TW201204632A - Method of preparing silicon tetrafluoride by using crystalline silica - Google Patents

Method of preparing silicon tetrafluoride by using crystalline silica Download PDF

Info

Publication number
TW201204632A
TW201204632A TW100114406A TW100114406A TW201204632A TW 201204632 A TW201204632 A TW 201204632A TW 100114406 A TW100114406 A TW 100114406A TW 100114406 A TW100114406 A TW 100114406A TW 201204632 A TW201204632 A TW 201204632A
Authority
TW
Taiwan
Prior art keywords
sulfuric acid
reaction
reactor
hydrogen fluoride
preparing
Prior art date
Application number
TW100114406A
Other languages
Chinese (zh)
Inventor
Kyoung-Hoon Kang
Yeon-Seok Cho
Se-Jong Kim
Young-Shin Yoo
Moon-Gue Jun
Jeong-Mo Shim
Hyun-Dong Lee
Ji-Hye Kim
Min-Wook Song
Original Assignee
Kcc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kcc Corp filed Critical Kcc Corp
Publication of TW201204632A publication Critical patent/TW201204632A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10705Tetrafluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a method of preparing silicon tetrafluoride (STF, SiF4) by using crystalline silica (SiO2). More specifically, the present invention relates to a method of preparing silicon tetrafluoride by reacting finely divided crystalline silica and hydrogen fluoride (HF) in the presence of concentrated sulfuric acid in a continuous manner. According to the present invention, silicon tetrafluoride can be economically prepared with high yield from crystalline silica which exists abundantly in the natural world, and the process productivity, workability and controllability can be improved remarkably. In addition, the problem of corrosion in the recycling process by concentrating diluted sulfuric acid can be solved through controlling the ratio between reactants such that no incorporated hydrogen fluoride remains after the reaction, or on the other hand the difficulty in filtering the product by finely divided particles can be avoided through controlling the ratio between reactants such that the crystalline silica reactant is consumed completely. Furthermore, since the used sulfuric acid can be isolated and recycled, the generation of discarded sulfuric acid can be minimized.

