TW201209466A - Grating coupler and the package structure - Google Patents

Grating coupler and the package structure Download PDF

Info

Publication number
TW201209466A
TW201209466A TW99129072A TW99129072A TW201209466A TW 201209466 A TW201209466 A TW 201209466A TW 99129072 A TW99129072 A TW 99129072A TW 99129072 A TW99129072 A TW 99129072A TW 201209466 A TW201209466 A TW 201209466A
Authority
TW
Taiwan
Prior art keywords
layer
fiber
grating
grating coupler
substrate layer
Prior art date
Application number
TW99129072A
Other languages
Chinese (zh)
Other versions
TWI426308B (en
Inventor
jun-bo Feng
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99129072A priority Critical patent/TWI426308B/en
Publication of TW201209466A publication Critical patent/TW201209466A/en
Application granted granted Critical
Publication of TWI426308B publication Critical patent/TWI426308B/en

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present invention relates to a kind of grating coupler and a package structure. The grating coupler includes a reflector layer, an isolation layer, a waveguide layer, an under-cladding layer and a substrate. The under-cladding layer, the waveguide layer, the isolation layer and the reflector layer are in turn stacked on one side of the substrate. The waveguide layer includes a grating. The substrate includes a fiber aligned groove. The package structure of the grating coupler is effective for packing with the nano-waveguide device.

Description

201209466 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及光通信領域,特別涉及一種易封裝之波導光 栅搞合器。 [0002] [先前技術] 光互連作為下一代互連技術之強有力的競爭者,其具有 頻帶寬、抗電磁干擾、保密性強、傳輸損耗低、功耗小 等明顯優於電互連之特點,為一極具潛力電互連之替代 〇 或補充方案。隨著半導體雷射器、光探測器及平面介質 ..... : 光波導技術之發展,以及在微電子技術蓬勃發展之帶動 下微細加工技術之日益完善,政光電集$成之實現成為可 能。由於集成光電子器件具有體積小、功耗低、效率高 、性能穩定可靠、成本低、使用方便等優點,使集成光 電子學成為當今光電子學領域之發展前沿之一。集成光 電子器件對光通信、自動控制、光學資訊處理以及光學 電腦之研究及應用等具有重:妻意義。在這二背景下,研 究及發展集成光電赛^及器件,將推動工業、農業、國 防及科教等產業之發展。 [0003] 隨著集成光電子器件在光通信系統中之應用,矽基波導 器件如調製器、分束器等都取得了巨大發展,但系統對 外之耦合,即如何將光纖與光電集成晶片高效、低成本 對接起來,始終係一嚴峻挑戰。由於發基微納光波導器 件中導波之模場有效尺寸約為0.2 ,而單模光纖之模 場有效尺寸通常為70/zm2,光從光纖直接進入這種小尺 寸之波導時,一者之間模場尺寸以及有效折射率之失配 099129072 表單編號A〇101 第3頁/共21頁 〇992051029_〇 201209466 會導致輻射模及背向反射出現,從而產生很大***損耗 。波導之耦合方式大致可分為端面耦合及光柵耦合。端 面耦合係光纖通過波導端面直接將光耦合進波導之方法 ,然端面耦合結構之製備非常困難,製作容差小,還需 要側面拋光,而且封裝困難,不適應大規模集成光路之 發展。而光柵耦合器由於製備相對簡單,且可以在系統 任何地方實現訊號之上載下載’能大大增強系統之靈活 性,因此光栅耦合器成為波導耦合研究之熱點。先前技 術中之光柵耦合器主要包括隔離層、波導層、反射層、 下包層及襯底層,下包潘、豕射層、滅導層、隔離層依 次設置於襯底層之表面上,反射層設置於波導層與下包 層之間,光纖輸入介面設置於隔離層上,光織中之光訊 號通過隔離層入射到波導層上從而通過波導耦合進集成 晶片中。由於反射層設置於波導層與下包層之間,製備 工藝與傳統之CMOS製備工藝不相容,成本較高,因此無 法進行大規模批量生產。 [0004] 另,如何實現光纖與光栅轉合_丨之自動對準封裝亦係實 際應用中必須考慮之問題,到目前為止,僅有幾種封裝 方案初步見於會議報導,然這些方案均存在一問題:即 無法實現光纖與光柵自動高效之對準,封裝困難。 【發明内容】 [0005] 有鑒於此,提供一耦合效率高 '成本低、易封裝之光柵 柄合器及光柵麵合器封裝結構實為必要。 [0006] 一種光栅耦合器,包括隔離層、波導層、下包層及襯底 層’所述下包層、波導層、隔離層依次設置於襯底層之 099129072 表單編號Α0101 第4頁/共2丨頁 0992051029-0 201209466 [0007] ❹ [0008] Ο [0009] 表面,所述波導層包括一光柵與一波導,其中,所述光 柵耦合器進一步包括一反射層,所述反射層設置於隔離 層遠離所述襯底層之一侧,外界光訊號通過所述襯底層 輸入所述光栅耦合器。 相較於先前技術,本發明所述光柵耦合器,光訊號從襯 底層射入,輸入端口可以放置於襯底層任何地方,且不 需要對光柵耦合器解理、拋光,製備工藝簡單。針對目 前光栅耦合器件難以對準封裝之缺點,本發明所述光拇 耗合器在襯底層即光柵柄合器背面設置光訊號輸入端口 ,從輸入端口輸入光訊號進行耦合,從而使得光柵耦合 器易對準且封裝簡單。本發明所述光柵耦合器耦合性能 高、成本低、易封裝,製備工藝與CM〇S相容,提高了大 規模光電子器件封裝集成之可行性。 【實施方式】 以下結合附圖對本發明之光柵耦合器作進一步詳細描述 .丨’;1、為.錢.:“ ? γ 請參閱圖1及圖2,本發明第一實施例之光柵耦合器1〇, 包括反射層100、隔離層、波導層120、下包層13〇以 及襯底層140。所述襯底層140具有一第—表面141、一 與第一表面141相對之第二表面142及至少—與第一表面 141及/或第二表面相連之第三表面143,假設將第—表面 141稱為正面,那麼第二表面142可稱為背面。所述下包 層130、波導層12〇、隔離層110、反射層i0〇依次層疊設 置於襯底層140之第一表面141,所述反射層100設置於 隔離層110遠離襯底層I40之表面。該光栅耦合器1〇應用 099129072 表單編號A0101 第5頁/共21頁 0992051029-0 201209466 時,利用一光纖50從襯底層140之第二表面142向該光栅 搞合器1〇輸入光訊號,使得該光柵耦合器10接受外界光 訊號。 [0010] 所述波導層120之材料優選之為梦(Si) ’其厚度為 200〜300nm。所述波導層120之折射率分別大於隔離層 110與下包層130之折射率。所述波導層120設置在下包 層130遠離襯底層140之表面上,並且被隔離層11〇完全 覆蓋。波導層120包括一脊型結構波導122以及與該脊型 結構波導122相連之光柵121,所述光栅121包括由複數 平行之矩形溝槽與複數平行之矩形凸起間隔設置構成之 光柵結構。所述光栅結構位於所述光栅121遠離襯底層 140之表面。優選的,所述光栅12〗呈矩形,且其長、寬 均為20/zm,所述光柵結構之溝槽相對於凸起之深度為 70〜lOOnm。所述光柵結構之光栅週期(單個溝槽之寬度 及與之相鄰之單個凸起之寬度之及)為300〜6〇〇nm。 [0011] 所述隔離層110之材斜1 - Si几访α.Λ、 心何料為一軋化矽(Sl〇2)或氮化矽(201209466 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to the field of optical communications, and more particularly to an easily packaged waveguide grating combiner. [0002] [Prior Art] Optical interconnect is a strong competitor of next-generation interconnect technology, which has significantly higher frequency bandwidth, anti-electromagnetic interference, strong confidentiality, low transmission loss, and low power consumption. It is characterized by an alternative or complementary solution to potential electrical interconnection. With the development of semiconductor lasers, photodetectors and planar media..... : The development of optical waveguide technology and the improvement of micro-machining technology driven by the booming of microelectronics technology, the realization of Zhengguang Optoelectronics has become may. Integrated optoelectronics has become one of the frontiers in the field of optoelectronics due to its small size, low power consumption, high efficiency, stable and reliable performance, low cost and ease of use. Integrated optoelectronic devices have important implications for optical communications, automatic control, optical information processing, and the research and application of optical computers. Under these two backgrounds, research and development of integrated optoelectronic games and devices will promote the development of industries such as industry, agriculture, national defense and science and education. [0003] With the application of integrated optoelectronic devices in optical communication systems, 矽-based waveguide devices such as modulators, beam splitters, etc. have made great progress, but the system is externally coupled, that is, how to efficiently integrate optical fibers and optoelectronic integrated chips. Low cost docking is always a serious challenge. Since the mode field effective size of the guided wave in the hair-based micro-nano optical waveguide device is about 0.2, and the effective mode field size of the single-mode optical fiber is usually 70/zm2, when the light directly enters the small-sized waveguide from the optical fiber, one of them The mismatch between the mode field size and the effective refractive index 099129072 Form No. A〇101 Page 3 of 21 〇992051029_〇201209466 will cause the radiation mode and back reflection to occur, resulting in large insertion loss. The coupling mode of the waveguide can be roughly divided into end face coupling and grating coupling. The end-face coupling fiber directly couples light into the waveguide through the end face of the waveguide. However, the preparation of the end-coupling structure is very difficult, the manufacturing tolerance is small, the side polishing is required, and the packaging is difficult, and the development of the large-scale integrated optical path is not suitable. Since the grating coupler is relatively simple to prepare and can upload and download signals anywhere in the system, the flexibility of the system can be greatly enhanced. Therefore, the grating coupler has become a hot spot in waveguide coupling research. The grating coupler in the prior art mainly comprises an isolation layer, a waveguide layer, a reflective layer, a lower cladding layer and a substrate layer, and the under cladding layer, the sputtering layer, the destructive layer and the isolation layer are sequentially disposed on the surface of the substrate layer, and the reflective layer Between the waveguide layer and the lower cladding layer, the optical fiber input interface is disposed on the isolation layer, and the optical signal in the optical woven fabric is incident on the waveguide layer through the isolation layer to be coupled into the integrated wafer through the waveguide. Since the reflective layer is disposed between the waveguide layer and the under cladding layer, the preparation process is incompatible with the conventional CMOS preparation process, and the cost is high, so mass production cannot be performed. [0004] In addition, how to realize the automatic alignment of the optical fiber and the grating _丨 is also a problem that must be considered in practical applications. So far, only a few packaging schemes have been initially reported in the conference report, but all of these solutions exist. Problem: The automatic and efficient alignment of the fiber and the grating cannot be achieved, and the packaging is difficult. SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a low-cost, easy-to-package grating shank and grating surface mount package structure. [0006] A grating coupler includes an isolation layer, a waveguide layer, a lower cladding layer, and a substrate layer. The lower cladding layer, the waveguide layer, and the isolation layer are sequentially disposed on the substrate layer. 099129072 Form No. 1010101 Page 4 of 2 [0009] 表面 [0009] The surface of the waveguide layer includes a grating and a waveguide, wherein the grating coupler further includes a reflective layer, and the reflective layer is disposed on the isolation layer Aside from one side of the substrate layer, external light signals are input to the grating coupler through the substrate layer. Compared with the prior art, in the grating coupler of the present invention, the optical signal is incident from the underlayer, and the input port can be placed anywhere on the substrate layer, and the grating coupler is not required to be cleaved and polished, and the preparation process is simple. In view of the shortcomings of the current grating coupling device being difficult to align the package, the optical thumb coupler of the present invention has an optical signal input port on the back side of the substrate layer, that is, the grating handle, and an optical signal is input from the input port for coupling, thereby making the grating coupler Easy to align and package is simple. The grating coupler of the invention has high coupling performance, low cost and easy packaging, and the preparation process is compatible with CM〇S, which improves the feasibility of large-scale optoelectronic device package integration. [Embodiment] The grating coupler of the present invention will be further described in detail below with reference to the accompanying drawings. 丨 '; 1, for money.: "? γ Please refer to FIG. 1 and FIG. 2, the grating coupler of the first embodiment of the present invention In addition, the reflective layer 100, the isolation layer, the waveguide layer 120, the lower cladding layer 13A, and the substrate layer 140. The substrate layer 140 has a first surface 141, a second surface 142 opposite to the first surface 141, and At least - a third surface 143 connected to the first surface 141 and/or the second surface, assuming that the first surface 141 is referred to as a front surface, the second surface 142 may be referred to as a back surface. The lower cladding layer 130, the waveguide layer 12 The 〇, the isolation layer 110, and the reflective layer i0 〇 are sequentially stacked on the first surface 141 of the substrate layer 140. The reflective layer 100 is disposed on the surface of the isolation layer 110 away from the substrate layer I40. The grating coupler 1 〇 application 099129072 form number When a fiber 50 is used to input an optical signal from the second surface 142 of the substrate layer 140 to the grating combiner 1A, the grating coupler 10 receives the external light signal. [0010] the waveguide layer 120 The material is preferably Dream (Si) having a thickness of 200 to 300 nm. The refractive index of the waveguide layer 120 is greater than the refractive indices of the isolation layer 110 and the lower cladding layer 130. The waveguide layer 120 is disposed on the lower cladding layer 130 away from the lining. The surface of the bottom layer 140 is completely covered by the isolation layer 11. The waveguide layer 120 includes a ridge structure waveguide 122 and a grating 121 connected to the ridge structure waveguide 122, the grating 121 including a rectangular parallel groove The grating structure is formed by spacing the plurality of parallel rectangular protrusions. The grating structure is located on the surface of the grating 121 away from the substrate layer 140. Preferably, the grating 12 is rectangular and has a length and a width of 20/. Zm, the groove of the grating structure has a depth of 70~100 nm with respect to the protrusion. The grating period of the grating structure (the sum of the width of a single groove and the width of a single protrusion adjacent thereto) is 300~ 6〇〇nm。 [0011] The material of the isolation layer 110 is inclined 1 - Si to visit α.Λ, what is the heart of a rolling bismuth (Sl〇2) or tantalum nitride (

Si3N4 )纟厚度根據輪人光之波秀及匹配條件可以在 0· 5 # m到5 V m中選擇β [0012] 之材料為金 、铭(A1)及絡(Cr)中之任意一種,厚度為 5 —⑽;所述反射_可通過金屬蒸發 法沈積在祕層UG遠離襯柄⑽之表面上。等方 所述襯底層uo之材料優選為♦ (si),厚度物〇 …所述襯底層14。由第二表面142向第—表面i4i方向 099129072 表單編號A0101 第6頁/共21頁 0992051029-0 [0013] 201209466 陷开/成有—光纖對準槽150。所述光纖對準槽150在襯 2層140之第二表面142上形成有—供光纖5()***之*** 151即所述光纖訝準槽150可以稱為垂直於概底層第 表面142δχ置。所迷光纖對準槽15{)在所述凹陷方向上 之横戴面為圓形、方形、三角形或其他幾何形狀之一, 且》亥凹陷方向上之你何—橫截面之尺寸及形狀均相同。 進步’所述光纖對準槽150還包括與該第二表面142平 行之底面153及與該底面153相連之侧面152。其中,該 底面153與所述***口 151相對;所述側面152位於其間 本實施例中所述横截面優選為圓形。光纖對準槽150之 衣度可為100〜500,優選之為糊光纖對準槽 15〇可採用濕法钱刻或幹法深融刻之方法製備。所述光纖 对準槽150之橫截面直徑與輪入光訊號之:先纖5〇直徑相匹 配,以使光纖對準槽15〇與輸入光訊號之先纖5〇緊密結合 :所述光纖對準槽150可採用雙面套刻光刻之微加工工藝 與波導層120上之光栅121對準,即光纖對準槽15〇中心 轴之延長線穿過光柵121之幾何中心,所述底面153之幾 何中心也位於此延長線上。、輸*入光訊號之光纖5〇在封裝 時可根據所述光纖對準槽150來實現輸入之光訊號與光柵 121之自動對準。 [〇〇14] 所述下包層130之材料優選之為二氧化矽(Si〇2),其厚 度為2~5 //m。 [0015] 另外,所述光栅耦合器10可進一步設置複數重疊對應設 置之光柵121,所述光柵121位於隔離層11〇與下包層130 之間,每一光柵121之光柵結構均設置於光栅121遠離襯 099129072 表單编號A0101 第7頁/共21頁 0992051029-0 201209466 底層140之表面上。所述複數光柵121均與一脊型結構波 導122相連接,共同構成波導層12〇,用以進一步增強光 柵搞合器10之麵合效率。 [0016] 本實施例所述光柵耦合器1〇應用時,將所述光纖5〇通過 所述***口 151***所述光栅耦合器1〇之光纖對準槽15〇 中進行封裝,以形成一光栅耦合器封裝結構。所述光纖 50為平面光纖’這裏所稱之平面光纖指之係具有立體結 構之細長光纖50之端面為垂直於軸向之平面。光纖5〇與 光纖對準槽150採用固化膠等進行牢固封裝。從光柵耦合 器1 0外部輸入之光訊號從所述光纖5 0垂直入射到光栅121 上’進而耦合進波導122中》本實施例光柵耦合器封裝結 構工作時’光纖50可與外部光電器件相連接,並由其接 收光訊號’再通過光栅耦合器10之波導122導向相應之光 電集成晶片。 [0017] 請參閱圖3、圖4及圖5,本發明第二實施例提供之光柵耦 合器20 ’所述光柵耦合器20包括反射層200、隔離層210 、波導層220、下包層230以及襯底層240,上述元件之 相對位置關係與第一實施例基本相同。本實施例與第一 實施例所述光柵耦合器1 0之主要區別在於光纖對準槽之 設置方式,具體之,所述襯底層240具有一第一表面241 、一與第一表面241相對之第二表面242、至少二與第一 表面241及/或第二表面242相連之第三表面243及第四表 面244 ’且該第三表面243及第四表面244相對設置。假 設將第一表面241稱為正面,那麼第二表面242可稱為背 面,而第三表面243及第四表面244可稱為相對之二侧面 099129072 表單編號A0101 第8頁/共21頁 0992051029-0 201209466 Ο 。所述襯底層240由第三表面243向第四表面244方向凹 陷形成有一光纖對準槽250。所述光纖對準槽250在裀>底 層240之第三表面243上形成有一供光纖60***之***〇 251。即,所述光纖對準槽250可以稱之為平行於概底層 第二表面242設置。所述光纖對準槽250在所述凹陷方向 上之橫截面為圓形、方形、三角形或其他幾何形狀之— ,本實施例優選為三角形,且該凹陷方向上之任意_橫 截面之尺寸及形狀均相同。進一步,所述光纖對準槽25〇 還包括與該第三表面243平行 <底面253及與該底面253 相連之側面252。其中,該底面253與所述***口 251相 對’所述側面252位於其間》該底面253與***口 251之 間之距離根據輸入光訊號之光纖6〇直徑之不同而不同。 [0018] 另外,為降低製造工藝難度及封裝難度,所述光纖對準 槽250之側面252上進一步設置有一開口 2520,所述開口 2520位於所述概底層240之第二表面242。,所述開口 2520 呈一矩形,其長度與所述光纖對準槽25〇之凹陷長度相等 ,其寬度根據輸入夫i訊號之光纖6〇直徑之不同而不同。 所述光纖對準槽250之在垂直於第二表面242方向上之高 度,根據輸入光訊號之光纖60直徑之不同而不同。優選 之,所述開口 2520之寬度大於或等於光纖之直徑,所述 光纖對準槽250之在垂直於第二表面242方向上之高度大 於光纖之半徑。 襯底層240之第二表面242可進一步包括一固定元件(圖 未示),所述固定元件可以為卡扣、膠帶等,其材料不 限,其形狀優選為中間具有凹槽之長條形板狀結構。所 099129072 表單編號A0101 第9頁/共21頁 0992051029-0 [0019] 201209466 述固定元件橫跨於光纖對準槽250之開口 2520上,且板狀 結構之二端固定於第二表面242,並且固定元件之凹槽與 光纖對準槽中之光纖緊密結合,用於固定所述輸入光訊 號之光纖。 [0020] [0021] 本實施例所述光柵耦合器2 0應用時,所述光纖6〇採用45。 斜面光纖,即光纖之端面與光纖之轴向成45。。將光纖60 從襯底層240之第三表面243上之***口 251平行於所述 襯底層240之方式***光纖對準槽25〇中,使光纖6〇之45 。斜面表面背離光栅221 ’且與所述襯底層240之第二表面 242成45°。光纖對準槽25〇之側面252上可進一步塗有固 化膠’用於固定所述光纖6〇 β光纖6〇平行於襯底層24〇插 入光纖對準槽250中’所述光纖6〇之45。斜面之中心與光 栅221之中心直線連線垂直於所述襯底層24〇之第二表面 242 °所述連線與光纖對準槽25〇之底面253之間之距離 等於光纖60之半徑,從而實現光轔對準槽25〇與光柵22ι 之對準設置。從光纖6〇中輪入乏先訊號通過45。斜面實現 90轉向’從而使光訊號垂直入射到光柵221上,進而耦 合進波導222中°本實施例光栅耦合器封裝結構工作時, 光纖60可與外部光電器件相連接,並由其接收光訊號, 再通過光拇搞合器20之波導222導向相應之光電集成晶片 〇 當從光纖輸入之光訊號經由襯底層'下包層入射到波導 層之光柵上以後,在光柵之作用下會發生繞射。一部分 光透過光栅,成為透射繞射光射向反射層,一部分光在 光柵介面發生反射,成為反射繞射光。當繞射光某一級 099129072 表單編號Α0101 第頁/共21頁 0992051029-0 201209466 [0022] [0023] Ο [0024] Ο [0025] 之波矢等於波導中某一模式之傳輸常數時,該部分光就 被耦合進了波導中。耦合進波導之光在波導之引導下導 入到光電集成晶片令,實現光訊號之傳輸。此時繞射光 滿足相位匹配條件,或稱之為Bragg條件:Si3N4) The thickness of the crucible can be selected from 0. 5 # m to 5 V m according to the wheel-light show and matching conditions. The material of [0012] is any one of gold, Ming (A1) and complex (Cr). The thickness is 5 - (10); the reflection _ can be deposited by metal evaporation on the surface of the secret layer UG away from the handle (10). The material of the substrate layer uo is preferably ♦ (si), the thickness of the substrate layer 14 . From the second surface 142 to the first surface i4i direction 099129072 Form No. A0101 Page 6 of 21 0992051029-0 [0013] 201209466 The trapping/forming fiber-aligning slot 150. The fiber alignment slot 150 is formed on the second surface 142 of the liner 2 layer 140 with an insertion 151 for the insertion of the fiber 5(), i.e., the fiber-optic slot 150 can be referred to as being perpendicular to the bottom surface 142. The transverse alignment surface of the fiber alignment groove 15{) in the direction of the recess is one of a circle, a square, a triangle or other geometric shape, and the size and shape of the cross section are in the direction of the depression. the same. The fiber alignment slot 150 further includes a bottom surface 153 that is parallel to the second surface 142 and a side surface 152 that is coupled to the bottom surface 153. Wherein, the bottom surface 153 is opposite to the insertion opening 151; the side surface 152 is located therebetween. The cross section is preferably circular in this embodiment. The optical fiber alignment groove 150 may have a clothing degree of 100 to 500, preferably a paste fiber alignment groove. The crucible may be prepared by wet etching or dry deep etching. The cross-sectional diameter of the fiber alignment groove 150 is matched with the diameter of the first optical fiber: the fiber alignment groove 15 is closely coupled with the fiber 5 of the input optical signal: the fiber pair The alignment trench 150 can be aligned with the grating 121 on the waveguide layer 120 by a micro-machining process of double-sided engraving lithography, that is, an extension line of the central axis of the fiber alignment groove 15 穿过 passes through the geometric center of the grating 121, the bottom surface 153 The geometric center is also located on this extension line. The optical fiber 5 input and the optical signal can realize automatic alignment of the input optical signal and the grating 121 according to the optical fiber alignment groove 150 during packaging. [14] The material of the lower cladding layer 130 is preferably cerium oxide (Si〇2) having a thickness of 2 to 5 //m. [0015] In addition, the grating coupler 10 may further be provided with a plurality of gratings 121 correspondingly disposed correspondingly, the grating 121 is located between the isolation layer 11 〇 and the lower cladding layer 130, and the grating structure of each grating 121 is disposed on the grating 121 away from the lining 099129072 Form No. A0101 Page 7 / Total 21 Page 0992051029-0 201209466 On the surface of the bottom layer 140. The plurality of gratings 121 are connected to a ridge structure waveguide 122 to form a waveguide layer 12 〇 to further enhance the surface bonding efficiency of the grating combiner 10. [0016] When the grating coupler 1 is used in the embodiment, the optical fiber 5 is inserted into the fiber alignment slot 15 of the grating coupler through the insertion port 151 to be packaged to form a package. Grating coupler package structure. The optical fiber 50 is a planar optical fiber. The planar optical fiber referred to herein has a three-dimensional structure in which the end faces of the elongated optical fibers 50 are perpendicular to the axial direction. The optical fiber 5 turns and the optical fiber alignment groove 150 are firmly packaged by a curing adhesive or the like. The optical signal input from the outside of the grating coupler 10 is perpendicularly incident on the grating 121 from the optical fiber 50 and is coupled into the waveguide 122. When the grating coupler package structure of the embodiment is in operation, the optical fiber 50 can be combined with the external photovoltaic device. The optical signal received and received by it is then directed through the waveguide 122 of the grating coupler 10 to the corresponding optoelectronic integrated wafer. Referring to FIG. 3, FIG. 4 and FIG. 5, the grating coupler 20' of the second embodiment of the present invention includes a reflective layer 200, an isolation layer 210, a waveguide layer 220, and a lower cladding layer 230. And the substrate layer 240, the relative positional relationship of the above elements is substantially the same as that of the first embodiment. The main difference between the present embodiment and the grating coupler 10 of the first embodiment is the arrangement of the optical fiber alignment grooves. Specifically, the substrate layer 240 has a first surface 241 and a first surface 241 opposite to the first surface 241. The second surface 242, at least two third surface 243 and fourth surface 244 ′ connected to the first surface 241 and/or the second surface 242 and the third surface 243 and the fourth surface 244 are oppositely disposed. Assuming that the first surface 241 is referred to as the front side, the second surface 242 may be referred to as the back side, and the third surface 243 and the fourth surface 244 may be referred to as the opposite side surfaces 099129072 Form No. A0101 Page 8 / Total 21 Page 0992051029 - 0 201209466 Ο . The substrate layer 240 is recessed from the third surface 243 toward the fourth surface 244 to form an optical fiber alignment groove 250. The fiber alignment groove 250 is formed on the third surface 243 of the bottom layer 240 with an insertion port 251 into which the optical fiber 60 is inserted. That is, the fiber alignment slot 250 can be said to be disposed parallel to the underlying second surface 242. The cross section of the fiber alignment groove 250 in the direction of the recess is circular, square, triangular or other geometric shape - the embodiment is preferably a triangle, and the size of any cross section in the direction of the recess and The shapes are the same. Further, the fiber alignment groove 25A further includes a bottom surface 253 and a side surface 252 connected to the bottom surface 253 in parallel with the third surface 243. Wherein, the bottom surface 253 is opposite to the insertion opening 251. The side surface 252 is located therebetween. The distance between the bottom surface 253 and the insertion opening 251 is different according to the diameter of the optical fiber 6〇 of the input optical signal. In addition, in order to reduce the manufacturing process difficulty and the packaging difficulty, the side 252 of the fiber alignment groove 250 is further provided with an opening 2520, and the opening 2520 is located on the second surface 242 of the bottom layer 240. The opening 2520 has a rectangular shape whose length is equal to the length of the recess of the fiber alignment groove 25, and the width thereof is different according to the diameter of the fiber 6〇 of the input signal. The height of the fiber alignment groove 250 in the direction perpendicular to the second surface 242 varies depending on the diameter of the optical fiber 60 to which the optical signal is input. Preferably, the width of the opening 2520 is greater than or equal to the diameter of the optical fiber, and the height of the optical fiber alignment groove 250 in the direction perpendicular to the second surface 242 is greater than the radius of the optical fiber. The second surface 242 of the substrate layer 240 may further include a fixing member (not shown), and the fixing member may be a buckle, a tape or the like, and the material thereof is not limited, and the shape thereof is preferably a long strip having a groove in the middle. Structure. 099129072 Form No. A0101 Page 9 / Total 21 Page 0992051029-0 [0019] 201209466 The fixing element spans the opening 2520 of the fiber alignment groove 250, and the two ends of the plate-like structure are fixed to the second surface 242, and The recess of the fixing member is closely coupled with the optical fiber in the alignment groove of the optical fiber for fixing the optical fiber of the input optical signal. [0021] When the grating coupler 20 of the embodiment is applied, the optical fiber 6 is 45. The bevel fiber, that is, the end face of the fiber is 45 with the axis of the fiber. . The optical fiber 60 is inserted into the fiber alignment groove 25A from the insertion opening 251 on the third surface 243 of the substrate layer 240 in parallel with the substrate layer 240, so that the optical fiber 6 is 45. The beveled surface faces away from the grating 221 'and is at 45° to the second surface 242 of the substrate layer 240. The side 252 of the fiber alignment groove 25 can be further coated with a curing glue 'for fixing the fiber 6 〇 β fiber 6 〇 parallel to the substrate layer 24 〇 inserted into the fiber alignment groove 250 'the fiber 6 〇 45 . The distance between the center of the slope and the center of the grating 221 is perpendicular to the second surface 242 of the substrate layer 24, and the distance between the line and the bottom surface 253 of the fiber alignment groove 25 is equal to the radius of the fiber 60. The alignment of the pupil alignment groove 25 〇 with the grating 22 ι is achieved. From the fiber 6 turns into the lack of the first signal through 45. The bevel realizes 90 turning' so that the optical signal is normally incident on the grating 221 and is coupled into the waveguide 222. When the grating coupler package structure of the embodiment operates, the optical fiber 60 can be connected to the external optoelectronic device and receive the optical signal therefrom. Then, the waveguide 222 of the optical thumbgear 20 is guided to the corresponding optoelectronic integrated chip. When the optical signal input from the optical fiber is incident on the grating of the waveguide layer via the underlying layer of the substrate layer, the grating may be wound under the action of the grating. Shoot. A part of the light passes through the grating, and the transmitted diffracted light is directed toward the reflective layer, and a part of the light is reflected on the grating interface to become a reflected diffracted light. When the diffracted light is a certain stage 099129072 Form No. 1010101 Page 21/Total 21 Page 0992051029-0 201209466 [0023] [0024] Ο [0025] When the wave vector is equal to the transmission constant of a mode in the waveguide, the part of the light It is coupled into the waveguide. The light coupled into the waveguide is guided by the waveguide to the optoelectronic integrated chip to realize the transmission of the optical signal. At this time, the diffracted light satisfies the phase matching condition, or is called a Bragg condition:

Kin +m· KT = β (m = 0, ±1,± 2"·) (1)Kin +m· KT = β (m = 0, ±1, ± 2"·) (1)

Kin係輸入光之波矢,KT係光栅向量,召為波導之傳輸常 數。相位匹配條件可以通過控制隔離層之厚度來滿足。 光柵耦合器工作時,有很大一部分光會穿過光柵而洩漏 掉造成訊號損失。因此,在光桃透射光之方向加上一反 射層,透射光通過該反射層反射後至所述光柵,當反射 光與入射光滿足相位匹配條件時,進一步發生相干增強 ’耦合效率會大大提高。 本發明所提供之光栅耦合器並不限於上述實施例所述, 如圖1及圖2中之光柵可以為扇形光柵結構、三角形光柵 結構、梯形光柵結構等其他形狀。 本發明所提供光栅耦合器,利用光柵反射繞射光進行耦 合,反射層可以通過金屬蒸發沈積之簡單工藝沈積在隔 離層上,避免了現有技術在波導層與下包層之間製作反 射層之複雜卫藝。本發明所提供之光_合器之封裝結 構’光纖對準槽可利用雙面套刻之微加以藝直接製備 在光柵耦合器之襯底層上,光纖可以通過光纖對準槽來 實現輸人光Α號與光栅之自動對準,光纖之封I簡單。 099129072The Kin is the wave vector of the input light, and the KT is the grating vector, which is called the transmission constant of the waveguide. The phase matching condition can be satisfied by controlling the thickness of the isolation layer. When the grating coupler is working, a large part of the light will pass through the grating and leak out, causing signal loss. Therefore, a reflective layer is added in the direction of the light transmitted by the light peach, and the transmitted light is reflected by the reflective layer to the grating. When the reflected light and the incident light satisfy the phase matching condition, the coherent enhancement further occurs, and the coupling efficiency is greatly improved. . The grating coupler provided by the present invention is not limited to the above embodiments, and the gratings in Figs. 1 and 2 may be other shapes such as a sector grating structure, a triangular grating structure, a trapezoidal grating structure, and the like. The grating coupler provided by the invention couples the light by means of grating reflection, and the reflection layer can be deposited on the isolation layer by a simple process of metal evaporation deposition, thereby avoiding the complexity of the prior art to form a reflection layer between the waveguide layer and the lower cladding layer. Wei Yi. The optical fiber alignment groove of the optical-combiner package provided by the invention can be directly prepared on the substrate layer of the grating coupler by means of double-sided engraving, and the optical fiber can realize the input light through the optical fiber alignment groove. The automatic alignment of the nickname and the grating, the sealing of the optical fiber is simple. 099129072

表單編號A010I 第U頁/共21頁 0992051029-0 201209466 [0026] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0027] 圖1係本發明光柵耦合器之第一實施例之示意圖。 [0028] 圖2係本發明光柵耦合器第一實施例之光纖對準槽的示意 圖。 [0029] 圖3係本發明光栅耦合器第二實施例之示意圖。 [0030] 圖4係本發明光柵耦合器第二實施例之襯底層的結構示意 圖。 [0031] 圖5係本發明光柵耦合器第二實施例之光纖對準槽的示意 圖。 【主要元件符號說明】 [0032] 光柵耦合器:10,20 [0033] 反射層:100,200 [0034] 隔離層:110,210 [0035] 波導層:120,220 [0036] 光柵:121,221 [0037] 波導:122,222 [0038] 下包層:130,230 099129072 表單編號A0101 第12頁/共21頁 0992051029-0 201209466 [0039] 襯底層:140,240 [0040] 第一表面:141,241 [0041] 第二表面:142,242 [0042] 光纖對準槽:150,250 [0043] ***口 : 15卜251 [0044] 侧面:152,252 [0045] 底面·· 153,253 [0046] 第三表面:143,243 [0047] 第四表面:244 [0048] 開口 : 2520 [0049] 光纖:50,60 〇 099129072 表單編號 Α0101 第 13 頁/共 21 頁 0992051029-0Form No. A010I Page 9 of 21 0992051029-0 201209466 [0026] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0027] FIG. 1 is a schematic view of a first embodiment of a grating coupler of the present invention. 2 is a schematic view of a fiber alignment groove of a first embodiment of a grating coupler of the present invention. 3 is a schematic view of a second embodiment of a grating coupler of the present invention. 4 is a schematic structural view of a substrate layer of a second embodiment of the grating coupler of the present invention. Figure 5 is a schematic illustration of a fiber alignment slot of a second embodiment of a grating coupler of the present invention. [Main component symbol description] [0032] Grating coupler: 10, 20 [0033] Reflective layer: 100, 200 [0034] Isolation layer: 110, 210 [0035] Waveguide layer: 120, 220 [0036] Raster: 121, 221 [0037] Waveguide: 122, 222 [0038] Undercladding: 130, 230 099129072 Form No. A0101 Page 12 / Total 21 Page 0992051029-0 201209466 [0039] Substrate layer: 140, 240 [0040] First surface: 141, 241 [0041] Second surface: 142, 242 [0042] Fiber alignment groove: 150, 250 [0043] Insert: 15 251 [0044] Side: 152, 252 [0045] Bottom · · 153, 253 Third surface: 143, 243 [0047] Fourth surface: 244 [0048] Opening: 2520 [0049] Optical fiber: 50, 60 〇 099129072 Form number Α 0101 Page 13 / 21 page 0992051029-0

Claims (1)

201209466 七、申請專利範圍: 1 · 一種光柵耦合器,其包括隔離層、波導層、下包層及襯底 層,所述下包層、波導層、隔離層依次層疊設置於襯底層 之一表面,所述波導層包括一光柵與一波導,其改良在於 ,所述光栅耦合器進一步包括一反射層,所述反射層設置 於隔離層遠離所述襯底層之一侧,外界光訊號通過所述襯 底層輸入至所述光柵耦合器。 2 .如申請專利範圍第1項所述之光柵耦合器’其中,所述反 射層之材料為金、銀、銅、鋁及鉻中之一種。 3 .如申請專利範圍第1項辦述之光栅耦合器’其中,所述反 射層之厚度為50nm~200nm。 4 .如申請專利範圍第1項所述之光栅耦合器,其中,所述襯 底層包括相對設置之第一表面與第二表面以及與該第一表 .面及第二表面相連之至少一第三表面,所述下包層設置於 所述概底層之第一表面。 5 ·如申請專利範圍第4項所述之先柵耦合器,其中,所述襯 底層進一步包括一光纖對準槽,所述光纖對準槽設置於襯 底層之第二表面且與光柵對準設置 _。 6 .如申請專利範圍第5項所述之光柵耦合器,其中,所述光 纖對準槽具有一光纖***口、一底面及側面,所述光纖插 入口與底面相對,所述側面位於所述光纖***口及底面之 間。 7.如申請專利範圍第6項所述之光栅耦合器,其中,所述光 纖對準槽由所述襯底層之第二表面向第—表面方向凹陷形 成’所述光纖對準槽之光纖***口位於所述概底層之第二 099129072 表單編號A0I01 第14頁/共21頁 0992052029-0 201209466 表面。 • 8 .如申請專利範圍第6項所述之光栅耦合器,其中,所述光 纖對準槽之光纖***口位於所述襯底層之第三表面。 9 .如申請專利範圍第8項所述之光栅耦合器,其中,所述光 纖對準槽進一步包括一開口,位於所述襯底層之第二表面 〇 10 .如申請專利範圍第1項所述之光柵耦合器,其中,所述波 導層折射率分別大於隔離層與下包層之折射率。 11 . 一種光柵耦合器之封裝結構,其包括光栅耦合器及與該光 〇 柵耦合器相連接之光纖,所述光柵耦合器包括: 一襯底層,所述襯底層具有相對設置之第一表面與第二表 面以及與該第一表面及第二表面相連之第三表面; 一下包層、一波導層、一隔離層依次層疊設置於襯底層之 第一表面; 其改良在於,所述光柵耦合器進一步包括一反射層,所述 反射層設置於隔離層遠離襯底層之表面,光纖通過所述襯 底層之第二表面與所述光柵轉合器相連接。 〇 w 12.如申請專利範圍第11項所述之光柵耦合器之封裝結構,其 中,所述襯底層進一步包括一光纖對準槽,所述光纖對準 槽設置於襯底層之第二表面且與光柵對準設置。 13 .如申請專利範圍第12項所述之光柵耦合器之封裝結構,其 中,所述光纖對準槽具有一光纖***口、一底面及側面, 所述光纖***口與底面相對,所述側面位於所述光纖*** 口及底面之間。 14.如申請專利範圍第13項所述之光柵耦合器之封裝結構,其 中,所述光纖對準槽由所述襯底層之第二表面向第一表面 099129072 表單編號A0101 第15頁/共21頁 0992051029-0 201209466 方向凹陷形成,所述光纖對準槽之光纖***口位於所述襯 底層之第二表面,所述光纖為平面光纖,光纖通過光纖插 入口***光纖對準槽中,所述光纖對準槽之中心軸穿過所 述光柵結構之幾何中心。 15 .如申請專利範圍第13項所述之光柵耦合器之封裝結構,其 中,所述光柵對準槽進一步包括一開口,所述開口位於襯 底層之第二表面,所述光纖對準槽之光纖***口位於所述 襯底層之第三表面,所述光纖為45°斜面光纖,光纖平行 於襯底層***光纖對準槽,光纖斜面之中心與光柵之幾何 中心之直線連線垂直於襯底層。 099129072 表單編號A0101 第16頁/共21頁 0992051029-0201209466 VII. Patent application scope: 1 . A grating coupler comprising an isolation layer, a waveguide layer, a lower cladding layer and a substrate layer, wherein the lower cladding layer, the waveguide layer and the isolation layer are sequentially stacked on one surface of the substrate layer, The waveguide layer includes a grating and a waveguide, wherein the grating coupler further comprises a reflective layer disposed on a side of the isolation layer away from the substrate layer, and the external light signal passes through the lining The bottom layer is input to the grating coupler. 2. The grating coupler of claim 1, wherein the material of the reflective layer is one of gold, silver, copper, aluminum and chromium. 3. A grating coupler as claimed in claim 1, wherein the reflective layer has a thickness of 50 nm to 200 nm. 4. The grating coupler of claim 1, wherein the substrate layer comprises a first surface and a second surface disposed opposite to each other and at least one of the first surface and the second surface a three surface, the lower cladding layer being disposed on the first surface of the bottom layer. 5. The pre-gate coupler of claim 4, wherein the substrate layer further comprises an optical fiber alignment groove disposed on the second surface of the substrate layer and aligned with the grating Set _. 6. The grating coupler of claim 5, wherein the fiber alignment groove has a fiber insertion opening, a bottom surface and a side surface, the fiber insertion opening is opposite to the bottom surface, and the side surface is located at the The fiber is inserted between the port and the bottom surface. 7. The grating coupler of claim 6, wherein the fiber alignment groove is recessed from the second surface of the substrate layer toward the first surface to form an optical fiber insertion of the fiber alignment groove. The mouth is located at the bottom of the second layer 099129072 Form No. A0I01 Page 14 / Total 21 Page 0992052029-0 201209466 Surface. 8. The grating coupler of claim 6, wherein the fiber insertion slot of the fiber alignment slot is located on a third surface of the substrate layer. 9. The grating coupler of claim 8, wherein the fiber alignment groove further comprises an opening on the second surface 〇10 of the substrate layer. As described in claim 1 The grating coupler, wherein the waveguide layer has a refractive index greater than a refractive index of the isolation layer and the lower cladding layer, respectively. 11. A package structure for a grating coupler, comprising: a grating coupler and an optical fiber coupled to the aperture gate coupler, the grating coupler comprising: a substrate layer having a first surface disposed opposite to each other a third surface and a third surface connected to the first surface and the second surface; a lower cladding layer, a waveguide layer, and an isolation layer are sequentially stacked on the first surface of the substrate layer; and the improvement is that the grating coupling The device further includes a reflective layer disposed on a surface of the isolation layer away from the substrate layer, and the optical fiber is coupled to the grating coupler through a second surface of the substrate layer. The package structure of the grating coupler of claim 11, wherein the substrate layer further comprises a fiber alignment groove, the fiber alignment groove is disposed on the second surface of the substrate layer and Align with the grating settings. The package structure of the grating coupler according to claim 12, wherein the fiber alignment groove has a fiber insertion opening, a bottom surface and a side surface, and the fiber insertion opening is opposite to the bottom surface, the side surface Located between the fiber insertion opening and the bottom surface. 14. The package structure of a grating coupler according to claim 13, wherein the fiber alignment groove is from the second surface of the substrate layer to the first surface 099129072. Form No. A0101 Page 15 of 21 Page 0992051029-0 201209466 a recess is formed, the fiber insertion slot of the fiber alignment slot is located at a second surface of the substrate layer, the fiber is a planar fiber, and the fiber is inserted into the fiber alignment slot through the fiber insertion port, The central axis of the fiber alignment slot passes through the geometric center of the grating structure. The package structure of the grating coupler of claim 13, wherein the grating alignment groove further comprises an opening, the opening is located at a second surface of the substrate layer, and the optical fiber is aligned with the groove The fiber insertion opening is located at a third surface of the substrate layer, the fiber is a 45° bevel fiber, and the fiber is inserted into the fiber alignment groove parallel to the substrate layer, and the line connecting the center of the fiber bevel and the geometric center of the grating is perpendicular to the substrate layer . 099129072 Form No. A0101 Page 16 of 21 0992051029-0
TW99129072A 2010-08-30 2010-08-30 Grating coupler and the package structure TWI426308B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99129072A TWI426308B (en) 2010-08-30 2010-08-30 Grating coupler and the package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99129072A TWI426308B (en) 2010-08-30 2010-08-30 Grating coupler and the package structure

Publications (2)

Publication Number Publication Date
TW201209466A true TW201209466A (en) 2012-03-01
TWI426308B TWI426308B (en) 2014-02-11

Family

ID=46763621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99129072A TWI426308B (en) 2010-08-30 2010-08-30 Grating coupler and the package structure

Country Status (1)

Country Link
TW (1) TWI426308B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955001A (en) * 2020-01-02 2020-04-03 亨通洛克利科技有限公司 Silicon photonic chip optical power measuring device, equipment and measuring method
CN111290191A (en) * 2020-02-19 2020-06-16 联合微电子中心有限责任公司 Directional coupler and optical switch based on silicon nitride platform
CN113474721A (en) * 2019-04-26 2021-10-01 松下知识产权经营株式会社 Optical device
TWI805284B (en) * 2021-12-09 2023-06-11 采鈺科技股份有限公司 Optical structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184625B2 (en) * 2003-02-11 2007-02-27 Luxtera, Inc Optical waveguide grating coupler incorporating reflective optical elements and anti-reflection elements
US7162124B1 (en) * 2003-03-14 2007-01-09 Luxtera, Inc. Fiber to chip coupler
JP2010091863A (en) * 2008-10-09 2010-04-22 Oki Electric Ind Co Ltd Transmission and reception module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474721A (en) * 2019-04-26 2021-10-01 松下知识产权经营株式会社 Optical device
CN113474721B (en) * 2019-04-26 2023-10-20 松下知识产权经营株式会社 Optical device
CN110955001A (en) * 2020-01-02 2020-04-03 亨通洛克利科技有限公司 Silicon photonic chip optical power measuring device, equipment and measuring method
CN110955001B (en) * 2020-01-02 2023-08-04 亨通洛克利科技有限公司 Silicon photon chip optical power measuring device, equipment and measuring method
CN111290191A (en) * 2020-02-19 2020-06-16 联合微电子中心有限责任公司 Directional coupler and optical switch based on silicon nitride platform
CN111290191B (en) * 2020-02-19 2023-07-18 联合微电子中心有限责任公司 Directional coupler and optical switch based on silicon nitride platform
TWI805284B (en) * 2021-12-09 2023-06-11 采鈺科技股份有限公司 Optical structure

Also Published As

Publication number Publication date
TWI426308B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
CN101915965B (en) Grating coupler and package structure thereof
JP5131856B2 (en) Broadband optical coupling into thin SOICMOS optoelectronic integrated circuits.
US7162124B1 (en) Fiber to chip coupler
US8861906B2 (en) Method and system for coupling optical signals into silicon optoelectronic chips
JP6172679B2 (en) Optical coupling structure, semiconductor device, optical interconnect structure for multi-chip module, and manufacturing method for optical coupling structure
CN111679363B (en) Silicon waveguide end face coupling structure and manufacturing method thereof
CN109143466B (en) Hybrid integrated silicon optical chip, optical device and chip manufacturing method
US10901147B2 (en) Single edge coupling of chips with integrated waveguides
CN103998961A (en) Vertical optical coupler for planar photonic circuits
US20120114293A1 (en) Optical waveguide structure having angled mirror and lens
JP2022505829A (en) Methods and equipment for controlling and suppressing stray light in photonic integrated circuits
CN109791251A (en) Beam spot size converter
TW201209466A (en) Grating coupler and the package structure
JPH04264505A (en) Optical element, device for coating optical device and method for connecting optical fiber connector to optical device
CN112649918B (en) Edge coupler
CN115657224B (en) Optical packaging method of silicon photonic chip
CN109239838A (en) A kind of optical waveguide and preparation method thereof, optical waveguide systems
CN115755279A (en) On-chip optical amplifying coupler and forming method thereof
WO2021020218A1 (en) Isolator, manufacturing method for isolator, electromagnetic wave transmitter, and optical transmitter
JP5908369B2 (en) Light receiving device
CN105158848A (en) Multi-mode waveguide array coupling structure of glass substrate, and manufacturing method thereof
JPS58196521A (en) Optical coupling circuit
TWI812133B (en) Light guiding device for applying to silicon photonics structure
CN220323578U (en) Polarizing beam splitter and optical gyroscope
JPS60214316A (en) Optical module for two-way transmission