JP3848903B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3848903B2
JP3848903B2 JP2002224325A JP2002224325A JP3848903B2 JP 3848903 B2 JP3848903 B2 JP 3848903B2 JP 2002224325 A JP2002224325 A JP 2002224325A JP 2002224325 A JP2002224325 A JP 2002224325A JP 3848903 B2 JP3848903 B2 JP 3848903B2
Authority
JP
Japan
Prior art keywords
short
circuit
voltage
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002224325A
Other languages
Japanese (ja)
Other versions
JP2004072806A (en
Inventor
尚礼 鈴木
保夫 能登原
常博 遠藤
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002224325A priority Critical patent/JP3848903B2/en
Publication of JP2004072806A publication Critical patent/JP2004072806A/en
Application granted granted Critical
Publication of JP3848903B2 publication Critical patent/JP3848903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流電力を直流電力に変換する電力変換装置に係り、特に、交流電源の半周期に1回もしくは複数回の短絡動作を行い電源の力率改善を行う電力変換装置に関する。
【0002】
【従来の技術】
交流電源の半周期に1回もしくは複数回の短絡動作を行い力率を改善する電力変換装置を、特開平10−201248号公報が開示している。特開平10−
201248号公報は、電源装置に接続したインバータ回路のパルス幅変調信号(PWM信号)のデューティー比もしくは出力周波数などの内部的状態に基づいて短絡手段の短絡開始時刻(ディレイ時間)と短絡期間(パルス幅)とを決定して、負荷の状態に応じて力率を最適点に制御する方法を開示している。
【0003】
前記特開平10−201248号公報は負荷の状態に応じてディレイ時間とパルス幅を、予め設定した関数、例えば、インバータのPWMデューティーに対するディレイ時間とパルス幅の関数、から算出して力率を改善している。このため、設定した条件下では最適な力率を確保するとともに安定したモータ制御が行える。
【0004】
【発明が解決しようとする課題】
前記電源装置は交流電源に接続しており、交流電源の電力を直流電力に変換する装置である。交流電源として用いている商用電源の電圧は、一般的に変動することが知られている。前記特開平10−201248号公報には、交流電源の電圧変動の対応策の記載が無く、電源変動による力率の低下防止方法の開示がない。
【0005】
また、前記従来技術は、インバータによるモータ制御を念頭に、負荷状態量に対するディレイ時間とパルス幅の関数を使用してディレイ時間とパルス幅を決定していて、直流電圧の制御が記載されていない。
【0006】
本発明の目的は交流電源の電圧変動に対応した力率改善型電力変換装置を提供することであり、本発明の別の目的は、簡単な演算でディレイ時間とパルス幅を決定し、直流電圧を制御する電力変換装置を提供することである。
【0007】
【課題を解決するための手段】
本発明の電力変換装置は、一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の多端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、一端を前記交流電源の他端に接続し、他端を前記短絡手段の他端に接続した入力電流検出回路と、前記整流回路の直流出力の両端に接続した平滑コンデンサと、前記短絡手段を制御する制御回路とを備え、前記制御回路が前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdと、短絡期間であるパルス幅Twとに基づいて、前記短絡手段の短絡動作を制御し、前記ディレイ時間Tdと前記パルス幅Twを、それぞれを制御する。
【0008】
本発明の電力変換装置は、ディレイ時間Tdとパルス幅Twを以下のように制御する。
(1)予め設定した入力電流もしくは入力電力に対する関数からディレイ時間を算出し、直流電圧が予め設定した所定値になるようにパルス幅Twを可変する。
(2)ディレイ時間Tdを予め設定した所定値(固定値)とし、直流電圧が予め設定した所定値になるようにパルス幅Twを可変する。
(3)ディレイ時間Tdおよびパルス幅Twを入力電流もしくは入力電力に対する関数として、それぞれ与え、この関数を用いて検出した入力電流もしくは入力電力から前記パルス幅Twおよび前記ディレイ時間Tdを設定する。
(4)ディレイ時間Tdを決定する(1)に示した関数もしくは(2)に示した所定値(固定値)あるいは、(3)で示した前記ディレイ時間Tdとパルス幅Twの関数を交流電源の電圧に対応して複数備え、交流電源の電圧に応じて選択する。
(5)交流電源の電圧を、短絡手段が短絡動作する前の直流電圧あるいは短絡動作を一時停止したときの直流電圧から推定して、電源電圧の変動に対応する。
【0009】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳しく説明する。
【0010】
図1は、本実施例の電力変換装置を用いたモータ制御装置の基本構成図である。本実施例の電力変換装置100は図1に示すように、単相の交流電源1の一方の出力端に一端が接続したリアクトル2と、そのリアクトル2を介して交流電源1を短絡する短絡手段3と、交流電源1に接続していない側のリアクトル2の他端とリアクトル2が接続していない側の交流電源1の他端との間に入力電流検出回路30を介して接続した整流回路4と、整流回路4の直流出力の両端に直列接続した平滑コンデンサ6と、整流回路4の交流入力の一方と、平滑コンデンサ6を構成する平滑コンデンサ61と平滑コンデンサ62との接続点の間に接続した整流回路切替手段5と、交流電源1のゼロクロスを検出するゼロクロス検出回路8と、前記平滑コンデンサ6の両端の直流電圧Vdを入力しゼロクロス信号92を基準タイミングとして短絡手段3を動作させる短絡パルス信号96を出力し、整流回路切替手段5に整流回路切替信号97を出力する制御回路7と、前記交流電源1から入力される入力電流Isを検出し、制御回路7に入力電流値98を出力する入力電流検出回路30とを備えている。
【0011】
図1には、前記電力変換装置100の直流出力に接続したインバータ回路10と電動機を内蔵した圧縮機20とを備えたモータ駆動システム101を合わせて示す。ここで、制御回路7は、例えばワンチップマイクロコンピュータなどの半導体集積回路(IC)で構成しており、全ての動作をソフトウェア処理で実行している。
【0012】
ゼロクロス検出回路8は、交流電源1の両端の電圧を入力し、交流電源1の交流電圧(以下、電源電圧Vsと略記する。)がゼロクロス点を通過し極性が変わるタイミングでHigh信号からLow信号に、もしくはLow信号からHigh信号に切り替わるゼロクロス信号92を出力する。このゼロクロス信号92は制御回路7へ入力される。
【0013】
制御回路7は、入力されたゼロクロス信号92の立ち上がりもしくは立ち下りを基準タイミングとして、そこから短絡手段3が短絡動作を開始するまでの期間(以下、ディレイ時間Td)および短絡する期間(以下、パルス幅Tw)を設定し、短絡パルス信号96(High,Low信号)を短絡手段3に出力する。ディレイ時間Tdおよびパルス幅Twは、制御回路7に予め記憶させたり、制御回路7で計算して求める。
【0014】
短絡手段3は短絡パルス信号96に従って短絡開閉動作を行う。本実施例では、制御回路7から出力される短絡パルス信号96がHighの時に、短絡手段3は短絡動作する。短絡手段3は、ダイオードブリッジとIGBTもしくは、バイポーラトランジスタ,MOSFETなどの電力半導体スイッチング素子で構成しており、短絡パルス信号96に従ってリアクトル2を介して交流電源1を短絡する。この短絡開閉動作によって交流電源1の力率を改善する。
【0015】
整流回路切替手段5は、パワーリレー,トライアック,ダイオードブリッジと電力半導体スイッチング素子(IGBT,バイポーラトランジスタ,MOSFET)の組み合わせなどによる双方向スイッチで構成され、制御回路7が出力する整流回路切替信号97(High,Low信号)に応じて整流回路4を切り替える。本実施例では、整流回路切替信号97がLow信号のときに整流回路4を全波整流回路に切り替え、High信号のときに倍電圧整流回路に切り替える。
【0016】
制御回路7は、ゼロクロス信号92と、平滑コンデンサ6の両端の直流電圧
Vdである直流電圧値93と、入力電流値98とを入力し、短絡パルス信号96と、整流回路切替信号97を出力する。
【0017】
本実施例の電力変換装置100は、交流電源1を電源半周期に一回もしくは複数回、リアクトル2を介して短絡する動作を行って、電源電流の通流角を広げ電源力率を改善しながら、交流電力を直流電力に変換する。本実施例の電力変換装置100は、整流回路切替手段5を備えていて、整流回路4を全波整流回路あるいは倍電圧整流回路に切り替えて動作させる。そのため、パルス幅Twで直流電圧Vdを制御することに加え、幅広い範囲の直流電圧Vdを出力できる。
【0018】
本実施例の電力変換装置100の入力電流Isに対する、ディレイ時間Tdと、パルス幅Twと、効率と、力率と、直流電圧Vdとの関係を図2を用いて説明する。図2は、入力電流Isを変化した場合に、力率が最大となるようにディレイ時間Tdとパルス幅Twとを変えた実験結果である。図2の横軸は入力電流
Isであって、図2(a)に効率と力率を、図2(b)に直流電圧を、図2(c)にディレイ時間Tdとパルス幅Twとを示す。ここで、図2の横軸に入力電流を記載したが、横軸を入力電力としても同様である。以下、本実施例では横軸が入力電流の場合を説明する。
【0019】
図2は全波整流回路及び倍電圧整流回路の実験結果である。図2の区間Aは全波整流回路で動作する入力電流範囲を示し、区間Bと区間Cとは倍電圧整流回路で動作する入力電流範囲であり、区間Cでは区間Bより負荷が重い。電源装置の起動時(入力電流がゼロ近傍)では区間Aの全波整流回路動作し、入力電流Isの増加に伴って区間Bの倍電圧整流回路動作に移行する。入力電流Isが減少していくと区間Bの倍電圧整流回路動作から区間Aの全波整流回路動作へと移行するが、区間Aと区間Bとの入力電流値が重複する部分がありヒステリシスを持たせてあるために円滑に移行できる。
【0020】
区間A,区間Bの入力電流Isの場合、図2(c)に示すようにディレイ時間Tdが入力電流Isに対して単調減少し、パルス幅Twが単調増加しており、ディレイ時間Tdとパルス幅Twとの和が一定値になっている。すなわち、ディレイ時間Tdとパルス幅Twとが相互に関連付けられており、どちらか一方を決定すれば、他方を決定できる関係になっている。言い換えると、検出した入力電流Isが区間A,区間Bであれば、ディレイ時間Tdとパルス幅Twとを決定できる。また、図2(b)に示すように、直流電圧Vdは、入力電流Isに対してほぼ一定値である。
【0021】
ディレイ時間Tdとパルス幅Twとを決定する第1の方法として、直流電圧
Vdを一定にするようにパルス幅Twを制御し、かつディレイ時間Tdとパルス幅Twとの和が一定になるようにする。この方法は、短絡手段で短絡開始する時点を直流電圧が一定になるように制御して、短絡動作を終了する時点を一定にすることと同じである。これにより、図2に示す区間Aおよび区間Bでは直流電圧Vdを一定に制御すると同時に最大力率で運転が可能となる。なお、区間A,区間Bに入っているか否かの判定は電流検出信号98を用いて判定する。
【0022】
ディレイ時間Tdとパルス幅Twとを決定する第2の方法として、入力電流検出回路30からの入力電流検出信号98に応じて、ディレイ時間Tdとパルス幅Twを相互に関連付けずに、入力電流検出信号98に応じてそれぞれ独立にディレイ時間Tdとパルス幅Twとを決定する。高い力率で運転できるディレイ時間Tdとパルス幅Twとを、シミュレーションで予め求めて、ディレイ時間Tdの値を入力電流Isから求める関数と、パルス幅Twの値を入力電流Isから求める関数とを予め制御回路7に入力しておく。この方法はディレイ時間Tdおよびパルス幅Twを簡便に求める良い方法である。
【0023】
次に、交流電源1の電源電圧Vsの変動に対応した、ディレイ時間Tdとパルス幅Twとを決定する第3の方法を説明する。この方法では、図2で示した関係を利用して入力電流Isとディレイ時間Tdの関係に従ってディレイ時間Tdを決定する。一方、パルス幅Twは直流電圧Vdを一定にするように決定する。なお、ディレイ時間Tdを入力電流Isで求める関数は、予め実験やシミュレーションで求めた。
【0024】
図3に、横軸にパルス幅Twにした場合の、効率や力率や直流電圧Vdの電源電圧Vs依存性を示す。図3に示すように、電源電圧Vdの変動に伴って効率や力率や直流電圧が変動するが、これらのグラフの概形は変わらない。言い換えると、電源電圧に応じて効率と力率とは図3に示すパルス幅TwがA,B,Cの各値で極大値のピークを持つ2次関数状に変化する。また、直流電圧Vdは、単調増加関数的に変化する。また、図3のパルス幅TwがA,B,Cの各値で、直流電圧Vdが等しいことがわかる。つまり、電源電圧Vsが変化しても直流電圧
Vdが一定になるようにパルス幅Twを制御すれば、力率を最大値に制御できる。
【0025】
この第3の方法では、図2の区間Aと、区間Bとで、ディレイ時間Tdを入力電流Isもしくは入力電力に対応した値として予め設定しておき、直流電圧Vdを一定に制御するようにパルス幅Twを決定して、電源変動に対応した力率改善制御をする。
【0026】
なお、図3に示したように、前記条件が成り立つ範囲は電源変動は定格電圧の±5%程度である。そこで、いくつかの異なる電源電圧Vsで、ディレイ時間
Tdの設定値(関数)をそれぞれ記憶(格納)し、電源電圧Vsの大きさによりディレイ時間Tdの設定値(関数)を変更して、広い範囲の電源電圧変動に対応できる。
【0027】
ここで、電源電圧Vsの変動は直接電源電圧Vsを検出する回路を別に設けても良いが、本実施例では力率改善動作停止時すなわち短絡動作の停止時の直流電圧Vdと電源電圧Vsとの関係を予め測定し、この測定結果を格納したテーブルあるいは測定結果から導き出した直流電圧Vdと電源電圧Vsとの関係式を用いて推定する。
【0028】
ディレイ時間Tdとパルス幅Twとを決定する第4の方法として、パルス幅
Twに制限を設けて、電源電圧Vsの変動に対応する。この第4の方法は図3の横軸に示した最大パルス幅52や最小パルス幅53に示す通り、基準となる電源電圧Vsに対するディレイ時間Tdの設定値(関数)を使用し、例えば電源変動±5%程度までは前記第3の方法でパルス幅Twを決定するが、それ以上の電源変動が生じたときはパルス幅Twを制限値、例えば最大パルス幅52や、最小パルス幅53に固定する。これによって、最大力率で運転できる電源電圧Vsの範囲は狭くなっても、多数のディレイ時間設定値(関数)が必要なく、電源電圧
Vsの大きさを把握する必要もないので制御構成が簡素化でき、力率もあまり低下しない。ここで、パルス幅Twが制限値(最大値もしくは最小値)になっている場合は、直流電圧Vdが必ずしも一定値となっているわけではないが、パルス幅Twの制限値を、使用するシステムが許容できる最小の力率値もしくは直流電圧の値から決定すればよい。
【0029】
次に図2の区間Cの制御方法を説明する。図2の区間Cでは、先に述べたディレイ時間Tdとパルス幅Twの和が一定になるという条件が成立しないが、ディレイ時間Tdを固定値にして、パルス幅Twを変更して直流電圧Vdを一定に保つことができる。つまり、ディレイ時間Tdを固定し、直流電圧Vdを一定に保つようにパルス幅Twを制御すれば、力率を最大値にした動作ができる。この場合にも、電源電圧Vsの大きさに対応した数種類のディレイ時間Td(固定値)を制御回路7に記憶し、電源電圧Vsの大きさに基づいてその固定値を変更すれば、電源電圧Vsの変動にも対応ができる。
【0030】
以上の実施例で説明したように、電源電圧Vsの半周期に一回もしくは複数回、電源を短絡する力率改善回路を備えた本発明の電源装置は、力率を最大値に保ちながら直流電圧Vdを一定に制御できる。
【0031】
【発明の効果】
本発明によれば、電源電圧変動が生じても電源装置の力率を最大値に保ちながら直流電圧Vdを一定に制御できる。
【図面の簡単な説明】
【図1】実施例の電力変換装置を用いたモータ制御装置の説明図。
【図2】実施例の電力変換装置の効率,力率,直流電圧の入力電流依存性の説明図。
【図3】実施例の電力変換装置で電源電圧が変動した場合の効率,力率,直流電圧の変化とパルス幅との関係の説明図。
【符号の説明】
1…交流電源、2…リアクトル、3…短絡手段、4…整流回路、5…整流回路切替手段、6…平滑コンデンサ、7…制御回路、8…ゼロクロス検出回路、10…インバータ回路、20…圧縮機、30…入力電流検出回路、100…電力変換装置、Tw…パルス幅、Td…ディレイ時間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device that converts AC power into DC power, and more particularly to a power conversion device that performs a short-circuit operation once or a plurality of times in a half cycle of an AC power supply to improve the power factor of the power supply.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 10-201248 discloses a power conversion device that improves the power factor by performing a short circuit operation once or a plurality of times in a half cycle of an AC power supply. JP-A-10-
The 2012248 publication discloses a short circuit start time (delay time) and a short circuit period (pulses) of a short circuit means based on an internal state such as a duty ratio or an output frequency of a pulse width modulation signal (PWM signal) of an inverter circuit connected to a power supply device. And a method for controlling the power factor to an optimum point according to the load state.
[0003]
Japanese Patent Laid-Open No. 10-201248 improves the power factor by calculating a delay time and a pulse width according to a load state from a preset function, for example, a function of a delay time and a pulse width with respect to the PWM duty of the inverter. is doing. For this reason, an optimum power factor can be secured under the set conditions, and stable motor control can be performed.
[0004]
[Problems to be solved by the invention]
The power supply device is connected to an AC power supply and converts the power of the AC power supply into DC power. It is known that the voltage of a commercial power source used as an AC power source generally varies. Japanese Patent Laid-Open No. 10-201248 does not describe a countermeasure for voltage fluctuation of an AC power supply, and does not disclose a method for preventing a reduction in power factor due to power fluctuation.
[0005]
In addition, in the above prior art, the delay time and the pulse width are determined using a function of the delay time and the pulse width with respect to the load state quantity in consideration of the motor control by the inverter, and the control of the DC voltage is not described. .
[0006]
An object of the present invention is to provide a power factor improvement type power conversion device corresponding to a voltage fluctuation of an AC power supply, and another object of the present invention is to determine a delay time and a pulse width by a simple calculation, It is providing the power converter device which controls.
[0007]
[Means for Solving the Problems]
The power conversion device of the present invention includes a reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an AC input side at one end connected to the other end of the reactor, and an AC input side A rectifier circuit having a multi-end connected to the other end of the short-circuit means, a zero-cross detection circuit for detecting a zero-cross of the AC power supply, one end connected to the other end of the AC power supply, and the other end to the other end of the short-circuit means An input current detection circuit connected to each other, a smoothing capacitor connected to both ends of the DC output of the rectifier circuit, and a control circuit for controlling the short-circuit means, and the control circuit performs a short-circuit operation from a zero-cross point of the AC power supply. Based on a delay time Td that is a period until the start and a pulse width Tw that is a short-circuit period, the short-circuit operation of the short-circuiting unit is controlled, and the delay time Td and the pulse width Tw are To control respectively.
[0008]
The power converter of the present invention controls the delay time Td and the pulse width Tw as follows.
(1) The delay time is calculated from a function for a preset input current or input power, and the pulse width Tw is varied so that the DC voltage becomes a preset predetermined value.
(2) The delay time Td is set to a predetermined value (fixed value) set in advance, and the pulse width Tw is varied so that the DC voltage becomes a predetermined value set in advance.
(3) The delay time Td and the pulse width Tw are given as functions with respect to the input current or input power, respectively, and the pulse width Tw and the delay time Td are set from the input current or input power detected using this function.
(4) Determining the delay time Td The function shown in (1), the predetermined value (fixed value) shown in (2), or the function of the delay time Td and pulse width Tw shown in (3) A plurality are provided corresponding to the voltage of the AC power supply, and the selection is made according to the voltage of the AC power supply.
(5) The voltage of the AC power supply is estimated from the DC voltage before the short-circuit means is short-circuited or from the DC voltage when the short-circuit operation is temporarily stopped to cope with the fluctuation of the power-supply voltage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 is a basic configuration diagram of a motor control device using the power conversion device of this embodiment. As shown in FIG. 1, the power conversion apparatus 100 according to the present embodiment includes a reactor 2 having one end connected to one output end of a single-phase AC power supply 1, and a short-circuit unit that short-circuits the AC power supply 1 via the reactor 2. 3 and the other end of the reactor 2 on the side not connected to the AC power source 1 and the other end of the AC power source 1 on the side not connected to the reactor 2 are connected via an input current detection circuit 30. 4, the smoothing capacitor 6 connected in series to both ends of the DC output of the rectifier circuit 4, one of the AC inputs of the rectifier circuit 4, and the connection point between the smoothing capacitor 61 and the smoothing capacitor 62 constituting the smoothing capacitor 6. The connected rectifier circuit switching means 5, the zero cross detection circuit 8 for detecting the zero cross of the AC power source 1, and the DC voltage Vd across the smoothing capacitor 6 are input and the zero cross signal 92 is used as a reference timing. A control circuit 7 that outputs a short-circuit pulse signal 96 for operating the short-circuit means 3 and outputs a rectifier circuit switching signal 97 to the rectifier circuit switching means 5 and an input current Is input from the AC power source 1 are detected. 7 includes an input current detection circuit 30 that outputs an input current value 98.
[0011]
FIG. 1 also shows a motor drive system 101 including an inverter circuit 10 connected to a DC output of the power converter 100 and a compressor 20 incorporating a motor. Here, the control circuit 7 is configured by a semiconductor integrated circuit (IC) such as a one-chip microcomputer, for example, and performs all operations by software processing.
[0012]
The zero-cross detection circuit 8 inputs the voltage across the AC power supply 1, and the AC signal from the AC power supply 1 (hereinafter abbreviated as the power supply voltage Vs) passes through the zero-cross point and changes its polarity from the High signal to the Low signal. Alternatively, a zero cross signal 92 for switching from the Low signal to the High signal is output. This zero cross signal 92 is input to the control circuit 7.
[0013]
The control circuit 7 uses the rising or falling edge of the input zero-cross signal 92 as a reference timing, the period from which the short-circuit means 3 starts the short-circuit operation (hereinafter, delay time Td) and the short-circuit period (hereinafter, pulse). Width Tw) is set, and the short circuit pulse signal 96 (High, Low signal) is output to the short circuit means 3. The delay time Td and the pulse width Tw are previously stored in the control circuit 7 or calculated by the control circuit 7.
[0014]
The short-circuit means 3 performs a short-circuit opening / closing operation according to the short-circuit pulse signal 96. In this embodiment, when the short-circuit pulse signal 96 output from the control circuit 7 is High, the short-circuit means 3 performs a short-circuit operation. The short-circuit means 3 is composed of a diode bridge and IGBT, or a power semiconductor switching element such as a bipolar transistor or MOSFET, and short-circuits the AC power supply 1 via the reactor 2 in accordance with a short-circuit pulse signal 96. The power factor of the AC power supply 1 is improved by this short-circuit opening / closing operation.
[0015]
The rectifier circuit switching means 5 is composed of a bidirectional switch including a combination of a power relay, a triac, a diode bridge and a power semiconductor switching element (IGBT, bipolar transistor, MOSFET), etc., and a rectifier circuit switching signal 97 (output from the control circuit 7). The rectifier circuit 4 is switched in response to the High and Low signals. In this embodiment, the rectifier circuit 4 is switched to a full-wave rectifier circuit when the rectifier circuit switch signal 97 is a Low signal, and is switched to a voltage doubler rectifier circuit when it is a High signal.
[0016]
The control circuit 7 receives the zero-cross signal 92, the DC voltage value 93 that is the DC voltage Vd across the smoothing capacitor 6, and the input current value 98, and outputs a short circuit pulse signal 96 and a rectifier circuit switching signal 97. .
[0017]
The power conversion apparatus 100 according to the present embodiment performs an operation of short-circuiting the AC power supply 1 through the reactor 2 once or a plurality of times in a half cycle of the power supply to widen the conduction angle of the power supply current and improve the power supply power factor. However, AC power is converted into DC power. The power conversion apparatus 100 according to the present embodiment includes a rectifier circuit switching unit 5 and switches the rectifier circuit 4 to a full-wave rectifier circuit or a voltage doubler rectifier circuit. Therefore, in addition to controlling the DC voltage Vd with the pulse width Tw, a wide range of DC voltage Vd can be output.
[0018]
The relationship among the delay time Td, the pulse width Tw, the efficiency, the power factor, and the DC voltage Vd with respect to the input current Is of the power conversion apparatus 100 of the present embodiment will be described with reference to FIG. FIG. 2 shows experimental results in which the delay time Td and the pulse width Tw are changed so that the power factor becomes maximum when the input current Is is changed. The horizontal axis of FIG. 2 is the input current Is, FIG. 2A shows the efficiency and power factor, FIG. 2B shows the DC voltage, and FIG. 2C shows the delay time Td and the pulse width Tw. Show. Here, although the input current is shown on the horizontal axis in FIG. 2, the same applies to the case where the horizontal axis is the input power. Hereinafter, in this embodiment, the case where the horizontal axis is the input current will be described.
[0019]
FIG. 2 shows experimental results of a full-wave rectifier circuit and a voltage doubler rectifier circuit. A section A in FIG. 2 shows an input current range that operates in the full-wave rectifier circuit. A section B and a section C are input current ranges that operate in the voltage doubler rectifier circuit, and the load in section C is heavier than that in section B. When the power supply device is activated (input current is near zero), the full-wave rectifier circuit operates in the section A, and the operation proceeds to the voltage doubler rectifier circuit operation in the section B as the input current Is increases. When the input current Is decreases, the operation proceeds from the voltage doubler rectifier circuit operation in the section B to the full-wave rectifier circuit operation in the section A. However, there is a portion where the input current values in the sections A and B overlap, Because it has, it can move smoothly.
[0020]
In the case of the input current Is in the section A and the section B, as shown in FIG. 2C, the delay time Td monotonously decreases with respect to the input current Is, the pulse width Tw monotonously increases, and the delay time Td and the pulse The sum with the width Tw is a constant value. That is, the delay time Td and the pulse width Tw are associated with each other, and if one of them is determined, the other can be determined. In other words, if the detected input current Is is the section A and the section B, the delay time Td and the pulse width Tw can be determined. Further, as shown in FIG. 2B, the DC voltage Vd is a substantially constant value with respect to the input current Is.
[0021]
As a first method for determining the delay time Td and the pulse width Tw, the pulse width Tw is controlled so that the DC voltage Vd is constant, and the sum of the delay time Td and the pulse width Tw is constant. To do. This method is the same as controlling the DC voltage to be constant at the time when the short-circuiting is started by the short-circuiting means and making the time when the short-circuit operation is ended constant. Thereby, in the section A and the section B shown in FIG. 2, the direct current voltage Vd is controlled to be constant, and at the same time, the operation can be performed with the maximum power factor. Note that the current detection signal 98 is used to determine whether or not the section A and the section B are entered.
[0022]
As a second method for determining the delay time Td and the pulse width Tw, the input current detection is performed without correlating the delay time Td and the pulse width Tw in accordance with the input current detection signal 98 from the input current detection circuit 30. In accordance with the signal 98, the delay time Td and the pulse width Tw are determined independently. A function for obtaining a delay time Td and a pulse width Tw that can be operated at a high power factor in advance by simulation and obtaining a value of the delay time Td from the input current Is, and a function for obtaining a value of the pulse width Tw from the input current Is. Input to the control circuit 7 in advance. This method is a good method for easily obtaining the delay time Td and the pulse width Tw.
[0023]
Next, a third method for determining the delay time Td and the pulse width Tw corresponding to the fluctuation of the power supply voltage Vs of the AC power supply 1 will be described. In this method, the delay time Td is determined according to the relationship between the input current Is and the delay time Td using the relationship shown in FIG. On the other hand, the pulse width Tw is determined so that the DC voltage Vd is constant. Note that the function for obtaining the delay time Td by the input current Is was obtained in advance by experiments and simulations.
[0024]
FIG. 3 shows the efficiency, power factor, and dependency of the DC voltage Vd on the power supply voltage Vs when the horizontal axis represents the pulse width Tw. As shown in FIG. 3, the efficiency, power factor, and DC voltage fluctuate with the fluctuation of the power supply voltage Vd, but the outline of these graphs does not change. In other words, according to the power supply voltage, the efficiency and the power factor change in the form of a quadratic function in which the pulse width Tw shown in FIG. 3 has a maximum value peak at each of the values A, B, and C. Further, the DC voltage Vd changes in a monotonically increasing function. Further, it can be seen that the pulse width Tw of FIG. 3 is A, B, and C, and the DC voltage Vd is equal. That is, the power factor can be controlled to the maximum value by controlling the pulse width Tw so that the DC voltage Vd remains constant even if the power supply voltage Vs changes.
[0025]
In the third method, the delay time Td is set in advance as a value corresponding to the input current Is or the input power in the sections A and B in FIG. 2, and the DC voltage Vd is controlled to be constant. The pulse width Tw is determined, and power factor improvement control corresponding to power supply fluctuation is performed.
[0026]
As shown in FIG. 3, the range in which the above condition is satisfied is that the power supply fluctuation is about ± 5% of the rated voltage. Therefore, the set value (function) of the delay time Td is stored (stored) at several different power supply voltages Vs, and the set value (function) of the delay time Td is changed according to the magnitude of the power supply voltage Vs. It can cope with power supply voltage fluctuation in the range.
[0027]
Here, for the fluctuation of the power supply voltage Vs, a circuit for directly detecting the power supply voltage Vs may be provided. However, in this embodiment, the DC voltage Vd and the power supply voltage Vs when the power factor correction operation is stopped, that is, when the short-circuit operation is stopped, Is estimated in advance using a relational expression between the DC voltage Vd and the power supply voltage Vs derived from the table storing the measurement results or the measurement results.
[0028]
As a fourth method for determining the delay time Td and the pulse width Tw, a restriction is provided on the pulse width Tw to cope with fluctuations in the power supply voltage Vs. This fourth method uses a set value (function) of the delay time Td with respect to the reference power supply voltage Vs as shown by the maximum pulse width 52 and the minimum pulse width 53 shown on the horizontal axis of FIG. The pulse width Tw is determined by the third method up to about ± 5%, but when the power supply fluctuation further occurs, the pulse width Tw is fixed to a limit value, for example, the maximum pulse width 52 or the minimum pulse width 53. To do. As a result, even if the range of the power supply voltage Vs that can be operated at the maximum power factor is narrow, a large number of delay time setting values (functions) are not required, and it is not necessary to grasp the magnitude of the power supply voltage Vs, so the control configuration is simple. And power factor does not decrease much. Here, when the pulse width Tw is a limit value (maximum value or minimum value), the DC voltage Vd is not necessarily a constant value, but the system using the limit value of the pulse width Tw. May be determined from the minimum allowable power factor value or DC voltage value.
[0029]
Next, a method for controlling the section C in FIG. 2 will be described. In the section C of FIG. 2, the condition that the sum of the delay time Td and the pulse width Tw described above is not satisfied is not satisfied. However, the delay time Td is fixed and the pulse width Tw is changed to change the DC voltage Vd. Can be kept constant. That is, if the delay time Td is fixed and the pulse width Tw is controlled so as to keep the DC voltage Vd constant, an operation with the maximum power factor can be performed. Also in this case, if several kinds of delay times Td (fixed values) corresponding to the magnitude of the power supply voltage Vs are stored in the control circuit 7 and the fixed value is changed based on the magnitude of the power supply voltage Vs, the power supply voltage It is possible to cope with fluctuations in Vs.
[0030]
As described in the above embodiments, the power supply device of the present invention having the power factor correction circuit that short-circuits the power supply once or a plurality of times in a half cycle of the power supply voltage Vs is a direct current while keeping the power factor at the maximum value. The voltage Vd can be controlled to be constant.
[0031]
【The invention's effect】
According to the present invention, even if the power supply voltage fluctuates, the DC voltage Vd can be controlled to be constant while keeping the power factor of the power supply device at the maximum value.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a motor control device using a power conversion device according to an embodiment.
FIG. 2 is an explanatory diagram of input current dependence of efficiency, power factor, and DC voltage of the power conversion device of the embodiment.
FIG. 3 is an explanatory diagram of the relationship between the change in efficiency, power factor, DC voltage and pulse width when the power supply voltage fluctuates in the power conversion device of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Reactor, 3 ... Short circuit means, 4 ... Rectifier circuit, 5 ... Rectifier circuit switching means, 6 ... Smoothing capacitor, 7 ... Control circuit, 8 ... Zero cross detection circuit, 10 ... Inverter circuit, 20 ... Compression 30: input current detection circuit, 100: power converter, Tw: pulse width, Td: delay time.

Claims (10)

一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の他端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段を制御する制御回路と、一端を前記交流電源の他端に接続し、他端を前記短絡手段の他端に接続した入力電流検出回路と、前記整流回路の直流出力の両端に接続した平滑コンデンサとを具備した電力変換装置において、
前記制御回路に入力電流検出値と前記平滑コンデンサの両端の直流電圧とを入力し、前記制御回路が、前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdを、前記入力電流もしくは入力電力に対して予め設定した関数に基づいて制御し、かつ、短絡期間であるパルス幅Twを、前記直流電圧が所定値になるように制御することを特徴とする電力変換装置。
A reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an end on the AC input side connected to the other end of the reactor, and the other end on the AC input side connected to the other end of the short-circuit means A rectifier circuit connected to the other end, a zero cross detection circuit for detecting a zero cross of the AC power supply, a control circuit for controlling the short-circuit means, one end connected to the other end of the AC power supply, and the other end connected to the short-circuit means In the power converter comprising an input current detection circuit connected to the other end of the rectifier and a smoothing capacitor connected to both ends of the DC output of the rectifier circuit,
An input current detection value and a DC voltage across the smoothing capacitor are input to the control circuit, and a delay time Td, which is a period until the control circuit starts a short circuit operation from a zero cross point of the AC power supply, A power conversion device that controls an input current or input power based on a function set in advance and controls a pulse width Tw that is a short-circuit period so that the DC voltage becomes a predetermined value.
一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の他端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段を制御する制御回路と、一端を前記交流電源の他端に接続し、他端を前記短絡手段の他端に接続した入力電流検出回路とを具備した電力変換装置において、
前記制御回路に入力電流検出値を入力し、前記制御回路が、前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdを、前記入力電流もしくは入力電力に対して予め設定した第1の関数に従って制御し、かつ、短絡期間であるパルス幅Twを、前記入力電流もしくは入力電力に対して予め設定した第2の関数に従って制御することを特徴とする電力変換装置。
A reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an end on the AC input side connected to the other end of the reactor, and the other end on the AC input side connected to the other end of the short-circuit means A rectifier circuit connected to the other end, a zero cross detection circuit for detecting a zero cross of the AC power supply, a control circuit for controlling the short-circuit means, one end connected to the other end of the AC power supply, and the other end connected to the short-circuit means In the power converter comprising an input current detection circuit connected to the other end of
An input current detection value is input to the control circuit, and a delay time Td, which is a period until the control circuit starts a short-circuit operation from the zero cross point of the AC power supply, is set in advance for the input current or input power. A power conversion apparatus that controls according to the first function and controls a pulse width Tw that is a short-circuit period according to a second function that is preset for the input current or input power.
請求項1において、
前記関数を、前記短絡手段が短絡動作していないときの前記直流電圧から推定した交流電源の電圧に対応して複数備え、該交流電源の電圧に応じて前記関数を選択することを特徴とする電力変換装置。
In claim 1,
A plurality of the functions are provided corresponding to the voltage of the AC power source estimated from the DC voltage when the short-circuit means is not short-circuited, and the function is selected according to the voltage of the AC power source. Power conversion device.
一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の他端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段を制御する制御回路と、一端を前記交流電源の他端に接続し、他端を前記短絡手段の他端に接続した入力電流検出回路と、前記整流回路の直流出力の両端に接続した平滑コンデンサとを具備した電力変換装置において、
前記制御回路に前記平滑コンデンサの両端の直流電圧を入力し、前記制御回路が、前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdを、予め設定した一定値に制御し、かつ、短絡期間であるパルス幅Twを、前記直流電圧が所定値になるように制御し、
前記一定値は、前記短絡手段が短絡動作していないときの前記直流電圧から推定した交流電源の電圧に対応して複数備えた中から、該交流電源の電圧に応じて前記一定値を選択することを特徴とする電力変換装置。
A reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an end on the AC input side connected to the other end of the reactor, and the other end on the AC input side connected to the other end of the short-circuit means A rectifier circuit connected to the other end, a zero cross detection circuit for detecting a zero cross of the AC power supply, a control circuit for controlling the short-circuit means, one end connected to the other end of the AC power supply, and the other end connected to the short-circuit means In the power converter comprising an input current detection circuit connected to the other end of the rectifier and a smoothing capacitor connected to both ends of the DC output of the rectifier circuit,
A DC voltage across the smoothing capacitor is input to the control circuit, and a delay time Td, which is a period until the control circuit starts a short-circuit operation from the zero cross point of the AC power supply, is controlled to a predetermined constant value. and, and, a pulse width Tw is shorted period, controls so that the DC voltage becomes a predetermined value,
The constant value is selected according to the voltage of the AC power source from among a plurality of constant values corresponding to the voltage of the AC power source estimated from the DC voltage when the short-circuit means is not short-circuited. The power converter characterized by the above-mentioned.
請求項2において、
前記電力変換装置が、前記整流回路の直流出力の両端に接続した平滑コンデンサとを備え、前記制御回路に前記平滑コンデンサの両端の直流電圧を入力し、前記制御回路が前記第1の関数と前記第2の関数とをそれぞれ複数備え、前記短絡手段が短絡動作していないときの前記直流電圧から推定した交流電源の電圧に応じて前記第1の関数と前記第2の関数とを選択することを特徴とする電力変換装置。
In claim 2,
The power conversion device includes a smoothing capacitor connected to both ends of the DC output of the rectifier circuit, the DC voltage across the smoothing capacitor is input to the control circuit, and the control circuit includes the first function and the A plurality of second functions are provided, and the first function and the second function are selected according to the voltage of the AC power source estimated from the DC voltage when the short-circuit means is not short-circuited. The power converter characterized by this.
一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の他端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段を制御する制御回路とを具備した電力変換装置において、
前記制御回路が前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdと、短絡期間であるパルス幅Twとに基づいて、前記短絡手段の短絡動作を制御し、前記ディレイ時間Tdと前記パルス幅Twとを前記ディレイ時間Tdと前記パルス幅Twの和を一定値に制御することを特徴とする電力変換装置。
A reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an end on the AC input side connected to the other end of the reactor, and the other end on the AC input side connected to the other end of the short-circuit means In a power converter comprising a rectifier circuit connected to the other end, a zero-cross detection circuit that detects a zero-cross of the AC power supply, and a control circuit that controls the short-circuit means,
The control circuit controls the short-circuit operation of the short-circuit means based on a delay time Td that is a period from the zero cross point of the AC power supply to the start of the short-circuit operation and a pulse width Tw that is a short-circuit period, and the delay circuit A power conversion device characterized in that the time Td and the pulse width Tw are controlled to a constant value with the sum of the delay time Td and the pulse width Tw.
請求項6において、
前記電力変換装置が、前記整流回路の直流出力の両端に接続した平滑コンデンサとを備え、前記制御回路に前記平滑コンデンサの両端の直流電圧を入力し、前記制御回路が、該直流電圧を一定にするように前記パルス幅Twを制御することを特徴とする電力変換装置。
In claim 6,
The power conversion device includes a smoothing capacitor connected to both ends of the DC output of the rectifier circuit, and inputs a DC voltage across the smoothing capacitor to the control circuit, and the control circuit makes the DC voltage constant. The power conversion device is characterized by controlling the pulse width Tw.
請求項7において、
前記一定値を、前記短絡手段が短絡動作していないときの前記直流電圧から推定した交流電源の電圧に応じて変更することを特徴とする電力変換装置。
In claim 7,
The power converter according to claim 1, wherein the constant value is changed according to a voltage of an AC power source estimated from the DC voltage when the short-circuit means is not short-circuited.
一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の他端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段を制御する制御回路とを具備した電力変換装置において、
前記短絡手段は前記交流電源のゼロクロス点から短絡動作を開始するまでの時点とゼロクロス点から短絡動作を終了する時点に応じて、短絡動作し、前記制御回路が、前記短絡を終了する時点を一定として、前記直流電圧が一定となるように、前記短絡動作を開始する時点を制御することを特徴とする電力変換装置。
A reactor having one end connected to an AC power source, a short-circuit means having one end connected to the other end of the reactor, an end on the AC input side connected to the other end of the reactor, and the other end on the AC input side connected to the other end of the short-circuit means In a power converter comprising a rectifier circuit connected to the other end, a zero-cross detection circuit that detects a zero-cross of the AC power supply, and a control circuit that controls the short-circuit means,
The short-circuit means performs a short-circuit operation according to a time point until the short-circuit operation is started from the zero-cross point of the AC power supply and a time point when the short-circuit operation is ended from the zero-cross point, and the time point when the control circuit ends the short-circuit is fixed. As described above, the power conversion apparatus controls the time point at which the short-circuit operation is started so that the DC voltage is constant.
請求項1乃至9の何れかにおいて、前記ディレイ時間Tdもしくは前記パルス幅Twに制限値を設けたことを特徴とする電力変換装置。  10. The power conversion device according to claim 1, wherein a limit value is provided for the delay time Td or the pulse width Tw.
JP2002224325A 2002-08-01 2002-08-01 Power converter Expired - Lifetime JP3848903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224325A JP3848903B2 (en) 2002-08-01 2002-08-01 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224325A JP3848903B2 (en) 2002-08-01 2002-08-01 Power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006092742A Division JP4248560B2 (en) 2006-03-30 2006-03-30 Power converter

Publications (2)

Publication Number Publication Date
JP2004072806A JP2004072806A (en) 2004-03-04
JP3848903B2 true JP3848903B2 (en) 2006-11-22

Family

ID=32012313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224325A Expired - Lifetime JP3848903B2 (en) 2002-08-01 2002-08-01 Power converter

Country Status (1)

Country Link
JP (1) JP3848903B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304586A (en) * 2005-03-25 2006-11-02 Mitsubishi Electric Corp Dc power supply device
JP4792849B2 (en) 2005-07-15 2011-10-12 パナソニック株式会社 DC power supply for air conditioner
JP4823708B2 (en) * 2006-02-13 2011-11-24 三菱電機株式会社 DC power supply
JP4301317B2 (en) * 2007-03-30 2009-07-22 ダイキン工業株式会社 Power supply
JP4840228B2 (en) * 2007-03-30 2011-12-21 ダイキン工業株式会社 REFRIGERATOR POWER SUPPLY CIRCUIT AND REFRIGERATOR POWER SUPPLY CIRCUIT CONTROL METHOD
JP4723606B2 (en) * 2007-12-26 2011-07-13 日本▲まき▼線工業株式会社 Power supply device and timing control circuit in power supply device
JP2010068683A (en) * 2008-09-12 2010-03-25 Panasonic Corp Power supply unit and air conditioner
JP5097072B2 (en) 2008-09-29 2012-12-12 パナソニック株式会社 Drum washing machine
WO2011048818A1 (en) * 2009-10-23 2011-04-28 パナソニック株式会社 Dc power supply device, and motor driving inverter apparatus using same
JP2011205723A (en) * 2010-03-24 2011-10-13 Panasonic Corp Drum washing machine
WO2017130357A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power converter
AU2017399097B2 (en) 2017-02-16 2019-12-05 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JP2004072806A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
KR100796890B1 (en) Switching power source device
US6714425B2 (en) Power factor corrected SMPS with light and heavy load control modes
US7256507B2 (en) Inverter controlled generator set
WO2004070928A1 (en) Digital power supply controller for power factor correction
CN107800347B (en) Alternating current motor control method, alternating current motor control circuit and air conditioner
JP3848903B2 (en) Power converter
JP2002186172A (en) Inverter power generator and control method in overloaded condition
US20050184708A1 (en) Power factor correction circuit
JP5272319B2 (en) Power converter
JP3934982B2 (en) Power supply
JPH10201248A (en) Power supply device
JP3598936B2 (en) Inverter generator
JP4248560B2 (en) Power converter
JP3598939B2 (en) Inverter generator
KR101946369B1 (en) Power transforming apparatus and air conditioner including the same
JP2001078447A (en) Switching power circuit
JP2022143053A (en) Power conversion device and washing machine including the same
JP3525910B2 (en) Inverter generator and parallel operation method of inverter generator and external AC power supply
KR20190019287A (en) Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus
KR100724492B1 (en) Dc link voltage detection circuit
JP7490089B2 (en) Air conditioners
JP2005151780A (en) Synchronous rectification control circuit, low-voltage motor drive circuit, and synchronous rectification control method
JPH10127046A (en) Control circuit for step-up converter
KR102060069B1 (en) Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus
JPH0568375A (en) Control method for air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Ref document number: 3848903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term