Description

201204632 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種使用結晶二氧化矽(以⑴)製備四氟 化石夕(STF’SiF4)的方法。尤其,本發明係有關一種藉由以 連續方式在濃硫酸存在下使細分(finely divided)之結晶 二氧化石夕錢化氫(HF)反應製備四氟化料方法。依據本 發明,可由在天然界豐盛存在之結晶二氧化矽以高產率經 濟地製備四氟化矽,且可顯著地改良製程生產率,加工性 及控制性。此外,回收過程中因濃縮稀硫酸所造成之腐蝕 問題可經由控制反應物間之比率使得在反應後沒有併入之 氟化氫殘留而予以解決,或者另一方面,在過濾由細分顆 粒所生之產物的困難可經由控制反應物間之比率使得結晶 一氧化矽反應物完全地消耗而予以避免。再者,由於所使 用之硫酸可單離及回收,廢棄硫酸的產生可達到最小。 【先前技術】 四氟化矽(STF’SiFJ氣體使用於製造半導體之乾蝕刻 製程且作為製備光纖之配線及製備非晶形矽薄膜的原料。 其亦使用作為曱石夕烧(SiHQ氣體的前驅物以用於製造太陽 能電池之矽晶圓。 製備SiF4的已知方法包含使用以硫酸製造磷酸鹽肥料 中所產生之副產物六氟合矽酸(H2SiF6)之濃縮液的脫水— 熱分解反應(dehydration-thermal decomposition reaction)之方法(國際公開公報第w〇2〇〇5/〇30642號),以 及使用從六氟合矽酸製備之固態lSiF6(M=Na,K)之熱分解 4 95208 201204632 反應之方法(美國專利第2, 615, 872號)。 然而,藉由將磷酸鹽肥料製造中產生之副產物六氣人 矽酸熱分解而製備SiF4的方法’需要使用大量碗酸以移^ 與六氟合矽酸共存的水,因此具有下述困難:藉此產生的' 過量稀硫酸應為其回收而進一步加以處理。再者,由於於 驅物六氟合矽酸係磷酸鹽肥料製造上所產生之副產物, 備Sih的製程係取決於磷酸鹽肥料生產製程,因此為實$ SiF4生產的大規模化(scale-up),填酸鹽肥料生產製程的 大規模化必須與之相隨。 美國專利第6,770,253號建議一種製備Sip4之方法 其係藉由使元素矽(Si)與HF在300°C或更高的高溫條件下 反應。美國專利第4, 382, 071號建議一種製備SiF4之方法 其係藉由使溶解在硫酸中之HF與非晶形二氧化矽反應。然 而,此方法具有下述缺點:為獲得7〇%或更高之高產率的、 SiF4,必須使用具有高純度之高價非晶形二氧化矽。此外, 若使用該種具有高純度之高價非晶形二氧化矽,則反應會 變得太過劇烈,以致於難以控制之。相反地,若使用具有 低純度之相對較低價非晶形二氧化矽(例如飛灰(fly ash) 等),則有雜質的問題。再者,隨著反應進行而反應器中之 硫酸的濃度下降到低於_時,反應性變㈣低,因此需 要排出反應混合物並饋人新鮮的濃硫酸,故此,在連續製 備產物方面有極限存在。 [先前技藝公開] [專利公開] 5 95208 201204632 國際公開公報第W02005/030642號 美國專利第2, 615, 872號 美國專利第6, 770, 253號 美國專利第4, 382, 071號 【發明内容】 [欲解決之問題] 為了解決如上所述之習知技術的問題,本發明的目的 在提供一種製備四敦化石夕之方法,據此,彳由在天然界豐 富存在之結晶二氣化矽以高產率經濟地製備四氟化矽,且 可顯著地改良製程生產率,加工性及控制性,可大幅減少 未反應之氟化氫的量,且由於完全地消耗結晶二氧化石夕反 應物而可避免細微顆粒(finely divided particles)造成 之過渡產物方面的困難性,又由於所使用之硫酸可單 回收,廢棄硫酸的產生可以最小化。 [技術手段] 為了達到上述之目的,本發明提供—種製備 (SlF4)之方法’包括:使具有60微米或更小之平均顆 寸之結晶二氧切與仏氫(HF)在濃顧存在下祓尺 14(TC反應以獲得四氟化矽。 至 [發明功效] 藉 由使用本發明之方法,可由在 一 矽^•可顯著地改良製程生產率, 控制性 此外’可顯著地減少未反應之氟化氫 加工 的量 緩齊 性及 且由 95208 6 201204632 於完全地消耗纟士 a ^ * 日日二氣化石夕反應物而可避免細微顆粒造成 - 嚴雜;:物方面的困難性。再者,又由於所使用之硫酸可 =及回收’廢棄硫酸的產生可以最小化。 【實施方式】 本舍明§羊述如下。 豐舍广,發月之製備四氣化石夕的方法中,係使用在天然界 例:::少之::曰:二氧化矽。該種結晶二氧化矽之素材的實 本發央岩等。將該些素材粉碎及分級,以使用於 發月之製備四氟化石夕的方法中。 的平明之製備四氣化矽之方法之結晶二氧化矽 炎 寸為60微米或更小(例如,5至60微米), 化石夕I5 0微米或更小(例如,5至5 0微米)。若結晶二氧 法Ρ '句顆粒尺寸大於60微米,則反應性不足,因此無 化:到所要的產率(例如,7〇%或更高之總產率)。結晶二氧 具有之平均顆粒尺寸的下限並無特別限制。然而,若使用 化々太小之平均顆粒尺寸(例如’小於5微米)之結晶二氧 的::則粉碎及分級天然界中之素材(例如 ,具有mm尺寸 輪=或龐大的石英岩)的成本會變得太高,且可能有處理及 顆,超精細顆粒方面的問題。傳統上已意識到使用超精細 ^二氧切會導致太劇烈的反應且在反應物的表面上 生氣泡,其造成反應性下降。然而,在本發明中,由於 化Γ與非晶形二氧化矽相較下具有溫和反應性之結晶二氧 可=,即使顆粒尺寸變小(例如,5微米或更小),反應亦 尺到控制。此外,反應性可經由調整各種製程參數如反 7 95208 201204632 應物饋入迷率等 施例般以連續方 控制再者,若製程係如本發明之實 速率摘微低,作2以没计’則即使第一反應器中之反應 至70%或更高,二續反應器中之進―步反應可增加總產率 本日°,較佳為90%或更高。 在之沙或;Tji用之結晶二氧化矽係可得自天然界豐富存 份非晶形二氣^低價材料’而習知方法上所使用之大部 化氫(:二:!::化矽的方法中,結晶二氧化矽與氣 示之:農硫黾存在下反應。此反應可以下述反應式表 si〇2+4HF/H2S〇4-^SiF4+2H2〇/H2S〇4 本^明之製備四氟化石夕的方法中,對於結晶二氧化石夕 、氟化氫的用量比率並無特別限制,因此用量比率可依據 需求予=適當地選擇。理論上,此反應可以如上述反應式 斤示之^量(equivalent amount)比率進行之。為了不存在 有未反應之結晶二氧化矽,結晶二氧化矽之使用量可以小 於上述反應式之理論當量-例如,上述反應式之理論當量的 85至959^反觀’為了不存在有未反應之氟化氫,氟化氣 之使用量可以小於上述反應式之理論當量-例如,上述反應 式之理論當量的85至95%。 更具體言之,在本發明中,若結晶二氧化矽之使用量 相當於氟化氫之理論當量的85至95%,則在反應後反應器 中可能沒有固態二氧化矽殘留,而在此情形下,反應後之 8 95208 201204632 蒸餾及回收稀硫酸製程中的過濾程序可被省略。 另一方面,在本發明中,若氟化氫之使用量相當於結 晶二氧化矽之理論當量的85至95%,則在反應後反應器中 可能沒有氟化氫殘留,而在此情形下,反應後之蒸淘及回 收稀硫酸製程中HF導致之反應器材料選擇的困難點可被 克服。亦即,依據如何進行硫酸的回收製程,可選擇性地 採用上述兩種模式之一種。 依據本發明之較佳實例,在過濾產物方面精細顆粒所 致的困難點可藉由使用上述反應式之理論當量的9〇%之用 量之結晶二氧化矽予以克服。藉由調整二氧化;g夕與氟化氫 的饋入量’使得最終產出之稀硫酸可不含固態二氧化石夕成 分或氟化氫’因此可便利地進行再處理硫酸的製程。 本發明之製備四氟化矽的方法中,使用硫酸取走結晶 二氧化矽與氟化氫間之反應結果所產生之水。使用具有 95%或更高(例如,98%)濃度之濃硫酸。對其用量並無特別 限制。顧及整體製程的生產率及硫酸再處理,濃硫酸的用 罝使反應後所排出之稀硫酸的濃度變成較佳為6 〇 %或更 高,更佳為75%或更高。此外,若經由所產生之氣體出口 將硫酸導入反應器中,由於與SiF4 一起排出的未反應hf 溶解在硫酸中並再次導人反應H中,可較佳地防止原料的 損失,且可藉㈣止濕氣併人抓氣體中而較佳地抑制 SiF4轉化成六氟合♦酸之副反應。 本發明之f備讀切的方法中,進行結晶二氧化石夕 與氟化氫的反應的溫度為8〇至14(rc,較佳為9〇至 95208 9 201204632 130 C,更佳為至 从 應變慢,因此生產率 c。若反應溫度低於8(rc,則反 水氟化氫不溶解於硫若反應溫度高於140°C,則無 難,導致SiF4產率Z巨是在氣相中變化,而反應變得困 本發明之製備^自反應器漏出的問題。 m 鼠化矽的方法較佳可藉由使用串聯連 方式進行,藉此可得到較高產率。 更具體=下依據本發明之製備四氣化樹續製程 在第1圖中’將具有6〇微来或更小之平均顆粒尺寸之 結晶二氧切經由管線1導人第-反應器A中,同時分別 、盈由管線2和3將無水氟化氫及濃硫酸導人反應器中。使 反應器A保持於⑽至14GI ’並藉由機械麟器麟反應 物。一額定時間(例如,2〇分鐘至H、時)之後,開始產生 SiF4氣體’然後經由管線4收集所產生之SiF4氣體。反應 器A被填充反應混合物經一額定時間後達到預定位準 (predetermined level)(例如,約 80%,Lha位準)的時候, 將未反應之漿料混合物轉移至第二反應器B,在第二反應 器B中進一步進行反應以完成未反應之混合物的反應。若 有需要’可進一步串聯連接第三反應器,第四反應器等。 為了有效率地操作本連續製程,第二反應器中之進一步反 應的時間可設定為再填充反應物於第一反應器中至預定位 準的時間(亦即,第一反應器中之反應混合物位準由Lla提 升至Lha的時間),且第二反應器中之進一步反應的時間可 藉由控制反應物至第一反應器A中的饋入速度予以調整。 10 95208 201204632 第二反應器B中所產生之Sih氣體經由管線6自第二反應 器排出,然後經由管線4加以收集。在本發明之連續製程 -之較佳實例中’藉由控制反應物的饋入速度,在第一反應 器製備總產率之60至70莫耳(mole)%之四說化梦(stf), 在第二反應器進行進一步反應,藉此總產率可增加至 95mole%或更高。 藉由下述實施例及比較例更加詳細說明本發明。然 而,本發明的範圍並不受其所限。 [實施例1及2] 使用如第1圖所示之連續方式反應裝置製備四氟化 石夕。 以每小時15g的饋入速度(0.25莫耳/小時(m〇le/hr)) 經由管線1將具有20微米平均顆粒尺寸之結晶二氧化矽 (Si〇2)併入1L(升)體積之鐵氟龍内襯(Tefl〇n_Lined)之第 -反應器A中。同時’分別以以每小時2〇g的饋入速度 (lmole/hr)經由管線2將無水氟化氫(HF)液體及38g之 98%-濃縮、冷硫酸(至lrc)經由管線3併入反應器A中。 藉由加熱線路使反應器A的内部溫度保持在12〇亡, 並藉由機械授拌器授拌所併入的反應物。自反應物饋料開 始30分鐘後,開始產生SiF4氣體,並經由管線4收集所 產生之SiF4氣體。經由SiF4氣體出口管線4導入冷硫酸, 以防止未反應之氟化氫與所產生之Sib氣體一起自反應 漏出。 〜翁 經由管線4所排出之氣體藉由後續令其通過含有碳酸 95208 11 201204632 之收集槽(trap)及含有5%敦化氫水溶液之收集槽,而予以 淬冷以用於成分分析。經由硫酸收集槽,檢查漏出外部之 所產生的水及未反應之HF °經由氟化氫收集槽’將所產生 之SiF4轉化成六氟合石夕酸,然後予以滴定以檢查所產生之 SiF4的量。 藉由併入反應物16小時使第一反應器A填充至lha位準 (80v/v%位準)的時候’操作輸送泵以將反應器A中之反應 混合物輸送至反應器B。在第二反應器B中,使反應進一 步進行至完成。為使未反應之氟化氫可完全地消耗,反應 器B中之進一步反應係於12 0 C進行15小時。經由管線6 自第二反應器排出當時所產生之SiF4氣體,然後如上述般 經由管線4予以分析。 在第二反應器B中進步反應後,稀硫酸經由管線γ 排出並加以再分析。基於分析結果補足至適當濃度後,將 之回收再度使用於反應。同時,將二氧化矽,氟化氫及硫 酸連續地併入第一反應器Α中以保持反應進行。 下述表1顯示以當量比率使用無水氟化氫及二氧化矽 時(實施例1)及二氧化矽用量減少至無水氟化氫用量之 90%時(實施例2)所產生之SiF*的量,以及最終自第二反應 器B所排出之稀硫酸的分析結果。 95208 12 201204632 [表l]201204632 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing tetrafluorofossil (STF'SiF4) using crystalline cerium oxide (by (1)). In particular, the present invention relates to a process for preparing a tetrafluoride by subjecting a finely divided crystalline cerium oxide to hydrogen (HF) in the presence of concentrated sulfuric acid in a continuous manner. According to the present invention, ruthenium tetrafluoride can be economically produced from high-yield crystalline cerium oxide which is abundantly present in the natural world, and process productivity, processability and controllability can be remarkably improved. In addition, the corrosion problem caused by the concentration of dilute sulfuric acid during the recovery process can be solved by controlling the ratio between the reactants such that the hydrogen fluoride residue is not incorporated after the reaction, or on the other hand, filtering the product produced by the finely divided particles. The difficulty can be avoided by controlling the ratio between reactants such that the crystalline nitric oxide reactant is completely consumed. Furthermore, since the sulfuric acid used can be separated and recovered, the generation of waste sulfuric acid can be minimized. [Prior Art] Antimony tetrafluoride (STF'SiFJ gas is used in the dry etching process for manufacturing semiconductors and as a raw material for fabricating wires and preparing amorphous germanium films. It is also used as a precursor of SiHQ gas. For the fabrication of silicon wafers for solar cells. The known method for preparing SiF4 involves the dehydration-decomposition of a concentrate of hexafluoroantimonic acid (H2SiF6), a by-product produced in the production of phosphate fertilizer from sulfuric acid. -thermal decomposition reaction method (International Publication No. WO 2,5/〇30642), and thermal decomposition using solid lSiF6 (M=Na, K) prepared from hexafluoroantimonic acid 4 95208 201204632 Method (U.S. Patent No. 2,615,872). However, the method for preparing SiF4 by thermally decomposing the by-product hexahydroantimonic acid produced in the manufacture of phosphate fertilizer requires a large amount of bowl acid to be used. The water in which hexafluoroantimonic acid coexists has the following difficulties: the resulting excess dilute sulfuric acid should be further treated for its recovery. Furthermore, due to the hexafluoroantimonic acid phosphate The by-products produced by the manufacture of salt fertilizers, the process of preparing Sih depends on the phosphate fertilizer production process, so the scale-up of the production of the SiSi4, the large-scale production process of the acid-filled fertilizer must be U.S. Patent No. 6,770,253 proposes a method of preparing Sip4 by reacting elemental cerium (Si) with HF at a high temperature of 300 ° C or higher. U.S. Patent No. 4,382,071 A method of preparing SiF4 is proposed by reacting HF dissolved in sulfuric acid with amorphous cerium oxide. However, this method has the following disadvantages: in order to obtain a high yield of SiF4 of 7% by weight or more, it is necessary to The use of high-purity amorphous ceria having high purity. In addition, if such a high-purity amorphous ceria having high purity is used, the reaction becomes too intense to be controlled, and conversely, if used Low-purity, relatively low-valence amorphous ceria (such as fly ash, etc.) has problems with impurities. Furthermore, as the reaction proceeds, the concentration of sulfuric acid in the reactor drops below _. ,reaction It is low (4), so it is necessary to discharge the reaction mixture and feed the fresh concentrated sulfuric acid, so there is a limit in the continuous preparation of the product. [Prior Art Publication] [Patent Publication] 5 95208 201204632 International Publication No. WO2005/030642 US Patent No. 4, 382, 071, US Patent No. 6, 770, 253, the disclosure of the entire disclosures of OBJECTIVE: To provide a method for preparing Si Dunhua Shi Xi, according to which, rhodium ruthenium hydride is efficiently produced in a high yield by crystalline bismuth hydride which is abundant in the natural world, and the process productivity and processability are remarkably improved. Controllable, the amount of unreacted hydrogen fluoride can be greatly reduced, and the difficulty in transition products caused by finely divided particles can be avoided due to the complete consumption of the crystalline dioxide dioxide reactant, and the sulfuric acid used Single recovery, waste sulfuric acid production can be minimized. [Technical means] In order to achieve the above object, the present invention provides a method for preparing (S1F4) which comprises: crystallization of a dioxent having a mean size of 60 μm or less and hydrogen hydride (HF) in existence祓14 (TC reaction to obtain cesium tetrafluoride. To [Effects of Invention] By using the method of the present invention, the process productivity can be remarkably improved at a certain level, and controllability can further significantly reduce unreacted The amount of hydrogen fluoride processing is tempered and is completely consumed by 95208 6 201204632 to completely consume the gentleman a ^ * day two gasification fossil reactants to avoid the occurrence of fine particles - strict; Moreover, since the sulfuric acid used can be recovered and the recovery of waste sulfuric acid can be minimized. [Embodiment] This is a description of the method of preparing the four gasification fossils. In the natural world::: Less:: 曰: cerium oxide. The material of this kind of crystalline cerium oxide is the source of the core rock, etc. The materials are pulverized and classified for use in the preparation of PTFE. In the method of fossil eve The method for preparing a gasified ruthenium oxide has a crystal cerium oxide inch of 60 μm or less (for example, 5 to 60 μm), and a fossil eve of I50 μm or less (for example, 5 to 50 μm). The dioxane method has a particle size greater than 60 μm, and the reactivity is insufficient, so that it is not obtained: to the desired yield (for example, a total yield of 7〇% or higher). The crystalline dioxygen has an average particle size. The lower limit is not particularly limited. However, if the average particle size (for example, 'less than 5 μm) of crystallized dioxin is used: the pulverization and classification of materials in the natural world (for example, having a mm size wheel = or The cost of bulky quartzites can become too high, and there may be problems with handling and granules, ultrafine granules. It has been traditionally recognized that the use of ultrafine dioxin will result in too violent reactions and in the reactants Air bubbles are generated on the surface, which causes a decrease in reactivity. However, in the present invention, since the crystallization of the bismuth and the amorphous cerium oxide has a mild reactivity, the crystal dioxin can be reduced, even if the particle size becomes small (for example, 5 Micron or smaller), the reaction is also In addition, the reactivity can be controlled by continuous adjustment by adjusting various process parameters such as anti- 7 95208 201204632, and if the process rate is as low as the actual rate of the present invention, In the absence of 'then, even if the reaction in the first reactor is 70% or higher, the further reaction in the second reactor can increase the total yield today, preferably 90% or higher. Or; the crystalline cerium oxide used by Tji can be obtained from the natural rich and abundant amorphous two-gas ^ low-cost materials' and the conventional hydrogen used in the conventional method (: two:!:: phlegm method) In the middle, the crystalline cerium oxide and the gas show: the reaction in the presence of glucosinolate. The reaction can be prepared by the following reaction formula: si〇2+4HF/H2S〇4-^SiF4+2H2〇/H2S〇4 In the method of the fluorinated stone, the ratio of the amount of the crystalline cerium oxide to the hydrogen fluoride is not particularly limited, and therefore the ratio of use can be appropriately selected according to the demand. In theory, this reaction can be carried out at a ratio equivalent to the above reaction formula. In order to avoid the presence of unreacted crystalline cerium oxide, the amount of crystalline cerium oxide used may be less than the theoretical equivalent of the above reaction formula - for example, the theoretical equivalent of the above reaction formula is 85 to 959^, in contrast, 'there is no reaction for the absence of The amount of hydrogen fluoride used in the fluorinated gas may be less than the theoretical equivalent of the above reaction formula - for example, 85 to 95% of the theoretical equivalent of the above reaction formula. More specifically, in the present invention, if the amount of crystalline cerium oxide used is equivalent to 85 to 95% of the theoretical equivalent of hydrogen fluoride, there may be no solid cerium oxide remaining in the reactor after the reaction, and in this case, After the reaction, 8 95208 201204632 The filtration process in the distillation and recovery of the dilute sulfuric acid process can be omitted. On the other hand, in the present invention, if the amount of hydrogen fluoride used is equivalent to 85 to 95% of the theoretical equivalent of crystalline cerium oxide, there may be no residual hydrogen fluoride in the reactor after the reaction, and in this case, after the reaction Difficulties in reactor material selection due to HF in steaming and recovery of dilute sulfuric acid processes can be overcome. That is, depending on how the sulfuric acid recovery process is carried out, one of the above two modes can be selectively employed. According to a preferred embodiment of the present invention, the difficulty of fine particles in filtering the product can be overcome by using the crystalline cerium oxide in an amount of 9% by theoretical equivalent of the above reaction formula. By adjusting the amount of oxidation and the amount of hydrogen fluoride fed, the resulting dilute sulfuric acid can be free of solid sulfur dioxide or hydrogen fluoride, so that the process of reprocessing sulfuric acid can be conveniently carried out. In the method for producing antimony tetrafluoride according to the present invention, sulfuric acid is used to remove water produced by the reaction between crystalline ceria and hydrogen fluoride. Concentrated sulfuric acid having a concentration of 95% or higher (e.g., 98%) is used. There is no particular limitation on the amount used. The concentration of the dilute sulfuric acid discharged after the reaction is preferably 6 〇 % or more, more preferably 75% or more, taking into account the productivity of the overall process and the retreatment of the sulfuric acid. In addition, if sulfuric acid is introduced into the reactor via the generated gas outlet, since the unreacted hf discharged together with SiF4 is dissolved in the sulfuric acid and the reaction H is again induced, the loss of the raw material can be preferably prevented, and (4) The moisture is removed and the gas is trapped in the gas to preferably suppress the side reaction of SiF4 into hexafluoro-acid. In the method of reading and cutting according to the present invention, the temperature of the reaction of the crystalline silica dioxide with hydrogen fluoride is from 8 〇 to 14 (rc, preferably from 9 95 to 95208 9 201204632 130 C, more preferably from slow strain. Therefore, the productivity c. If the reaction temperature is lower than 8 (rc, the reverse water hydrogen fluoride does not dissolve in the sulfur, if the reaction temperature is higher than 140 ° C, it is not difficult, resulting in the SiF4 yield Z giant is changed in the gas phase, and the reaction becomes The problem of the preparation of the present invention leaking from the reactor is that m. The method of cockroach cockroach is preferably carried out by using a series connection method, whereby a higher yield can be obtained. More specifically = the preparation of four gas according to the present invention The tree continued process in Figure 1 'The crystal dioxotomy with an average particle size of 6 microliters or less is introduced into the first reactor A via line 1, while separately, by the pipelines 2 and 3 Anhydrous hydrogen fluoride and concentrated sulfuric acid are introduced into the reactor. Reactor A is maintained at (10) to 14GI' and is produced by mechanically lining the reactants. After a rated time (for example, 2 minutes to H, hour), SiF4 is produced. The gas 'then collects the generated SiF4 gas via line 4. When the A is filled with the reaction mixture to a predetermined level (for example, about 80%, Lha level) after a rated time, the unreacted slurry mixture is transferred to the second reactor B, at the Further reacting in the second reactor B to complete the reaction of the unreacted mixture. If necessary, the third reactor, the fourth reactor, etc. may be further connected in series. In order to efficiently operate the continuous process, the second reactor is The time for further reaction may be set to a time during which the reactant is refilled in the first reactor to a predetermined level (ie, the time at which the reaction mixture level in the first reactor is raised from Lla to Lha), and second The time for further reaction in the reactor can be adjusted by controlling the feed rate of the reactants to the first reactor A. 10 95208 201204632 The Sih gas produced in the second reactor B is passed from the second reactor via line 6. Discharged and then collected via line 4. In the preferred embodiment of the continuous process of the present invention, 'by controlling the feed rate of the reactants, 60 of the total yield in the first reactor is prepared. Up to 70% of the moles of the dream (stf), further reaction in the second reactor, whereby the total yield can be increased to 95 mole% or higher. By the following examples and comparative examples The present invention will be described in detail. However, the scope of the present invention is not limited thereto. [Examples 1 and 2] The tetrafluoride was prepared using a continuous mode reaction apparatus as shown in Fig. 1. Feeding at 15 g per hour Speed (0.25 m / h (m〇le / hr)) Incorporate crystalline cerium oxide (Si 〇 2) having an average particle size of 20 microns into a 1 L (liter) volume of Teflon lining via line 1 (Tefl第n_Lined) in the first reactor-A. At the same time, 'anhydrous hydrogen fluoride (HF) liquid and 38 g of 98%-concentrated, cold sulfuric acid (to lrc) were introduced into the reactor via line 2 at a feed rate of 2 〇g per hour (lmole/hr), respectively, via line 2. A. The internal temperature of the reactor A was maintained at 12 Torr by a heating line, and the incorporated reactants were stirred by a mechanical stirrer. After 30 minutes from the start of the reactant feed, SiF4 gas was started to be produced, and the generated SiF4 gas was collected via line 4. Cold sulfuric acid is introduced through the SiF4 gas outlet line 4 to prevent unreacted hydrogen fluoride from leaking out of the reaction together with the Sib gas produced. The gas discharged through line 4 was quenched for component analysis by subsequent passage through a collection tank containing carbonic acid 95208 11 201204632 and a collection tank containing 5% aqueous solution of Dunhua hydrogen. The generated water was leaked through the sulfuric acid collection tank, and the unreacted HF ° was converted into hexafluoride by the hydrogen fluoride collection tank, and then titrated to check the amount of SiF4 produced. The transfer pump was operated to deliver the reaction mixture in Reactor A to Reactor B by filling the reactants for 16 hours to fill the first reactor A to the lha level (80 v/v% level). In the second reactor B, the reaction was further advanced to completion. In order to allow the unreacted hydrogen fluoride to be completely consumed, the further reaction in the reactor B was carried out at 120 C for 15 hours. The SiF4 gas produced at that time was discharged from the second reactor via line 6, and then analyzed via line 4 as described above. After the progress of the reaction in the second reactor B, the dilute sulfuric acid is discharged via the line γ and reanalyzed. After replenishing to the appropriate concentration based on the analysis results, it is recycled for reuse in the reaction. At the same time, cerium oxide, hydrogen fluoride and sulfuric acid are continuously incorporated into the first reactor crucible to keep the reaction going. Table 1 below shows the amount of SiF* produced when anhydrous hydrogen fluoride and cerium oxide are used in an equivalent ratio (Example 1) and the amount of cerium oxide is reduced to 90% of the amount of anhydrous hydrogen fluoride (Example 2), and finally Analysis result of dilute sulfuric acid discharged from the second reactor B. 95208 12 201204632 [Table l]

