TW201200670A - Drum washing machine - Google Patents

Drum washing machine Download PDF

Info

Publication number
TW201200670A
TW201200670A TW100108730A TW100108730A TW201200670A TW 201200670 A TW201200670 A TW 201200670A TW 100108730 A TW100108730 A TW 100108730A TW 100108730 A TW100108730 A TW 100108730A TW 201200670 A TW201200670 A TW 201200670A
Authority
TW
Taiwan
Prior art keywords
circuit
short
voltage
signal
phase
Prior art date
Application number
TW100108730A
Other languages
Chinese (zh)
Other versions
TWI440752B (en
Inventor
Kenzirou Tomita
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW201200670A publication Critical patent/TW201200670A/en
Application granted granted Critical
Publication of TWI440752B publication Critical patent/TWI440752B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/10Power supply arrangements, e.g. stand-by circuits
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A drum washing/drying machine includes a rotating drum, a water tub, a drum motor, a rectifying circuit, a smoothing capacitor section, an inverter circuit, a short-circuit circuit that has a reactor and a short-circuit control element, and a control section. The control section includes a phase detecting circuit for detecting a voltage phase of an AC power supply, a DC voltage detecting section for detecting DC voltage across the smoothing capacitor section, and a short-circuit signal generating section for conducting the short-circuit control element. The short-circuit signal generating section generates a short-circuit signal when a detection signal of the phase detecting circuit changes from OFF to ON, generates a short-circuit signal after a predetermined delay time since it changes from ON to OFF, and controls the DC voltage across the smoothing capacitor section so that it becomes a target voltage at the pulse width of the short-circuit signal. Thus, the current waveform is made close to sine wave and symmetric between the positive and negative sides, and the power supply harmonic is reduced.

Description

201200670 六、發明說明: 【發明所屬技彳椅領域】 發明領域 本發明是有關藉由變頻電路,以與洗濯、脫水等各程 序對應之旋轉數而驅動鼓形馬達之滾筒式洗衣機,前述鼓 形馬達係驅動收容有洗濯物之旋轉滾筒者。 發明背景 3二;乾燥機為因應低噪音、省電等的要 求般係使用變頻馬達。此時,因變頻馬達之驅動而產 生的電源料等係會使電源環境惡化而成為問題。 由-用的ί、、-。源供給旋轉驅動旋轉滾筒之鼓形馬達用 的變頻電=,=及供給至驅動絲用之壓縮機馬達的變頻 電路之直流電麼。因Π jg- ,I'%機馬達運轉時,抑或同時進 燥之脫水乾燥運轉時,交流電源之電流波 ::‘:弦波。其結果’係有峰值的電流值增加,功 率及電源諧波等的性能惡化之課題。 參昭課題’日本專利公開公報特開2刪-72806 ==则㈣下叙、㈣路,即, 設置經由•聯連接於交流電 源之反應|§而讓父流電源短路之短路部。 第7圖係說明專利物所載· 的電力變化裝置所|乾無機 圖之馬達_裝置相區塊®。又,第7 置係圖μ含有連胁電力變 201200670 之變頻電路10,以及内藏有馬達之壓縮機20之馬達驅動系 統 101。 如第7圖所示,電力變換裝置1〇〇包含有:連接於單相 之交流電源1的反應器2 ;讓交流電源1短路之短路部3 .整 流電路4 ;平流電容器部6 ;整流電路切換部$ ;交點交叉 (zero-cross)檢測電路8 ;控制電路7 ;及輸入電流檢測電路 30。此時,反應器2之一端係連接於單相的交流電源丨其中 一方的輸出端,另一端則連接於短路部3。 短路部3係一端與反應器2之另一端連接,另—端則經 輸入電流檢測電路30而與交流電源丨之另一端的輸出端連 接。且短路部3係經反應器2而讓交流電源丨短路。再者,短 路部3係譬如以橋式整流二極體與〗G Β τ (絕緣柵雙極電晶 體)、雙極電晶體、M0SFET(金氧半場效電晶體)等的功率 半導體開關元件構成。 整流電路4係連接於短料3之兩端。平流電容器部6係 串聯連接於整流電路4之直流輸出的兩端。整流電路切換部 5係連接於錢電路4之线輸人其巾—方,與構成平流電 容器部6之平流電容器61以及平流電容⑽之連接點之 間又t机電路切換部5具有譬如以功率繼電器、雙向整 流器、橋式整流二極體及功率半導體_元件卿了、雙極 電晶體)等構成之雙向開關。 零點交又檢測電路8_後述之方法檢射流電源β 零點交又點。輸人電流檢測電路3G係檢測由交流電源】輸入 之輸入電流’並將輸人電流值98輸if{至控制電路7。 201200670 且,平流電谷器部6之兩端的直流電壓Vd,_,直流電 壓值93與輸入電流值98係輪入至控制電路7。控制電路7係 以零點交叉信號92為基準時序,將短路脈衝信號%輸出至 短路部3,將整流電路切換信號97輸出至整流電路切換部 5。如前述,馬達驅練置之各構成要件係加錢接而構成。 以下,說明前述馬達驅動裝置之各構成要件之具體的 動作及作用。 零點交叉檢測電路8係於交流電源i兩端之交流電壓^ 通過零點交叉點且極性轉變之時點,輸出由卿信號切換 為Low信號、或由Low信號切換為_信號之零較叉信號 92。且所輸出之零點交又信號92係輸人至控制電路7。 控制電路7在由所輸入之零點交叉信號%之上升或下 降之基準時序迄至短路部3開始短路動作之期間,設定延遲 時間Td、短路之期間(以下記為脈衝寬度Tw)。進而,控制 電路7係以所設定的延遲時間Td、脈衝寬度Tw而將短路欣 衝信號96(High、Low信號)輸出至短路部3。又,延遲時間BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drum type washing machine that drives a drum motor by a number of rotations corresponding to washing, dehydrating, and the like by an inverter circuit, the drum shape The motor drives the rotary drum that accommodates the laundry. BACKGROUND OF THE INVENTION A two-stage dryer uses a variable frequency motor in response to demands such as low noise and power saving. At this time, the power source or the like generated by the driving of the inverter motor causes a problem that the power supply environment is deteriorated. By - used ί, , -. The source is supplied with the inverter power for the drum motor that rotationally drives the rotary drum =, and the DC power supplied to the inverter circuit of the compressor motor for driving the wire. The current wave of the AC power supply :: ́: sine wave when Π jg- , I'% machine motor is running, or dehydration drying operation at the same time. As a result, the current value of the peak increases, and the performance of power and power supply harmonics deteriorates. The Japanese Patent Publication No. 2-72806 == (4) The following is a description of the short-circuit portion of the reaction of the AC power supply by connecting the AC power supply to the AC power source. Fig. 7 is a diagram showing the motor of the dry inorganic diagram_device phase block®. Further, the seventh system diagram μ includes the inverter circuit 10 of the DC power supply 201200670, and the motor drive system 101 of the compressor 20 in which the motor is housed. As shown in Fig. 7, the power conversion device 1A includes a reactor 2 connected to a single-phase AC power supply 1, a short-circuit portion 3 for short-circuiting the AC power supply 1, a rectifier circuit 4, a smoothing capacitor portion 6, and a rectifier circuit. Switching unit $; zero-cross detecting circuit 8; control circuit 7; and input current detecting circuit 30. At this time, one end of the reactor 2 is connected to one of the output terminals of the single-phase AC power source, and the other end is connected to the short-circuit portion 3. The short-circuit portion 3 is connected to the other end of the reactor 2 at one end, and the other end is connected to the output terminal of the other end of the AC power supply via the input current detecting circuit 30. Further, the short-circuit portion 3 is passed through the reactor 2 to short-circuit the AC power source. Further, the short-circuit portion 3 is composed of, for example, a power semiconductor switching element such as a bridge rectifier diode and a G Β τ (insulated gate bipolar transistor), a bipolar transistor, or a MOSFET (gold oxide half field effect transistor). . The rectifier circuit 4 is connected to both ends of the short material 3. The smoothing capacitor portion 6 is connected in series to both ends of the DC output of the rectifier circuit 4. The rectifier circuit switching unit 5 is connected to the line of the money circuit 4, and is connected to the connection point of the smoothing capacitor 61 and the smoothing capacitor (10) constituting the smoothing capacitor unit 6, and the circuit switching unit 5 has power, for example. Bidirectional switch composed of relay, bidirectional rectifier, bridge rectifier diode and power semiconductor_component, bipolar transistor. Zero point and detection circuit 8_ The method described later detects the flow power supply β zero point and point again. The input current detecting circuit 3G detects the input current ' input from the AC power source' and inputs the input current value 98 to the control circuit 7. In addition, the DC voltage Vd,_, the DC voltage value 93 and the input current value 98 at both ends of the smoothing electric grid unit 6 are rotated into the control circuit 7. The control circuit 7 outputs the short-circuit pulse signal % to the short-circuit portion 3 with the zero-point cross signal 92 as a reference timing, and outputs the rectifier circuit switching signal 97 to the rectifier circuit switching portion 5. As described above, each of the constituent elements of the motor drive unit is constructed by adding money. Hereinafter, specific operations and operations of the respective constituent elements of the motor drive device will be described. The zero-crossing detection circuit 8 is connected to the AC voltage at both ends of the AC power source ^ through the zero-crossing point and the polarity transition point, and the output is switched from the Qing signal to the Low signal, or the Low signal is switched to the _ signal zero-crossing signal 92. And the zero crossing signal 92 outputted is input to the control circuit 7. The control circuit 7 sets the delay time Td and the period of the short circuit (hereinafter referred to as the pulse width Tw) until the short-circuit portion 3 starts the short-circuit operation from the reference timing at which the input zero-crossing signal % rises or falls. Further, the control circuit 7 outputs the short-circuit boosting signal 96 (High, Low signal) to the short-circuit portion 3 with the set delay time Td and the pulse width Tw. Again, delay time

Td及脈衝寬度了讀預先記憶於控制電路7,並以控制電路7 進行計算而求得。 旦部3係依短路脈衝信號%,經反應器2而進行讓 交流電源丨短路或開放的短路啟斷動作。具體上,依短路部 啟斷動^日和丁。精由依短路部3進行之交流電源1的短路 啟斷動作,父流電源1之功率獲得改善。 又’控制電路7係將以下所示之整流電路切換信號 201200670 97(High信號、L〇w信號)輸出至整流電路切換部$。藉由整 流電路切換部5,整流電路4係切換為全波整流電路或倍壓 整流電路。具體上,整流電路切換信號97為L〇w信號時, 將整電路4切換為全波整流電路,為High信號時,切換為 倍壓整流電路。藉此,可以短路脈衝信號96之脈衝寬度Tw 控制直流電壓Vd’且可以整流電路切換部5輸出大範圍之直 流電壓Vd。 即’控制電路7係依零點交又信號92、平流電容器部6 兩端之直流電壓Vd的直流電壓值93、輸入電流值98之輸 入’輸出短路脈衝信號96及整流電路切換信號97而控制短 路部3及整流電路切換部5。 又’電力變換裝置1〇〇係於電源電壓之半週期,一次或 數次經由反應器2而讓交流電源丨短路,藉此,將交流電變 換為直流電。藉此,擴大電源電流的傳導角,改善電源的 功率。 惟’習知構成之電力變換裝置100為檢測電源電壓成為 0V之零點交叉點,係需要高檢測精度的零點交叉檢測電路 8 °此時’藉由經反應器2之電源電壓的短路動作’可讓電 流波形接近正弦波’抑制奇數次的諧波電流產生。然而, 若短路動作的時序在電源電壓的正側與負側產生偏移,由 於正側與負側的電流波形不同,偶數次的諧波電流將增大。 因此’為於短路動作時之電源電壓的正側與負側消除 偏移,防止偶數時之諧波電流增大,係需要使用兩個比較 器之構成或使用雙向之光耦合器等的構成等之高檢測精度 201200670 _ 的零點交叉檢測電路。其結果,具有零點交叉檢測電路的 實裝面積及成本增加之課題。 L發明内容】 發明概要 本發明之滾筒式洗衣機,係具有下述構成,即,包含 有:旋轉滾筒;水槽,係保持旋轉滾筒;鼓形馬達,係驅 動旋轉滚筒;整流電路;平流電容器部,係連接於整流電 路;變頻電路,係連接於平流電容器部;短路電路,係包 含有一端連接於交流電源之反應器,以及反應器之另一端 連接於前述交流電源之另一端的短路控制元件,且該短路 電路連接於整流電路輸入侧;及控制部,係控制變頻電路 及洗濯程序。控制部包含有檢測交流電源之電壓相位的相 位檢測電路、檢測平流電容器部兩端之直流電壓Vd的直流 電壓檢測部、及讓短路控制元件導通之短路信號生成部。 前述短路信號生成部係於相位檢測電路之檢測信號由關閉 變化為開啟之點,生成短路信號,以及於由開啟變換為關 閉之點經預定的延遲時間後,生成短路信號,且藉由短路 信號之脈衝寬度而將平流電容器部兩端之直流電壓控制成 目標電壓。 藉此,以相位檢測電路檢測電源電壓之相位,電源電 壓為正側或負側,都可於零點交叉點至已穩定之延遲時間 後,進行經反應器之電源電壓的短路動作。其結果,可讓 電流波形接近正弦波,且對於正側、負側中任一者之相位, 都可為對稱的電流波形,藉此可改善電源諧波。 201200670 圖式簡單說明 第1圖係本發明之實施上形態1之滾筒式洗濯乾燥機的 縱剖面圖。 第2圖係同一滾筒式洗濯乾燥機之内部背面圖。 第3圖係顯示同一滾筒式洗濯乾燥機之馬達驅動裝置 的主要部分之區塊圖。 第4圖係同一滾筒式洗濯乾燥機之馬達驅動裝置的主 要部分電路圖。 第5圖係顯示同一馬達驅動裝置之動作波形之圖。 第6A圖係顯示以同一馬達驅動裝置之短路電路的動作 而朝向全波整流電路之輸入電流之變化圖。 第6B圖係顯示朝向無短路電路之習知例的馬達驅動裝 置中之全波整流電路的輸入電流之變化圖。 第7圖係顯示習知之馬達驅動裝置的區塊圖。 I:實施方式3 較佳實施例之詳細說明 以下,參照圖式說明本發明之實施形態。又,不以本 實施之形態而限定本發明。 (實施形態1) 第1圖係本發明實施形態1之滾筒式洗濯乾燥機的縱剖 面圖。第2圖係同一滚筒式洗濯乾燥機的内部背面圖。 如第1圖所示,滾筒式洗濯乾燥機係水槽52藉由未圖示 之懸掛構造以懸吊狀態彈性地支撐於洗濯機本體51内。形 成為有底圓筒形之旋轉滾筒53,係讓旋轉滾筒53之旋轉中 201200670 - 心軸的軸心方向由正面側朝背面側向下傾斜地支撐於7银 52内。又’旋轉滾筒53亦可不傾斜而支撐於水平方向水槽 者’於水槽52之正面供!,形成有與旋轉滾筒53之開:端再 通的衣類出入口 54。且藉由開啟可將設置於洗濯機本體= 之正面側的朝上傾斜面之開口部加以開啟及關閉的門屏 55,可經由衣類出入口 54而將洗濯物拿出或置入旋轉滾筒 5 3内。 於旋轉滾筒53之周面,形成有與水槽52内相通的多數 透孔(貫通孔)56。於旋轉滾筒53之内周面,於複數個位置設 有攪拌突起(未圖示)。且旋轉滾筒53係藉由安裝於水槽& 背面側之鼓形馬達57而可於正轉及反轉方向進行旋轉驅 動。又,於水槽52 ’連接有注水管路58及排水管路59,藉 由控制未圖示之注水閥及排水閥,可向水槽52内進行注水 及排水。 以下,說明本實施形態之滾筒式洗濯乾燥機的洗濯及 乾燥動作。 首先’開啟門扉55,將洗濯物及洗潔劑投入旋轉滾筒 53内°且使用者藉由操作洗濯機本體51之譬如設置於前面 上部的操作面板60,開始滾筒式洗濯乾燥機之運轉。藉此, 由注水管路58於水槽52内注入預定量之水,並藉由鼓形馬 達57讓旋轉滾筒53進行旋轉驅動,開始洗濯程序。此時, 藉由旋轉滾筒53之旋轉,收容於旋轉滾筒53内之洗濯物, 係反覆接受藉由設置於旋轉滚筒53之内周壁的攪拌突起而 於旋轉方向抬升並由適當的高度位置落下等的攪拌動作。 201200670 藉此,洗濯物接受敲洗作用,進行洗濯。 於預定之時間、進行洗濯 祓者 a,由排水管路59將 辦污之洗濯液排出。之後,藉由讓旋轉滚筒Μ高速旋轉之 脫水動作,讓洗濯物所含之洗濯液脫水。其後,由注水管 路58將水注人錢52内,實施洗清料。減清程序^ 收容於旋轉_53内之洗濯物亦藉_轉滾筒批旋轉, 反覆進行以齡突起抬升聽下等的搜掉動作,實施洗清。 又,滾筒式洗濯乾燥機係經由循環送風路徑u將水槽 52内之空氣加以排氣並除濕’進而將加熱且乾 次送風至水槽52内,將收容於旋轉滚筒53内之洗:物乾 燥。此處,於«送風路徑狀路徑中,設置有由蒸發器 U等之除濕部及冷凝器13等之加熱部等_之歸,以及 送風部之循環風扇Η。此時,如第丨圖所示,以蒸發器以 冷凝器13形成與循環之空氣的熱交換部15。熱交換部⑸系 配置於循環送風路徑U之最低位部。 ^且藉由循環風扇14之旋轉驅動,循環送風路徑丨丨之空 氣流動。藉由此空氣之流動’收容有洗濯物之旋轉滾筒53 内之空氣,係經透孔56由水槽52而排氣至朝循環風扇_ 之猶環空氣導入管路16。此時,加以排氣之空氣係藉由位 在熱交換部15之循環風扇丨4上游料發扣而以水分之結 露進行_,並湘與城HU之熱交換進行加熱,而成 為經常性乾燥之高溫空氣。 進而,乾燥之高溫空氣係由循環風扇14送出至送風管 切並送風至水槽训。此時,送風至水槽细之高溫的 201200670 ,一邊讓衣類等 再次朝循環空氣 乾燥空氣雜透孔5㈣進人旋轉滚筒训 的洗濯物暴露其中,—邊往水槽52抽出, 導入管路16導入。 並且,於前述之循環送風路徑u,藉由反覆進行空氣 之循環而實施洗濯物之乾燥程序。 此時,刺用循環送風路徑11之乾燥程序中,於循環送 風路握U進行循環之空氣中,係現雜有主要是由衣類等的 洗濯物產生的棉絮等的異物而進行猶環。因此,由於異物 會造成蒸發器及冷凝器堵塞、咬人循環風_之旋轉部、 往循環風扇14之内面堆積等情形,而有於乾燥程序中招致 故障之情況。因此,設置過溏器18,於循環送風路徑狀 路徑中除去循環空氣_之異物。 以下’使用第3圖及第4圖說明本實施形態之滾筒式洗 濯乾燥機的馬達驅動裝置。 第3圖係顯示本實施形態1中之滾筒式洗濯乾燥機的馬 達驅動裝置的主要部分之區塊圖。第4圖係同一滚筒式洗濯 乾燥機之馬達驅動裝_置的主要部分電路圖。又,一般上, 馬達驅動裝置係包含有控制鼓形馬達57、循環風扇14之驅 動用的風扇馬達、及熱交換部15用之壓縮機馬達的驅動等 多數馬達的功能。惟,本實施形態中,於第3圖僅顯示與鼓 形馬達57及壓縮機馬達45的驅動相關的部分而進行說明。 如第3圖所示,本實施形態之馬達驅動裝置係至少以交 流電源31、短路電路32、整流部33、經控制部46而以第1驅 動電路25及第2驅動電路29分別加以控制之第1變頻電路22 11 201200670 及第2變頻電路26、鼓形馬達57及壓縮機馬達45、以及相位 檢測電路39而構成。 具體上’鼓形馬達57及壓縮機馬達45係以永磁式同步 馬達構成’該永磁式同步馬達包含具有三相繞組之定子以 及具有雙極之永久磁石的轉子。且鼓形馬達57包含有三個 檢測轉子位置之轉子位置檢測元件21a、21b、21c,轉子位 置檢測元件21a、21b、21c係對應轉子磁極之位置而輸出每 60度電角度之轉子位置信號。 鼓形馬達57係藉由第1變頻電路22加以旋轉驅動。又, 第1變頻電路22係將六個開關元件23三相橋式連接而構 成,於各開關元件23並聯連接有飛輪二極體24。且第1變頻 電路22之各開關元件23之開啟/關閉控制係藉由第i驅動電 路25而進行PWM控制。 另一方面’壓縮機馬達45係藉由第2變頻電路26而進行 旋轉驅動。此處,於壓縮機馬達45並無轉子位置檢測元件, ·#如係依來自電流檢測部之信號而以正弦波驅動進行控 制又,第2變頻電路26係與第丨變頻電路22相同地,將六 個開關元件27二相橋式連接而構成,於各開關元件π並聯 連接有飛輪—極體28。且第2變頻電路26之各開關元件27之 p幵1啟/關閉控制係藉由紅I峰電路29而進行pwM(脈衝寬 度調變)控制。 又,實際上,馬達驅動裝置係進而設有用以驅動循環 風扇14用之風扇馬達的第3變頻電路及第3驅動電路等。 惟,第3變頻電路及第3驅動電路之構成及動作係與第2變頻 12 201200670 _ ^:路26及第2驅動電路29相同,故省略圖示及說明。 再者,第1驅動電路25及第2驅動電路29係藉由控制部 46進行&制。於控制部46 ’輸入有鼓形馬達57之轉子位置 檢測元件21a,2lb,21c輪出之轉子位置信號,且依轉子位置 ^號’第1驅動電路25對各開關元件23之開啟/關閉進行 PWM控制。且藉由pWM控制對於鼓形馬達57之定子的三相 繞組通電而轉子同步加以旋轉驅動。 又’控制部46進而包含有未圖示之旋轉數檢測部,該 旋轉數檢測部係依來自三個轉子位置元件化至⑴的轉子 位置k波而檢測轉子之旋轉數,即,鼓形馬達57之旋轉數 - Nd。此時’方走轉數檢測部係檢測三個轉子位置信號之狀態 . 改變的週期,並由該週期算出鼓形馬達57之旋轉數Nd。 又’驅動第1變頻電路22及第2變頻電路26之電力,係 經由乂流電源31、短路電路32及流部整流部33而加以供 給。即,由交流電源31供給之交流電壓Vs,係藉由短路電 路32及整流部33而變換為直流電壓w,施加至第设頻電路 22及第2變頻電路26。 此處’短路電路32係藉由於交流電源31及整流部33之 間串聯連接的反應器34,以及經反應器34而並聯連接於交 流電源31之短路控制元件35而構成。且短路控制元件35係 譬如以橋式整流二極體與IGBT或雙極電晶體抑或M〇SFET 荨的功率半導體開關元件構成。 又’整流部33包含有全波整流電路36,於全波整流電 路36並聯連接有構成平流電容器部38之平流電容器 13 201200670 37A,37B的串聯電路。且平流電容器部38兩端之直流電壓 Vd係施加至第1變頻電路22及第2變頻電路26。之後,以第1 變頻電路22及第2變頻電路26而變換為直流電之三相交流 電,係供給至鼓形馬達57及壓縮機馬達45。 又,控制部46包含有檢測平流電容器部38兩端之直流 電壓Vd,即,施加至第1變頻電路22及第2變頻電路26之直 流電壓V d之直流電壓檢測部3 4 A及短路信號生成部3 4 B。短 路信號生成部34B於譬如洗濯程序之至少脫水程序的部分 期間,為讓短路電路32之短路控制元件35導通,係藉由以 下所示之相位檢測電路39檢測交流電源31之相位,並依檢 測出之相位信號而生成短路信號Ps。 又’馬達驅動裝置包含有第4圖所示之主要部分電路, 即’相位檢測電路39。相位檢測電路39係以電壓降下用之 電阻42及整流二極體40與單向的光耦合器41而構成。且相 位檢測電路39係檢測所輸入之交流電源3丨兩端的電源電壓 之相位,並將檢測出的相位信號輸出至控制部46。 以下,使用第4圖及第5圖,說明本實施形態之馬達驅 動裝置的相位檢測電路39及控制部46的動作。 第5圖係顯示同-馬達驅動裝置之動作波形之圖。具體 上,係顯示交流電源31於AC100V/50HZ時之馬達驅 的相位檢測電路與控制電路的動作波形。 裝置 具體而言,首先,如第5圖所示,第4圖所示之 測電路39於區間τ。小開啟單向的光柄合器410相仇檢 體43且將High信號輸出至控制部46,於其他區間中,光〜極 ’將 L〇w 14 201200670 信號輸出至控制部46。此處,區間τ〇η係交流電源31之交流 電壓Vs較整流二極體40之順時針方向電壓vfl(約〇 7ν)與 單向的光偶合器41之LED44的順時針方向電壓Vf2(約2V) 之合計電壓Vf(約2.7V)高之區間。之後,若交流電壓31之交 流電壓V s再次大於合計電壓v f,相位檢測電路3 9係再次輸 出High信號。若將由相位檢測電路39輸出之L〇w信號朝The Td and the pulse width read are previously stored in the control circuit 7, and are calculated by the control circuit 7. The third portion is subjected to a short-circuit breaking operation for short-circuiting or opening the AC power source via the reactor 2 in accordance with the short-circuit pulse signal %. Specifically, according to the short-circuit part, the opening and closing times are performed. The power of the parent current source 1 is improved by the short-circuiting operation of the AC power source 1 by the short-circuit portion 3. Further, the control circuit 7 outputs the rectifier circuit switching signal 201200670 97 (High signal, L〇w signal) shown below to the rectifier circuit switching unit $. The rectifier circuit 4 is switched to a full-wave rectifier circuit or a voltage doubler rectifier circuit by the rectifier circuit switching unit 5. Specifically, when the rectifier circuit switching signal 97 is the L〇w signal, the entire circuit 4 is switched to the full-wave rectifier circuit, and when it is the High signal, it is switched to the voltage doubler rectifier circuit. Thereby, the DC voltage Vd' can be controlled by the pulse width Tw of the short-circuit pulse signal 96, and the rectifier circuit switching unit 5 can output a wide-range DC voltage Vd. That is, the control circuit 7 controls the short circuit based on the zero point intersection signal 92, the DC voltage value 93 of the DC voltage Vd across the smoothing capacitor portion 6, and the input 'output short circuit pulse signal 96 and the rectifier circuit switching signal 97 of the input current value 98. The unit 3 and the rectifier circuit switching unit 5. Further, the power conversion device 1 is connected to the AC power supply via the reactor 2 once or several times in a half cycle of the power supply voltage, thereby converting the AC power to DC power. Thereby, the conduction angle of the power supply current is increased to improve the power of the power supply. However, the power conversion device 100 of the conventional configuration is a zero-crossing point for detecting that the power supply voltage becomes 0 V, and is a zero-crossing detection circuit that requires high detection accuracy. 8 ° At this time, 'short-circuit operation by the power supply voltage through the reactor 2' Let the current waveform approach the sine wave' suppresses the generation of odd-numbered harmonic currents. However, if the timing of the short-circuit action is shifted on the positive side and the negative side of the power supply voltage, the even-numbered harmonic currents will increase due to the difference in current waveforms on the positive side and the negative side. Therefore, in order to eliminate the offset between the positive side and the negative side of the power supply voltage during the short-circuit operation, and to prevent the harmonic current from increasing at an even number, it is necessary to use a configuration of two comparators or a configuration using a bidirectional optical coupler or the like. High detection accuracy 201200670 _ zero crossing detection circuit. As a result, there is a problem that the mounting area and cost of the zero-crossing detection circuit increase. SUMMARY OF THE INVENTION SUMMARY OF THE INVENTION A drum type washing machine of the present invention has a configuration including a rotary drum, a water tank for holding a rotary drum, a drum motor for driving a rotary drum, a rectifying circuit, and a smoothing capacitor portion. Is connected to the rectifier circuit; the frequency conversion circuit is connected to the smoothing capacitor portion; the short circuit is a short-circuit control element including a reactor connected to the alternating current power source at one end, and the other end of the reactor is connected to the other end of the alternating current power source, And the short circuit is connected to the input side of the rectifier circuit; and the control unit controls the frequency conversion circuit and the washing program. The control unit includes a phase detecting circuit that detects the voltage phase of the AC power source, a DC voltage detecting unit that detects the DC voltage Vd across the smoothing capacitor unit, and a short-circuit signal generating unit that turns the short-circuit control element on. The short-circuit signal generating unit generates a short-circuit signal at a point where the detection signal of the phase detecting circuit changes from off to on, and generates a short-circuit signal after a predetermined delay time from the turn-on to the off state, and generates a short-circuit signal by the short-circuit signal. The pulse width is used to control the DC voltage across the smoothing capacitor portion to the target voltage. Thereby, the phase detection circuit detects the phase of the power supply voltage, and the power supply voltage is on the positive side or the negative side, and the short-circuiting operation of the power supply voltage through the reactor can be performed after the zero-crossing point to the stabilized delay time. As a result, the current waveform is close to a sine wave, and the phase of either the positive side or the negative side can be a symmetrical current waveform, thereby improving power supply harmonics. 201200670 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal sectional view showing a drum type washing and drying machine of the first embodiment of the present invention. Figure 2 is an internal rear view of the same drum type washing and drying machine. Fig. 3 is a block diagram showing the main part of the motor driving device of the same drum type washing and drying machine. Fig. 4 is a circuit diagram showing the main part of the motor drive unit of the same drum type washing and drying machine. Fig. 5 is a view showing an operation waveform of the same motor driving device. Fig. 6A is a graph showing changes in input current toward the full-wave rectifying circuit by the operation of the short circuit of the same motor driving device. Fig. 6B is a graph showing changes in input current of the full-wave rectifying circuit in the motor driving device of the conventional example without the short circuit. Figure 7 is a block diagram showing a conventional motor drive unit. I. Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited by the embodiment. (Embodiment 1) FIG. 1 is a longitudinal cross-sectional view showing a drum type washing and drying machine according to Embodiment 1 of the present invention. Fig. 2 is an internal rear view of the same drum type washing and drying machine. As shown in Fig. 1, the drum type washing and drying machine water tank 52 is elastically supported in the washing machine body 51 in a suspended state by a suspension structure (not shown). The rotary drum 53 having a bottomed cylindrical shape is rotated in the rotation of the rotary drum 53. 201200670 - The axial direction of the spindle is supported downwardly in the 7 silver 52 from the front side toward the back side. Further, the rotary drum 53 may be supported on the front side of the water tank 52 without being inclined to support the horizontal sink. A garment entry and exit port 54 is formed which is reopened with the opening of the rotary drum 53. And by opening the door panel 55 which can open and close the opening of the upwardly inclined surface provided on the front side of the body of the washing machine, the washing object can be taken out or placed in the rotating drum through the garment inlet and outlet 54. Inside. A plurality of through holes (through holes) 56 communicating with the inside of the water tank 52 are formed on the circumferential surface of the rotary drum 53. On the inner circumferential surface of the rotary drum 53, a stirring projection (not shown) is provided at a plurality of positions. Further, the rotary drum 53 is rotatably driven in the normal rotation direction and the reverse rotation direction by the drum motor 57 attached to the water tank & Further, a water injection pipe 58 and a drain pipe 59 are connected to the water tank 52', and water injection and drainage can be performed into the water tank 52 by controlling a water injection valve and a drain valve (not shown). Hereinafter, the washing and drying operation of the drum type washing and drying machine of the present embodiment will be described. First, the door sill 55 is opened, and the washing and washing agent are put into the rotary drum 53. The user starts the operation of the drum type washing and drying machine by operating the washing machine body 51 such as the operation panel 60 provided on the upper front portion. Thereby, a predetermined amount of water is injected into the water tank 52 from the water injection line 58, and the rotary drum 53 is rotationally driven by the drum-shaped motor 57 to start the washing process. At this time, the washing object accommodated in the rotary drum 53 is repeatedly picked up by the stirring projection provided on the inner peripheral wall of the rotary drum 53, and is lifted in the rotational direction and lowered at an appropriate height position by the rotation of the rotary drum 53. Stirring action. 201200670 Thereby, the washing material is subjected to a knocking action and is washed. The washing is performed at a predetermined time, and the dirty washing liquid is discharged by the drain line 59. Thereafter, the washing liquid contained in the laundry is dehydrated by a dehydrating operation of rotating the rotating drum at a high speed. Thereafter, the water is injected into the money 52 from the water injection pipe 58 to carry out the washing. The cleaning procedure ^ The washings contained in the rotation _53 are also rotated by the _ turn roller, and the search operation of raising the aging protrusion is repeated, and the washing is performed. Further, the drum type washing and drying machine vents and dehumidifies the air in the water tank 52 via the circulating air supply path u, and then heats and drys the air into the water tank 52, and dries the washing contents accommodated in the rotating drum 53. Here, in the "air supply path", a dehumidifying portion such as the evaporator U or the like, a heating portion such as the condenser 13, and the like, and a circulation fan 送 of the air blowing portion are provided. At this time, as shown in the figure, the heat exchange portion 15 of the circulating air is formed by the condenser 13 in the evaporator. The heat exchange unit (5) is disposed at the lowest position of the circulating air supply path U. And by the rotational driving of the circulation fan 14, the air flow in the circulation air path is circulated. The air in the rotating drum 53 in which the laundry is accommodated by the flow of the air is exhausted through the through-hole 56 through the water tank 52 to the air inlet duct 16 of the circulation ring. At this time, the air to be exhausted is heated by the condensation of moisture in the upstream of the circulation fan 丨4 of the heat exchange unit 15, and is heated by the heat exchange between the Xiang and the city HU, and becomes a frequent drying. High temperature air. Further, the dried high-temperature air is sent to the air supply duct by the circulation fan 14, and the air is sent to the water tank. At this time, the air is supplied to the high temperature of the water tank 201200670, and the clothes and the like are again exposed to the circulating air drying air hole 5 (4) into the rotating drum training, and are taken out to the water tank 52, and the introduction line 16 is introduced. Further, in the above-described circulating air blowing path u, the drying process of the washings is carried out by repeating the circulation of air. At this time, in the air drying process in which the circulating air supply path 11 is punctured, the air circulating in the circulating air supply path U is mixed with foreign matter such as cotton wadding which is mainly generated by a washing material such as clothing. Therefore, the foreign matter may cause the evaporator and the condenser to clog, the rotating portion of the circulating air, and the inner surface of the circulating fan 14 to be stacked, which may cause a malfunction in the drying process. Therefore, the filter 18 is disposed to remove the foreign matter of the circulating air in the circulating air path path. Hereinafter, the motor driving device of the drum type washing and drying machine of the present embodiment will be described using Figs. 3 and 4 . Fig. 3 is a block diagram showing the main part of the motor drive device of the drum type washing and drying machine in the first embodiment. Fig. 4 is a circuit diagram showing the main part of the motor drive unit of the same drum type washing and drying machine. Further, in general, the motor drive device includes functions of a plurality of motors such as a fan motor for controlling the driving of the drum motor 57, the circulation fan 14, and a compressor motor for the heat exchange unit 15. In the third embodiment, only the portions related to the driving of the drum motor 57 and the compressor motor 45 will be described in the third embodiment. As shown in FIG. 3, the motor drive device of the present embodiment is controlled by the first drive circuit 25 and the second drive circuit 29, respectively, by at least the AC power supply 31, the short circuit 32, the rectification unit 33, and the control unit 46. The first inverter circuit 22 11 201200670 and the second inverter circuit 26, the drum motor 57, the compressor motor 45, and the phase detecting circuit 39 are configured. Specifically, the drum motor 57 and the compressor motor 45 are constituted by a permanent magnet synchronous motor. The permanent magnet synchronous motor includes a stator having a three-phase winding and a rotor having a bipolar permanent magnet. Further, the drum motor 57 includes three rotor position detecting elements 21a, 21b, 21c for detecting the rotor position, and the rotor position detecting elements 21a, 21b, 21c output a rotor position signal for every 60 degrees of electrical angle corresponding to the position of the rotor magnetic pole. The drum motor 57 is rotationally driven by the first inverter circuit 22. Further, the first inverter circuit 22 is configured by three-phase bridge connection of six switching elements 23, and a flywheel diode 24 is connected in parallel to each switching element 23. Further, the on/off control of each of the switching elements 23 of the first inverter circuit 22 is PWM controlled by the i-th drive circuit 25. On the other hand, the compressor motor 45 is rotationally driven by the second inverter circuit 26. Here, the compressor motor 45 does not have a rotor position detecting element, and # is controlled by a sine wave drive depending on a signal from the current detecting unit, and the second inverter circuit 26 is the same as the second frequency converting circuit 22, The six switching elements 27 are connected in two-phase bridge mode, and the flywheel-pole body 28 is connected in parallel to each switching element π. Further, the p幵1 start/stop control of each of the switching elements 27 of the second inverter circuit 26 is controlled by the red I-peak circuit 29 to perform pwM (pulse width modulation) control. Further, actually, the motor drive device is further provided with a third inverter circuit, a third drive circuit, and the like for driving the fan motor for the circulation fan 14. However, the configuration and operation of the third inverter circuit and the third drive circuit are the same as those of the second inverter 12 201200670 _ ^: the path 26 and the second drive circuit 29, and thus the illustration and description thereof are omitted. Further, the first drive circuit 25 and the second drive circuit 29 are manufactured by the control unit 46. The rotor position signal of the rotor position detecting elements 21a, 2lb, 21c of the drum motor 57 is input to the control unit 46', and the opening/closing of the switching elements 23 is performed by the first drive circuit 25 by the rotor position No. PWM control. And the three-phase windings of the stator of the drum motor 57 are energized by the pWM control, and the rotor is rotationally driven synchronously. Further, the control unit 46 further includes a rotation number detecting unit that detects the number of revolutions of the rotor, that is, the drum motor, based on the k-position of the rotor position (1) from the three rotor positions. The number of rotations of 57 - Nd. At this time, the square revolution detecting unit detects the state of the three rotor position signals. The period of the change is calculated, and the number of rotations Nd of the drum motor 57 is calculated from the period. Further, the electric power for driving the first inverter circuit 22 and the second inverter circuit 26 is supplied via the choke power source 31, the short circuit 32, and the stream rectifying unit 33. In other words, the AC voltage Vs supplied from the AC power source 31 is converted into the DC voltage w by the short circuit 32 and the rectifying unit 33, and is applied to the first frequency circuit 22 and the second frequency conversion circuit 26. Here, the short circuit 32 is constituted by a reactor 34 connected in series between the AC power source 31 and the rectifying unit 33, and a short-circuit control element 35 connected in parallel to the AC power source 31 via the reactor 34. Further, the short-circuit control element 35 is composed of, for example, a power semiconductor switching element of a bridge rectifier diode and an IGBT or a bipolar transistor or an M〇SFET. Further, the rectifying unit 33 includes a full-wave rectifying circuit 36, and a series circuit of the smoothing capacitors 13 201200670 37A and 37B constituting the smoothing capacitor unit 38 is connected in parallel to the full-wave rectifying circuit 36. The DC voltage Vd across the smoothing capacitor portion 38 is applied to the first inverter circuit 22 and the second inverter circuit 26. Thereafter, the three-phase alternating current converted to direct current by the first inverter circuit 22 and the second inverter circuit 26 is supplied to the drum motor 57 and the compressor motor 45. Further, the control unit 46 includes a DC voltage detecting unit 34A and a short-circuit signal for detecting the DC voltage Vd across the smoothing capacitor unit 38, that is, the DC voltage Vd applied to the first inverter circuit 22 and the second inverter circuit 26. The generating unit 3 4 B. The short-circuit signal generating unit 34B detects the phase of the AC power source 31 by the phase detecting circuit 39 shown below, in order to turn on the short-circuiting control element 35 of the short-circuiting circuit 32 during the portion of the dehydrating program, for example, the cleaning process. The phase signal is generated to generate a short circuit signal Ps. Further, the motor driving device includes the main portion circuit shown in Fig. 4, that is, the phase detecting circuit 39. The phase detecting circuit 39 is constituted by a resistor 42 for voltage drop, a rectifying diode 40, and a unidirectional photocoupler 41. The phase detecting circuit 39 detects the phase of the power supply voltage across the input AC power source 3丨, and outputs the detected phase signal to the control unit 46. Hereinafter, the operation of the phase detecting circuit 39 and the control unit 46 of the motor driving device according to the present embodiment will be described with reference to Figs. 4 and 5 . Fig. 5 is a view showing the operation waveform of the same-motor driving device. Specifically, the operation waveforms of the phase detecting circuit and the control circuit of the motor drive when the AC power source 31 is AC100V/50HZ are displayed. Apparatus Specifically, first, as shown in Fig. 5, the measuring circuit 39 shown in Fig. 4 is in the interval τ. The light-handle 410 of the one-way opening is turned on and the High signal is output to the control unit 46. In the other sections, the light-to-pole ' signals are output to the control unit 46. Here, the interval τ〇η is an AC voltage Vs of the AC power source 31 that is higher than the clockwise voltage vfl of the rectifying diode 40 (about ν7ν) and the clockwise voltage Vf2 of the LED 44 of the unidirectional optical coupler 41 (about 2V) The total voltage Vf (about 2.7V) is high. Thereafter, if the AC voltage V s of the AC voltage 31 is again greater than the total voltage v f , the phase detecting circuit 39 outputs the High signal again. If the L〇w signal outputted by the phase detecting circuit 39 is directed

High信號之上升邊緣,至次一之High信號的上升邊緣作為 時間Tt,時間Tt係與交流電源31之丨週期相等。此時,交流 電源31之交流電壓%由成為〇v之零點交叉點,至相位檢測 電路39輸出之Highk號的上升邊緣之時間延遲,係譬如 lms。 將相位檢測電路39輸出之扭幼信號的上升邊緣作為起 點,控制部46係於短路信號生成部34B生成脈衝寬度丁灰的 知路彳5號Ps。進而,控制部46係以由相位檢測電路39輸出 之High信號的下降邊緣經預定延遲時間本實施形態係 4如2ms)後作為起點’再次於短路信號生成部34B生成脈衝 寬度Tw之紐路信號Ps。其結果,將由交流電源31之交流電 壓Vs的零點交叉點延遲lms之點作為起點,於交流電壓vs 的每半週期’控制部46生成脈衝寬度丁认的短路信號ps。 藉由前述’依以馬達驅動裝置的相位檢測電路39檢測 出之相位^號’控制部46將短路信號ps輸出至以下所示之 短路電路32。 以下’詳細說明本實施形態之馬達驅動裝置的短路電 路32之動作。 15 201200670 第3圖所示之短路電路32係讓短路控制元件% 經反應㈢34而讓交流電壓Vs短路。於短路狀態,交$通敌The rising edge of the High signal, the rising edge of the next High signal is taken as the time Tt, and the time Tt is equal to the chirp period of the AC power source 31. At this time, the AC voltage % of the AC power source 31 is delayed from the zero crossing point of 〇v to the rising edge of the Highk number outputted by the phase detecting circuit 39, for example, lms. The rising edge of the torsion signal output from the phase detecting circuit 39 is used as a starting point, and the control unit 46 is configured by the short-circuit signal generating unit 34B to generate a pulse width of the signal 彳5 Ps. Further, the control unit 46 generates a pulse signal of the pulse width Tw again in the short-circuit signal generating unit 34B by using the falling edge of the High signal output from the phase detecting circuit 39 for a predetermined delay time in the present embodiment 4 as 2 ms. Ps. As a result, the short-circuit signal ps of the pulse width is generated by the control unit 46 at the half-cycle of the alternating-current voltage vs as the starting point by the point of the zero-crossing point of the alternating-current voltage Vs of the alternating-current power supply 31. The control unit 46, which is detected by the phase detecting circuit 39 of the motor driving device, outputs the short-circuit signal ps to the short-circuit circuit 32 shown below. The operation of the short circuit 32 of the motor drive device of the present embodiment will be described in detail below. 15 201200670 The short circuit 32 shown in Fig. 3 is such that the short-circuit control element % is short-circuited by the reaction (3) 34 to the AC voltage Vs. In the short circuit state, pay $ to the enemy

Vs之電力係蓄積於反應糾。又,讓短路控制元件^電堡 開放短路狀態時,f積於反翻觀電力係供給 ,’ 33。供給至整流部33之電力係藉由全波整流電糾而^ 為直流,將平流電容器部38充電至直流電壓別 文、 , (日 ^·, 制#46係藉由讓短路信號ps之脈衝寬度Tw變化,而抻t 已預先設定平流電容器部38之直流電壓Vd的目標電二成 此處’目標電额係依洗濯程序、脫水程序及乾燥1 而設定之電壓。即,依各程序,所需之電力、馬達 數及動作都不同,因此,將直流電壓Vd控制為—定/ 以耗費最大負荷之程序的直流電壓〜而控制所有的程序係 因^會有無謂的電力消耗及需要可耐最大的直流^壓… 之南機能零件。故,藉由將直流電壓Vcl㈣成依於各程序 中必要之:力、馬達之旋轉數及動作而設定之目標電壓 vt ’係可實現最適當的動作並且解決前述問題。 使用第6A圖說明具體的因短路電路之動作而產生 入電流之變化。 』 第6A圖係顯示因同_馬達驅動裝置之短路電路的動作 而產生朝向全波整流電路之輸入電流的變化圖。x,第6八 圖係顯示以交流電源31於aciggwsohz且變頻電路之輸出 電力為_w之場合為例,令短路電路32動作時之輸入電流 的變化。 如第6A圖所示,將由交流電源31之交流電壓%之零點 201200670 交又點延遲lms之點作為起點,於交流電壓Vs的每半週期, 以控制部46之短路信號生成部34B生成脈衝寬度Tw之短路 信號Ps。此時,於短路信號以之扭妨期間,短路控制元件 35導通,父流電壓Vs之短路電流流動。藉此,於反應器34 蓄積電力。且紐路信號ps為Low時,依據蓄積於反應器34 之電力的補助輸入電流la係於全波整流電路36流動。藉 此,於交流電壓Vs之電流重疊有補助輸入電流1&之輸入電 流lb流動。其結果,藉由將抑制峰值之電流值的輸入電流比 輸入至全波整流電路36,可讓平流電容器38兩端之直流電 壓Vd上升。 以下,為與具有本實施形態之短路電路的馬達驅動裝 置作比較,係使用第6B圖說明無習知之短路電路的馬達驅 動裝置之輸入電流變化。 第6B圖係顯示朝向無短路電路之習知例之馬達驅動裴 置中之全波整電路的輸入電流之變化圖。第6B圖之馬達 驅動裝置除無短路電路外,係與第6八圖之馬達驅動裝置同 樣的構成。 如第6B圖所示,由交流電源31之交流電壓%朝全波整 流電路36輸入之輸入電流。之波形相較於第6八圖所示之輸 入電流lb之波形,係由正弦波散開並偏移,且峰值之電流 值增加。其結果,未設置短路電路時,功率下降且電源諸 波惡化。 又,本實%形恶中,作為電源頻率係以5〇Hz&例而作 說明,但並不限於此。譬如,亦可以控制部等進行電源頻 17 201200670 率之判別,依60Hz等的電源頻率而設定最適當之延遲時間 Td,藉此,於日本國内外縱或電源頻率改變,仍可獲得與 前述相同的功效。 又,除以前述說明之本實施形態之方法而設定短路信 號Ps ’亦可用以下所示之方法設定短路信號Ps。 譬如’首先測量相位檢測電路39之單向的光耦合器41 由變化為開啟而變為關閉,迄至再次開啟之丨週期的時間 Tt,以及相位檢測電路39之單向的光耦合器41開啟之時間 Ton。且,短路信號Ps為以相位檢測電路39之單向的光耗合 器41變化為開啟之點,以及由單向的光耦合器41變化為關 閉起之延遲時間Td=(Tt-(Ton*2))/2作為起點而生成短路信 號Ps者。藉此,即便交流電源31之交流電壓Vs及電源頻率 變化’亦為穩定且獲得與前述相同的功效。 使用第5圖具體的說明時,交流電源31之電源頻率為 50Hz時’ 1週期的時間丁丨為2〇ms,時間Ton為8ms。且延遲 時間Td為(20ms-(8ms*2))/2=2ms。因此,單向的光耦合器41 變化為關閉經2ms後,即,可將由交流電源31變換為正之零 點交叉點經lms後’以及由變換為負之零點交叉點經1„^後 作為起點而生成短路信號Ps。藉此,即使交流電源31之交 流電壓Vs及電源頻率產生變化,亦可讓馬達驅動裝置穩定 地動作。 又’因電路構成等,單向的光耦合器41開啟時及關閉 時之波形係有與本實施形態不同之情況,於該場合,無需 贅言,開啟之期間或關閉之期間中,係將較短之一方作為 201200670 區間Ton而進行計算。The power of Vs is accumulated in the reaction. Further, when the short-circuit control element is turned on and short-circuited, f is accumulated in the reverse power supply, '33. The power supplied to the rectifying unit 33 is DC-reduced by full-wave rectification, and the smoothing capacitor unit 38 is charged to the DC voltage, and the pulse is short-circuited by the short-circuit signal ps. The width Tw is changed, and 目标t has previously set the target voltage of the DC voltage Vd of the smoothing capacitor portion 38 to 2, where the target power amount is set by the washing program, the dehydration program, and the drying 1. That is, according to each program, The required power, the number of motors, and the operation are different. Therefore, the DC voltage Vd is controlled to be - the DC voltage of the program that consumes the maximum load - and all the program systems are controlled because there is no unnecessary power consumption and need. It is resistant to the maximum DC voltage. It is the most suitable for setting the DC voltage Vcl(4) according to the necessary voltages, the number of rotations of the motor and the action. The above problem is solved by the operation. The change of the inrush current due to the operation of the short circuit is explained using Fig. 6A. Fig. 6A shows the operation of the short circuit of the same motor drive unit. The change of the input current to the full-wave rectification circuit. x, Fig. 8 shows the case where the AC power supply 31 is at aciggwsohz and the output power of the inverter circuit is _w, for example, the input current when the short circuit 32 is operated. As shown in Fig. 6A, the point at which the zero point 201200670 of the alternating current voltage 31 of the AC power source 31 is delayed by lms is used as a starting point, and is generated by the short-circuit signal generating unit 34B of the control unit 46 every half cycle of the alternating-current voltage Vs. The short-circuit signal Ps of the pulse width Tw. At this time, during the twisting of the short-circuit signal, the short-circuit control element 35 is turned on, and the short-circuit current of the parent current voltage Vs flows. Thereby, the electric power is accumulated in the reactor 34. When it is Low, the auxiliary input current la according to the electric power stored in the reactor 34 flows through the full-wave rectifying circuit 36. Thereby, the current of the alternating current voltage Vs overlaps with the input current 1b of the auxiliary input current 1& By inputting the input current ratio of the current value for suppressing the peak value to the full-wave rectifying circuit 36, the DC voltage Vd across the smoothing capacitor 38 can be increased. Comparing the motor driving device of the short circuit of the configuration, the input current variation of the motor driving device of the conventional short circuit is described using FIG. 6B. FIG. 6B shows the motor driving device of the conventional example of the short circuitless circuit. The change of the input current of the full-wavelength circuit in the middle. The motor drive device of Fig. 6B has the same configuration as the motor drive device of Fig. 6 except that there is no short circuit. As shown in Fig. 6B, the AC power supply is used. The AC voltage of 31 is input to the full-wave rectifying circuit 36. The waveform of the input current lb is compared with the waveform of the input current lb shown in Fig. 8 and is scattered and shifted by the sine wave, and the peak current value is increased. As a result, when the short circuit is not provided, the power is lowered and the power waves are deteriorated. Further, in the present example, the power frequency is described as an example of 5 Hz Hz, but is not limited thereto. For example, the control unit may determine the power frequency 17 201200670 rate, and set the optimum delay time Td according to the power frequency of 60 Hz or the like. Therefore, the vertical or power frequency changes in Japan and abroad can still be obtained as described above. The effect. Further, the short-circuit signal Ps can be set by the method described below in addition to the short-circuit signal Ps' by the method of the present embodiment described above. For example, the unidirectional photocoupler 41 of the phase detecting circuit 39 is first turned on and turned off, the time Tt of the 丨 period until the second is turned on again, and the unidirectional photocoupler 41 of the phase detecting circuit 39 is turned on. Time Ton. Further, the short-circuit signal Ps is a point at which the unidirectional light absorbing device 41 of the phase detecting circuit 39 is changed to be turned on, and the delay time Td=(Tt-(Ton*) is changed from the unidirectional optical coupler 41 to being turned off. 2))/2 is used as a starting point to generate a short-circuit signal Ps. Thereby, even the AC voltage Vs of the AC power source 31 and the power source frequency variation 'are stable and the same effects as described above are obtained. When the power supply frequency of the AC power source 31 is 50 Hz, the time of one cycle is 2 〇 ms and the time Ton is 8 ms. And the delay time Td is (20ms - (8ms * 2)) / 2 = 2ms. Therefore, the one-way optical coupler 41 is changed to be turned off after 2 ms, that is, the zero-crossing point can be converted from the alternating current power source 31 to the positive zero point crossing point, and the zero-crossing point converted from the negative point is passed as the starting point. The short-circuit signal Ps is generated, whereby the motor drive device can be stably operated even if the AC voltage Vs of the AC power source 31 and the power source frequency are changed. Further, the unidirectional photocoupler 41 is turned on and off due to the circuit configuration or the like. The waveform of the time is different from that of the present embodiment. In this case, it is needless to say that during the period of opening or closing, the shorter one is calculated as the 201200670 interval Ton.

Td-二依前述實施形態,有計算值之延遲時間 ==,2输谓。鱗,細嫌s之脈 零並控制短路電路32。藉此,即便萬—發生交 交流電㈣之波形偏移及電源頻率奮亂,亦可 同一相位内進行複數個短路動作等之不穩定的 動作。其、,,。果’可提高搭載前述馬 機等的機器之安全性及可靠度β ’Ή如洗衣 上’依本實卿態之滾料_絲機之馬達驅 由於係以單向的綠合器而構成相位檢測電路, 因此無需習知之複雜且高精確度之裳 令·、'έ父又檢測電路。藉 二可以簡單之構成改善輸人至_電路之直流電壓蝴 升壓及交流電源的功率。 又,依本實施形態之滾筒式洗濯乾燥機的馬達驅動裝 ^係可讓交流㈣之電流波形接近正弦波,且讓正側及 負側中之電流波形對稱。其結果,可抑制If流之峰值, 且可降低奇數次及偶數次之電源諧波。 【圖式簡單説明】 第1圖係本發明之實施上形態1之滚筒式洗灌乾燥機的 縱剖面圖。 第2圖係同-滾筒式洗濯乾燥機之内部^圖。 第3圖係顯示同-滚筒式洗濯乾燥機之馬達驅動裝置 的主要部分之區塊圖。 第4圖係同-滾筒式洗濯乾燥機之馬達驅動裝置的主 19 201200670 要部分電路圖。 第5圖係顯示同一馬達驅動裝置之動作波形之圖。 第6A圖係顯示以同一馬達驅動裝置之短路電路的動作 而朝向全波整流電路之輸入電流之變化圖。 第6B圖係顯示朝向無短路電路之習知例的馬達驅動裝 置中之全波整流電路的輸入電流之變化圖。 第7圖係顯示習知之馬達驅動裝置的區塊圖。 【主要元件符號說明】 1.. .交流電源 2.. .反應器 3.. .短路部 4.. .整流電路 5.. .整流電路切換部 6.. .平流電容器部 7.. .控制電路 8.. .零點交叉檢測電路 10.. .變頻電路 11.. .循環送風路徑 12…蒸發器 13.. .冷凝器 14.. .循環風扇 15.. .熱交換部 16…循環空氣導入管路 17.. .送風管路 18.. .過慮器 20.. .壓縮機 21a,21b,21c...轉子位置檢測元件 22.. .第1變頻電路 23.27.. .開關元件 24.28.. .飛輪二極體 25.. .第1驅動電路 26.. .第2變頻電路 29…第2驅動電路 30.. .輸入電流檢測電路 31.. .交流電源 32.. .短路電路 33.. .整流部 34.. .反應器 34A...直流電壓檢測部 34B...短路信號生成部 20 201200670 . 35...短路控制元件 36.. .全波整流電路 37A,37B...平流電容器 38.. .平流電容器部 39.. .相位檢測電路 40.. .整流二極體 41.. .光辆合器 42.. .電阻According to the foregoing embodiment, Td-II has a delay value of the calculated value ==, 2 input. The scale, the pulse of the sth, and the short circuit 32 are controlled. Thereby, even if the waveform shift of the alternating current (4) and the power supply frequency are disturbed, it is possible to perform an unstable operation such as a plurality of short-circuit operations in the same phase. its,,,. 'It can improve the safety and reliability of the machine equipped with the above-mentioned horse machine, etc. 'When the laundry is on the basis of the actual state of the rolling material _ silk machine motor drive due to the unidirectional green combiner to form the phase Detecting the circuit, so there is no need for the complicated and high-precision dress, and the 'father' detects the circuit. The second can be used to improve the power of the DC voltage and boost power of the input to the circuit. Further, the motor driving device of the drum type washing and drying machine according to the present embodiment allows the current waveform of the alternating current (4) to be close to a sine wave, and the current waveforms in the positive side and the negative side are symmetrical. As a result, the peak of the If stream can be suppressed, and the power supply harmonics of odd and even times can be reduced. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal sectional view showing a drum type washer-drying machine of the first embodiment of the present invention. Figure 2 is an internal view of the same-drum type washing and drying machine. Fig. 3 is a block diagram showing the main part of the motor drive unit of the same-drum type washing and drying machine. Figure 4 is the main part of the motor drive unit of the same-drum type washer dryer. 201200670 Partial circuit diagram. Fig. 5 is a view showing an operation waveform of the same motor driving device. Fig. 6A is a graph showing changes in input current toward the full-wave rectifying circuit by the operation of the short circuit of the same motor driving device. Fig. 6B is a graph showing changes in input current of the full-wave rectifying circuit in the motor driving device of the conventional example without the short circuit. Figure 7 is a block diagram showing a conventional motor drive unit. [Explanation of main component symbols] 1.. AC power supply 2.. Reactor 3: Short-circuit part 4. Rectifier circuit 5. Rectifier circuit switching part 6. Rectifier part 7.. Control Circuit 8.. Zero crossing detection circuit 10.. Frequency conversion circuit 11.. Cycle air supply path 12...Evaporator 13.. Condenser 14....Circulation fan 15...Heat exchange unit 16...Circulating air introduction Pipeline 17.. Air supply pipe 18... Filter 20: Compressor 21a, 21b, 21c... Rotor position detecting element 22.. 1st inverter circuit 23.27.. Switching element 24.28.. Flywheel diode 25. The first drive circuit 26. The second inverter circuit 29... The second drive circuit 30.. Input current detection circuit 31.. AC power supply 32.. Short circuit 33.. Rectifier 34.. Reactor 34A... DC voltage detecting unit 34B...Short-circuit signal generating unit 20 201200670 . 35...Short-circuit control element 36.. Full-wave rectifying circuit 37A, 37B...Advection Capacitor 38.. Advection Capacitor Section 39.. Phase Detection Circuit 40.. Rectifier Diode 41.. Light Coupling 42.. Resistor

43.. .受光二極體 44 …LED ; 45...壓縮機馬達 . 46...控制部 51.. .洗濯機本體 52.. .水槽 53.. .旋轉滾筒 54.. .衣類出入口 55.. .門扉 56…透孔(貫通孔) 57.. .鼓形馬達 58.. .注水管路 59.. .排水管路 60.. .操作面板 61.62.. .平流電容器 92.. .零點交叉信號 93.. .直流電壓值 96.. .短路脈衝信號 97.. .整流電路切換信號 98.. .輸入電流值 100.. .電力變換裝置 101.. .馬達驅動系統 la. ..補助輸入電流 lb. ..輸入電流 lc. ..輸入電流 Nd...旋轉數 Ps...短路信號 Td...延遲時間 Tw...脈衝寬度 Ton...區間/時間 Tt...時間 Vd...直流電壓 Vs...交流電壓 Vf...合計電壓 Vfl,Vf2...順時針方向電壓 Vt...目標電壓 2143.. Receiver diode 44 ... LED; 45... Compressor motor. 46... Control section 51.. Washer body 52.. Sink 53.. Rotary drum 54.. Clothing outlet 55.. .Thick 56...through hole (through hole) 57.. drum motor 58.. water injection line 59.. drain line 60.. . operation panel 61.62.. flat flow capacitor 92.. Zero cross signal 93.. DC voltage value 96.. Short circuit pulse signal 97.. Rectifier circuit switching signal 98.. Input current value 100.. Power conversion device 101.. Motor drive system la. . . Substitute input current lb. .. input current lc. .. input current Nd... rotation number Ps... short circuit signal Td... delay time Tw... pulse width Ton... interval/time Tt... Time Vd... DC voltage Vs... AC voltage Vf... Total voltage Vfl, Vf2... Clockwise voltage Vt... Target voltage 21

Claims (1)

201200670 七、申請專利範圍: 1. 一種滚筒式洗衣機,係包含有: 旋轉滾筒; 水槽,係保持前述旋轉滾筒; 鼓形馬達,係驅動前述旋轉滾筒; 整流電路; 平流電容器部,係連接於前述整流電路; 變頻電路,係連接於前述平流電容器部; 短路電路,係包含有一端連接於交流電源之反應 器,以及前述反應器之另一端連接於前述交流電源之另 一端的短路控制元件,且該短路電路連接於前述整流電 路輸入側;及 控制部,係控制前述變頻電路及洗濯程序; 前述控制部包含有檢測前述交流電源之電壓相位 的相位檢測電路、檢測前述平流電容器部兩端之直流電 壓的直流電壓檢測部、及讓前述短路控制元件導通之短 路信號生成部: 前述短路信號生成部係於前述相位檢測電路之檢 測信號由關閉變化為開啟之點,生成短路信號,以及於 由開啟變換為關閉之點經預定的延遲時間後,生成短路 信號,且藉由前述短路信號之脈衝寬度而將前述平流電 容器部兩端之直流電壓控制成目標電壓。 2. 如申請專利範圍第1項所載之滾筒式洗衣機,其中前述 控制部係測量前述相位檢測電路之檢測信號由開啟變 22 201200670 為關閉迄至再次開啟之1週期的時間Tt,以及前述相位 檢測電路之檢測信號為開啟之時間Ton >並以 (Tt-(Ton*2))/2算出成為前述短路信號生成部之起點的 前述相位檢測電路之檢測信號由開啟變化為關閉後之 前述延遲時間,且依所算出之前述延遲時間而生成前述 短路信號並加以控制。 3. 如申請專利範圍第2項所載之滚筒式洗衣機,其中前述 控制部於前述延遲時間之值為負值時,係讓前述短路信 號之脈衝寬度為零而進行控制。 4. 如申請專利範圍第1項所載之滾筒式洗衣機,其中前述 相位檢測電路係至少包含有單向之光耦合器。 23201200670 VII. Patent application scope: 1. A drum type washing machine comprising: a rotating drum; a water tank for holding the rotating drum; a drum motor driving the rotating drum; a rectifying circuit; a smoothing capacitor portion connected to the foregoing a rectifier circuit; the inverter circuit is connected to the smoothing capacitor portion; the short circuit includes a reactor having one end connected to the alternating current power source, and the other end of the reactor connected to the other end of the alternating current power source, and The short circuit is connected to the input side of the rectifier circuit; and the control unit controls the inverter circuit and the washing program; the control unit includes a phase detecting circuit that detects a voltage phase of the AC power source, and detects a DC at both ends of the smoothing capacitor unit. a DC voltage detecting unit for voltage and a short-circuit signal generating unit for turning on the short-circuit control element: the short-circuit signal generating unit generates a short-circuit signal when the detection signal of the phase detecting circuit changes from off to on, and opens Transform to Point of closing after a predetermined delay time to generate a short-circuit signal, and the pulse width of the short-circuit signal by the sum of the DC voltage across the smoothing capacitor section is controlled to a target voltage. 2. The drum type washing machine according to claim 1, wherein the control unit measures the time Tt of the detection signal of the phase detecting circuit from the turn-on change 22 201200670 to the first cycle of the turn-off period, and the phase The detection signal of the detection circuit is the on time Ton > and the detection signal of the phase detection circuit that is the starting point of the short-circuit signal generation unit is changed from on to off after being turned off by (Tt - (Ton * 2)) / 2 The delay time is generated, and the short-circuit signal is generated and controlled according to the calculated delay time. 3. The drum type washing machine according to claim 2, wherein the control unit controls the pulse width of the short-circuit signal to be zero when the value of the delay time is negative. 4. The drum type washing machine of claim 1, wherein the phase detecting circuit comprises at least a one-way optical coupler. twenty three
TW100108730A 2010-03-24 2011-03-15 Drum washing machine TWI440752B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067601A JP2011205723A (en) 2010-03-24 2010-03-24 Drum washing machine

Publications (2)

Publication Number Publication Date
TW201200670A true TW201200670A (en) 2012-01-01
TWI440752B TWI440752B (en) 2014-06-11

Family

ID=44227194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108730A TWI440752B (en) 2010-03-24 2011-03-15 Drum washing machine

Country Status (4)

Country Link
EP (1) EP2369049B1 (en)
JP (1) JP2011205723A (en)
CN (1) CN102199853B (en)
TW (1) TWI440752B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594564B (en) * 2014-01-20 2017-08-01 Electronic control shift motor system and its brushless motor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403418B2 (en) * 2014-04-24 2018-10-10 東芝ライフスタイル株式会社 Washing machine
CN104917403A (en) * 2015-05-25 2015-09-16 张家港市华为电子有限公司 Automatic switching circuit in power supply applicable to 220V and 110V power grids
JP6489689B2 (en) * 2015-06-17 2019-03-27 三菱重工サーマルシステムズ株式会社 Zero-cross point detection device, power supply device, zero-cross point detection method and program
JP6871835B2 (en) * 2017-09-27 2021-05-12 三菱重工サーマルシステムズ株式会社 Control devices, control methods and programs
EP3703248A4 (en) * 2017-10-18 2021-07-21 Hitachi-Johnson Controls Air Conditioning, Inc. Power conversion device and refrigeration air conditioner
CN114575108B (en) * 2022-02-15 2023-02-17 珠海格力电器股份有限公司 Control device and method for drum washing machine, storage medium and electronic equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024366A (en) * 1998-07-14 2000-01-25 Matsushita Electric Ind Co Ltd Washing machine
JP3848903B2 (en) * 2002-08-01 2006-11-22 株式会社日立製作所 Power converter
JP4784207B2 (en) * 2004-11-18 2011-10-05 パナソニック株式会社 DC power supply
JP4830412B2 (en) * 2005-09-09 2011-12-07 パナソニック株式会社 Washing and drying machine
JP4642729B2 (en) * 2006-10-20 2011-03-02 パナソニック株式会社 Washing and drying machine
JP2008259395A (en) * 2007-03-15 2008-10-23 Matsushita Electric Ind Co Ltd Dc power supply device
JP5228609B2 (en) * 2008-05-08 2013-07-03 パナソニック株式会社 Power supply
JP5097072B2 (en) * 2008-09-29 2012-12-12 パナソニック株式会社 Drum washing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594564B (en) * 2014-01-20 2017-08-01 Electronic control shift motor system and its brushless motor

Also Published As

Publication number Publication date
JP2011205723A (en) 2011-10-13
EP2369049A1 (en) 2011-09-28
TWI440752B (en) 2014-06-11
CN102199853B (en) 2013-12-04
CN102199853A (en) 2011-09-28
EP2369049B1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
TW201200670A (en) Drum washing machine
CN101899764B (en) Motor driver for washing machine
KR101037745B1 (en) Output current sensing circuit for inverter
JP4752779B2 (en) Motor drive device for washing and drying machine
JP5097072B2 (en) Drum washing machine
JP4380337B2 (en) Clothes dryer
JP2014045836A (en) Drum type washing machine
US11811341B2 (en) Motor drive apparatus and home appliance having same
JP6074589B2 (en) Blower
JP4985687B2 (en) Drum washing machine
JP2012196398A (en) Drum-type washing machine
JP2017070541A (en) Washing machine
JP4853542B2 (en) Clothes dryer
TR201801024A2 (en) BRUSHLESS RIGHT CURRENT MOTOR HOUSEHOLD DEVICE WITH SENSORLESS CONTROL SCHEME
JP4847551B2 (en) Washing and drying machine
JP2014110650A (en) Device for driving motor of washing machine
JP2012196397A (en) Drum-type washing machine
JP2003009571A (en) Inverter control device and washing machine utilizing it
JP2004159946A (en) Washer-dryer and load current detector
JP2015211554A (en) Motor driving device and washing machine
JPH04129594A (en) Washing machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees