自經高溫焙燒(500-800°C ) 的高嶺土粉體、飛灰、爐石、鋁渣及脫硫渣所組成群組之 一種或多種。該飛灰、爐石、銘潰及脫硫潰係為經高溫製 程所產生富含氧化鋁之粉體。另外,本文所述之「富含氧 · 化鋁」係指材料中包含至少10wt%以上之氧化鋁成分。 至於該添加物係以粉體材料為佳。且該粉體材料可為 對無機聚合反應為惰性者。該添加物之實例包括紙渣污 泥、岗石材污泥、廢矽藻土或礦砂,或者其他廢棄資源。 於混合富含氧化鋁之材料及添加物的步驟中,典型 地,係先將富含氧化銘之材料與添加物依所欲之定量配比 例如,可於重量比1:1至1:20之範圍,分別稱量後,視選 0 用材料之特性添加水,再進行混拌處理,直到成均勻的混 合原料漿體。 舉例而言,若添加物為紙渣污泥,則需先在高扭力的 錨狀式或刮刀式或雙軸式等混拌機中,進行高速的混拌分 散處理,直到紙渣污泥的木纖維團完全解離分散成均勻的 漿體。再混入富含氧化鋁之材料於紙渣污泥的漿體中,確 保木纖維是以未纏繞的分離狀存在漿體中,亦即在漿體中 已經完全無團狀的木纖維存在。此外,當使用之添加物含 6 111811 201217306 水率較南’例如紙潰污泥,則可不添加水份直接混合富含 氧化紹之材料及添加物。 在得到混合肩料後’接著加工該混合原料,以得到複 數顆粒。通常,係將混合原料直接充填到擠出造粒機的混 練進料容器t ’進行擠出造粒的製作,並視顆粒初期成= 的固結程度需求,將擠出的顆粒進行初步的乾燥處理,使 顆粒能定形不會互相膠黏。此乾燥處理可以在常溫下靜置 陰乾或是以陽光曝曬’或是於4〇至9(rc烘乾該顆粒,促 • 使擠出的顆粒能達成初期固定成形,並確保在後續的加 處理過程不會崩解散開。 接著’於該複數顆粒(視需要經乾燥處理者)表面施用 矽酸鹽水溶液’俾使至少部分該矽酸鹽水溶液滲入該顆教 表層;該矽酸鹽水溶液係如習知的水玻璃溶液,例如♦酸 鈉或矽酸鉀水溶液。再進行本步驟時,可以浸泡或喷塗之 方式使至少部分該矽酸鹽水溶液滲入該顆粒表層。 _ 浸泡處理疋將複數顆粒直接浸泡在如5至50wt%之石夕 酸鹽水溶液中,使矽酸鹽滲入顆粒的外層部分。表面的噴 塗處理則係將矽酸鹽水溶液利用噴霧器霧化,直接喷塗到 顆粒的表面,並吸收至顆粒表層。 又前述之核殼式無機聚合物複合材料之製造方法 中,復可包括於施用矽酸鹽水溶液之步驟前,以鹼性水溶 液活化該富含氧化鋁之材料,以增進無機聚合反應的誘 發,其中,該鹼性水溶液係鹼金屬氫氧化物水溶液。通常, 該鹼金屬氫氧化物水溶液之濃度為〇. i至1〇N,並以】至 111811 7 201217306 5N為佳。 隨後,對表層滲有矽酸鹽水溶液之該顆粒施以熱處 理,以於該滲有矽酸鹽水溶液之顆粒表層形成無機聚合物 殼層,且該無機聚合物係具有矽氧鋁鍵結。雖然,無機聚 合物的形成可以在常溫進行,但常溫處理的時間較長且產 品的品質較差。升溫之熱處理,可以旋轉爐加熱,或是帶 式烘焙機,或是靜置式台車窑或烘焙機進行作業。該熱處 理的溫度與時間範圍,可視無機聚合反應的需求決定,通 常溫度範圍約在40至200°C,其中最適範圍為90至150 °C。熱處理時間則因本發明為核殼式無機聚合物複合材 料,僅需在顆粒的外層部分誘發無機聚合反應,因此,通 常加熱時間範圍約在10至60分,並可視配合粒料所需達 成無機聚合固化的程度調整。 根據前述之製造方法,本發明提供一種核殼式無機聚 合物複合材料,如第1圖所示之核殼式無機聚合物複合材 料顯微鏡局部放大圖,該核殼式無機聚合物複合材料1包 括:核芯10,係包括富含氧化鋁之材料及添加物;無機聚 合物殼層12,係包覆該核芯10,且該無機聚合物係具有矽 氧鋁(Si-0-Al)鍵結。 本發明之核殼式無機聚合物複合材料中,該矽氧鋁鍵 結之鋁原子係由核芯之富含氧化鋁之材料所提供;該矽氧 鋁鍵結之矽原子係由矽酸鹽所提供。 實施例 稱取造紙廠產生的紙渣污泥(經壓濾機處理產出,含水 111811 201217306 率約68%,乾基太總祕 土衣纖維佔容積率約72%)20公斤, 力混拌機中’分散虛理s3 土此 斤置入间扭 電共生廠產出的飛心n/w、备… 解離後加入 ,.^ M . Α斤,進仃》昆拌處理成均勻的漿體 後,直接充__仏_的較混 行擠壓造粒成型製作,並產錄㈣5幻〇_的短 胚顆粒。將粗胚齡在常溫下靜置陰乾4小時,確保在後 續的加工處理過程不會崩解散開。 隨後將粗胚顆粒稱量均分成4等份,再分別進行本發 •明石夕酸鹽水溶液的滲入處理,即以矽酸鈉水玻璃溶液進行 浸泡處理,促使水玻璃溶液可以有限度滲入顆粒的外層部 分。浸泡處理是將粗胚顆粒直接浸泡在特定濃度的水玻璃 溶液中’並藉由特定汉泡時間的控制’使水玻璃溶液可以 有限度滲入粒料的外層部分。 下表1所示之編號1Α為利用I5wt%水玻璃溶液浸泡處 理1分鐘共1次;編號1B為利用15 wt %水玻璃溶液浸泡 處理2次’每次1分鐘’編號2A為利用30 wt %水玻璃溶 液浸泡處理1分鐘共1次;以及編號2B為利用30 wt %水 玻璃溶液浸泡處理10分鐘共1次。 隨後再將外層部分已滲入水玻璃溶液的顆粒,分別以 帶式烘焙機進行熱處理,烘焙機加熱控制的溫度為140 °C,顆粒加熱的滯留時間約15分鐘,促使表層滲有矽酸鹽 水溶液之顆粒外層部分發生無機聚合反應,並於外層部分 生成具有矽氧鋁鍵結之無機聚合物,即獲得本發明之核殼 式無機聚合物複合材料。 9 111811 201217306 比較例習用無機聚合物複合材料之製備 .在本比較例中’亦以習用的製程製作無機聚合物複合 材料。首先取紙渣污泥(經壓濾機處理產出,含水率約 68%’乾基木纖維佔容積率約72%)5公斤,置入高扭力混掉 機中,分散處理至紙渣纖維團完全解離後,加入燃煤電廢 產出的飛灰2. 5公斤,以及0· 5公斤1N氫氧化鈉水溶液, 經均勻混拌處理後,再加入1公斤30wt%水玻璃溶液,並 進行混拌處理成均勻的漿體後,直接充填到擠壓式造粒機 的特定混練進料容器中,進行擠壓的造粒成型製作,並產 出粒徑約5至1 Omm的短柱型粗胚粒料。再以帶式烘焙機進 行焙溫度為140°C,滯留時間約30分鐘的高溫養護處理, 即可完成習用無機聚合物複合材料的製作,並編號為3A 產物。 將前述獲得的ΙΑ、1B、2A、2B與3A等產物,以及市 售預鑄式輕質外牆板使用的原料陶粒,分別依中華民國國 家標準CNS14779、CNS487進行筒壓強度、總體密度、吸水 率等之物性的檢測試驗,各種試樣的物性檢測結果係紀錄 於表1。由檢測的結果顯示,本發明之核殼式無機.聚合物 複合材料,藉由浸泡處理的水玻璃溶液濃度及浸泡時間的 控制,可以產出不同物性的粒料產物。亦即在浸泡之水玻 璃溶液的濃度越大時,有利於核殼式無機聚合物複合材料 的筒壓強度值與總體密度值的增進趨勢,而吸水率值則會 下降趨勢。而在浸泡處理的時越長時,亦有利於核殼式無 機聚合物複合材料的筒壓強度值與總體密度值的增進趨 10 111811 201217306 勢,而吸水率值則會下降趨勢。 另一方面,由表1的結果可知,本發明核殼式無機聚 合物複合材料的各項物性功能,例如筒壓強度值與總體密 度值皆優於市售預鑄式牆板使用的陶粒。而習用無機聚人 物方式製作的3A產物,雖加入相對大量與高濃度的〗公斤 30%水玻璃溶液來製作整體顆粒皆具有無機聚合物之複人 材料,但因水玻璃溶液被整體容積大幅稀釋,因此,相對 地,無機聚合物之矽氧鋁鍵結分散在複合材料中,強戶性 能方面顯然不佳。然而’本發_殼式無機聚合物複合材 料之製造方法,僅殼層的部份則由無機聚合物所構成,且 透過核芯之富含氧化鋁之材料形成矽氧鋁鍵結,可節省 酸鹽水溶液之使用量(可達7〇%),於降低原料及製 的條件下,得到具有優異筒壓強度及總體密度、 機聚合物複合材料。復參閱第2圖所示,係顯示^风式無 殼式無機致合物複合材料顯微鏡之局部剖視圖,复I明核 虛線之間的區域即為無機聚合物殼層。 〃中,兩 試樣 1A 1B 2A 總體密度(g/cm3) 0. 63 0. 67 0. 69 吸水率(%) 45.5 39. 2 36.3、 筒壓強度(MPa) 1.74 2.26 3. 82 上述實施例僅例示性說明本發明之原 非用於限制本發明。任何熟習此項技藝之及其功坆, 背本發明之精神及範疇下,對上述實人士岣可在 • 58 25. 例运行修锦摩 201217306 變。因此,舉凡所屬技術領域中具有通常知識者在未脫離 本發明所揭示之精神與技術思想下所完成之一切等效修飾 或改變,仍應由後述之申請專利範圍所涵蓋。 【圖式簡單說明】 第1圖係顯示本發明之核殼式無機聚合物複合材料之 剖面示意圖;以及 第2圖係本發明之核殼式無機聚合物複合材料顯微鏡 之局部剖視圖。 【主要元件符號說明】 1 核殼式無機聚合物複合材料 10 核芯 12 無機聚合物殼層 12 111811= = :: is composed, and through the core is rich, the composite material with reduced raw materials and production cost is obtained. Core-Shell Inorganic Polymerization of Strength and Total Density [Embodiment] The following description of the present invention is made by a specific embodiment; the person skilled in the art can disclose the contents of the present specification: easy to: efficacy. The present invention may be implemented or applied by other different means. The details of the present specification may also be based on different opinions and applications, and are not modified or altered by the spirit of the present invention. In order to meet the requirements of (4) re-enriching, saving energy consumption, and obtaining an inorganic polymer composite material having the advantages and good structural strength, the present invention provides a method for manufacturing a core-shell type inorganic polymer composite material, comprising: mixing An alumina-rich material and an additive to obtain a mixed raw material to process the mixed raw material to obtain a plurality of axes; and in the plurality of surfaces: an aqueous solution of a sulphuric acid salt is applied on the surface, and at least a part of the aqueous solution of the lyophilized salt penetrates into the surface layer of the granule Applying heat to the particles in which the surface layer is impregnated with an aqueous solution of citrate = 111811 5 201217306 to form an inorganic polymer shell layer on the surface layer of the chlorinated aqueous solution, and the inorganic polymer has aluminum oxide Bonding. In this context, "aluminum-rich material" is also referred to as "aluminum-rich oxygen", which is usually referred to as a burnt-aluminum-rich material, for example, the aforementioned core-shell type. In the method for producing an inorganic polymer composite, the alumina-rich material comprises a group selected from the group consisting of kaolin powder, fly ash, hearthstone, aluminum slag and desulfurization slag which are calcined at a high temperature (500-800 ° C). One or more of the groups. The fly ash, hearthstone, gelstone and desulfurization are high alumina-rich powders produced by high temperature processes. Further, "aluminum enriched aluminum" as used herein means an alumina component containing at least 10% by weight or more of the material. As for the additive, a powder material is preferred. And the powder material may be inert to the inorganic polymerization reaction. Examples of such additives include paper slag sludge, gangue sludge, waste diatomaceous earth or ore, or other waste resources. In the step of mixing the alumina-rich material and the additive, the ratio of the oxidized material to the additive is typically, for example, 1:1 to 1:20 by weight. After the weighing, respectively, the water is added according to the characteristics of the material, and then the mixing treatment is carried out until the slurry is uniformly mixed. For example, if the additive is paper slag sludge, it is necessary to carry out high-speed mixing and dispersing treatment in a high-torque anchor type or scraper type or double-shaft type mixer until the paper slag sludge The wood fiber mass is completely dissociated and dispersed into a uniform slurry. The alumina-rich material is further mixed into the slurry of the paper slag sludge to ensure that the wood fiber is present in the slurry in an unwound separation, that is, the wood fiber which is completely free of agglomerates in the slurry. In addition, when the additive used contains 6 111811 201217306, the water rate is higher than that of the south, for example, paper sludge, and the material and the additive rich in oxidation can be directly mixed without adding water. After the mixed shoulder is obtained, the mixed raw material is subsequently processed to obtain a plurality of particles. Usually, the mixed raw materials are directly filled into the kneading feed container t' of the extrusion granulator to carry out extrusion granulation, and the extruded granules are subjected to preliminary drying according to the initial degree of consolidation of the granules. Treatment, so that the particles can be shaped without sticking to each other. This drying treatment can be dried at room temperature or dried in the sun or at 4 to 9 (r drying the granules to promote the initial setting of the extruded granules and ensure subsequent processing) The process does not disintegrate and disperse. Then 'the surface of the plurality of particles (if necessary to be dried) is applied with an aqueous solution of citrate', such that at least a portion of the aqueous solution of citrate penetrates into the surface layer of the citrate; A conventional water glass solution, such as ♦ sodium or potassium citrate aqueous solution. When this step is performed, at least a portion of the aqueous citrate solution may be infiltrated into the surface layer of the granule by soaking or spraying. Directly immersing in an aqueous solution of, for example, 5 to 50% by weight of the ceric acid salt, the ceric acid salt is infiltrated into the outer layer portion of the granule. The surface is sprayed by spraying the bismuth citrate aqueous solution with a sprayer and spraying directly onto the surface of the granule. And absorbed into the surface layer of the particle. In the above method for manufacturing the core-shell type inorganic polymer composite material, the complex may be included in the alkaline water solution before the step of applying the aqueous solution of the citrate The alumina-rich material is activated to promote the induction of the inorganic polymerization reaction, wherein the alkaline aqueous solution is an aqueous alkali metal hydroxide solution. Usually, the concentration of the alkali metal hydroxide aqueous solution is 〇. i to 1〇N And preferably to 111811 7 201217306 5N. Subsequently, the surface layer is impregnated with the aqueous solution of the citrate aqueous solution to form an inorganic polymer shell layer on the surface layer of the chlorinated aqueous solution. The inorganic polymer has an aluminum oxide bond. Although the formation of the inorganic polymer can be carried out at room temperature, the treatment at room temperature is long and the quality of the product is poor. The heat treatment for heating can be carried out by rotary furnace heating or belt baking. Machine, or stationary trolley kiln or roaster. The temperature and time range of the heat treatment can be determined by the requirements of the inorganic polymerization reaction. The temperature range is usually about 40 to 200 ° C, and the optimum range is 90 to 150 ° C. The heat treatment time is because the present invention is a core-shell type inorganic polymer composite material, and it is only necessary to induce an inorganic polymerization reaction in the outer layer portion of the particles, and therefore, it is usually added. The time range is about 10 to 60 minutes, and can be adjusted according to the degree of inorganic polymerization curing required to match the pellets. According to the foregoing manufacturing method, the present invention provides a core-shell type inorganic polymer composite material, as shown in FIG. A partial enlarged view of a core-shell inorganic polymer composite material comprising: a core 10 comprising an alumina-rich material and an additive; an inorganic polymer shell 12, a package The core 10 is coated, and the inorganic polymer has an aluminum oxide (Si-0-Al) bond. In the core-shell inorganic polymer composite of the present invention, the aluminum oxide bonded to the aluminum oxide is composed of The core-rich alumina-rich material is provided; the bismuth atom-bonded ruthenium atom system is provided by bismuth citrate. The embodiment refers to a paper slag sludge produced by a paper mill (processed by a filter press, The water content 111811 201217306 rate is about 68%, the dry base too total secret clothing fiber accounts for about 72% of the volume ratio) 20 kg, the force mixing machine in the 'distributed imaginary s3 soil this jin into the intertwirling symbiotic factory output of the fly Heart n/w, preparation... Join after dissociation, .^ M. Α斤,进仃》昆After mixing and processing into a uniform slurry, the __仏_ is directly mixed and granulated to produce (4) 5 〇 _ short embryo particles. The crude embryo age was allowed to stand at room temperature for 4 hours, ensuring that the subsequent processing did not disintegrate. Subsequently, the weighing of the crude embryo particles is divided into 4 equal parts, and then the infiltration treatment of the aqueous solution of the present invention is carried out, that is, the soaking treatment is carried out with the sodium citrate water glass solution, so that the water glass solution can be infiltrated into the particles to a limited extent. Outer part. The soaking treatment is to directly soak the coarse embryo particles in a specific concentration of water glass solution and control the water glass solution to a limited extent into the outer portion of the pellets by the control of the specific bubble time. The number 1Α shown in Table 1 below is 1 time for 1 minute immersion treatment with I5wt% water glass solution; No. 1B is immersed twice with 1 wt% water glass solution for '1 minute each time' No. 2A is utilized 30 wt% The water glass solution was immersed for 1 minute for a total of 1 time; and the number 2B was immersed for 10 minutes with a 30 wt% water glass solution for 1 time. Subsequently, the outer layer portion has been infiltrated into the water glass solution particles, and respectively heat treated by a belt roaster, the temperature of the roaster is controlled by heating at 140 ° C, and the residence time of the pellet heating is about 15 minutes, causing the surface layer to be infiltrated with the aqueous solution of citrate. The outer layer portion of the particles undergoes an inorganic polymerization reaction, and an inorganic polymer having an aluminum oxide bond is formed in the outer layer portion, that is, the core-shell type inorganic polymer composite material of the present invention is obtained. 9 111811 201217306 Comparative Example Preparation of Conventional Inorganic Polymer Composites In this comparative example, inorganic polymer composites were also prepared by conventional processes. Firstly, the paper slag sludge (processed by a filter press, water content of about 68% 'dry wood fiber accounted for about 72% of the volume ratio) is 5 kg, placed in a high-torque mixing machine, and dispersed to the paper slag fiber. After the group is completely dissociated, add 1.5 kg of fly ash produced by coal-fired electricity waste, and 0.5 kg of 1N sodium hydroxide aqueous solution. After uniform mixing, add 1 kg of 30 wt% water glass solution and carry out After being mixed into a uniform slurry, it is directly filled into a specific mixing feed container of the extrusion granulator, and is subjected to extrusion granulation molding to produce a short column type having a particle diameter of about 5 to 1 Omm. Coarse embryo pellets. Then, a high-temperature curing treatment with a baking temperature of 140 ° C and a residence time of about 30 minutes is carried out in a belt roaster, and the conventional inorganic polymer composite material can be completed and numbered as a 3A product. The obtained ceramium, 1B, 2A, 2B and 3A products, as well as the raw ceramsite used in the commercially available 預鑄-type lightweight siding, according to the national standard CNS14779, CNS487 of the Republic of China, the cylinder strength, overall density, The physical property test results such as water absorption rate, and the physical property test results of various samples are shown in Table 1. As a result of the examination, it was revealed that the core-shell type inorganic polymer composite of the present invention can produce pellet products of different physical properties by controlling the concentration of the soaked water glass solution and the soaking time. That is, when the concentration of the water glass solution soaked is larger, the tube strength value and the overall density value of the core-shell type inorganic polymer composite material are favored, and the water absorption rate value is decreased. The longer the immersion treatment, the better the tube strength value and the overall density value of the core-shell inorganic polymer composite tend to increase, and the water absorption value will decrease. On the other hand, as can be seen from the results of Table 1, the physical properties of the core-shell type inorganic polymer composite of the present invention, such as the barrel strength value and the overall density value, are superior to those of the commercially available enamel wallboard. . The 3A product prepared by the inorganic poly-personal method, although adding a relatively large amount of high-concentration gram of 30% water glass solution to make a composite material having an inorganic polymer as a whole particle, is greatly diluted by the overall volume of the water glass solution. Therefore, relatively, the aluminum oxide bond of the inorganic polymer is dispersed in the composite material, and the performance of the strong household is obviously not good. However, in the method of manufacturing the present invention, only the shell portion is composed of an inorganic polymer, and the aluminum oxide-rich material of the core is formed to form a tantalum aluminum bond, thereby saving The amount of the aqueous acid salt solution (up to 7〇%) can be obtained under the conditions of lowering the raw materials and the production, and the organic polymer composite material having excellent cylinder strength and overall density. Referring to Fig. 2, a partial cross-sectional view of a quartz-type inorganic composite composite microscope is shown, and the area between the broken lines of the complex I-nucleus is an inorganic polymer shell. In the crucible, the two samples 1A 1B 2A overall density (g/cm3) 0. 63 0. 67 0. 69 water absorption (%) 45.5 39. 2 36.3, cylinder strength (MPa) 1.74 2.26 3. 82 The invention is intended to be illustrative only and not to limit the invention. Anyone who is familiar with this skill and its merits, in the spirit and scope of the present invention, can change the above-mentioned real person in the 58. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and scope of the invention will be covered by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a core-shell type inorganic polymer composite material of the present invention; and Fig. 2 is a partial cross-sectional view showing a core-shell type inorganic polymer composite material microscope of the present invention. [Main component symbol description] 1 Core-shell inorganic polymer composite 10 Core 12 Inorganic polymer shell 12 111811

Claims (1)

201217306 七、申請專利範圍: 1. 一種核殼式無機聚合物複合材料,包括: 核芯,係包括富含氧化鋁之材料及添加物; 無機聚合物殼層,係包覆該核芯,且該無機聚合物 係具有矽氧鋁鍵結。 2. 如申請專利範圍第1項所述之核殼式無機聚合物複合 材料,其中,該富含氧化鋁之材料包括選自經高溫焙燒 的高嶺土粉體、飛灰、爐石、鋁渣及脫硫渣所組成群組 鲁 之一種或多種。 3. 如申請專利範圍第1項所述之核殼式無機聚合物複合 材料,其中,該添加物係粉體材料。 4. 如申請專利範圍第3項所述之核殼式無機聚合物複合 材料,其中,該粉體材料對無機聚合反應為惰性。 5. 如申請專利範圍第3項所述之核殼式無機聚合物複合 材料,其中,該添加物係選自紙渣污泥、崗石材污泥、 廢石夕藻土或礦砂。 ® 6.如申請專利範圍第1項所述之核殼式無機聚合物複合 材料,其中,該矽氧鋁鍵結之鋁原子係由核芯之富含氧 化鋁之材料所提供。 7. 如申請專利範圍第1項所述之核殼式無機聚合物複合 材料,其t,該矽氧鋁鍵結之矽原子係由矽酸鹽所提供。 8. —種核殼式無機聚合物複合材料之製造方法,包括: 混合富含氧化鋁之材料及添加物,以得到混合原 料; 13 111811 201217306 加工該混合原料,以得到複數顆粒; 於該複數顆粒表面施用矽酸鹽水溶液,俾使至少部 分該矽酸鹽水溶液滲入該顆粒表層; 對表層滲有矽酸鹽水溶液之該顆粒施以熱處理,以 於該滲有矽酸鹽水溶液之顆粒表層形成無機聚合物殼 層,且該無機聚合物係具有矽氧鋁鍵結。 9. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,復包括於施用矽酸鹽水溶液之步驟 前,以鹼性水溶液活化該富含氧化鋁之材料。 10. 如申請專利範圍第9項所述之核殼式無機聚合物複合 材料之製造方法,其中,該鹼性水溶液係鹼金屬氫氧化 物水溶液。 11. 如申請專利範圍第10項所述之核殼式無機聚合物複合 材料之製造方法,其中,該鹼金屬氫氧化物水溶液之濃 度為0. 1至10N。 12. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,其中,該富含氧化鋁之材料包括選自 經高溫焙燒的高嶺土粉體、飛灰、爐石、鋁渣及脫硫渣 所組成群組之一種或多種。 13. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,其中,該添加物係粉體材料。 14. 如申請專利範圍第13項所述之核殼式無機聚合物複合 材料之製造方法,其中,該粉體材料對無機聚合反應為 惰性。 14 111811 201217306 15. 如申請專利範圍第13項所述之核殼式無機聚合物複合 材料之製造方法,其中,該添加物係選自紙渣污泥、崗 石材污泥、廢石夕藻土或礦砂。 16. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,其中,該矽氧鋁鍵結之鋁原子係由核 芯之富含氧化鋁之材料所提供。 17. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,其中,該矽氧鋁鍵結之矽原子係由矽 酸鹽所提供。 18. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,其中,於混合富含氧化鋁之材料及添 加物的步驟中添加水,以得到混合原料漿體。 19. 如申請專利範圍第18項所述之核殼式無機聚合物複合 材料之製造方法,復包括於得到複數顆粒後及施用矽酸 鹽水溶液之前,乾燥該所得之複數顆粒。 20. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,係以浸泡或喷塗之方式使至少部分該 矽酸鹽水溶液滲入該顆粒表層。 21. 如申請專利範圍第8項所述之核殼式無機聚合物複合 材料之製造方法,係於40至200°C熱處理該表層滲有 矽酸鹽水溶液之顆粒。 15201217306 VII. Patent application scope: 1. A core-shell inorganic polymer composite material, comprising: a core, comprising an alumina-rich material and an additive; an inorganic polymer shell covering the core, and The inorganic polymer has an aluminum oxide bond. 2. The core-shell type inorganic polymer composite material according to claim 1, wherein the alumina-rich material comprises a kaolin powder selected from the group consisting of high temperature calcination, fly ash, hearthstone, aluminum slag and One or more of the group consisting of desulfurization slag. 3. The core-shell type inorganic polymer composite according to claim 1, wherein the additive is a powder material. 4. The core-shell type inorganic polymer composite according to claim 3, wherein the powder material is inert to inorganic polymerization. 5. The core-shell type inorganic polymer composite according to claim 3, wherein the additive is selected from the group consisting of paper sludge, granite sludge, waste rock, or mineral sand. The core-shell type inorganic polymer composite according to claim 1, wherein the aluminum oxide bonded to the aluminum oxide is provided by a core material rich in alumina. 7. The core-shell type inorganic polymer composite according to claim 1, wherein t, the aluminoxy-bonded ruthenium atom system is provided by a ruthenium salt. 8. A method for producing a core-shell type inorganic polymer composite, comprising: mixing an alumina-rich material and an additive to obtain a mixed raw material; 13 111811 201217306 processing the mixed raw material to obtain a plurality of particles; Applying an aqueous solution of bismuth on the surface of the granules, so that at least a portion of the aqueous solution of the citrate penetrates into the surface layer of the granules; and heat-treating the granules impregnated with the aqueous solution of citrate in the surface layer to form a surface layer of the oxidized aqueous solution of citrate An inorganic polymer shell, and the inorganic polymer has an aluminum oxide bond. 9. The method for producing a core-shell type inorganic polymer composite according to claim 8, further comprising activating the alumina-rich material with an aqueous alkaline solution before the step of applying the aqueous solution of phthalate. 10. The method for producing a core-shell type inorganic polymer composite according to claim 9, wherein the alkaline aqueous solution is an aqueous alkali metal hydroxide solution. 1至10N。 The method of the method of the present invention, wherein the alkali metal hydroxide aqueous solution has a concentration of 0.1 to 10N. 12. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein the alumina-rich material comprises a kaolin powder selected from the group consisting of high temperature calcined kaolin powder, fly ash, hearthstone, One or more of the group consisting of aluminum slag and desulfurization slag. 13. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein the additive is a powder material. The method for producing a core-shell type inorganic polymer composite according to claim 13, wherein the powder material is inert to the inorganic polymerization reaction. The method for producing a core-shell type inorganic polymer composite material according to claim 13, wherein the additive is selected from the group consisting of paper slag sludge, gangue sludge, and waste stone shizao soil. Or mineral sand. 16. The method of producing a core-shell type inorganic polymer composite according to claim 8, wherein the aluminum oxide bonded to the aluminum oxide is provided by a core-rich alumina-rich material. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein the bismuth atom-bonded ruthenium atom system is provided by a phthalate. 18. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein water is added in the step of mixing the alumina-rich material and the additive to obtain a mixed raw material slurry. 19. The method for producing a core-shell type inorganic polymer composite according to claim 18, wherein the plurality of particles obtained are dried after the plurality of particles are obtained and before the aqueous solution of the citrate is applied. 20. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein at least a portion of the aqueous solution of the phthalate is infiltrated into the surface layer of the granule by soaking or spraying. 21. The method for producing a core-shell type inorganic polymer composite according to claim 8, wherein the surface layer is oxidized by a slurry of a ceric acid aqueous solution at 40 to 200 °C. 15
TW99137155A 2010-10-29 2010-10-29 Core-shell geopolymer composite and fabrication method thereof TWI400218B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99137155A TWI400218B (en) 2010-10-29 2010-10-29 Core-shell geopolymer composite and fabrication method thereof
CN201110003850.3A CN102463090B (en) 2010-10-29 2011-01-04 Core-shell inorganic polymer composite material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137155A TWI400218B (en) 2010-10-29 2010-10-29 Core-shell geopolymer composite and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201217306A true TW201217306A (en) 2012-05-01
TWI400218B TWI400218B (en) 2013-07-01

Family

ID=46067385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137155A TWI400218B (en) 2010-10-29 2010-10-29 Core-shell geopolymer composite and fabrication method thereof

Country Status (2)

Country Link
CN (1) CN102463090B (en)
TW (1) TWI400218B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493284B (en) * 2016-11-24 2018-03-02 武汉科技大学 A kind of core shell structure spherical quartz molding sand and preparation method thereof
CN112742381B (en) * 2019-10-29 2023-03-10 中国石油化工股份有限公司 Shell-layer distributed catalyst and preparation method and application thereof
TWI717127B (en) 2019-11-29 2021-01-21 財團法人工業技術研究院 Core-shell composite material and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711873A (en) * 1980-06-24 1982-01-21 Kurosaki Refractories Co Plate brick for sliding nozzle
CN1334785A (en) * 1998-12-11 2002-02-06 揖斐电株式会社 Noncrystalline powder, composite hardened body and composite building material
DE10227071A1 (en) * 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
TWI225469B (en) * 2003-12-03 2004-12-21 Hua Mao Biotech Co Ltd Method for producing powder with multifunctional core-shell structure
CN101367964A (en) * 2007-08-15 2009-02-18 德古萨有限责任公司 Organosilicon nano-capsule
CA2703549A1 (en) * 2007-10-25 2009-04-30 Walter Henry Huber Glass veneer on ceramics
CN101220216B (en) * 2007-12-18 2010-08-11 福建师范大学 Method for producing inorganic powder body with 'nucleus-shell' structure by surface modification
CN101327454B (en) * 2008-07-29 2010-09-15 华东理工大学 Modified carbon-coated alumina supporter with nucleocapsid structure and preparation method thereof
TWI385127B (en) * 2008-12-15 2013-02-11 Ind Tech Res Inst Paper sludge-geopolymer composite and fabrication method thereof
CN101745986B (en) * 2008-12-22 2012-05-30 财团法人工业技术研究院 Composite material of paper slag sludge and inorganic polymers and the preparation method thereof

Also Published As

Publication number Publication date
TWI400218B (en) 2013-07-01
CN102463090A (en) 2012-05-23
CN102463090B (en) 2014-09-17

Similar Documents

Publication Publication Date Title
EP2424824B1 (en) Method for coating a substrate with a composite
CN108484115B (en) Porous material prepared by utilizing solid waste
JP2008531453A (en) Alkali resistant glass composition
CN106633501B (en) A kind of interior decoration PVC anion composite boards and preparation method thereof
CN103951350A (en) Lightweight aggregate concrete for heat preservation of structures
CN101671158A (en) Silicon dioxide heat insulator and preparation method thereof
CN103951382B (en) High-weather-resistant ceramic tile and preparation method thereof
CN113956000B (en) Cement kiln tail gas carbonization building prefabricated product and preparation method thereof
CN101357828A (en) Method for preparing lightweight aggregate and inorganic insulation using product thereon as main insulation source
CN112794666A (en) Iron tailing non-sintered ceramsite and preparation method thereof
CN114477899B (en) Light ceramic tile adhesive and preparation method thereof
CN106116648B (en) The method that sound absorption-type ceramic fibre iron ore prepares the porous sponge brick that catchments
CN106566289A (en) Rare earth oxide cladded hollow glass bead concrete material
TW201217306A (en) Core-shell geopolymer composite and fabrication method thereof
CN107352917A (en) A kind of fretting map cement base glass bead insulation plate material and preparation method
CN110981245A (en) Engineering waste soil light recycled aggregate and preparation method and application thereof
CN105130301B (en) The method that strong concrete is prepared with cobble
CN106927857A (en) The lightweight concrete building block and its preparation technology of a kind of heat preservation and soundproof
CN108483963A (en) A kind of pretreatment of particles technique for packing reducing haydite water absorption rate
CN104724988A (en) Novel lightweight porous coal gangue brick with sound absorption effect and preparation method thereof
CN110467384A (en) A kind of light-high-strength concrete and preparation method thereof
CN107162565A (en) A kind of high intensity geopolymer tiny balloon and preparation method thereof
TWI385127B (en) Paper sludge-geopolymer composite and fabrication method thereof
CN108623232A (en) A kind of preparation method of the adhesive polystyrene granule heat-insulating mortar of polypropylene fibre enhancing
TWI445871B (en) Light weight and thermal insulation composition aggregates and fabrication method thereof