實施 例 反應物用量(g/hr) 所產生之SiF<量(g)(產率) 副產物分析(g) HF 碰 Si〇2 反應器A 反應器B 總計 硫酸 () HF SiOz 1 20 (lmole/hr) 38 15 (0.25inole/hr) 270.4 (65¾) 128.96 (31%) 399.36 (96¾) 746.24 (80%) ND 9.6 2 20 (lmole/hr) 38 13.5 (0.23mole/hr) 266.24 (63%) 120.64 (27%) 374.4 (90¾) 737.6 (81%) 16 NDEXAMPLES Reaction Reagent Amount (g/hr) SiF <Quantity (g) (Yield) By-product Analysis (g) HF Touch Si〇2 Reactor A Reactor B Total Sulfuric Acid () HF SiOz 1 20 (lmole /hr) 38 15 (0.25 inole/hr) 270.4 (653⁄4) 128.96 (31%) 399.36 (963⁄4) 746.24 (80%) ND 9.6 2 20 (lmole/hr) 38 13.5 (0.23 mole/hr) 266.24 (63% 120.64 (27%) 374.4 (903⁄4) 737.6 (81%) 16 ND

SiF<產率:基於HF的用量 ND :未偵測到 [實施例3至5及比較例] 藉由與實施例1相同之方法,以下述表2所示之反應 條件,製備SiF4並分析產物。結果示於表2。 [表2] 實施 例 所產生之SiF4量(g) (產率) 副產物分析(g) 二氧彳te夕之平均顆 粒尺寸(微米) 反應器溫 度(。〇 反應器A 反應器B 總計 硫酸 (純度) HF Si〇2 3 60 120 208 (50¾) 92 (22%) 300 (72%) 712 (84%) 77 67 4 20 100 270 (65%) 121 (29¾) 391 (94¾) 743 (80¾) 13 14 5 20 80 254 (61¾) 116 (28%) 370 (89%) 736 (81¾) 35 26 比較 例 100 120 116 (29¾) 63 (14%) 179 (43%) 667 (89¾) 168 137SiF < Yield: HF-based amount ND: not detected [Examples 3 to 5 and Comparative Example] SiF4 was prepared and analyzed by the same reaction method as in Example 1 under the reaction conditions shown in Table 2 below. . The results are shown in Table 2. [Table 2] The amount of SiF4 produced in the examples (g) (yield) Analysis of by-products (g) Average particle size of dioxin (micron) Reactor temperature (. 〇 Reactor A Reactor B Total sulfuric acid (Purity) HF Si〇2 3 60 120 208 (503⁄4) 92 (22%) 300 (72%) 712 (84%) 77 67 4 20 100 270 (65%) 121 (293⁄4) 391 (943⁄4) 743 (803⁄4 13 14 5 20 80 254 (613⁄4) 116 (28%) 370 (89%) 736 (813⁄4) 35 26 Comparative Example 100 120 116 (293⁄4) 63 (14%) 179 (43%) 667 (893⁄4) 168 137

SiF*產率··基於HF的用量 ND :未偵測到 反應物饋入速率歷時16小時 -無水氟化氫液趙:20g/hr(lmole/hr) -Si〇2 : 15g/hr(0.25mole/hr) -98%H2S〇4 : 38g/hr 由上述表2可看出,當結晶二氧化矽的平均顆粒尺寸 為60微米或更小時,可得到70%或更高之SiF4的總產率。 因此,相較於比較例,未反應之HF及S i 〇2的量可顯著地 13 95208 201204632 減少。 [實施例6] 藉由與實施例1相同之方法,以下述表3所示之各種 反應物饋入速率及各反應器中的保留時間,製備SiF4並分 析產物。結果示於表3。至第一反應器之原料饋入速率比 實施例1大1.5倍,第一反應器中之反應時間為11小時而 第二反應器中之反應時間為10小時。 [表3] 實施 例 反應物量(g/hr) 所產生之Sih量(g)(產率) 副產物分析(g) HF 硫酸 Si〇2 反應器A 反應器B 總計 硫酸(純度) HF Si〇2 6 30 57 22.5 184(43%) 163(38¾) 347(81%) 747(82%) 40 47SiF* yield··Based on HF dosage ND: No reactant feed rate was detected for 16 hours - Anhydrous hydrogen fluoride solution Zhao: 20g/hr (lmole/hr) -Si〇2 : 15g/hr (0.25mole/ Hr) - 98% H2S 〇 4 : 38 g / hr As can be seen from the above Table 2, when the average particle size of the crystalline cerium oxide is 60 μm or less, the total yield of SiF 4 of 70% or more can be obtained. Therefore, the amount of unreacted HF and S i 〇 2 can be significantly reduced by 13 95208 201204632 compared to the comparative example. [Example 6] SiF4 was prepared and analyzed by the same method as in Example 1, using various reactant feed rates and retention times in the respective reactors shown in Table 3 below. The results are shown in Table 3. The feed rate to the first reactor was 1.5 times greater than that of Example 1, the reaction time in the first reactor was 11 hours, and the reaction time in the second reactor was 10 hours. [Table 3] Example reactant amount (g/hr) Sih amount (g) (yield) by-product analysis (g) HF sulfuric acid Si〇2 reactor A reactor B total sulfuric acid (purity) HF Si〇 2 6 30 57 22.5 184 (43%) 163 (383⁄4) 347 (81%) 747 (82%) 40 47

SiF<產率:基於HF的用量 【圖式簡單說明】 第1圖係圖解地表示以連續方式進行依據本發明之製 備四氟化矽之方法之反應裝置的實例。 【主要元件符號說明】 1 二氧化矽入口管線 2 無水氟化氫液體入口管線 3 硫酸入口管線(冷,至10°C) 4 S i F 4回收管線 5 第一反應混合物輸送管線 6 自第二反應器之SiF4回收管線 7 反應物排出管線 8 控制未反應之HF的二氧化矽入口管線(選擇性) 14 95208 201204632 A 鐵氟龍内襯之第一反應器 B 鐵氟龍内襯之第二反應器 P 輸送泵 Lha-Lla 反應器A中經一額定時間所收集之反應物的體積 Lhb-Llb 被輸送且進一步反應一額定時間之反應物的體積 15 95208SiF <Yield: Amount based on HF [Simplified description of the drawings] Fig. 1 is a view schematically showing an example of a reaction apparatus for carrying out a method of producing antimony tetrafluoride according to the present invention in a continuous manner. [Main component symbol description] 1 cerium oxide inlet line 2 anhydrous hydrogen fluoride liquid inlet line 3 sulfuric acid inlet line (cold, to 10 ° C) 4 S i F 4 recovery line 5 first reaction mixture transfer line 6 from the second reactor SiF4 recovery line 7 Reactant discharge line 8 Control of unreacted HF ceria inlet line (optional) 14 95208 201204632 A Teflon-lined first reactor B Teflon-lined second reactor P Transfer pump Lha-Lla The volume Lhb-Llb of reactants collected in a reactor at a rated time is transported and further reacted for a nominal time volume of reactants 15 95208

Claims (1)

201204632 七、申請專利範圍: 1. 一種製備四氟化矽(SiF4)之方法,包括:使具有60微 米或更小之平均顆粒尺寸之結晶二氧化石夕與氟化氫(HF) 在濃硫酸存在下於80至140°C反應以得到四氟化矽。 2. 如申請專利範圍第1項所述之製備四氟化矽之方法,其 中結晶二氧化矽的用量相當於氟化氫之理論當量的85 至 95%。 3. 如申請專利範圍第1項所述之製備四氟化矽之方法,其 中氟化氫的用量相當於結晶二氧化矽之理論當量的85 至 95%。 4. 如申請專利範圍第1項所述之製備四氟化矽之方法,其 中濃硫酸的用量使反應後所排出之稀硫酸的濃度變成 60%或更高。 5. 如申請專利範圍第1項所述之製備四氟化矽之方法,其 中濃硫酸係經由所產生之氣氣出口導入反應器中。 6. 如申請專利範圍第1項所述之製備四氟化矽之方法,其 係藉由使用串聯連接之複數個反應器以連續方式進行。 7. 如申請專利範圍第6項所述之製備四氟化矽之方法,其 中使用串聯連接之兩個反應器。 1 95208201204632 VII. Patent Application Range: 1. A method for preparing germanium tetrafluoride (SiF4), comprising: crystallizing a rare earth oxide having an average particle size of 60 micrometers or less and hydrogen fluoride (HF) in the presence of concentrated sulfuric acid The reaction was carried out at 80 to 140 ° C to obtain ruthenium tetrafluoride. 2. A method of preparing antimony tetrafluoride as described in claim 1 wherein the amount of crystalline ceria is equivalent to from 85 to 95% of the theoretical equivalent of hydrogen fluoride. 3. The method of preparing antimony tetrafluoride according to claim 1, wherein the amount of hydrogen fluoride is equivalent to 85 to 95% of the theoretical equivalent of crystalline ceria. 4. The method for producing antimony tetrafluoride according to the first aspect of the invention, wherein the concentrated sulfuric acid is used in an amount such that the concentration of the dilute sulfuric acid discharged after the reaction becomes 60% or more. 5. The method of preparing ruthenium tetrafluoride according to claim 1, wherein the concentrated sulfuric acid is introduced into the reactor via the produced gas outlet. 6. A method of preparing antimony tetrafluoride as described in claim 1 of the patent application, which is carried out in a continuous manner by using a plurality of reactors connected in series. 7. A method of preparing antimony tetrafluoride as described in claim 6 wherein two reactors connected in series are used. 1 95208
TW100114406A 2010-04-27 2011-04-26 Method of preparing silicon tetrafluoride by using crystalline silica TW201204632A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100038878A KR101168942B1 (en) 2010-04-27 2010-04-27 Method of preparing silicon tetrafluoride by using crystalline silica

Publications (1)

Publication Number Publication Date
TW201204632A true TW201204632A (en) 2012-02-01

Family

ID=44862022

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114406A TW201204632A (en) 2010-04-27 2011-04-26 Method of preparing silicon tetrafluoride by using crystalline silica

Country Status (3)

Country Link
KR (1) KR101168942B1 (en)
TW (1) TW201204632A (en)
WO (1) WO2011136517A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091271B (en) * 2012-11-28 2016-05-18 贵州瓮福蓝天氟化工股份有限公司 Measure the method for impurity content of iodine in silicon tetrafluoride gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604125B2 (en) * 1981-02-16 1985-02-01 セントラル硝子株式会社 Manufacturing method of high purity silicon tetrafluoride
UA73847C2 (en) * 2003-09-02 2005-09-15 A method for preparing silicon tetrafluoride, a method for isolation of the silicon tetrafluoride from oxygen and highly volatile admixtures, a method for preparing silicon powder from the silicon tetrafluoride
JP4576312B2 (en) * 2005-10-03 2010-11-04 東北電力株式会社 Manufacturing method of silicon tetrafluoride and manufacturing apparatus used therefor
CN101795964B (en) * 2007-08-23 2013-01-02 "索拉斯"有限公司 Method for producing polycrystalline silicon

Also Published As

Publication number Publication date
WO2011136517A2 (en) 2011-11-03
WO2011136517A3 (en) 2012-03-08
KR20110119267A (en) 2011-11-02
KR101168942B1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US4084024A (en) Process for the production of silicon of high purity
US6887448B2 (en) Method for production of high purity silicon
US7972584B2 (en) Magnesiothermic methods of producing high-purity silicon
JP6246905B2 (en) Reactor for producing polycrystalline silicon and a method for removing a silicon-containing layer on components of such a reactor
JPS6228083B2 (en)
US20120082610A1 (en) Fluorspar/Iodide process for reduction,purificatioin, and crystallization of silicon
WO2006123802A1 (en) Method for producing silicon
US7820126B2 (en) Method and apparatus for improving the efficiency of purification and deposition of polycrystalline silicon
TW201008874A (en) Method of manufacturing silicon with high purity
CN112678829A (en) High-purity disilane continuous production system and preparation process
KR20080085715A (en) Method for producing polycrystalline silicon
US20090263307A1 (en) Silicon Production Process
CN101928002A (en) Method for producing polysilicon with silicon tetrafluoride reduced by plasmas
TW201204632A (en) Method of preparing silicon tetrafluoride by using crystalline silica
CA2741023A1 (en) Method for the production of polycrystalline silicon
JP2017137221A (en) Recovery method of hydrofluoric acid and nitric acid
JP2008037735A (en) Apparatus for manufacturing silicon
TWI430953B (en) Method of preparing anhydrous hydrogen fluoride by using sodium aluminum tetrafluoride and reaction device for the same
CN111268682B (en) Composition for preparing polycrystalline silicon, preparation method and preparation system
US20140341795A1 (en) Fluorspar/Iodide Process for Reduction, Purification, and Crystallization of Silicon
JP2008081387A (en) Manufacturing method of high purity silicon
US8029756B1 (en) Closed-loop silicon production
RU2356834C2 (en) Method of obtaining polycrystalline silicon in form of spherical granules
Liebischev et al. Integrated loops: a prerequisite for sustainable and environmentallyfriendly polysilicon production
JP2009143742A (en) Method for producing synthetic silica powder