TW201211864A - Touch point detecting method - Google Patents

Touch point detecting method Download PDF

Info

Publication number
TW201211864A
TW201211864A TW99130079A TW99130079A TW201211864A TW 201211864 A TW201211864 A TW 201211864A TW 99130079 A TW99130079 A TW 99130079A TW 99130079 A TW99130079 A TW 99130079A TW 201211864 A TW201211864 A TW 201211864A
Authority
TW
Taiwan
Prior art keywords
sensing
touch point
difference
signal
signals
Prior art date
Application number
TW99130079A
Other languages
Chinese (zh)
Other versions
TWI416396B (en
Inventor
Chun-Lung Hung
Sheng-Yun Zhang
Yu-Min Hsu
Yung-Tse Cheng
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99130079A priority Critical patent/TWI416396B/en
Publication of TW201211864A publication Critical patent/TW201211864A/en
Application granted granted Critical
Publication of TWI416396B publication Critical patent/TWI416396B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

A touch point detecting method applied to a capacitive touch panel includes respectively obtaining first and second variation signals corresponding to sensing capacitors of the capacitive touch panel by means of scanning the sensing capacitors in a horizontal direction and a vertical direction, for each column, accumulating the first variation signals of the sensing capacitors in the column so as to generate a column loading signal corresponding to the column, for each row, accumulating the second variation signals of the sensing capacitors in the row so as to generate a row loading signal corresponding to the row, comparing a column loading signal corresponding to a sensing capacitor with a row loading signal corresponding to the sensing capacitor so as to accordingly select a first variation signal corresponding to the sensing capacitor or a second variation signal corresponding to the sensing capacitor, and determining if the sensing capacitor is a touch point according to the selected variation signal and a touch threshold value.

Description

201211864 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種觸控偵測技術 用於電容柄控秘之觸控點偵财法。 有關於一種 【先前技術】 於各類消費性電子產品中,觸控面板已被廣泛使用作為輸入裝 置。使用者透過手指或觸控筆㈣置在觸控面板上的點觸、滑動、 書寫等動作,可對_面板上賴示之物件或選單直接下指令及操 作’以提供更方便的人機操作介面。以不誠測技術來區分,觸控 面板可^電容式、電阻式、光學式等。够考第丨圖,第上圖為 說明先則技術之電容式觸控面板則之示意圖。電容式觸控面板刚 包括有感測電容c『c順、電極Xi〜Xn^Yi~Yn,其中感測電容 Ch〜C_與電極UM以及電極Υι〜γΝ之間之耦接關係如第丨圖所 示,故不再贅述。以下將說明在先前技術中,用於電容式觸控面板 100之觸控點偵測方法之工作原理。 在電容式觸控面板1〇〇中,當透過電極Υι〜ΥΝ掃描各列感測電 容時,可透過電極Χρ^Χμ讀取感測電容Cll〜Cmn所產生的感測信號 Sseni_u〜sseni_mn。當透過電極X丨〜χΜ掃描每行感測電容時,可透 過電極Υι〜Υν讀取感測電容Cu〜Cmn所產生的感測信號 SSen2_ii〜ssen2_mn。此外,藉由平均感測電容Cu〜C_於電容式觸控 201211864 面板100尚未被觸碰時所產生的感測信號Ssen丨』〜心溯―_,可產 生-基準值BASE來表示一感測電容於未被觸碰時所產生的感測信 號。如此’於侧觸控點時,可將感測信號Ss腕」丨〜s議廳與基 準值BASE相減’以得柯反映域測錢之變 化之差異信f虎SDIFF1J广S_LMN。舉例而言,第A個感測電容之差 異信號 Sdiffi_a可由下式計算:201211864 VI. Description of the Invention: [Technical Field] The present invention relates to a touch detection technology for a touch point detection method for a capacitive handle control. Regarding a kind of [Prior Art] Among various types of consumer electronic products, touch panels have been widely used as input devices. Through the touch, slide, and writing actions of the user or the stylus (4) on the touch panel, the user can directly command and operate the object or menu on the _ panel to provide more convenient man-machine operation. interface. Differentiated by dishonest measurement technology, the touch panel can be capacitive, resistive, optical, and the like. The above picture can be taken. The figure above shows the schematic diagram of the capacitive touch panel of the prior art. The capacitive touch panel has just included the sensing capacitance c 『c 顺, the electrode Xi~Xn^Yi~Yn, wherein the coupling relationship between the sensing capacitance Ch~C_ and the electrode UM and the electrode Υι~γΝ is as follows. As shown in the figure, it will not be described again. The working principle of the touch point detecting method for the capacitive touch panel 100 in the prior art will be described below. In the capacitive touch panel 1A, when the sensing electrodes of the columns are scanned through the electrodes ,1 to ΥΝ, the sensing signals Sseni_u~sseni_mn generated by the sensing capacitors C11 to Cmn can be read through the electrodes Χρ^Χμ. When the sensing capacitance of each row is scanned through the electrodes X丨~χΜ, the sensing signals SSen2_ii~ssen2_mn generated by the sensing capacitors Cu~Cmn can be read through the electrodes Υι to Υν. In addition, by the average sensing capacitance Cu~C_ in the capacitive touch 201211864, the sensing signal Ssen丨 generated by the panel 100 has not been touched, and the reference value BASE can be expressed to indicate a sense. Measure the capacitance generated by the sensor when it is not touched. In this case, when the side touch point is used, the sensing signal Ss can be subtracted from the reference value BASE by the sensation signal S s s s s s s s s s s s s s s s s s s s s s s s s s s s s s For example, the difference signal Sdiffi_a of the A sense capacitor can be calculated by:

Sdiffla = abs(SSENi_A-BASE)...(l); 籲其中abs表不取絕對值,sSEN1_A表示第A個感測電容所產生之感測 信號,BASE表示基準值。同理,依據式(1)將感測信號 SSEN2_u〜Ssenlmn與基準值BASE相減,可得到可反映出感測信號 s麵」丨〜s麵之變化之差異信號s_—u〜s贿2_剛。此時,藉由 價測差異信號Sd·」!〜SDIFFLMN與差異信號s_j ,可 判斷感測電容所產生之感測信號之變化的程度,並據以判斷觸控點 之位置。更明雜說,先前技術之觸控點侧方法將對應於感測電 • 谷CA之差異彳s號SDIFF1A以及SDIFF2_A與一觸控臨界值thT0uch比 較°备差異信號SDIFF1A與SD!FF2_A皆大於觸控臨界值THt〇uch時, 先前技術之觸控點偵測方法判斷感測電容C A為一觸控點。 第2圖與第3圖為說明先前技術之觸控點偵測方法於使用者作 多點觸控時,無法正確地偵測到觸控點之示意圖。第2圖為當使 用者作多點觸控時,對應於感測電容C„〜Cmn之差異信號 • Sdiffi—η〜SDiffi_mn之示意圖。第3圖為當使用者作多點觸控時,對 • 應於感測電谷Cl 1〜CmN之差異信號Sdhjfh丨〜之示意圖,其 201211864 中。又Μ N白為8 ’且觸控臨界值thT0uch為1〇。由第2圖與第3 圖可看出’由於感測電容CD所纽之感測信號Sd·—成⑽ SDIFF2_32(20)皆大於觸控臨界值THt〇uch(1〇),因此先前技術之觸控 點憤測方法可_感測電容觸控點^同理,先前技術之觸 控點偵測方法也可判斷感測電容c36與c38為觸控點。 然而,當感測電容Cu實際上為一觸控點時,若第“亍(或第了 列)感測電容巾有其減測電容同時也為觸控點,職職容^可 能透過電極X】(或Yj)受酬行(或列)感測電容中對應於觸控點之感 測電容的預,喊生不正確的感測健s_』(或s議』),如此 造成先前技術之觸控點偵測方法之誤判。舉例而言,在第2圖中, 感測電容c34實際上為-觸控點。然、而,由於感測電容c34透過電極 X3受到同行感測電容中對應於觸控點的感測電容(C32、與c38) 的干擾,因此感測電谷C:34產生不正確的感測信號s__34,導致差 異信號SDIFF1J4(8)小於觸控臨界值ΤΗτ_⑽。此時,雖然對應於 感測電容c34之差則鐵s_」4(18)大補抛界值 (1〇),然而,先前技術之觸控點偵測方法卻依據差異信號 SDIFFL34(8) ’判斷感測電容C34不是觸控點。換句話說,在電容式觸 控面板中’當個者作多點觸控時,先前技術之觸控點偵測方法可 能無法正確地偵測到觸控點。 【發明内容】 本發明提供-_控_測方法。該觸控關測方法用於一 201211864 電容式觸控面板。該電容式觸控面板具有(MxN)個感測電容、厘個 第一電極與N個第二電極。該(MxN)個感測電容耦接於該M個第一 電極與該N個第二電極。該(ΜχΝ)個感測電容沿著一第一方向排列 成Μ行感測電容’且沿著相異於該第一方向之一第二方向排列成N 列感測電容。該觸控點偵測方法包括透過該N個第二電極掃描該N 列感測電谷’以得到對應於該(ΜχΝ)個感測電容之(ΜχΝ)個第一差 異化號、針對各行感測電容,相加對應於同行感測電容中之複數個 φ 感測電谷之第一差異信號,以產生對應於該Μ行感測電容之μ個 行負載信號、透過該Μ個第一電極掃描該μ行感測電容,以得到 對應於該(ΜχΝ)個感測電容之(ΜχΝ)個第二差異信號、針對各列感 測電谷,相加對應於同列感測電容中之複數個感測電容之第二差異 信號,以產生對應於該Ν列感測電容之Ν個列負載信號,以及依據 該Μ個行負載信號、該Ν個列負載信號、該(ΜχΝ)個第一差異信號、 5亥(ΜχΝ)個第一差異彳§號與一觸控臨界值,產生一觸控點偵測結 果。Μ、Ν皆為正整數。 【實施方式】 請參考第4圖。第4圖為說明本發明之觸控點偵測方法4〇〇 之示意圖。觸控點偵測方法400用於電容式觸控面板5〇〇(如第5 圖所示)。電容式觸控面板500包括有感測電容(^〜(:細、電極Χι〜Χμ 與Υρ·Ύν、控制電路510、驅動電路520、感測電路530,以及切換 電路540。感測電容q〜Cmn沿著X方向(水平方向)排列成Μ行感 測電容,且沿著Υ方向(垂直方向)排列成Ν列感測電容。每個感測 201211864 電容C!!〜C_皆包括一第一端與一第二端。如第5圖所示,感測電 容^^之第一端耦接至電極X】,感測電容之第二端耦接至電極 Yj。依此類推可得其他感測電容、電極Xi〜Xm以及電極Υι〜ΥΝ之間 之耦接關係。驅動電路520用來提供驅動信號,以透過電極Υι〜γΝ (或Xr^XM)掃描感測電容Cu〜Cmn。感測電路530用來透過電極 X!〜XM (或Υ!〜ΥΝ)接收感測電容Cl!〜Cmn所產生之感測信號 SsENl—丨丨〜SSEN1_MN(或SSEN2_j丨〜SSEN2__)。控制電路51〇用來控制切換 電路540,以調整驅動電路520、感測電路530,以及電極 與Yi〜Yn之間的耦接關係。更明確地說,當控制電路51〇控制切換 電路540將驅動電路52〇耦接至電極Xi〜Xm時,控制電路51〇控制 切換電路540將感測電路530耦接至電極Yi〜Yn ;反之,當控制電 路510控制切換電路54〇將驅動電路52〇耦接至電極Υι〜Υν時,控 制電路510控制切換電路54〇將感測電路53〇耦接至電極Χι~χΜ。 以下將說明本發明之觸控點偵測方法400之步驟: 步驟410 :驅動電路52〇透過電極Υι〜Υν掃描Ν列感測電容,以得 到對應於感測電容Cn〜Cmn之差異信號 ^DIFF1_h~SdifF1_MN > 步驟420 :針對各行感測電容,相加對應於同行感測電容中之複數 個感測電容之差異信號SDIFF1_U〜SD丨,以產生對應於 M行感測電容之行負載信號CUVCLDm ; 步驟430 .驅動電路52〇透過電極Xi〜Xm掃描M行感測電容,以得 到對應於感測電容Cn〜Cmn之差異信號 ^DIFF2_11~SdiFF2_MN > 201211864 步驟440 .針對各列感測電容,相加對應於同列感測電容中之複數 個感測電容之差異信號SDIFF2j丨〜sD1FF2JvrN,以產生對應於 N列感測電容之列負載信號;以及 步驟450:依據行負載信號CLDi〜CLDm、列負載信號犯^〜虹以、 差異彳〇 5虎 SsENl_ll〜SsENl_MN 與 SseN2_11 〜SsEN2_MN 與一觸控 臨界值THtouch,產生一觸控點偵測結果RT。 在步驟410中’控制電路510控制切換電路540將驅動電路520 耦接至電極Y!〜YN,且控制切換電路54〇將感測電路53〇耦接至電 極X^Xm。此時,控制電路51〇控制驅動電路52〇透過電極 掃描Ν列感測電容。舉例而言,驅動電路52〇輸入驅動信號至電極 Υ! ’以驅動第一列感測電容Cn〜CM1,如此感測電路530可透過電 極Χ^Χμ接收第一列感測電容Ci 1〜Cmi所產生之感測信號 SsENUcSsENLMi。接著’驅動電路52〇輸入驅動信號至電極γ2,如 此感測電路530可透過電極Χ】〜ΧΜ接收第二列感測電容Ci2〜cM2之 感測彳§號Ssen1_j2〜SSEN1_M2。依此類推,驅動電路520可依序透過其 餘電極Y3〜YN ’掃描第三列感測電容至第N列感測電容。如此一來, 感測電路530可得到對應於感測電容Cii〜Cmn之感測信號 Sseni_ii〜SSENLMN ’並傳送給控制電路51〇。控制電路51〇可先藉由 平均感測電容Cn〜Cmn於電容式觸控面板500未被觸碰時所產生的 感測信號SSEN1_j丨〜SSEN1__,以產生一基準值BASEl來表示一感測 電容於未被觸碰時所產生的感測信號。因此,控制電路51〇可根據 式(1) ’將步驟410中所得到的感測信號Sseni_u〜Ssenlmn與基準值 201211864 BASEi相減,以得到可反映出感測信號8_』〜^_之變化之 差異彳S唬SDIFF1—丨丨〜sDIFF1__。控制電路51〇可更進一步地將差異信 號s_丨』〜SDIFFLMN與一雜訊臨界值丁取·作比較,以判斷差異 L5虎疋否為%境的背景雜訊。當差異信號§圓—A小於雜訊臨界值 THN0丨犯時,控制電路51〇判斷差異信號SD[FFij為環境的背景雜 訊。此時,控制電路510可選擇重置差異信號SDIFF1-』預定值 PRE,(舉例而言,PREi為零)。舉例而言,假設原本控制電路 所叶算出之差異信號如第2圖所示,且設定雜訊 臨界值THN0ISE等於5、預定值PREi等於〇,控制電路51〇將差異 信號sDIFF1_u〜s_LMN與雜訊臨界值ΤΗν_作比較後,可得到如 第6圖所示之經重置之差異信號s_』〜s_—_。 在步驟420中’控制電路51〇針對各行感測電容,相加對應於 同行感測電容中之複數個感測電容之差異信號s_u 一晴⑽, 以產生對麟Μ行制電容之行貞餘號CLDi〜CLDm。舉例而 。,饭设行負載仏號為該行感測電容之所有的感測電容所產生之差 異诚之總和。如此,相於第—行感測電容之行貞載信號CLr^ 等於(SD肝丨-U+SDIFFi一丨in);對應於第二行感測電容之行 負載信號cld2等於(s_j1+SDlFFij2+. +s_jN);依此類推, 對應於第Μ行感測電容之行負載信號CLDm等於 (3〇肿丨_>11+3〇1肥^2+...+81)肿丨識)。以第6圖所示之差異信號Sdiffla = abs(SSENi_A-BASE)...(l); The abs table does not take an absolute value, sSEN1_A represents the sensing signal generated by the Ath sensing capacitor, and BASE represents the reference value. Similarly, according to the formula (1), the sensing signals SSEN2_u~Ssenlmn are subtracted from the reference value BASE, and a difference signal s_u~s~2b which can reflect the change of the sensing signal s surface 丨~s surface can be obtained. just. At this time, by the price difference signal Sd··!~SDIFFLMN and the difference signal s_j, the degree of change of the sensing signal generated by the sensing capacitance can be judged, and the position of the touch point can be judged accordingly. More specifically, the touch point side method of the prior art compares the difference between the sensing power and the valley CA 彳 s SDIFF1A and SDIFF2_A with a touch threshold thT0uch. The difference signals SDIFF1A and SD! FF2_A are greater than the touch. When the threshold value THt〇uch, the touch point detection method of the prior art determines that the sensing capacitance CA is a touch point. FIG. 2 and FIG. 3 are schematic diagrams illustrating that the touch point detection method of the prior art cannot correctly detect the touch point when the user performs multi-touch. Figure 2 is a schematic diagram of the difference signal Sdiffi-η~SDiffi_mn corresponding to the sensing capacitance C„~Cmn when the user makes multi-touch. Figure 3 is when the user makes multi-touch, • The schematic diagram of the difference signal Sdhjfh丨~ of the electric valley Cl 1~CmN should be sensed, in 201211864. Μ N white is 8 ' and the touch threshold thT0uch is 1〇. From Fig. 2 and Fig. 3 It can be seen that since the sensing signal Sd·—(10) SDIFF2_32(20) of the sensing capacitor CD is greater than the touch threshold THt〇uch(1〇), the touch point method of the prior art can be sensed. Measuring the capacitive touch point ^ Similarly, the prior art touch point detection method can also determine the sensing capacitance c36 and c38 as the touch point. However, when the sensing capacitance Cu is actually a touch point, if the first "亍 (or the first column) sensing capacitor towel has its reduced capacitance and also the touch point, the job capacity ^ may pass through the electrode X] (or Yj) the reward line (or column) in the sense capacitance corresponds to The pre-sensing of the sensing point of the touch point screams the incorrect sensing s_" (or s), thus causing the misjudgment of the prior art touch point detecting method. For example, in Figure 2, the sense capacitor c34 is actually a touch point. However, since the sensing capacitor c34 is interfered by the sensing capacitance (C32, and c38) corresponding to the touch point in the peer sensing capacitor through the electrode X3, the sensing valley C: 34 generates incorrect sensing. The signal s__34 causes the difference signal SDIFF1J4(8) to be smaller than the touch threshold ΤΗτ_(10). At this time, although the difference of the sensing capacitance c34 corresponds to the iron s_"4 (18) large complement threshold (1 〇), however, the prior art touch point detection method is based on the difference signal SDIFFL34 (8) ' It is judged that the sensing capacitor C34 is not a touch point. In other words, in the capacitive touch panel, the touch point detection method of the prior art may not correctly detect the touch point when the multi-touch is performed. SUMMARY OF THE INVENTION The present invention provides a method of measuring and controlling. The touch-off method is used in a 201211864 capacitive touch panel. The capacitive touch panel has (M x N) sensing capacitances, centimeter first electrodes and N second electrodes. The (MxN) sensing capacitors are coupled to the M first electrodes and the N second electrodes. The (ΜχΝ) sensing capacitors are arranged in a first direction to form a sensing capacitance 'and are arranged in N rows in a second direction different from the first direction to form N columns of sensing capacitances. The touch point detecting method includes scanning the N columns of sensing electric valleys through the N second electrodes to obtain (ΜχΝ) first differential numbers corresponding to the (ΜχΝ) sensing capacitors, and sensing Measure the capacitance, add the first difference signal corresponding to the plurality of φ sensing electric valleys in the peer sensing capacitance to generate μ line load signals corresponding to the cirth sensing capacitance, and pass through the first first electrodes Scanning the μ rows of sensing capacitors to obtain (ΜχΝ) second difference signals corresponding to the (ΜχΝ) sensing capacitors, for each column sensing electric valley, adding corresponding to a plurality of the same column sensing capacitors Sensing a second difference signal of the capacitance to generate a plurality of column load signals corresponding to the array of sensing capacitors, and according to the one row load signal, the one column load signal, the (ΜχΝ) first difference The signal, 5 hai (the first difference) 彳 § and a touch threshold, generate a touch point detection result. Both Μ and Ν are positive integers. [Embodiment] Please refer to Figure 4. FIG. 4 is a schematic diagram showing the touch point detecting method 4〇〇 of the present invention. The touch point detection method 400 is used for the capacitive touch panel 5 (as shown in FIG. 5). The capacitive touch panel 500 includes sensing capacitances (^, (fine, electrodes Χ Χ Χ μ and Υ ρ Ύ ν, control circuit 510, driving circuit 520, sensing circuit 530, and switching circuit 540. Sensing capacitance q~) Cmn is arranged along the X direction (horizontal direction) to form a sensing capacitance, and is arranged in a zigzag direction (vertical direction) to form a sensing capacitance. Each sensing 201211864 capacitance C!!~C_ includes a first One end and a second end. As shown in FIG. 5, the first end of the sensing capacitor is coupled to the electrode X, and the second end of the sensing capacitor is coupled to the electrode Yj. Sensing capacitance, electrodes Xi~Xm and coupling relationship between electrodes ΥΝι~ΥΝ. The driving circuit 520 is used to provide a driving signal for scanning the sensing capacitances Cu~Cmn through the electrodes 〜ι to γΝ (or Xr^XM). The measuring circuit 530 is configured to receive the sensing signals SsEN1_丨丨~SSEN1_MN (or SSEN2_j丨~SSEN2__) generated by the sensing capacitors C1~~Cmn through the electrodes X!~XM (or Υ!~ΥΝ). The control circuit 51〇 Used to control the switching circuit 540 to adjust the driving circuit 520, the sensing circuit 530, and the coupling between the electrodes and Yi~Yn More specifically, when the control circuit 51 〇 controls the switching circuit 540 to couple the driving circuit 52 to the electrodes Xi to Xm, the control circuit 51 〇 controls the switching circuit 540 to couple the sensing circuit 530 to the electrodes Yi to Yn. On the contrary, when the control circuit 510 controls the switching circuit 54 to couple the driving circuit 52 to the electrodes Υ Υ Υ ν, the control circuit 510 controls the switching circuit 54 〇 to couple the sensing circuit 53 Χ to the electrodes Χ χΜ χΜ χΜ. The steps of the touch point detecting method 400 of the present invention are as follows: Step 410: The driving circuit 52 scans the sensing capacitance through the electrodes Υ1 to Υν to obtain a difference signal corresponding to the sensing capacitances Cn~Cmn^DIFF1_h~SdifF1_MN > Step 420: adding, for each row of sensing capacitances, difference signals SDIFF1_U to SD丨 corresponding to a plurality of sensing capacitors in the same sensing capacitance to generate a row load signal CUVCLDm corresponding to the M rows of sensing capacitances; 430. The driving circuit 52 scans the M rows of sensing capacitors through the electrodes Xi to Xm to obtain a difference signal corresponding to the sensing capacitors Cn to Cmn. ^DIFF2_11~SdiFF2_MN > 201211864 Step 440. Sensing capacitance for each column And adding a difference signal SDIFF2j丨~sD1FF2JvrN corresponding to the plurality of sensing capacitors in the same column sensing capacitance to generate a load signal corresponding to the N columns of sensing capacitances; and step 450: according to the line load signals CLDi~CLDm, The column load signal commits ^~虹以, the difference 彳〇5 tiger SsENl_ll~SsENl_MN and SseN2_11~SsEN2_MN with a touch threshold THtouch, generates a touch point detection result RT. In step 410, control circuit 510 controls switching circuit 540 to couple drive circuit 520 to electrodes Y!~YN, and control switching circuit 54A couples sense circuit 53A to electrode X^Xm. At this time, the control circuit 51 〇 controls the drive circuit 52 to scan the array sense capacitance through the electrodes. For example, the driving circuit 52 〇 inputs a driving signal to the electrode Υ ! ' to drive the first column sensing capacitors Cn CM1, so that the sensing circuit 530 can receive the first column sensing capacitances Ci 1 ~ Cmi through the electrodes Χ Χ μ The generated sensing signal SsENUcSsENLMi. Then, the driving circuit 52 receives the driving signal to the electrode γ2, and thus the sensing circuit 530 can receive the sensing parameters Ssen1_j2 to SSEN1_M2 of the second column sensing capacitors Ci2 to cM2 through the electrodes. Similarly, the driving circuit 520 can sequentially scan the third column of sensing capacitances to the Nth column sensing capacitance through the remaining electrodes Y3 YYYN'. In this way, the sensing circuit 530 can obtain the sensing signals Sseni_ii~SSENLMN' corresponding to the sensing capacitors Cii~Cmn and transmit them to the control circuit 51A. The control circuit 51 can first generate a sensing value by using the sensing signals SSEN1_j丨~SSEN1__ generated when the capacitive touch panel 500 is not touched by the average sensing capacitors Cn~Cmn to generate a reference value BASE1. A sensing signal generated when not touched. Therefore, the control circuit 51 can subtract the sensing signals Sseni_u~Ssenlmn obtained in step 410 from the reference value 201211864 BASEi according to the formula (1) to obtain a change reflecting the sensing signal 8_』~^_. The difference 彳S唬SDIFF1—丨丨~sDIFF1__. The control circuit 51 can further compare the difference signals s_丨 』SDIFFLMN with a noise threshold value to determine whether the difference L5 is a background noise of the % environment. When the difference signal § circle-A is smaller than the noise threshold THN0, the control circuit 51 determines the difference signal SD [FFij is the background noise of the environment. At this time, the control circuit 510 can select the reset difference signal SDIFF1-"predetermined value PRE (for example, PREi is zero). For example, suppose the difference signal calculated by the original control circuit is as shown in FIG. 2, and the noise threshold THN0ISE is set equal to 5, the predetermined value PREi is equal to 〇, and the control circuit 51 差异 sets the difference signal sDIFF1_u~s_LMN and the noise. After the threshold value ΤΗν_ is compared, the reset difference signals s_』~s___ as shown in Fig. 6 can be obtained. In step 420, the control circuit 51 adds a difference signal s_u (10) corresponding to the plurality of sensing capacitances in the same sensing capacitance for each row of sensing capacitances to generate a line of capacitance for the capacitors. No. CLDi~CLDm. For example. The rice load line nickname is the sum of the difference between the sense capacitors of the sense capacitor of the line. Thus, the line load signal CLr^ is equal to (SD liver 丨-U+SDIFFi 丨in) in relation to the first line sensing capacitance; the load signal cld2 corresponding to the second line sensing capacitance is equal to (s_j1+SDlFFij2+. +s_jN); and so on, the load signal CLDm corresponding to the first sensing capacitance is equal to (3〇 丨_>11+3〇1 fat^2+...+81). The difference signal shown in Figure 6

SmFF1—丨丨〜SD丨FFi__為例,依據步驟42〇可得對應於M行感測電容之 行負載信號 CLD^CLDm 等於[〇,〇,67,〇,〇,〇,〇,〇]。 201211864 在步驟430中’控制電路51〇控制切換電路54〇將驅動電路52〇 辆接至電極X!〜XM ’且控制切換電路54〇將感測電路53〇耦接至電 極Y!〜YN。此時’控制電路51〇控制驅動電路520透過電極Xi〜Xm 掃4田Μ行感測電容。舉例而言,驅動電路52〇輸入驅動信號至電極 Χι,以驅動第一行感測電容Cn〜c〗N,如此感測電路530可透過電 極γ「γΝ接收第一行感測電容Cu〜Cin所產生之感測信號 ❿ Ssen2_u〜SSEN2_1N。接著,驅動電路52〇輸入驅動信號至電極&,如 此感測電路530可透過電極Υι〜Υν接收第二行感測電容c2i〜C2n之 感測#號SSEN2j丨〜SSEN2jN。依此類推,驅動電路52〇可依序透過電 極X3〜xM,掃描第三行感測電容至第M行感測電容。如此一來,感 測電路530可得到對應於感測電容Cu〜Cmn之感測信號 SsEW—丨1〜SSEN2_MN,並傳送給控制電路51〇。同理,控制電路51〇可 先藉由平均感測電容Cu〜Cmn於電容式觸控面板5〇〇未被觸碰時所 φ 產生的感測k號SseN2_U〜SSEN2_MN,以產生一基準值BASE2來表示 一感測電谷於未被觸碰時所產生的感測信號。因此,控制電路51〇 可根據式⑴’將步驟430中所得到的感測信號SsEN2—u〜SsEN2—娜與 基準值base2相減,以得到可反映出感測信號s麵』〜s麵⑽之 隻化之差異托號SDlm_u〜sDIFF2—围。然而,為了減少運算量,控制 電路510也可選擇不計算基準值BASE2,而是選擇直接將感測信號 SsEnr^N2—MN與步驟410中所說明之基準值BASEi相減,以得 . 到差異彳5號u〜。此外,控制電路51〇可更進一步地 - 將差異信號Sdiff2-1丨〜Sdiff2_mn與雜訊臨界值THN0ISE作比較,以判 11 201211864 斷差異信蚊否树境的背景雜訊。#差異錢8_^小於雜訊 臨界值thnoise時’控制電路51〇判斷差異信號8麵—』環境的背 景雜訊。此時’控制電路51〇可選擇重置差異信號s圆^為預定 值PRE2(舉例而言’馳2為零)。舉例而言,假設原本控制電路51 〇 所叶算出之差異域〜S_—_如第3騎示,且設定雜訊 臨界值THN0ISE等於5、預定值酸2等於〇。此時控制電路51〇將 差異h唬SDIFF2_u〜sDIFF2—㈣與雜訊臨界值THn〇观作比較後,可得 到如第7圖所示之經重置之差異信號〇 在步驟440中,控制電路51〇針對各列感測電容,相加對應於 同列感測電容中之複數個感測電容之差異信號s_一"〜s___, 以產生對狀N職測電容之列貞健號。舉例而言, 假设列負雜號為該瓶測電容之所有感測電容所產生之差異信號 之總和。如此,對應於第一列感測電容之列負載信號虹^^等於 (Sdiff2_ii+SDiff2_2i+_"+SDIFF2_m丨);對應於第二列感測電容之列負載 信號rld2等於(sDIFF2_12+s_j2+.· +s_j2);依此類推,對應 於第N列感測電容之列負載信號j^Dn等於 。以第7圖所示之差異信號SmFF1—丨丨~SD丨FFi__ is taken as an example. According to step 42, the load signal CLD^CLDm corresponding to the M-line sensing capacitance is equal to [〇,〇,67,〇,〇,〇,〇,〇] . 201211864 In step 430, the control circuit 51 controls the switching circuit 54 to connect the driving circuit 52 to the electrodes X! to XM' and the control switching circuit 54 〇 couples the sensing circuit 53A to the electrodes Y!~YN. At this time, the control circuit 51 controls the drive circuit 520 to scan the sense capacitance through the electrodes Xi to Xm. For example, the driving circuit 52 inputs a driving signal to the electrode ,1 to drive the first row sensing capacitor Cn 〜c NN, so that the sensing circuit 530 can receive the first row sensing capacitance Cu~Cin through the electrode γ “γΝ”. The generated sensing signal ❿Ssen2_u~SSEN2_1N. Then, the driving circuit 52〇 inputs the driving signal to the electrode &, so that the sensing circuit 530 can receive the sensing of the second row sensing capacitor c2i~C2n through the electrodes Υι~Υν# No. SSEN2j丨~SSEN2jN, and so on, the driving circuit 52 can sequentially scan the third row of sensing capacitances to the Mth row sensing capacitance through the electrodes X3~xM. Thus, the sensing circuit 530 can be obtained corresponding to The sensing signals SsEW_丨1~SSEN2_MN of the sensing capacitors Cu~Cmn are sensed and transmitted to the control circuit 51. Similarly, the control circuit 51 can firstly pass the average sensing capacitance Cu~Cmn to the capacitive touch panel 5 The sensing k numbers SseN2_U to SSEN2_MN generated by φ when not touched to generate a reference value BASE2 to indicate a sensing signal generated when the sensing electric valley is not touched. Therefore, the control circuit 51 〇 can be obtained according to formula (1)' in step 430 The sensed signal SsEN2_u~SsEN2-na is subtracted from the reference value base2 to obtain a difference between the sensing signal s surface and the s surface (10). The number is SDlm_u~sDIFF2. However, in order to To reduce the amount of calculation, the control circuit 510 may also choose not to calculate the reference value BASE2, but instead directly subtract the sensing signal SsEnr^N2_MN from the reference value BASEi described in step 410 to obtain the difference 彳5 In addition, the control circuit 51 can further compare the difference signals Sdiff2-1丨~Sdiff2_mn with the noise threshold THN0ISE to determine the background noise of the 201211864 break difference mosquito. When the money 8_^ is smaller than the noise threshold thnoise, the control circuit 51 determines the background noise of the difference signal 8 surface. At this time, the control circuit 51 can select the reset difference signal s circle ^ to be the predetermined value PRE2 (for example) For example, it is assumed that the difference field of the original control circuit 51 算出 〜 〜 S S 〜 〜 〜 〜 〜 〜 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 杂 杂 杂 杂 杂 杂〇 At this time, the control circuit 51〇 will differentiate h唬SDIFF2_u sDIFF2—(4) After comparing with the noise threshold THn〇, the reset difference signal as shown in FIG. 7 can be obtained. In step 440, the control circuit 51 adds the corresponding capacitance to each column. The difference signal s_一"~s___ of the plurality of sensing capacitors in the same sense sensing capacitor is used to generate a pair of N-measurement capacitances. For example, assume that the column negative code is the bottle measurement The sum of the difference signals produced by all of the sense capacitors of the capacitor. Thus, the load signal corresponding to the first column of sensing capacitances is equal to (Sdiff2_ii+SDiff2_2i+_"+SDIFF2_m丨); the load signal rld2 corresponding to the second column of sensing capacitances is equal to (sDIFF2_12+s_j2+.· +s_j2); and so on, the load signal j^Dn corresponding to the column N sense capacitance is equal to. The difference signal shown in Figure 7

SmFFuu〜SDIFF1_MN為例,依據步驟44〇可得對應於N列感測電容之 列負載信號 RUVRLDn 等於[〇,2〇,〇18,〇 22,〇,16]。 在步驟450中,控制電路51〇可依序將每個行負載信號 CLD^CLDm ’與每個列負載信號rld^rlDn作比較,以偵測感測 12 201211864 電容Cu〜C_中的觸控點。以偵測第I行感測電容Cll〜CiN中的觸控 點作為舉例說明,控制電路510將行負載信號CLD!與列負載信號 RLD^RLDn作比較。當列負載信號rld^RLDn中有一列負載信號 虹巧大於行負載信號CLDl時’表示於第了列感測電容上可能比第 Ϊ行感測電容上具有更多的觸控點。此時,相較於從電極&掃描感 測電谷Cij所得到之感測信號SSEN2j】’透過電極Yj掃描感測電容Qj 所得到之感測信號SSEN1U較不容易受到其他的觸控點的干擾。換句 • 話說,相較於差異信號SDIFF2_„,差異信號sDIFFLIiI較不受到其他的 觸控點的干擾。因此’控制電路510依據較不受干擾的差異信號 Sdiffijj[與觸控臨界值THt〇uch,判斷感測電容Cu是否為一觸控點。 當差異信號SDIFF1U大於觸控臨界值THtouch時,控制電路51 〇即判 斷感測電容(^為觸控點,並記錄至一觸控點偵測結果灯。反之, 當行負載信號CLDA於列負載信號RLDj時,表示於第工行感測電 容上可能比第J列感測電容上具有更多的觸控點。此時,相較於從 φ 電極Y〗掃描感測電容Cu所得到之感測信號SSEN1Jj,透過電極Xl 掃描感測電容Cu所得到之感測信號sSEN2J]較不受到其他的觸控點 的干擾。換句活說’與差異信號sDIFF丨相較’差異信號sDlFF2 u車交 不受到其他的觸控點的干擾。因此,控制電路510依據較不受干擾 的差異信號SDIFF2_u與觸控臨界值Thtouch,判斷感測電容是否 為觸控點。^差異彳§ 7虎Sdiff2_li大於觸控臨界值THtouch時,控制 電路510即判斷感測電容(:1;為觸控點,並記錄至觸控點偵測結果 - RT。此外’當行負载信號<:11)1等於列負載信號1〇^時,控制電路 …510叮任意地選擇差異彳&號sDIFF1」j4sDiFF2_ijr其中之一,與觸控臨 13 201211864 界值thT0uch作比較,以判斷感測電容&是否為一觸控點。 為了更清楚的說明觸控點偵測方法4〇〇之步驟45〇,以下以 第6圖之行負載信號CLDi〜CLDm與第7圖之列負載信號 RIA〜rldn作舉例說明,行負載信號CLD3(67)大於列負載信號 RLD/0)因此表不於第二行感測電容上比第一列感測電容上具有更 多^觸控點。如此’控制電路51〇依據感測信號3_」1(〇)與觸控 臨界值(10) ’判斷感測電容C31不為觸控點。行負載信號⑽购 大於列負載信號rld2(20),因此表示於第三行感測電容上比第二列_ 感測電今上具有更多的觸控點。如此,控制電路510依據感測信號 S__32(20)與觸控臨界值THt〇uch〇〇),判斷感測電容G為觸控 點:行負載信號〇Α(67)大於列負載信號㈣携,因此表示於第 二灯感測電容上比第三列感測電容上具有更多的觸控點。如此,控 制電路510依據感測信號Sd·—“ο)與觸控臨界值顶το職(1〇),判 斷感測電容c33不為觸控黑卜行負載信號叫(67)大於列負載 腳4⑽,因此絲於第三行容姐細列❹彳電容上具有· 衫的觸控點。如此,控制電路51〇铺感測信號s_」獨與觸 控臨界值ΤΗτο職(10),判斷感測電容&為觸控點。依此類推,控 制電路510依據感測信號s_」〆22)、s_於⑽與觸控臨界值 mrouCH(10) ’可判斷感測電容&與&也為觸控點。由上述說明 可知’相較魏前技術’即使對應於感測電容G的差異信號 SDim_34(8)因受其他觸控點的干擾而小於觸控臨界值 (10) ’本發明之馳點侧方法仍可依錄衫干制差異賴 · 14 201211864For example, SmFFuu~SDIFF1_MN, according to step 44, the load signal RUVRLDn corresponding to the N columns of sensing capacitors is equal to [〇, 2〇, 〇18, 〇 22, 〇, 16]. In step 450, the control circuit 51 can sequentially compare each row load signal CLD^CLDm ' with each column load signal rld^rlDn to detect the touch in the sensing 12 201211864 capacitor Cu~C_ point. By detecting the touch points in the first row of sense capacitors C11 to CiN as an example, the control circuit 510 compares the row load signal CLD! with the column load signal RLD^RLDn. When there is a column of load signals in the column load signal rld^RLDn, when the rainbow is larger than the row load signal CLD1, it indicates that there may be more touch points on the sensing capacitance of the first column than the sensing capacitance of the first row. At this time, the sensing signal SSEN1U obtained by scanning the sensing capacitance Qj through the electrode Yj is less susceptible to other touch points than the sensing signal SSEN2j obtained from the electrode & scanning sensing valley Cij] interference. In other words, the difference signal sDIFFLIiI is less interfered by other touch points than the difference signal SDIFF2_„. Therefore, the control circuit 510 is based on the less disturbing difference signal Sdiffijj [with the touch threshold THt〇uch And determining whether the sensing capacitor Cu is a touch point. When the difference signal SDIFF1U is greater than the touch threshold THtouch, the control circuit 51 determines the sensing capacitance (^ is the touch point, and records to a touch point detection The result lamp. Conversely, when the row load signal CLDA is in the column load signal RLDj, it indicates that there may be more touch points on the sensing capacitance of the IC line than the sensing capacitance of the Jth column. At this time, compared with the slave φ The electrode Y scans the sensing signal SSEN1Jj obtained by sensing the capacitance Cu, and the sensing signal sSEN2J obtained by scanning the sensing capacitance Cu through the electrode X1 is less interfered by other touch points. The signal sDIFF is compared with the 'difference signal sDlFF2 u. The car is not interfered by other touch points. Therefore, the control circuit 510 determines that the sensing capacitance is based on the less disturbing difference signal SDIFF2_u and the touch threshold Thtouch. For the touch point. ^ Difference 彳 § 7 Tiger Sdiff2_li is greater than the touch threshold THtouch, the control circuit 510 determines the sensing capacitance (: 1; is the touch point, and records to the touch point detection result - RT. 'When the line load signal <:11)1 is equal to the column load signal 1〇^, the control circuit ...510叮 arbitrarily selects one of the difference 彳& sDIFF1"j4sDiFF2_ijr, and the Touch Pro 13 201211864 threshold thT0uch For comparison, to determine whether the sensing capacitance & is a touch point. In order to more clearly explain the step 45 of the touch point detecting method 4, the following load signals CLDi~CLDm and the seventh line in the sixth figure The load signal RIA~rldn of the figure is illustrated as an example. The row load signal CLD3 (67) is larger than the column load signal RLD/0), so that the second row sensing capacitance has more than the first column sensing capacitance. Touch point. Thus, the control circuit 51 determines that the sensing capacitor C31 is not a touch point based on the sensing signal 3_"1 (〇) and the touch threshold value (10)'. The row load signal (10) is greater than the column load signal rld2 (20), thus indicating that there are more touch points on the third row of sense capacitors than on the second column _ sense. In this manner, the control circuit 510 determines that the sensing capacitor G is a touch point according to the sensing signal S__32 (20) and the touch threshold THt 〇 〇〇 〇〇 :: the line load signal 67 (67) is greater than the column load signal (four), Therefore, it is indicated that there are more touch points on the second lamp sensing capacitor than on the third column sensing capacitor. In this way, the control circuit 510 determines that the sensing capacitor c33 is not the touch black line load signal (67) is greater than the column load pin according to the sensing signal Sd·““” and the touch threshold value το (1〇). 4 (10), so the silk has the touch point of the shirt on the third row of the capacitors. Thus, the control circuit 51 spreads the sensing signal s_" alone with the touch threshold ΤΗτο (10), the sense of judgment Capacitance & is the touch point. By analogy, the control circuit 510 can determine that the sensing capacitances && is also a touch point based on the sensing signals s_"〆22), s_(10) and the touch threshold mrouCH(10)'. It can be seen from the above description that the difference signal SDim_34(8) corresponding to the sensing capacitance G is smaller than the touch threshold value due to the interference of other touch points (10). The chisel side method of the present invention Still can be based on the difference between the recording shirts Lai · 14 201211864

Sdiff2_j4(18) ’正確地判斷感測電容c34為一觸控點。 此外,在前述之步驟450中,控制電路510將每個行負載信 號CLD〗〜CLDM ’與每個列負載信號rlD^RLD]^^比較,以偵測感 測電容Cu〜Cmn中的觸控點。然而,為了減少運算量,控制電路510 可選擇只比較大於觸控臨界值THtouch的行負載信號CLD^CLDm 與大於觸控臨界值THtouch的列負載信號RLD^RLDn。以第6圖 修之行負載信號CUVCLDm與第7圖之列負載信號RLD广RLDN為 例’在行負載信號CLIVCLDm與列負載信號RLD^RLDn中,僅 有行負載信號CLD3(67)與列負載信號RLD2(20)、RLD4(18)、RLD6(22) 及RLDS(16)大於觸控臨界值THt〇uch(1〇)。因此控制電路51〇只比 杈行負載4§號(:1^3(67)與列負載信號rld2(20)、RLD4(18)、RLD6(22) 及RLD8(16)。如此,可減少控制電路51〇所需的運算資源。Sdiff2_j4(18) ' correctly determines that the sensing capacitor c34 is a touch point. In addition, in the foregoing step 450, the control circuit 510 compares each of the row load signals CLD_CLLDDM' with each column load signal rlD^RLD^^^ to detect the touch in the sensing capacitors Cu~Cmn. point. However, in order to reduce the amount of calculation, the control circuit 510 may select to compare only the row load signal CLD^CLDm larger than the touch threshold THtouch and the column load signal RLD^RLDn larger than the touch threshold THtouch. Take the load signal CUVCLDm in Figure 6 and the load signal RLD RLDN in the figure 7 as an example. In the row load signal CLIVCLDm and the column load signal RLD^RLDn, only the row load signal CLD3 (67) and the column load signal RLD2(20), RLD4(18), RLD6(22), and RLDS(16) are greater than the touch threshold THt〇uch(1〇). Therefore, the control circuit 51 is only more than the load 4 § (: 1^3 (67) and column load signals rld2 (20), RLD4 (18), RLD6 (22) and RLD8 (16). The circuit 51 is required for computing resources.

另外’一般而言’當指示物(如使用者之一手指)接觸電容式觸控 面板5〇〇時,指示物所接觸之面積大於電容式觸控面板5〇〇之一感 測電容所感測之面積。因此單—指示物可能會對應到多個觸控點。 舉例而言’請參考第8圖與第9圖。第8圖與第9圖為當指示物Tl、 Τ2^τ3接觸電容式觸控面板時,對應於感測電容Cl!〜c應之差 異L號s__u SDIFF1MN與s_—_肿2—_之示意圖。由第8圖與 第9圖可看出’當指示物Τι接觸電容_控面板時,本發明之 難點偵測方法斷感測電容Cn、&、^與&為觸控點; ,物T2接觸電容式難面板·時,本㈣之觸细貞測方法 15 201211864 400判斷感測電容C43、C44、c„與C54為觸控點;當指示物τ3接觸 電容式觸控面板500時,本發明之觸控點偵測方法4〇〇判斷感測電 容Cm、C68、Cm與Ο;8為觸控點。換句話說,當一指示物接觸電容 式觸控面板500時,本發明之觸控點偵測方法4〇〇偵測出多個對應 於該指示物的觸控點,並且記錄至觸控點偵測結果灯。因此,為了 更正確地定位指示物丁广丁3所接觸的位置,本發明另提供一觸控點 偵測方法1000(如第10圖所示),可根據對應於指示物的多個觸控 點,計算出指示物所接觸的位置。相較於觸控點偵測方法4〇〇,觸 控點偵測方法1000還包括下列步驟: 擊 步驟1060 :當觸控點偵測結果灯指示感測電容Ca係為—觸控點 時,判斷鄰近感測電容CA之至少一感測電容是否亦為 觸控點;以及 步驟1070 :當該至少一感測電容亦為觸控點時,依據感測電容 之位置、對應於感測電容CA之差異信號SDIFF1 A與 Sdiff2_a、該至少一感測電容之位置以及對應於該至少一 感測電容之差異信號,計算一加權觸控座標。 鲁 在步驟1060中,以指示物乃所對應的觸控點作舉例說明。由 於觸控點偵測結果RT指示感測電容Cu為一觸控點,因此控制電路 51〇根據觸控點偵測結果rt,判斷鄰近於感測電容Cu之感測電容 ci2' CZ1、c22是否也為觸控點。此時,由於感測電容c12、c21、c22 也為觸控點,因此在步驟1070中,控制電路510根據感測電容Cu、 ci2、c21、c22之位置,並以差異信號 sD[FF1J1、sDIFF1J2、s〇im 2ι、 16 201211864In addition, in general, when an indicator (such as a finger of a user) contacts the capacitive touch panel 5〇〇, the area touched by the indicator is larger than the sensing capacitance of one of the capacitive touch panels 5〇〇. The area. Therefore, the single-indicator may correspond to multiple touch points. For example, please refer to Figures 8 and 9. Figure 8 and Figure 9 are schematic diagrams showing the difference between the sense capacitors C1! . It can be seen from Fig. 8 and Fig. 9 that when the pointer 接触ι contacts the capacitor_control panel, the difficulty detecting method of the present invention breaks the sensing capacitances Cn, &, ^ and & as touch points; When the T2 contacts the capacitive hard panel, the touch sensing method 15 201211864 400 determines that the sensing capacitors C43, C44, c, and C54 are touch points; when the indicator τ3 contacts the capacitive touch panel 500, The touch point detecting method 4 of the present invention determines the sensing capacitances Cm, C68, Cm, and Ο; 8 is a touch point. In other words, when an indicator contacts the capacitive touch panel 500, the present invention The touch point detecting method 4 detects a plurality of touch points corresponding to the pointer and records the touch point detection result light. Therefore, in order to more accurately position the indicator Ding Guang Ding 3 contact The present invention further provides a touch point detecting method 1000 (as shown in FIG. 10), which can calculate the position touched by the pointer according to the plurality of touch points corresponding to the indicator. The handle detection method 4 〇〇, the touch point detection method 1000 further includes the following steps: Step 1060: When the touch The detection result light indicates that the sensing capacitance Ca is a touch point, and it is determined whether at least one sensing capacitance of the adjacent sensing capacitor CA is also a touch point; and step 1070: when the at least one sensing capacitor is also touched During the control, a weighted touch is calculated according to the position of the sensing capacitor, the difference signals SDIFF1 A and Sdiff2_a corresponding to the sensing capacitance CA, the position of the at least one sensing capacitor, and the difference signal corresponding to the at least one sensing capacitance. In step 1060, the indicator is the corresponding touch point as an example. Since the touch point detection result RT indicates that the sensing capacitance Cu is a touch point, the control circuit 51 is based on the touch. The point detection result rt determines whether the sensing capacitance ci2' CZ1, c22 adjacent to the sensing capacitor Cu is also a touch point. At this time, since the sensing capacitances c12, c21, and c22 are also touch points, the steps are In 1070, the control circuit 510 is based on the positions of the sensing capacitors Cu, ci2, c21, and c22, and the difference signal sD[FF1J1, sDIFF1J2, s〇im 2ι, 16 201211864

SdIFF1_22 與 SDIFF2_11、SdifF2 !2、SdifF2_21、SdifF2_22 作為加權比例,計 算一加權觸控座標LOCwl,以表示指示物Ti所接觸之位置。舉例而 5,在差異虎 SdiFF1_11、Sdiff1_12、SdifF1_21、Sdiffi 22之中,差異信 號SdifFIJ2之值最大’且差異信號SdifF1_11之值最小;在差異信號 SDIFF2_11、SD1FF2J2、SDIFF221、SDIFF2_22 之中,差異信號 Sdiff2 】2 之值 最大’且差異信號之值最小;因此表示指示物丁丨對感測電 容ciz所產生的感測信號影響較大,且指示物Τι對感測電容所 Φ 產生的感測#號影響較小。換句話說,指示物T!較靠近感測電容 Cl2之位置,且較遠離感測電容cu之位置。因此,控制電路於 δ十算加權觸控座標L0CW1時,設定給感測電容c12之位置較高的加 權比例,且設定給感測電容Cu之位置較低的加權比例。如此,控 制電路510所計算出之加權觸控座標L〇Cwi可更正確地表示指示物 Τι所接觸之位置。 綜上所述,本發明所提供之觸控點偵測方法,藉由掃描每列 感測電容與每行感測電容,得到對應於各感測電容之第一差異 信號與第二差異信號。接著,本發明之觸控點偵測方法累計同行 感測電容之第一差異信號’以產生對應於各行感測電容之行負 載h號’且累計同列感測電容之第二差異信號,以產生對應於 各列感測電容之列負載信號。如此,本發明之觸控點偵測方法可 比較對應於一感測電容的行負載信號與列負載信號,並依據比 較結果以選擇對應於該感測電容的第一差異信號或是第二差異 h號作為判斷觸控點之依據。更明確地說,本發明之觸控點偵 17 201211864 測方法依據行負載信號與列負載信號之比較結果,可選擇較不 又干擾的差異信號作為判斷依據。因此,相較於先前技術,本發明 之觸控點侧方法可制更正確簡控點侧結果。此外,當—指 示物對應於多個敏科,本發贿提供之觸控點制方法可依曰 據多個觸控點所對應的感測電容之位置,以及其所對應的差異伸號 作為加權_ ’計算出加_控座標,以更正確地表示指示物· 觸之位置。 以上所述僅為本發明之較佳實_,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為說明先前技術之電容式觸控面板之示意圖。 第2圖與第3圖為說明先前技術之驗點侧方法於彳㈣者作多點 觸控時,無法正確地偵測到觸控點之示意圖。 第4圖為朗本發明之觸控點侧方法之—實施例之示意圖。 第5圖為朗本發明之驗_測方法所應狀電容式觸控面板之 不意圖。 第6圖與第7圖為說明經重置之差異信號之示意圖。 第8圖與第9圖為當指示物接觸電容式觸控面板時,對應於感測電 容之差異信號之示意圖。 第1〇圖為說明本發明之觸控點偵測方法之另—實施例之示意圖。 18 201211864 【主要元件符號說明】 1 ' 2 端點 100 、 500 電容式觸控面板 400 方法 410〜450 、 1060〜1070 步驟 510 控制電路 520 驅動電路 530 感測電路 540 切換電路 Cii〜Cmn 感測電容 X广XM、Y广YN 電極 Sdiffi_ii〜Sdiffi_mn、 差異信號 Sd1FF2_1 1 〜SdIFF2_MN Τι 〜τ3 指示物SdIFF1_22 and SDIFF2_11, SdifF2 !2, SdifF2_21, and SdifF2_22 are used as weighting ratios, and a weighted touch coordinate LOCwl is calculated to indicate the position where the pointer Ti is in contact. For example, in the difference tiger SdiFF1_11, Sdiff1_12, SdifF1_21, Sdiffi 22, the difference signal SdifFIJ2 has the largest value and the difference signal SdifF1_11 has the smallest value; among the difference signals SDIFF2_11, SD1FF2J2, SDIFF221, SDIFF2_22, the difference signal Sdiff2] The value of 2 is the largest 'and the value of the difference signal is the smallest; therefore, it indicates that the indicator 影响 has a large influence on the sensing signal generated by the sensing capacitance ciz, and the influence of the indicator 对ι on the sensing capacitance Φ is affected by the sensing # Smaller. In other words, the pointer T! is closer to the position of the sensing capacitor Cl2 and is farther away from the position of the sensing capacitor cu. Therefore, when the control circuit calculates the weighted touch coordinate L0CW1, the control circuit sets a higher weighting ratio to the position of the sensing capacitor c12, and sets a weighting ratio lower to the position of the sensing capacitor Cu. Thus, the weighted touch coordinates L〇Cwi calculated by the control circuit 510 can more accurately indicate the position where the pointer Τι is in contact. In summary, the touch point detecting method provided by the present invention obtains a first difference signal and a second difference signal corresponding to each sensing capacitance by scanning each column of sensing capacitances and each row of sensing capacitances. Then, the touch point detecting method of the present invention accumulates the first difference signal ' of the same sensing capacitance to generate a second difference signal corresponding to the line load h number of each row of sensing capacitances and accumulates the same column sensing capacitance to generate Corresponding to the column load signal of each column of sensing capacitance. As such, the touch point detection method of the present invention can compare the row load signal and the column load signal corresponding to a sense capacitor, and select a first difference signal or a second difference corresponding to the sense capacitor according to the comparison result. The h number is used as the basis for judging the touch point. More specifically, the touch point detection method of the present invention is based on the comparison result of the line load signal and the column load signal, and the difference signal that is less disturbing can be selected as the judgment basis. Therefore, the touch point side method of the present invention can make the point side result more correct and simpler than the prior art. In addition, when the indicator corresponds to a plurality of sensitive departments, the touch point method provided by the present bribe can be based on the position of the sensing capacitor corresponding to the plurality of touch points, and the corresponding difference number of the touch point. The weight _ 'calculates the plus _ control coordinates to more accurately represent the position of the pointer and touch. The above is only the preferred embodiment of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a prior art capacitive touch panel. Fig. 2 and Fig. 3 are schematic diagrams showing that the touch point can not be correctly detected when the multi-touch is performed on the side of the method of the prior art. Figure 4 is a schematic diagram of an embodiment of the touch point side method of the present invention. Fig. 5 is a schematic view of the capacitive touch panel of the invention according to the invention. Figures 6 and 7 are schematic diagrams illustrating the difference signal after resetting. Figures 8 and 9 are schematic views of the difference signals corresponding to the sensed capacitance when the pointer contacts the capacitive touch panel. FIG. 1 is a schematic view showing another embodiment of the touch point detecting method of the present invention. 18 201211864 [Description of main component symbols] 1 ' 2 Endpoint 100, 500 Capacitive Touch Panel 400 Method 410~450, 1060~1070 Step 510 Control Circuit 520 Drive Circuit 530 Sensing Circuit 540 Switching Circuit Cii~Cmn Sensing Capacitor X wide XM, Y wide YN electrode Sdiffi_ii ~ Sdiffi_mn, difference signal Sd1FF2_1 1 ~ SdIFF2_MN Τι ~ τ3 indicator

1919

Claims (1)

201211864 七、申請專利範圍: 1. 一種觸控點偵測方法,用於一電容式觸控面板,該電容式觸 控面板具有(MxN)個感測電容、Μ個第一電極與N個第二電 極,該(MxN)個感測電容耦接於該Μ個第一電極與該Ν個第 二電極,該(MxN)個感測電容沿著一第一方向排列成Μ行感測 電容,且沿著相異於該第一方向之一第二方向排列成Ν列感測 電容,該觸控點偵測方法包括: 透過該Ν個第二電極掃描該Ν列感測電容,以得到對應於該 (ΜΧΝ)個感測電容之(MxN)個第一差異信號; 針對各行感測電容,相加對應於同行感測電容中之複數個感測 電容之第一差異信號,以產生對應於該M行感測電容之 Μ個行負載信號; 透過該Μ個第-電極掃描該%行感測電容,以得到對應於該 (ΜχΝ)個感測電容之(ΜχΝ)個第二差異信號; 針對各列感測電容’相加對應於同列感測電容中之複數個感測 電容之第二差異錢’以產生對應_Ν观測電容之 Ν個列負載信號;以及 依據㈣個行負載信號、該Ν個列負載信號、該(顺)個第 一差異信號、該(ΜχΝ)個第二差異信號與—觸控臨界值, 產生一觸控點偵測結果; 其中Μ、Ν皆為正整數。 20 201211864 4 2. 如請求項1所述之觸控點偵測方法’其中透過該n個第二電 極掃描該N列感測電容,以得到對應於該(ΜχΝ)個感測電容之 該(ΜχΝ)個第一差異信號包括: 透過該Ν個第二電極掃描該Ν列感測電容,以從該Μ個第一 電極接收(ΜχΝ)個第一感測信號;以及 根據該(ΜχΝ)個第一感測信號與一基準值,產生該(ΜχΝ)個第 一差異信號。 3. 如請求項2所述之觸控點偵測方法,其中根據該(ΜχΝ)個第 一感測信號與該基準值,產生該(ΜχΝ)個第一差異信號包括: 以下式計算該(ΜχΝ)個第一差異信號中之一第Α個第一差異 信號: SDiFFi_A = abs(SSEN1_A-BASE); 其中abs表示取絕對值,8_以表示該第a個第一差異 信號’ Ssenla表示該(MxN)個第一感測信號之一第a • 個第一感測信號,BASE表示該基準值。 4. 如請求項3所述之觸控點偵測方法,其中根據該(MxN)個第 一感測信號與該基準值,產生該(MxN)個第一差異信號還包 括: 當該第A個第一差異信號小於一雜訊臨界值時,重置該第a 個第一差異信號為一預定值。 21 201211864 5. 6· 7. 如β求項2所述之觸控點偵測方法,其中透過該M個第一電 極掃描該Μ行感測電容’以得到對應於該(MxN)個感測電容之 該(MxN)個第二差異信號包括: 透過該M個第一電極掃描該Μ行感測電容,以從該N個第二 電極接收(MxN)個第二感測信號;以及 根據該(MxN)個第二感測信號與該基準值,產生該(ΜχΝ)個第 二差異信號。 如請求項5所述之觸控點偵測方法,其中根據該(ΜχΝ)個第 二感測信號與該基準值,產生該(MxN)個第二差異信號包括: 以下式計算該(ΜχΝ)個第二差異信號中之一第a個第二差異 信號: ' Sdiff2_a —abs(SsEN2_A—BASE); 其中abs表示取絕對值’ sDIFF2_A表示該(MxN)個第二差異 信號中之該第A個第二差異信號,Ssen2_a表示該' (ΜχΝ)個第二感測信號之一第a個第二感測作號 BASE表示該基準值。 如請求項ό所述之觸控點偵測方法,其中根據該彳乂乂以)個第 二感測信號與該基準值,產生該(MxN)個第二差異信就還勺 括: 當該第Α個第二差異信號小於一雜訊臨界值時,重置該第 個第^一差異^號為一預定值。 22 201211864 8· 如請求項1所述之觸控點偵測方法,其中針對各行感測電 容’相加對應於同行感測電容中之複數個感測電容之第一差異 信號’以產生對應於該Μ行感測電容之該μ個行負載信號包 括: 相加對應於該Μ行感測電容之一第I行感測電容中之複數個感 測電谷之第一差異彳吕號,以產生對應於該第I行感測電容 之一第I個行負載信號; 其中ISM。 9. 如請求項8所述之觸控點偵測方法,其中針對各列感測電容, 相加對應於同列感測電容中之各個感測電容之第二差異信號, 以產生對應於該Ν列感測電容之ν個列負載信號包括: 相加對應於該Ν列感測電容之-第j列感測電容中之各個 電容之第二差異信號,以產生對應於該第;列感測電 一第J個列負載信號; 其中JSN。 10. 如請求項1所述之觸控點侧方法,其中依據該Μ個行 信號、該Ν侧貞餘號、雜ΧΝ)㈣—差異㈣、該⑽= 個第一差異彳§號與關控臨界值,產生該觸控點彳貞測結 括: 將該Μ個行負載信號之每個行㈣信號,與該Ν個列負栽信 23 201211864 ~ t^每個列負載信號作比較; Λ個,負載信號之一第I個行負載信號小於該N個列負 載L就之1】個列貞載信號時’依據該觸控臨界值以及 六/(ΜΧΝ)個第一差異信號中,對應於該(ΜΧΝ)個感測電 ,之第(lxJ)個感測電容之一第(IxJ)個第一差異信號,判 斷Klxj)個感測電容是否為一觸控點,並記錄至該觸控 點偵測結果;以及 田個行貞載錢之該第1個行貞載錢大於或科該N _負載信號之該第J個列負載信號時,依據該觸控臨界馨 值乂及在5亥(MxN)個第二差異信號中,對應於該第㈣ 個感測電容之一第㈣個第二差異信號,判斷該第㈣ 個感測電容是私―觸控點,並記錄至簡控點偵測处 果; 、° 其中ISM,且。 …月Μ 10所述之觸控點偵測方法,其中當該以個行負載· 乜叙。亥第ί個行負載信號小於該ν個列負載信號之該第了個 列負載信號時,依據該觸控臨界值以及在該(Μχ_第一差異 _中’對應於該(ΜχΝ)個感測電容之該第㈣個感測電容之 δ亥第(W)個第—差異錢,顯該第㈣_測電容是否為一 觸控點,並記錄至該觸控點偵測結果包括·· …亥第(IXJ)個第一差異信號大於該觸控臨界值時,判斷該第 ㈣個感測電容係為一觸控點,並記錄至該觸控點偵測結· 24 201211864 φ 果。 12·如請求項10所述之觸控點偵測方法,其中當該Μ個行負載 仏號之该第I個行負載信號大於或等於該Ν個列負載信號之該 第J個列負載佗號時,依據該觸控臨界值以及在該(ΜΧΝ)個第 一差異佗號中,對應於該(ΜχΝ)個感測電容之該第(Ixj)個感測 電容之-第(W)個第二差異信號’判斷該第㈣)個感測電容是 Φ 否為一觸控點,並記錄至該觸控點偵測結果包括: 當该第(IxJ)個第二差異信號大於該觸控臨界值時,判斷該第 J)個感測電容係為一觸控點,並記錄至該觸控點偵測結 果。 13.如δ月求項1所述之觸控點偵測方法,其中依據該m個行負載 信號、該N個列負載信號、該(厘><冲個第一差異信號、該(ΜχΝ) 個第二差異信賴該雛臨界值,產生該觸控點侧結果包 • 括: 當該Μ個行負載信號之一第!個行負載信號與該Ν個列負載 #旒之一第J個列負載信號皆大於該觸控臨界值時,比較 該第I個行負載信號與該第J個列負載信號; 當該第I個行負載信號小於該第;個列負載信號時,依據賴 控臨界值以及在該(ΜΧΝ)個第一差異信號中,對應於該 ; (ΜχΝ)個感測電容之一第(Ιχ J)個感測電容之一第(Ix j)個 • 第一差異信號,判斷該第(Ιχ*0個感測電容是否為一觸控 25 201211864 點,並記錄至該觸控點偵測結果;以及 當該第1刪亍負載信號大於或等於該第】個列負載信號時,依 據該觸控臨界值以及在該(MxN)個第二差異信 於該第_咖電容之—砂獅二差異信號. 梅,感測電容是否為一觸控點,並記錄至該觸控點 侦測結果; 其中ISM,且j$N。 14.如請求項所述之觸控點偵測方法,其中當該第j個行負載 信號小於該第;個列負載信號時,依據該觸控臨界值以及在該 (ΜχΝ)個第-差異域中,對應於該(ΜχΝ)個制電容之該第 (^)個感測電容之該第㈣個第—差異信號,判斷該第㈣個 感測電谷是否為一觸控點,並記錄至該觸控點侦測結果包括 (第1圖之步驟132): 田4第(I :)個第—差異信號大於該觸控臨界值時,判斷該第 (I J)個感測電谷係為—觸控點,並記錄至該觸控點偵測結 果。 15. =求項U所述之觸控點_方法,其中當該第I個行負載 =大於鱗於· ,依據賴控臨界值以 Ν)個第—差異信號中,對應於該’ν)個感測電容 1 Κ )個感測電谷之—第(lxj)個第二差異信號,判斷該第 ㈣個感測電容是否為i觸控點,並記錄至該觸控點侦測結 26 201211864 果包括: 當該第(ixJ)個第二差異信號大於該觸控臨界值時,判斷該第 (lxJ)個感測電容係為一該觸控點,並記錄至該觸控點偵測 結果。 16·如請求項1所述之觸控點偵測方法,還包括: 當5亥觸控點彳貞測結果指示該(ΜχΝ)個感測電容之一第A個感 φ 測電容係為一觸控點時,判斷鄰近該第A個感測電容之 至少一感測電容是否亦為觸控點;以及 當該至少一感測電容亦為觸控點時,依據該第A個感測電容之 位置、對應於該第A個感測電容之第一差異信號與第二 差異信號、該至少一感測電容之位置以及對應於該至少一 感測電容之第一差異信號與第二差異信號,計算一加權觸 控座標。 • 17 如請求項1所述之觸控點偵測方法,其中該(MxN)個感測電 容之每個感測電容皆包括一第一端與一第二端,該(MxN)個感 測電容之一第(lx J)個感測電容之第一端耦接至該M個第一電 極之一第I個第一電極,該(MxN)個感測電容之該第(Ιχ乃個感 測電谷之第二端輕接至該Ν個第二電極之一第j個第二電極。 八、圖式: 27201211864 VII. Patent application scope: 1. A touch point detection method for a capacitive touch panel having (MxN) sensing capacitors, first electrodes and N numbers The two electrodes, the (MxN) sensing capacitors are coupled to the first electrodes and the second electrodes, and the (MxN) sensing capacitors are arranged along a first direction to form a sensing capacitance. And arranging the sensing capacitances in a second direction different from the first direction, the touch point detecting method includes: scanning the array sensing capacitors through the second electrodes to obtain a corresponding And (MxN) first difference signals of the (ΜΧΝ) sensing capacitors; for each row of sensing capacitances, adding a first difference signal corresponding to the plurality of sensing capacitors in the peer sensing capacitors to generate corresponding The M rows sense a row of load signals of the capacitors; and scan the % row sensing capacitors through the first electrodes to obtain (ΜχΝ) second difference signals corresponding to the (ΜχΝ) sensing capacitors; Adding to each of the sense capacitances of each column corresponds to a plurality of senses in the same sense capacitance The second difference in capacitance is to generate a column load signal corresponding to the _Ν observation capacitance; and according to the (four) row load signal, the one column load signal, the (cis) first difference signal, the (ΜχΝ) A second difference signal and a touch threshold value generate a touch point detection result; wherein Μ and Ν are both positive integers. 20 201211864 4 2. The touch point detecting method of claim 1, wherein the N columns of sensing capacitors are scanned through the n second electrodes to obtain the corresponding sensing capacitances ( The first difference signal includes: scanning the array of sensing capacitors through the second electrodes to receive (ΜχΝ) first sensing signals from the first electrodes; and according to the (ΜχΝ) The first sensing signal and a reference value generate the (ΜχΝ) first difference signals. 3. The touch point detecting method of claim 2, wherein generating the (ΜχΝ) first difference signals according to the (first) first sensing signals and the reference value comprises: calculating the ΜχΝ) one of the first difference signals: the first difference signal: SDiFFi_A = abs(SSEN1_A-BASE); wherein abs represents an absolute value, and 8_ represents the a first first difference signal 'Ssenla indicates (MxN) One of the first sensing signals, the a first first sensing signal, and BASE indicates the reference value. 4. The touch point detecting method according to claim 3, wherein generating the (MxN) first difference signals according to the (MxN) first sensing signals and the reference value further comprises: when the first When the first difference signal is less than a noise threshold, the a first first difference signal is reset to a predetermined value. The method of detecting touch points according to the item 2, wherein the sensing capacitances are scanned through the M first electrodes to obtain corresponding (MxN) sensings. The (MxN) second difference signals of the capacitors include: scanning the cavitation sensing capacitance through the M first electrodes to receive (MxN) second sensing signals from the N second electrodes; and according to the (MxN) second sensing signals and the reference value generate the (ΜχΝ) second difference signals. The touch point detecting method of claim 5, wherein generating the (MxN) second difference signals according to the (second) sensing signals and the reference value comprises: calculating the (ΜχΝ) by the following formula One of the second difference signals, the a second second difference signal: 'Sdiff2_a_abs(SsEN2_A_BASE); wherein abs denotes an absolute value 'sDIFF2_A denotes the Ath of the (MxN) second difference signals The second difference signal, Ssen2_a, represents one of the '()) second sensing signals, and the a second second sensing number BASE indicates the reference value. The touch point detecting method of claim 1, wherein the (MxN) second difference signals are generated according to the second sensing signal and the reference value: When the second difference signal is less than a noise threshold, the first difference is reset to a predetermined value. The method of detecting touch points according to claim 1, wherein the first difference signal 'corresponding to the plurality of sensing capacitors in the same sensing capacitance is added for each row of sensing capacitances to generate a corresponding The μ line load signals of the sensing capacitors include: adding a first difference 彳 Lu of the plurality of sensing electric valleys corresponding to one of the sensing capacitors of the first sensing capacitor Generating a first line of load signal corresponding to one of the sensing capacitances of the first row; wherein ISM. 9. The touch point detecting method according to claim 8, wherein for each column sensing capacitance, a second difference signal corresponding to each sensing capacitance in the same column sensing capacitance is added to generate corresponding to the Ν The ν column load signals of the column sensing capacitors include: adding a second difference signal corresponding to each of the -jth column sensing capacitances of the column sensing capacitors to generate corresponding to the column sense sensing The first J column load signal; where JSN. 10. The touch point side method according to claim 1, wherein the signal according to the line, the side of the line, the number of miscellaneous (4), the difference (4), the (10)=the first difference, the § § Controlling the threshold value, generating the touch point detection includes: comparing each row (four) signal of the one row of load signals with each of the column load signals of the 2012-11864 ~ t^ load signals; One, one of the load signals, the first row of the load signal is less than the N column load L, and the other one of the load signals is based on the touch threshold and the six/(ΜΧΝ) first difference signals. Corresponding to (IxJ) first difference signals of one (lxJ) sensing capacitors corresponding to the (ΜΧΝ) sensing powers, determining whether Klxj) sensing capacitors are a touch point, and recording to the The touch point detection result; and the first row of the money carrying the money is greater than or the Nth load signal of the Jth column load signal, according to the touch threshold value Determining the fourth (four) difference signals corresponding to one (four) second difference signals of one of the (four)th sensing capacitors in the 5th (MxN) second difference signals The sensing capacitor is a private-touch point and is recorded to the simple control point detection unit; °, where ISM, and. ...the method of detecting a touch point as described in 10, wherein when the line is loaded, it is described. When the load signal of the first row is less than the load signal of the first column of the load signal of the ν column, according to the touch threshold value and the (Μχ_first difference_' corresponds to the (ΜχΝ) sense Measure the capacitance of the (fourth) sense capacitance δ 第 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( When the first difference signal of the IXJ is greater than the touch threshold, it is determined that the (fourth) sensing capacitor is a touch point, and is recorded to the touch point detection node 24 201211864 φ. The touch point detecting method according to claim 10, wherein the first line load signal of the one line load nickname is greater than or equal to the Jth column load of the one column load signal 佗a number (#) of the (Ixj)th sensing capacitors corresponding to the (ΜχΝ) sensing capacitors according to the touch threshold and the first difference apostrophe The second difference signal 'determines the fourth (four)) sensing capacitance is Φ is a touch point, and the detection result to the touch point includes: When the (IxJ) second difference signals are greater than the touch threshold, the Jth sensing capacitor is determined to be a touch point, and the touch point detection result is recorded. 13. The touch point detecting method according to claim 1, wherein the n line load signals, the N column load signals, the (PCT), the first difference signal, and the ΜχΝ) The second difference depends on the threshold value of the chick, and the result of the touch point side is generated. • When one of the line load signals is one of the line load signals and the one of the column loads #旒 one of the J When the load signals of the columns are greater than the touch threshold, the first row load signal and the Jth column load signal are compared; when the first row load signal is smaller than the first column load signal, The control threshold value and the (差异) first difference signal correspond to the one of (()) one of the (Sense) capacitances ((J)th sensing capacitances (Ix j) • the first difference Signal, determine whether the first (Ιχ*0 sensing capacitance is a touch 25 201211864 point, and record to the touch point detection result; and when the first deleted load signal is greater than or equal to the first column) The load signal is based on the touch threshold and the (MxN) second difference is believed to be the sand of the first coffee capacitor Second difference signal. Mei, whether the sensing capacitance is a touch point, and recorded to the touch point detection result; wherein ISM, and j$N. 14. The touch point detection method as claimed in the claim, When the jth row load signal is smaller than the first column load signal, according to the touch threshold and the (ΜχΝ) first-difference domain, corresponding to the (ΜχΝ) capacitor (^) the fourth (fourth) difference signal of the sensing capacitor, determining whether the fourth (fourth) sensing valley is a touch point, and recording the detection result to the touch point includes (step of FIG. 1 132): When the first (I:) first difference signal is greater than the touch threshold, the first (IJ) sensing electric valley is determined as a touch point, and recorded to the touch point detection. 15. The touch point method according to item U, wherein when the first line load = is greater than the scale, according to the threshold value, the first difference signal corresponds to the ' ν) sensing capacitors 1 Κ a sensing voltage valley - the (lxj) second difference signal, determining whether the fourth (four) sensing capacitor is an i touch point, and recording to The touch point detection node 26 201211864 includes: when the (ixJ) second difference signal is greater than the touch threshold, determining that the (lxJ)th sensing capacitor is a touch point, and Record to the touch point detection result. The touch point detecting method according to claim 1, further comprising: when the 5 Hz touch point detection result indicates that one of the (ΜχΝ) sensing capacitors, the A sense φ measurement capacitance is one When the touch point is used, determining whether at least one sensing capacitor adjacent to the A sensing capacitor is also a touch point; and when the at least one sensing capacitor is also a touch point, according to the Ath sensing capacitor a position, a first difference signal and a second difference signal corresponding to the A sense capacitor, a position of the at least one sense capacitor, and a first difference signal and a second difference signal corresponding to the at least one sense capacitor , calculate a weighted touch coordinate. The touch point detecting method of claim 1, wherein each of the (MxN) sensing capacitors includes a first end and a second end, and the (MxN) sensing The first end of the (lx J)th sensing capacitor is coupled to the first first electrode of the M first electrodes, and the (MxN) sensing capacitors are The second end of the measurement valley is lightly connected to the jth second electrode of one of the second electrodes. 8. Pattern: 27
TW99130079A 2010-09-06 2010-09-06 Touch point detecting method TWI416396B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99130079A TWI416396B (en) 2010-09-06 2010-09-06 Touch point detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99130079A TWI416396B (en) 2010-09-06 2010-09-06 Touch point detecting method

Publications (2)

Publication Number Publication Date
TW201211864A true TW201211864A (en) 2012-03-16
TWI416396B TWI416396B (en) 2013-11-21

Family

ID=46764448

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99130079A TWI416396B (en) 2010-09-06 2010-09-06 Touch point detecting method

Country Status (1)

Country Link
TW (1) TWI416396B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461987B (en) * 2012-12-07 2014-11-21 Elan Microelectronics Corp Detecting method for a touch device
TWI472955B (en) * 2013-01-02 2015-02-11 Himax Tech Ltd Method of identifying touch event on touch panel and computer readable medium
TWI478029B (en) * 2012-05-23 2015-03-21 Hung Ta Liu Touch control method
US9075465B2 (en) 2013-02-19 2015-07-07 Himax Technologies Limited Method of identifying touch event on touch panel by shape of signal group and computer readable medium thereof
TWI552045B (en) * 2013-12-05 2016-10-01 禾瑞亞科技股份有限公司 Method and apparatus for determining mistaken approaching or touching event

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125465B2 (en) * 2007-10-19 2012-02-28 Chimei Innolux Corporation Image displaying systems
TWI405112B (en) * 2008-11-07 2013-08-11 Au Optronics Corp Sensing apparatus for capacitive touch panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478029B (en) * 2012-05-23 2015-03-21 Hung Ta Liu Touch control method
US9684400B2 (en) 2012-05-23 2017-06-20 Hung-Ta LIU Capacitive sensing detection method for an active pixel matrix
TWI461987B (en) * 2012-12-07 2014-11-21 Elan Microelectronics Corp Detecting method for a touch device
TWI472955B (en) * 2013-01-02 2015-02-11 Himax Tech Ltd Method of identifying touch event on touch panel and computer readable medium
US9075465B2 (en) 2013-02-19 2015-07-07 Himax Technologies Limited Method of identifying touch event on touch panel by shape of signal group and computer readable medium thereof
TWI552045B (en) * 2013-12-05 2016-10-01 禾瑞亞科技股份有限公司 Method and apparatus for determining mistaken approaching or touching event
TWI579748B (en) * 2013-12-05 2017-04-21 禾瑞亞科技股份有限公司 System for determining mistaken approaching or touching event

Also Published As

Publication number Publication date
TWI416396B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
KR101641745B1 (en) Negative pixel compensation
US8884914B2 (en) Method and device for signal detection
TWI485606B (en) Touch apparatus and touch sensing method thereof
EP2184666B1 (en) Multipoint sensing method applicable to capacitive touch panel
US9851829B2 (en) Signal processing for touch and hover sensing display device
US7602383B2 (en) Touch sensing apparatus with differential signal source
TW201118686A (en) Method and device for dual-differential sensing
TW201211864A (en) Touch point detecting method
KR20120112799A (en) Touch sensor panel negative pixel compensation
TW201117077A (en) Method and device for position detection
TWI417778B (en) Capacitance offset compensation for electronic device
TW201115431A (en) Method and device for analyzing positions
KR20180059181A (en) Touch sensing system and contrlling method of the same
US9024905B2 (en) Touch apparatus and touch method using the same
TW201118695A (en) h panel
CN101000530A (en) Display device and driving method thereof
CN101950228B (en) Touch control point detection method
TWI436244B (en) Touch input device and scanning method threrof
TW201237725A (en) Single-finger and multi-touch gesture determination method, touch control chip, touch control system and computer system
US20120127120A1 (en) Touch device and touch position locating method thereof
JP5851955B2 (en) Touch input device control apparatus and touch input device control method
KR20160022480A (en) Method and apparatus for detecting touch by cluster, touch screen panel comprising the same
JP5406774B2 (en) Touch discrimination device and input device
AU2012227270B2 (en) Negative pixel compensation
TW202011736A (en) Linear displacement noise processing method for touch-and-display integration system, and touch display device using the method capable of improving signal-to-noise ratio and touch sensitivity using software-based algorithm

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees