TW201145343A - Ion injection device - Google Patents

Ion injection device Download PDF

Info

Publication number
TW201145343A
TW201145343A TW100103952A TW100103952A TW201145343A TW 201145343 A TW201145343 A TW 201145343A TW 100103952 A TW100103952 A TW 100103952A TW 100103952 A TW100103952 A TW 100103952A TW 201145343 A TW201145343 A TW 201145343A
Authority
TW
Taiwan
Prior art keywords
ion beam
ion
electrode
glass substrate
angle
Prior art date
Application number
TW100103952A
Other languages
Chinese (zh)
Other versions
TWI420563B (en
Inventor
Masao Naito
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Publication of TW201145343A publication Critical patent/TW201145343A/en
Application granted granted Critical
Publication of TWI420563B publication Critical patent/TWI420563B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention provides an ion injection device that can realize an objective of injecting ions to a glass substrate without using a parallel lens so as to have excellence in COO (Cost Of Ownership). The ion injection device of the present invention is a mass analysis type ion injection device (1) for illuminating a band type ion beam (3) onto the glass substrate (7). An ion beam divergence means is arranged in the path of transporting the ion beam (3) to a mass analysis magnet (4) from an ion source (2). In a plane formed by the long edge direction of the ion beam (3) (Y direction) and the advancing direction of the ion beam (3) (Z direction), the ion beam divergence means allows the illumination angle of the ion beam to be larger than 0 degree, and diverges the ion beam (3) along its long edge direction within allowable divergence angle set according to a design rule. The illumination angle is such an angle formed by intersecting a vertical line drawing toward the glass substrate (7) and the ion beam (3) emitted onto the glass substrate (7).

Description

201145343 ' 六、發明說明: 【發明所屬之技術領域】 本於對麵基板實施鮮注人處理_子 扣別疋祕不骑子束 、 狀的平行化透鏡的質量分析型的離子注入 ^方向千仃的形 【先前技術】 鄕輕絲置縣本縣來說,料臥U必201145343 '6. Description of the invention: [Technical field of the invention] This is a mass-injection type of ion implantation in the opposite substrate by performing fresh-injection processing on the opposite substrate _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Shape [previous technique] 鄕 丝 置 置 县 县 县 县 县 县 县 县

衣敉+¥版„。件的+導體器件製造用離子注入 器件的微型化(集成密度)按穆爾定律發展、^所 ,子注人裝置“提高生產率’,以外,而且還要求 入装置附加麟微舰的各種基本技術,即要麵述離子注入 裝置“適應微型化發展,’。 另一方面,在透過向玻璃基板進行離子注入來製造 FPD面板的FPD (FlatPanelDisplay,平板顯示器)面=製 造用離子注入裝置中,由於應用注入技術的最終器件是人 們要觀看的顯示面板,所以基本上不需要高於人眼睛的分 辨率的微型化。因此’對這樣的離子注入装置的技術要求 主要注重於用於使生產率提高的裝置技術。 作為FPD面板製造用離子注入裝置的—個例子,可舉 專利文獻1所述的離子注入裝置為例。該離子注入裝置主 要包括:離子源,產生具有發散角度的離子束;離子分析 儀’係從所述離子束中僅選出想要的離子;四極設備 (quadrupole device),使通過離子分析儀後的離子束成為 大體平行的離子束;移動台,用於支承四極設備,可以使 其沿離子束的行進方向移動;以及處理部,用於配置目標 3/30 201145343 , 基板。 . · ' /專利文獻1:曰本專利公開公報特開2〇〇6—139996 號(圖1 )。 在FPD面板的製造技術中,按照設計規則,只要是配 線尺寸在0.3卿以上就完全沒有問題。其原因是即使器件 的配線尺寸比這更細,進一步微型化,人們也辨別不出來。 _另一方面,在微型化不斷發展的半導體器件的製造技 術中所使用的離子注入裝置中,在設計規則變成配線尺寸 為〇.2μηι的技術後,通常在離子束的輸送路徑中設置平行 化磁鐵,將被該磁鐵平行化後的離子束向目標(矽等的晶籲 片)R?、射。但是,在此前的設計規則中,通常使用利用掃 描器進行角度掃描後的離子束,也就是使用朝向目標的離 子束的照射角不平行的離子束(最大角度寬約士2 5度),這 樣就足夠了。 因此,在使用〇.3μιη以上的設計規則的FPD面板製造 用離子注入裝置中,原來認為沒有必要利用平行束對基板 進行處理,但在專利文獻1所舉出的FPD製造用離子注入 裝置中’與半導體製造用的離子注入裝置相同,設置有四 φ 極透鏡作為平行化透鏡。 表示半導體製造裝置的生產率的指標之一是COO( cost of ownership ’擁有成本)。該指標主要與裝置的性能價格比 有關。以往在製造半導體製造裝置時,認為必須降低COO。 因此’作為在保持一定的生產率的同時削減多餘成本的對 策’採用了去除多餘的功能及減小裝置尺寸等對策。 伴隨玻璃基板尺寸的大型化,FPD面板製造用離子注 入裝置所使用的離子束尺寸也變大。平行化透鏡被配置在 4/30 201145343 . * 要進行#子注入的玻璃基板附近。如專利文獻1所述,與 位於離子束輸送路徑的上游的離子源一側的離子束尺寸相 比位於下游的、在玻璃基板附近的離子束尺寸變得非常 大。為了使具有所述大尺寸的離子束形成為平行的形狀, ^必須使平行化透鏡的尺寸變大。在裝備有平行化透鏡的 離子庄入裝置中,因配置大型的平行化透鏡,使裝置整體 尺寸’又大。於是,在半導體工廠内必須要確保設置大型裝 置^空間。此外,由於製造大型的平行化透鏡所需要的費 用N所以對應地造成離子注入裝置的價格提高。由於所 述原因I 備平行化透鏡的離子注人裝置而言,難以 降低coo。 【發明内'容】 口此本發明所要解決的問題是提供一種不使用平行化 透鏡就可以實現對玻縣板進行離子注人且在〇)〇方面優 良的離子注入裝置。The 微型 敉 + ¥ version „. The miniaturization (integration density) of the ion implantation device for the manufacture of the +conductor device is developed according to Moore's law, and the sub-injection device “improves the productivity”, and also requires the device to be attached. The basic technology of the Lin Wei ship is to describe the ion implantation device "to adapt to the miniaturization development." On the other hand, the FPD (FlatPanelDisplay, flat panel display) surface of the FPD panel is manufactured by ion implantation into the glass substrate. In the ion implantation apparatus, since the final device applying the implantation technique is the display panel to be viewed, there is basically no need for miniaturization higher than the resolution of the human eye. Therefore, the technical requirements for such an ion implantation apparatus are mainly focused on As an example of an ion implantation apparatus for manufacturing an FPD panel, an ion implantation apparatus described in Patent Document 1 is taken as an example. The ion implantation apparatus mainly includes an ion source and is generated to have a divergence. Angled ion beam; ion analyzer' selects only the desired ions from the ion beam; quadrupole (quadrupole device), the ion beam after passing through the ion analyzer becomes a substantially parallel ion beam; the mobile station is configured to support the quadrupole device to move in the traveling direction of the ion beam; and the processing portion is configured to configure the target 3/30 201145343, Substrate. . . / Patent Document 1: Japanese Patent Laid-Open Publication No. Hei 2-6-139996 (Fig. 1). In the manufacturing technology of the FPD panel, according to the design rule, as long as the wiring size There is no problem at 0.3 or more. The reason is that even if the wiring size of the device is thinner than this, further miniaturization can not be discerned. _ On the other hand, in the manufacturing technology of miniaturized semiconductor devices In the ion implantation apparatus to be used, after the design rule becomes a technique in which the wiring size is 〇.2μηι, a parallelizing magnet is usually provided in the ion beam transport path, and the ion beam parallelized by the magnet is directed to the target (矽Crystal film) R?, shot. However, in the previous design rules, the ion beam after the angle scan using the scanner is usually used, that is, It is sufficient that the ion beam of the target ion beam is not parallel to the ion beam (the maximum angle is about 25 degrees wide), and therefore, in the ion implantation apparatus for manufacturing an FPD panel using a design rule of 〇.3 μm or more, In the same manner as the ion implantation apparatus for semiconductor manufacturing, the four-φ pole lens is provided as a parallelizing lens in the ion implantation apparatus for manufacturing an FPD. One of the indexes indicating the productivity of the semiconductor manufacturing apparatus is COO (cost of ownership). This index is mainly related to the performance-price ratio of the device. Conventionally, when manufacturing a semiconductor manufacturing apparatus, it is considered that COO must be lowered. Therefore, measures such as removing unnecessary functions and reducing the size of the device have been adopted as measures to reduce unnecessary costs while maintaining a constant productivity. As the size of the glass substrate increases, the size of the ion beam used in the ion implantation apparatus for manufacturing an FPD panel also increases. The parallelizing lens is configured at 4/30 201145343. * To be near the glass substrate for #子 injecting. As described in Patent Document 1, the size of the ion beam located in the vicinity of the glass substrate which is located downstream of the ion source side located upstream of the ion beam transport path becomes extremely large. In order to form the ion beam having the large size into a parallel shape, it is necessary to make the size of the parallelizing lens large. In an ion-incorporated device equipped with a parallelizing lens, the overall size of the device is made larger by the arrangement of a large parallel lens. Therefore, it is necessary to ensure that a large device space is provided in the semiconductor factory. Further, the cost of the ion implantation apparatus is correspondingly increased due to the cost N required for manufacturing a large parallel lens. For the reason described above, it is difficult to reduce the coo in the ion injection device of the parallelizing lens. [Invention] The problem to be solved by the present invention is to provide an ion implantation apparatus which can achieve ion implantation and excellent spectroscopy for a glass plate without using a parallel lens.

3即,本發明提供一種離子注入裝置,該離子注入裝置 是向玻璃基板騎帶錄子束的質量分析型鱗子注 f f從離子關f量分析韻_述離子束的輸送路^ ’ ^置有料束發散手段,_子束發散手段使所述離子 離子束的長邊方向發散,從而使所述離子束的照射角 又;〇度且在根據設計規則所設定 =所射角度是在由所述離子束的長邊方向與所== 二構成的平面中拉向所述玻璃基板的垂直線鱼 入射到所述玻璃基板的所述離子束所構成的角度。直線與 ’自於本翻储制平行化魏,在從離 子源到貝讀析磁鐵之_位於較靠上游-側的離子束= 5/30 s' 201145343 ' 基❹該離子束發散手段以 =么二許發散角度以下的方式,使帶狀離子束: ==所以可以使裝置尺寸小型化,並且可丈 ,裝k進而可以降低離子注入裝置的COO。 所述質 1分魏手段是所述離子源、 鐵雙方。 4者包括所述離子源和所述質量分析磁 祕手段使㈣情况下,由 、 就/、備的手段的一部分的結構進行改進的 &tb ’w低製造成本。 限制手段,選擇性地:在二 所述離子束通過;以及離子束輪廊儀,檢測通過二 限制^段__料束在㈣方向上_子束端部。 於具備所述離子束限制手段和 所以可以確簡子束的照射角度是否是所希望的角Γ儀’ ㈣佳的是,所賴子束_手段被設置成在所 缝=執缸’鑛騎料錢时量分析的分 此,如束在短邊方向上在分析狹缝的位置聚焦。因 子束限制手段配置離子束限制手段,則可以使離 旦八2本判’代替㈣平行錢鏡,錄離子源到質 的位於較靠向上游―側的離子束輸送路徑 中。又置離子束發散手段’使用該離子束發散手段以使向破璃 201145343 ====== 向發散,所以可喊裝置財小魏,甘g +束其長邊方 坆丁尘化亚且可以降低裝置價 格進而可以降低離子注入裝置的coo。 【實施方式】 離子=中;⑽離子束是帶狀離子束。在此所說的帶狀 離子束疋指在用與離子束的行進 束時,離子束的斷面為矩形。此外,的+面切斷離子 狀離子束的行進方向為 方向上,設沿著帶祕子相域方向的^ ^個 ^束的短邊方㈣㈣以向:因此二、 :.離子注入装置内的離子束輸送路徑上的 利用明使用的離子注入裝置1的泣平面圖。 ===鐵Γ分析狹縫5對從離子源2射出的離 二ΓΓ,以僅使術的離子照射玻璃基板7 的万式將離子束3導向處理 • 子束3的中心軌道。 至6内。圖1中的虛線表示離 中沒’利_8支承玻璃基板7,利用圖 ==動機構,α横穿離子束3 万问X體千仃的、由箭頭Α 7。對於所述驅動機構,只要:不、方向往復輸送玻璃基板 在處理室6内,利用托驅動機構心 中沒有表桃_構,^,_3, the present invention provides an ion implantation apparatus, which is a mass analysis type scale ff that oscillates a recording beam onto a glass substrate, and analyzes the rhyme of the ion beam from the ionization amount. a beam diverging means, the beam splitting means diverging the long side direction of the ion beam, so that the irradiation angle of the ion beam is again; the twist is set according to the design rule = the angle of the shot is in the The angle between the longitudinal direction of the ion beam and the ion beam of the vertical line drawn to the glass substrate in the plane of the == two incident on the glass substrate. Straight line and 'parallelized Wei from the dumping system, in the ion source to the shell reading magnet _ located on the upstream side of the ion beam = 5/30 s' 201145343 'Based on the ion beam divergence means = The mode below the divergence angle makes the ribbon ion beam: == so that the device size can be miniaturized, and the k0 can be reduced to further reduce the COO of the ion implantation device. The mass 1 means is the ion source and the iron side. The inclusion of the ion source and the mass analysis magnetic means enables (4) the improvement of the structure of a part of the means of preparation, and the low manufacturing cost. Restricting means, selectively: passing the ion beam at two; and ion beam arranging, detecting through the two limiting segments __ the bundle in the (four) direction _ the end of the beam. It is preferable to have the ion beam limiting means and therefore the angle of illumination of the beam can be determined to be a desired angle meter. (4) Preferably, the beam bundle means is set to be in the sewing machine. The amount of analysis is such that the beam is focused at the position of the analysis slit in the direction of the short side. By disposing the ion beam limiting means by the beam limiting means, it is possible to make the arbitrarily arbitrarily arbitrarily replace the (four) parallel money mirror, and record the ion source to the ion beam transport path which is located on the upstream side. And the ion beam divergence means 'use the ion beam divergence means to make the divergence to the broken glass 201145343 ======, so the device can be shouted by the small Wei, Gan g + bunch of its long side square Ding Ding Ya The price of the device can be lowered to further reduce the coo of the ion implantation apparatus. [Embodiment] Ion = medium; (10) The ion beam is a ribbon ion beam. Here, the ribbon ion beam refers to a rectangular cross section of the ion beam when the traveling beam with the ion beam is used. In addition, the + face cuts the direction of travel of the ionized ion beam in the direction, and sets the short side of the bundle along the direction of the phase domain of the secret zone (four) (four) direction: therefore, the ion implantation device A weeping plan view of the ion implantation apparatus 1 using the ion beam transport path. === The shovel analysis slit 5 guides the ion beam 3 emitted from the ion source 2 to the center trajectory of the sub-beam 3 by irradiating the glass substrate 7 with only the irradiated ions. Up to 6. The dotted line in Fig. 1 indicates that the glass substrate 7 is supported from the middle, and the glass substrate 7 is supported by the arrow Α 7 by using the graph == moving mechanism, α crossing the ion beam 30,000. For the drive mechanism, as long as the glass substrate is reciprocally conveyed in the direction, the inside of the processing chamber 6 is not in the center of the support mechanism, and ^, _

方向大體平行的、由箭頭㈣穿雖子束3的方式,沿與X 表不的方向往復輸送玻璃基板 對於所相軸構,只要是吨使㈣驅域構就可以。 7/30 201145343 中沒=理至6内,湘托架8支承麵基板7,利用圖 方二的Π構’以橫穿離子束3的方式,沿與X 7。Hr _ A衫料向往㈣送玻璃基板The glass substrate is reciprocally conveyed in a direction parallel to the X direction by the arrow (four) in the direction of the beam 3, and the structure of the phase is as long as it is a (four) drive domain. In the case of 7/30 201145343, the support bracket substrate 7 of the Xiang bracket 8 is traversed by the ion beam 3 in the manner of crossing the ion beam 3 along the X 7 . Hr _ A shirt material yearning (four) to send glass substrate

二例如’可以考慮使用下述機構H 至6外部的電動機可以正反轉的滾珠 2处 入到處珥6 + f』氓珠絲杈透過真空密封導 珠螺L 過使把轉動運動轉換成直線運動的滾 吨滾珠絲槓螺紋配合,並最終使所述滾珠螺母 :構,在處理室6外部的電動機可以沿由箭 内’透過使托架8支承在該轴的端 向輪送托架8的機構。 丨上了以前頭Α方 此外,在處理室6中設置有離子束认 ®離子束3在作為長邊方向的γ方向上^流配,貝, f量結果用於調節束電流密度分布。作:二; 果凋即電流密度分布的例子,可以考慮的結 ° 沿Y方向排列的離子源作為離子源;,:虞:用‘ 輪廓儀9的測量結果,調節流經各燈絲 舍 燈絲的離子源2以外,還可“ 二巾設置具有多極(刪―)的磁透 鏡或料束長度料諸制料 :位:=子束輪廊儀9的測量結果,調節磁二 1 =置或〜加在電極上的電[作為離子束麵儀 考慮採用衫個法㈣杯沿γ方向制的 個法拉第杯沿γ方向移動的4及者把 8/30 圖2表示本發明一麻a 平面内的離子束3的軌首具施方式的離子注入裝置在YZ 裝置1在另外的平面上、主® 2¾續·的是圖1的離子注入 作為本發日轉徵部分但是,由於為了容易理解 了圖1中記载的離子注入壯米3的執道,圖2簡要地描述 載的離子注入裝置丨的妗衣置1的結構,所以與圖1中記 圖Μ、圖15中也使用構不是準確一致。在後述的圖8、 中所描述的χ、γ Ζι 同的1^載方法。此外,在這些圖For example, 'It can be considered that the motor outside the mechanism H to 6 can be used to invert the ball 2 into the 珥6 + f 氓 杈 杈 杈 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空The rolling ball screw thread fits, and finally the ball nut: the motor outside the processing chamber 6 can be moved along the arrow by the arrow to support the bracket 8 at the end of the shaft to the carriage 8 . In addition, the ion beam recognition ion beam 3 is disposed in the processing chamber 6 in the γ direction as the longitudinal direction, and the result of the amount of scalar and f is used to adjust the beam current density distribution. For the example of the current density distribution, the ion source arranged in the Y direction can be considered as the ion source;,: 虞: The measurement result of the profiler 9 is used to adjust the filament flowing through the filaments of each filament. In addition to the ion source 2, it is also possible to set the magnetic lens or the length of the bundle with a multi-pole (deletion) material: bit: = measurement result of the sub-beam vernier 9 to adjust the magnetic 2-1 = ~Electrification applied to the electrode [As an ion beam surface meter, consider the use of the shirt method (4) The Faraday cup of the cup in the γ direction moves in the γ direction 4 and the 8/30 Fig. 2 shows the plane of the invention in a plane The ion implantation apparatus of the ion beam 3 is applied to the ion implantation apparatus of the ion beam 3 on the other plane, and the main ionization of the ion beam 3 is the ion implantation of FIG. 1 as a part of the daily conversion, but for easy understanding. The ion-implanted rice 3 described in FIG. 1 is used, and FIG. 2 briefly describes the structure of the ion-implanting device of the ion-implanting device, so that the structure is not the same as that in FIG. Accurate and consistent. The method of χ, γ Ζι described in Figure 8, which will be described later. Outside, in these figures

束3設定的。如前料理室6中的離子 設定有與圖中描述的χ子束3通過的位置不同, .^ ^ _ Υ、Ζ軸不同的軸。 射出,利回用例子中,使平行的離子束3從離子源2 =離^Hi鐵4使料束3沿其钱方向發散,Beam 3 is set. For example, the ions in the front cooking chamber 6 are set to have different axes from the position of the dice beam 3 described in the figure, . ^ ^ _ Υ, Ζ axis. In the example of the injection, the parallel ion beam 3 is diverged from the ion source 2 = away from the Hi iron 4 in the direction of the money.

基板7的照射角度成為大於〇度且在 則設定的容許發散角度以下。在Υ方向上的離 3的尺寸比玻璃基板7的尺寸大。因此,透過使支承 破璃基板7的托架8沿與圖!的χ方向大體平行的由箭頭 Α表示的方向移動,可以對玻璃基板7的整個面照射離子 束3。此外’在後述的圖§、圖14、圖15、圖17的例子中, 對玻璃基板7的整個面照射離子束3的結構與在此說明的 結構相同。 本發明中的離子束3的照射角度定義為在γζ平面 中,拉向玻璃基板7的面上的垂直線與向破璃基板7入射 的離子束3所成的角度。但是,在離子束3入射一側的玻 螭基板7的面與其背面及支承玻璃基板7的托架8的面為 相互平行的關係的情况下,可以把拉向托架8的面上的垂 直線視作拉向玻璃基板7上的垂直線。在圖2和後述的圖 9/30 201145343 8、圖14中,玻璃基板7與托架8的面為如前所述的相互 平行的關係。因此,在這些圖中,把拉向托架8上的垂直 線與離子束3所成的角度(例如圖2中的α)作為離子束的 照射角度(發散角度)。 ' 在本發明中,把在任意的設計規則時所容許的最大照 射角度的值稱為谷§午發散角度。如下所述,按照設計規則 設定所述容許發散角度。首先,根據人的視覺是否可以辨 別出來,來決定為件製造時微型化的水準。然後,根據微 型化的水準,決定有關器件的電路配線等的尺寸的設計規 則。按照該設計規則製造器件,因設計規則不同,前述的籲 離子束的照射角度容許的最大值會不同。例如’在按照設 计規則,電路配線尺寸為〇.3μηι的情况下,為了製造具有 可以容許的級別特性的器件,離子束的照射角度必須在最 大2.5度的範圍内。另一方面’在按照設計規則,電路配線 尺寸在大到Ιμηι的情况下,為了製造具有可以容許的級別 特性的器件,離子束的照射角度必須在最大3度左右的範 圍内。在本發明中考慮製造的器件的特性,把離子束3向 玻璃基板7的照射角度設計成大於〇度且在容許發散角度鲁 以下。 此外,對於玻璃基板7的大型化,使離子束3發散在 以下方面有利。玻璃基板7的尺寸伴隨液晶產品的大型化 而逐年大型化。在使平行的離子束從離子源射出,把該平 行的離子束向玻璃基板照射類型的離子注入裝置中,必須 使構成離子注入裝置的各構件變大。 另一方面,在使用本發明這樣的發散離子束的情况 下,由於對應於從使離子束發散的位置到玻璃基板的距 10/30 201145343 子絲尺寸變大,所以與前述那樣類型的離子 4置相比,可以使離子源等構件採則、型的構件 與專利文獻1所述的裝備有平行化透鏡的離子注 ’ 二:有:=化透鏡使離子束平行化,對應“ 且右H絲軒源2的更具體的結構之—。該離子源2 包極㈣軸叩deCtr〇de)系、统,該引出電極李統用 =室〗。向Z方向引出平行 系統包括等離子體雪炻n & ”丨出电極 在各電極上設12 極13, 缝束3通觸大料矩形的狹 匕外在本發明的離子源2中, =弧室1〇的蓋,等離子體電極η與電弧室:這兩4 與施:载的引出電極系統的各電極 設離子束是具有正電荷:離=外,在本發明中,假 中也相同。 子束,在後述的其它實施方式 從電弧室10引出的Μ 連接的等離子體電子束3的能量由與電孤諸電 為了防止電子從與離子束3白^電極13的電位差V1決定。 在抑制電極上施加vt的向的相反一側流入, 3透過的彡、細各辦具錢於使離子束 大電流下51出小發散角度的齡二\替该結構,也可以利用在 極。在該愔況 、子束的情况下使用的多孔電 心位置在x列如可以考慮使設在各電極上的各孔中 Μ方向和Y方向上恰好—致,在2方向上排列气 11/30 201145343 . t 個多孔電極。圖5表示多 .工. 圖5中,由於各電極在z方向上戈體:例::此外’在 4的1⑽了在圖2的實施方式中使用的質量分析磁鍇 =二6:(3)是質量分析磁鐵4的“= _鐵42 所示的單點劃線切斷質量分 中,在‘的===况。在該質量分析磁鐵4 :著γ方向的方向突出的一對磁』==:= 2面從離子束3的回轉半徑内側(圖6的(a)所亍的= =的磁極的端部b一側)向外側( 、:: Y方向上側的磁極的端部a —側)傾斜,使得^ ==Γ。圖6的⑻表示在xz平面:ΐ =磁鐵4的情况。圖中的“a、b,,對應於圖6的⑷中描 述的位於Y方向上側的磁極的端部a、b。如圖 所示,使圖6的⑷中記 的(二 ,束3的路徑為-定。此外,圖6的⑻= x、Y、Z的軸是對於向質量 圮載的 定的轴。該點在後述的圖^刀^: 子束3而設 齡ΪΓΓ極上分別繞有上側線圈14、下側線圈15,透 ϋ電流流過這些線圈,在磁極間產生從γ方向的下側向 可'曲的,場Β。此外作為上側線圈Η、下側線圈15, 或::::者各磁極覆蓋其周圍的跑道(一妙)型線圈 圖7是對通過圖6.中記载的質量分析磁鐵4内離 束承受的洛倫茲力的說明圖。 12/30 201145343 根據在γ方向上位置的不 茲力也不同。因此,沿γ方Q j作用在離子束上的洛倫 表性的點,對在各點產生什2表點el、e2、e3作為代 在Y方向上的發散有什^,它對離子束3 e2、e3分別是在磁場方向=明。此外,代表點e卜 向朝向與Y方向平行的值置、=右上方的位置、磁場方 位置中的任意的點。 每方向朝向紙面左上方的 洛倫茲力F與橫切磁場的 用。因此,在代表點el,&束和磁場方向垂直地作 下方。而該洛倫兹力F如圖方向為朝向紙面右 和Y方向的向量成分Fx、Fy。 可以分解為沿X方向 因向量成分Fx,離子束3沪 在用質量分析磁鐵4對離子束 ^,轉。該偏轉用於 一方面,因向量成分FY,離子束3二了貝罝分析時使用。另 側)偏轉。 向γ方向下側(相反/ 所了方一的嫩分’ 代表點e3的洛倫茲力f的 洛倫 因所Π量成分〜離子束3…轉 如上所述,由於使通過代表點ei位置 ^下側偏轉,使通.過代表點e3位置 p 上側偏轉’所以使離子束 方 3向γ方向 股/〇 丫方向發散。此外,透 13 /30 201145343 過適當調整磁極對的傾斜角度和質量分析磁鐵4的磁場b 的强度,可以把離子束的發散程度設定為所期望的程度。 例如,如果增加圖6中記載的磁極對的傾斜角度,則^磁 極對間產生的磁場B進-步彎曲。在這種情况下,由於作 用在透過代表點el、e3位置的軒束上的洛倫兹力的?方 向成分變大’所以可以使離子束3沿γ方向的發散程度更 大。 此外’由於在代表點‘ e3位置的向量成分匕比在 代表點e2部位的向量成分Fx小,所以也許認為離子束在 各點沿X方向的偏轉量不同’惟實際上並非如此。由於 =極:所以在代表點“、e3位置的磁通密度的值比在代 Θ位置的磁通密度大。因此,在代表點η、^位 ^兹力即使不全部絲向量齡&也可叫勻離 太方向的方向偏轉,對離子束3進行質量分1。 平面個實财式_子注人裝置在 2内的離子束的執道。在該例子中與圖 在ΥΖ =^發散的離子束3。此外,該實施方式 鐵=具有使離子束3沿丫方向發散的功能。貝里刀析磁 的心2=^料_子源2的具體例子。在圖9 明過的Ώ ?源2的結構與結_實施方式中說 ㈣的圖3 +記载的離子源 '甲》兄 與抑制電極12、、°射4料體電極u 在等離子的形狀不同。在該實施方式中, 體電極u 忽抑制電極12相對的面令’使等離子 極面為凹形。側的電極面為凸形’使抑制電極則的電 料’在圖9的⑷巾,把具有沿著γ方向的大體為 14/30 201145343 矩形的狹縫的電極作為引出電極系統的結構的—個例子, 除此之外,例如’如圖9的(b)所示,也可以使用把沿著 X方向的大體為矩形的狹缝沿γ方向排列多個的電極。 >圖10描繪了構成圖9中記载的引出電極系統的各電極 與施加在它們上的電壓的關係。圖1〇的u)和圖! :別:圖9的⑷和圖9的(b)對應。由於施加的電整 對各電極施加的電壓造成的作用,與前面的 A方式的參照圖4說明過的内容相同,所 :的:明。在圖H)的(b)中,用虛線 二 =:Y方向排列的各狹縫引出的離子束3。如^ 的(b)所示’從各狹縫引出的離子束3沿γ方向發散 Π登。最終從離子源2射出具有與在圖 所不的離子束3相同外形的離子束3。 中 束二的各電極間的離子 明的離子束3偏轉的原理,在圖9的la)方兒 Γ的⑴(圖1〇的⑽中例舉的離子源2中都是 1同 圖U的(a)描繪了使透過等 極12之_離子束3偏轉 子4極η和抑制電 通過抑制電極12和接地 ^ θ的㈤描綠了使 侵吧电極;ί 3之間的雜j 况。在各圖中描緣的虛線為等,立續,的維子束3偏轉的情 實線表示向各電極劃線表示電場。 極間產生的電場而偏轉的離子d線表示因在各電 在圖11的⑷卜由於等離 左側)的電位比抑制電極i ::11 -側(圖中 側(圖中右側)的電位高, 15/30 $ 201145343 所以從等離子體電極n 一側向抑㈣極‘, Ε,該電場Ε與等電位線垂直。人 2 -側產生電場 到電場Ε的影響,如用雙點劃線描=間的離子束3受 此後,入射到抑制電極12和接地電極】衮沿Υ方向擴展, 的偏轉方向由表示入射到電極間的離3之間。該離子束3 向量和表示在電極間產生的電場方仃進方向的方向 量決定。 σ 、方向向量的合成向 在圖11的(b)中,由於㈣ 的電位比接地電極13 —側(圖中太你丨、 、07中左側) 接地電極Π -側向抑制電極12 一側產生’所以從 與等電位線垂直。入射到電極間的離子束3==別 響,進一步沿丫方向擴展。這樣就實現了離影 向的發散。 見了雖子束3沿¥方 @子中,也可以考慮用多孔電_^^ =。但疋,在付施方式的情况下,與在前面的實施方】 中的圖5所tf的結構不同。下面對該點進行說明。 工 具體地說,使用圖12的(a)所示的多孔電極。在圖 12的(a) +,為了容易理解設在各電極上的孔的中心位置 fY方向上不同’不是如圖5那樣把各電極在2方向上重 疊。在此為了方便,把各電極並排在χ方向上。在實際上 作為引出的電極系統配置這些電極的情况下,注意設^位 於Υ方向上正中的行上的電極孔。以使在各電極中設在該 行上的電極孔的中心位置在χ方向和γ方向上一致的方式 沿Ζ方向排列各電極。 在圖12的(a)中,在由7行4列構成的多孔電極在 Y方向上的三個位置cl、c2、c3上,沿χ方向描繪有輔助 16/30 201145343 線(參照圖中的虛線)。首先,如果關注 極中央的位置c2(第4行) 在方向上位於電 在各電極11〜13上的多孔電極的中心::二:可以理解設 過該位置c2的電極孔的離子束 。因此,透 同,沿z方向筆直前進。束闕5所示的實施方式相 然後,如果注意在位置c3 (第7 可以耆出在Y方向上設在各電極n〜=助=置 不同。具體地說,抑制電㈣的電極孔比二 白勺電極孔偏向Y方向-侧。經過這樣 = 束3的執跡被描繪在圖12的(b)中。 电蚀孔的離子 在圖12的(b)中’注意位於位置c3的—個電極孔 =在電齡U)内產生的等離子體(圖中晝剖 束3。被引出的離子束3大體對= "極孔的中、位置偏離的方向偏轉。設在抑制電極12上的 孔的中心位置比設在等離子體電極η上的孔的中心位= 向Υ方向-側偏離。因此’離子束3受到在各電 = 的影響,向Υ方向-側偏轉。與此相反,如果比較 叹在抑制電極12與接地電極13上的孔的中心位置,則由 於設在接地電極13上的孔的中心位置比設在抑制電極12 上的孔的中心位置更向與γ方向相反的一側偏離,所以離 子束3在此向與γ方向相反的一側偏轉。這樣透過使各電 極上的孔的中心位置不同,可以使通過所述電極孔的離子 束偏轉。在該例子中,對於位於比位置c2更靠向與γ方向 相反的一側(c3 —側)的第5行、第6行的電極孔,由於 〃、位於位置C3的電極孔採用相同的結構,所以透過這些電 極孔的離子束3也向與γ方向相反的一側偏轉。 17/30 201145343 線,可以看果皮意在位置el (第1行)引出的輔助 它電極上的孔的中心位置偏二的v孔的中心位i比設在其 此,通過位置cl的 D /、Y方向相反的一側。因 的離子束3 、料束3與_鯽義触位置C3 J偏轉此外,對於配置在 -側的第2行、第3行 置c2更罪向γ方向 極孔採用相·與位於位置Cl的電 向γ方向偏轉。、。 這些電極孔的離子束3也 位置,所所^由於设定了設在各電極上的電極孔的中心 如束3沿Y方向發散。在所述實施方式中, 極孔的1行〜第3行或第5行〜第7行的各電極的電 例如,:位f的關係設域相同,但也可以與此不同。 /直^以U抑制電極12上的電極孔的中心、位置盘茂 =到1極上的電極孔的中錢置的偏離量設定成從第i 漸變小。此二也可以與此相反,設定成逐 P 第仃〜弟7行上的電極孔的關係也與配 2幻行〜第_3行的電極孔相同,使在各行上的電極孔 的·^位置關隔變寬或變窄’也可以按照每行使用不同 ===外,也可以以第4行(位置⑵為中心,以使 γ方向上的發散成為非對稱的方式來構成各電 極的電極孔。 圖2是在1U所示的實施方式中使㈣f量分析磁鐵 該A施方式中的質量分析磁鐵4不具有使離子束3發 放的功能。因此,在XY平面上看的情况下,設在子方向 上的-對磁極為與X方向Α體平㈣形狀。在該實施方式 18/30 201145343 ΐ分trr源2射出發散⑽子束3,糾必須增加質 析磁鐵4的磁極間尺寸,以便可以容許隨著朝向 二=逐漸^的離子束3的尺寸。對於其它方面,由於與 同的實施方式參照圖6說明過的質量分析磁鐵4的 、'Ό構相同’所以在此省略了對它們的說明。 、圖14表示本發明另外的實施方式的離子注入裝置在 ΥΖ平面内的離子束3的轨道。 > 5亥貫施方式從離子源2射出以與Ζ方向成αΐ角度發散 的離=束3 ’利用質量分析磁鐵4使該離子束3進—步發 =:最終離子束3以α2的角度照射玻璃基板7。在前_ 頁%方式中,使用離子源2和質量分析磁鐵4中的任意一 個’使離子束3發散’在此使用離子源2和f量分析磁鐵* 雙方,分兩階段使離子束3發散。 在該實施方式中,作為離子源2和質量分析磁鐵 具體結構,可以把在此前的實施方式中說明過的離 和質量分析磁鐵4進行組合。例如,作為離子源狀 照圖9〜圖12說明過的結構。另一方面,作為八^ 鐵4使用參照圖6、圖7說明過的結構。適當設定 系、蘭電_狀、電極孔的配置、在„分析磁 極的傾斜度等,使得利用各構件的離子束3的1 為所希望的程度,從而最終使離子束3以大於〇声^成 據設計規則設定的容許發散角度以下的照射=】 基板7。 〇又…、射破璃 此外,也可以在離子源2和質量分析磁鐵4 不同於該兩種構件的、使從離子源2射出的離子 j =罝The irradiation angle of the substrate 7 is greater than the twist and is equal to or less than the set allowable divergence angle. The size of the distance 3 in the x direction is larger than the size of the glass substrate 7. Therefore, the bracket 8 supporting the glass substrate 7 is placed along with the figure! The x-direction is generally parallel to the direction indicated by the arrow Α, and the entire surface of the glass substrate 7 can be irradiated with the ion beam 3. Further, in the examples of Fig. §, Fig. 14, Fig. 15, and Fig. 17, which will be described later, the structure in which the entire surface of the glass substrate 7 is irradiated with the ion beam 3 is the same as that described herein. The irradiation angle of the ion beam 3 in the present invention is defined as the angle formed by the vertical line drawn on the surface of the glass substrate 7 and the ion beam 3 incident on the glass substrate 7 in the γ ζ plane. However, in the case where the surface of the glass substrate 7 on the side where the ion beam 3 is incident and the back surface thereof and the surface of the carrier 8 supporting the glass substrate 7 are in a parallel relationship, the vertical direction on the surface of the bracket 8 can be pulled. The line is regarded as a vertical line drawn on the glass substrate 7. In Fig. 2 and Fig. 9/30 201145343 8 and Fig. 14 which will be described later, the faces of the glass substrate 7 and the carrier 8 are in parallel relationship as described above. Therefore, in these figures, the angle formed by the vertical line drawn on the carriage 8 and the ion beam 3 (for example, α in Fig. 2) is taken as the irradiation angle (diverging angle) of the ion beam. In the present invention, the value of the maximum illumination angle allowed in any design rule is referred to as the valley 发 divergence angle. The allowable divergence angle is set according to design rules as described below. First, depending on whether the human vision can be discerned, the level of miniaturization at the time of manufacture is determined. Then, based on the level of miniaturization, design rules for the size of circuit wiring and the like of the device are determined. According to the design rule, the maximum allowable maximum angle of illumination of the ion beam is different depending on the design rules. For example, in the case where the circuit wiring size is 〇.3μηι according to the design rule, in order to manufacture a device having an allowable level characteristic, the irradiation angle of the ion beam must be in the range of up to 2.5 degrees. On the other hand, in the case where the circuit wiring size is as large as 按照μηι according to the design rule, in order to manufacture a device having an allowable level characteristic, the irradiation angle of the ion beam must be in the range of up to about 3 degrees. In the present invention, in consideration of the characteristics of the device to be manufactured, the irradiation angle of the ion beam 3 to the glass substrate 7 is designed to be larger than the twist and below the allowable divergence angle. Further, in order to increase the size of the glass substrate 7, it is advantageous to disperse the ion beam 3 in the following points. The size of the glass substrate 7 is increasing year by year in accordance with the increase in size of the liquid crystal product. In the ion implantation apparatus in which the parallel ion beam is emitted from the ion source and the parallel ion beam is irradiated to the glass substrate type, it is necessary to make the members constituting the ion implantation apparatus large. On the other hand, in the case of using the divergent ion beam of the present invention, since the size of the filament corresponding to the distance from the position where the ion beam is diverged to the glass substrate becomes 10/30 201145343, the ion 4 of the type described above is used. In contrast, it is possible to make a component such as an ion source, a member of the type, and an ion-injection equipped with a parallel lens as described in Patent Document 1: There is a = lens that parallelizes the ion beam, corresponding to "and right H The more specific structure of the Silk Xuanyuan 2 - the ion source 2 (4) axis 叩 deCtr〇de) system, the extraction electrode Li system = room. The parallel system to the Z direction including the plasma ferrets n & "The electrode is provided with 12 poles 13 on each electrode, and the slit beam 3 is in contact with the narrow rectangular shape of the ion source 2 of the present invention, the cover of the arc chamber 1 ,, the plasma electrode η And the arc chamber: the electrodes of the two electrodes and the electrode-carrying electrode system are provided with a positive charge: from the outside, in the present invention, the same is true. The sub-beam, in the other embodiments to be described later, the energy of the plasma electron beam 3 connected from the erbium drawn from the arc chamber 10 is determined by the electric potential of the electron beam 3 to prevent the electrons from being different from the potential difference V1 between the ion beam 3 and the electrode 13. In the opposite side of the direction in which the vt is applied to the suppression electrode, the permeation and the permeation of the permeation are performed at a large divergence angle of the ion beam at a large divergence angle, and the electrode can also be used. In the case of the case, the position of the porous core used in the case of the beam is in the x column. For example, it is conceivable that the holes provided in the respective electrodes are exactly in the Μ direction and the Y direction, and the gas 11/ is arranged in the two directions. 30 201145343 . t porous electrodes. Figure 5 shows the multi-work. In Figure 5, since each electrode is in the z-direction: Example: In addition, the mass analysis in the embodiment of Figure 2 is used in the 1 (10) of 4 = 2: (3) In the single-dotted line cut mass point indicated by "= _ iron 42 of the mass analysis magnet 4, in the case of '===." The mass analysis magnet 4: a pair of magnets protruding in the γ direction 』==:= The two sides are from the inside of the radius of gyration of the ion beam 3 (the side of the end b of the magnetic pole of == in Fig. 6) to the outside (the end of the magnetic pole on the upper side in the Y direction) a - side) is inclined so that ^ == Γ. (8) of Fig. 6 shows the case where the xz plane: ΐ = magnet 4. In the figure, "a, b, corresponds to the upper side in the Y direction described in (4) of Fig. 6 The ends a, b of the magnetic poles. As shown in the figure, (2), the path of the beam 3 is set to be constant. Further, the axis of (8) = x, Y, and Z of Fig. 6 is a fixed axis for the mass load. The point is as follows: the sub-beam 3: the sub-bundle 3 is wound around the upper side coil 14 and the lower side coil 15 respectively, and a current flows through the coils, and a lower direction from the γ direction is generated between the magnetic poles. In addition, as the upper coil Η, the lower coil 15, or ::::, each magnetic pole covers the runway around it (Fig. 7) is the mass analysis described in Fig. 6. An illustration of the Lorentz force experienced by the beam in the magnet 4. 12/30 201145343 The difference in the position in the γ direction is also different. Therefore, the Lorentian point on the ion beam along the γ-square Q j For the divergence of the surface points el, e2, and e3 at each point as the generation in the Y direction, it is in the direction of the magnetic field = Ming for the ion beams 3 e2 and e3, respectively. The value is parallel to the Y direction, = the position at the upper right, and any point in the magnetic field position. Lorentz force F and crosscut for each direction toward the upper left side of the paper Therefore, in the representative point el, & beam and the direction of the magnetic field are vertically below, and the Lorentz force F is shown as the vector components Fx, Fy toward the right and Y directions of the paper. The X direction is due to the vector component Fx, and the ion beam 3 is rotated by the mass analysis magnet 4 to the ion beam. This deflection is used on the one hand, because of the vector component FY, and the ion beam 3 is used in the analysis of the Bellows. deflection. The lower side of the γ direction (the opposite / the square of the square) represents the Lorentz force of the point e3. The amount of the Lorentz force component ~ the ion beam 3... is transferred as described above, since the position of the passing point ei is made ^The lower side is deflected so that the upper side of the representative point e3 is deflected by the upper side of the representative point e3, so that the ion beam side 3 is diverged in the direction of the γ direction of the strand/〇丫. Further, the tilt angle and quality of the magnetic pole pair are appropriately adjusted through 13/30 201145343. By analyzing the intensity of the magnetic field b of the magnet 4, the degree of divergence of the ion beam can be set to a desired degree. For example, if the inclination angle of the pair of magnetic poles shown in Fig. 6 is increased, the magnetic field B generated between the pair of magnetic poles is advanced. Bending. In this case, since the direction component of the Lorentz force acting on the ridge beam passing through the positions of the representative points el and e3 becomes large, the ion beam 3 can be more diverged in the γ direction. 'Because the vector component 位置 at the e3 position of the representative point is smaller than the vector component Fx at the portion representing the point e2, it may be considered that the amount of deflection of the ion beam at each point in the X direction is different', but this is not the case. So on behalf of "The value of the magnetic flux density at the e3 position is larger than the magnetic flux density at the position of the deuterium. Therefore, even if not the total length of the wire vector & Deflection, the ion beam 3 is mass-divided by 1. The plane is a solid-state _ sub-injector device in the ion beam of 2. In this example, the ion beam 3 diverges with 图 = ^ in the figure. Embodiment Iron = has a function of diverging the ion beam 3 in the x direction. A specific example of the core 2 of the Berry knife demagnetization = the source 2 is the structure and structure of the source 2 as shown in Fig. 9 In the embodiment, the ion source 'A' of the ion source 'A' shown in FIG. 3 + is different from the suppression electrode 12 and the fourth electrode body u in the shape of the plasma. In this embodiment, the body electrode u suppresses the electrode 12 The opposite face makes 'the plasma pole face is concave. The side electrode face is convex' so that the electrode of the suppression electrode is in the (4) towel of Fig. 9, and has a rectangle of 14/30 201145343 along the γ direction. The electrode of the slit is taken as an example of the structure of the extraction electrode system, and other than, for example, 'as shown in FIG. 9(b) Alternatively, a plurality of electrodes may be arranged in the γ direction by slits having a substantially rectangular shape along the X direction. Fig. 10 depicts electrodes constituting the extraction electrode system illustrated in Fig. 9 and applied thereto. The relationship between the voltages. Fig. 1 〇 u) and Fig.! : No: Fig. 9 (4) corresponds to Fig. 9 (b). The effect of the applied voltage on the voltage applied to each electrode, with the previous A mode The contents described with reference to Fig. 4 are the same, and: in (b) of Fig. H), the ion beam 3 drawn by each slit arranged in the dotted line = Y direction is as shown in (b) of The ion beam 3 drawn from each slit is diverged in the γ direction, and finally the ion beam 3 having the same outer shape as the ion beam 3 shown in the figure is emitted from the ion source 2. The principle of the ion beam 3 deflection between the electrodes of the middle beam two is shown in (1) of the la) of FIG. 9 (the ion source 2 exemplified in (10) of FIG. 1 is the same as the U of FIG. (a) depicting the interfering electrode between the four poles η of the ion beam 3 deflecting through the pole 12 and suppressing the passage of the suppressing electrode 12 and the grounding ^ θ; In each figure, the dotted line of the drawing is equal, and the continuous line of the divisor beam 3 is deflected to indicate that the electric field is indicated to each electrode. The ion d line of the electric field generated by the pole is expressed in each electric The potential of (4) of Figure 11 is equal to the side of the suppression electrode i::11 side (the side in the figure (the right side in the figure) is higher, 15/30 $ 201145343, so from the side of the plasma electrode n to (4) The pole ', Ε, the electric field 垂直 is perpendicular to the equipotential line. The influence of the electric field to the electric field Ε is generated on the 2 - side of the human, such as by the double-dotted line drawing, the ion beam 3 is received thereafter, and is incident on the suppression electrode 12 and the ground electrode.衮 扩展 衮 Υ , , , , , , , , , , , 扩展 扩展 扩展 扩展 扩展 扩展 扩展 扩展 扩展 偏转 扩展 扩展 扩展 扩展 扩展 扩展 扩展 扩展The direction of the direction of the generated electric field is determined. The synthesis of σ and the direction vector is shown in (b) of Fig. 11, since the potential of (4) is on the side of the ground electrode 13 (the left side in the figure, the middle side of the picture) The ground electrode Π - the lateral suppression electrode 12 is generated on one side so that it is perpendicular to the equipotential line. The ion beam 3 == between the electrodes is further excited, and further expands in the x-direction. Thus, the divergence from the image is achieved. I saw that although the bundle 3 is along the ¥ square, it is also possible to consider the porous electric _^^ =. However, in the case of the application method, the structure of the tf of Fig. 5 in the previous embodiment] The point is described below. Specifically, the porous electrode shown in Fig. 12 (a) is used. In (a) + of Fig. 12, in order to easily understand the center position of the hole provided on each electrode The difference in the fY direction is not to overlap the electrodes in the two directions as shown in Fig. 5. Here, for the sake of convenience, the electrodes are arranged side by side in the x-direction. In the case where the electrodes are actually arranged as the extracted electrode system, it is noted that ^ electrode holes on the line in the middle of the Υ direction so that The electrodes are arranged in the Ζ direction in such a manner that the center positions of the electrode holes provided on the row are aligned in the χ direction and the γ direction. In (a) of FIG. 12, the porous electrodes composed of 7 rows and 4 columns are in In the three positions cl, c2, and c3 in the Y direction, the auxiliary 16/30 201145343 line is drawn along the χ direction (see the dotted line in the figure). First, if the position c2 (the fourth line) of the center of the pole is concerned, the direction is Located at the center of the porous electrode electrically connected to each of the electrodes 11 to 13: 2: The ion beam of the electrode hole provided at the position c2 can be understood. Therefore, it is transparent and straight forward in the z direction. Then, if you pay attention to the position c3 (the seventh can be set in the Y direction, the electrodes are set to n==help= set differently. Specifically, the electrode hole for suppressing electricity (4) is biased toward the Y-direction side from the electrode hole of the second electrode. The execution of such a bundle 3 is depicted in (b) of Fig. 12. The ions of the etched holes are in the (b) of Fig. 12 'note the plasma generated in the electrode hole at the position c3 = the electrical age U) (the 昼 昼 beam 3 in the figure. The extracted ion beam 3 is substantially = "The center of the pole hole is deflected in the direction in which the position is deviated. The center position of the hole provided on the suppressing electrode 12 is deviated from the center position of the hole provided on the plasma electrode η = the direction toward the Υ direction - thus the 'ion beam 3 is deflected toward the Υ direction-side by the influence of each electric power. On the contrary, if the center position of the hole on the suppression electrode 12 and the ground electrode 13 is sighed, the center of the hole provided on the ground electrode 13 The position is shifted further toward the side opposite to the γ direction than the center position of the hole provided on the suppression electrode 12, so that the ion beam 3 is deflected toward the side opposite to the γ direction. Thus, the center of the hole on each electrode is transmitted. The ion beam deflected through the electrode hole can be deflected in a different position. In this example, the electrode of the fifth row and the sixth row located on the side (c3 - side) opposite to the γ direction from the position c2 Hole, due to 〃, the electrode hole at position C3 uses phase The structure is such that the ion beam 3 passing through the electrode holes is also deflected toward the side opposite to the γ direction. 17/30 201145343 Line, it can be seen that the peel is intended to be located at the position el (row 1) to assist the hole in the electrode The center position i of the v-hole with the center position being two is set to the side opposite to the D/, Y direction of the position cl. The ion beam 3, the bundle 3, and the _ 鲫 sense position C3 J are deflected. In the second row and the third row disposed on the - side, c2 is more sinful. The phase in the γ-direction pole hole is deflected in the direction of the electric direction γ in the position C1. The ion beam 3 of these electrode holes is also positioned. The center of the electrode hole provided on each electrode is set such that the beam 3 is diverged in the Y direction. In the above embodiment, each of the 1 to 3 or 5 to 7 rows of the electrode hole The electric current of the electrode is, for example, the relationship of the position f is the same, but it may be different from this. / Straight to suppress the center of the electrode hole on the electrode 12, and the position of the electrode hole on the electrode hole to the first pole The amount of deviation is set to be smaller from the i-th gradient. The second can also be reversed, and the electrode holes on the line from the second to the seventh line are set. The relationship is also the same as that of the electrode holes of the 2nd illusion to the _3rd row, so that the position of the electrode hole on each row is widened or narrowed. It can also be used differently for each row === The electrode hole of each electrode can be configured so that the divergence in the γ direction is asymmetric around the fourth row (position (2). Fig. 2 shows the (four) f-quantity analysis magnet in the embodiment shown in Fig. 1A. The mass analysis magnet 4 in the mode does not have a function of distributing the ion beam 3. Therefore, in the case of looking in the XY plane, the -to-magnetic direction in the sub-direction and the X-direction body are in a flat (four) shape. Mode 18/30 201145343 Dividing the trr source 2 to shoot the scattered (10) beamlets 3, the correction must increase the size of the magnetic poles of the profiling magnet 4 so as to allow the size of the ion beam 3 to follow the direction of the second. In other respects, since the mass analysis magnets 4 described in the same embodiment with reference to Fig. 6 have the same structure, the description thereof will be omitted. Fig. 14 is a view showing the orbit of the ion beam 3 in the pupil plane of the ion implantation apparatus according to another embodiment of the present invention. > 5 贯 贯 从 从 从 从 从 从 从 从 从 从 从 从 从 从 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The glass substrate 7 is irradiated. In the first _ page % mode, any one of the ion source 2 and the mass analysis magnet 4 is used to "divide the ion beam 3". Here, both the ion source 2 and the f amount analysis magnet * are used, and the ion beam 3 is diverged in two stages. . In this embodiment, as the specific structure of the ion source 2 and the mass spectrometer magnet, the separation and mass analysis magnet 4 described in the previous embodiment can be combined. For example, the structure described with reference to Figs. 9 to 12 as an ion source. On the other hand, the structure described with reference to Figs. 6 and 7 is used as the octagonal iron 4. Appropriately set the system, the blue electric current, the arrangement of the electrode holes, the inclination of the magnetic poles, etc., so that the ion beam 3 of each member is used to a desired degree, thereby finally making the ion beam 3 larger than the click sound ^ Irradiation below the allowable divergence angle set by the design rule == Substrate 7. 〇又..., 破玻璃, In addition, ion source 2 and mass analysis magnet 4 may be different from the two components to make ion source 2 Ejected ions j = 罝

方向發散的構件。在圖15中,作為一個例 3沿Y 表不有使從離 19/30 S- 201145343 » 電磁鐵17。在該實 面的實施方式中叙述過的^〜里^磁==使用與前 13中記_質量分析磁鐵。 ^載_子源以及圖 在圖轉電磁鐵17的-個例子。 點劃線切斷偏二所, 圖!6的㈦表示從方向看其斷面時的情况。 如圖16的Γ 。看圖16的(a)時的平面圖。 作為離子1所鱗的那樣,偏轉電顧17具有從 ”料束3的短邊方向的χ方向 :: 大-: 束3相互相對。此外,在設置在::二二 在把位於¥方向上側的線圈作為上側線圈的 把位於γ方向下側的線圈作為下側線圈m時 流,使得在上爾_產生向χ方向的'、、, 在下側線關產生向與X方向相反的方向的磁場Β。 ^過產生這樣的磁場Β,透過上側線圈22、2 =向Υ方向偏轉’透過下側線圈2〇、21間的離子二 =、二方向相反的-側偏轉。如圖16的(b)所描 樣’利用所述偏轉可以使離子束3整體沿γ方向發散。 對於測量向玻璃基板7照射的離子束3的照射角度 結構,在圖17中表示了—個例子。圖17的離子注入裝^ ^分析狹缝5之後具備離子束限制手段24。在離子束限制 ^段24中,僅使離子束3在γ方向上的一部分透過。利用 維子束輪舰9檢測透過離子束限制手段24後的離子 20/30 201145343 3。此後,根據Z方向上的離子束限制手段24與離子束鈐 廓儀9之間的距離、γ方向上的離子束限制手段2 4的阳 中心位置與向離子束輪廓儀9照射轉子束3的離子^ 部位置之間的麟,利用控制裝置2 5計算離子束3向 基板7的照射角度。下面參照圖18〜圖2G詳細描述到 出所述照射角度為止的過程。 … 在質量分析型的離子注入裝置i中,在乂方向上的離 =束3的尺寸在分析狹縫5附近成為最小(參照圖】A component that diverges in the direction. In Fig. 15, as an example 3, along the Y table, there is no electromagnet 17 from 19/30 S-201145343. In the embodiment of the present embodiment, the magnetic field is used in the first and third stages. ^ _ _ _ source and figure in the figure to the electromagnet 17 - an example. Dotted line cut off the second place, figure! (7) of 6 indicates the situation when the section is viewed from the direction. As shown in Figure 16. See the plan view of (a) of Fig. 16. As the scale of the ion 1, the deflection yoke 17 has a χ direction from the short side direction of the bundle 3:: large -: the bundle 3 opposes each other. In addition, the yoke is disposed at the upper side of the ¥ direction. The coil as the upper coil flows when the coil located on the lower side in the γ direction is the lower coil m, so that the magnetic field 向 in the direction opposite to the X direction is generated in the lower direction of the upper side. ^The magnetic field 产生 is generated, and the upper side coils 22 and 2 are deflected in the Υ direction, and the ions passing through the lower side coils 2, 21 and 21 are deflected in opposite directions, as shown in Fig. 16 (b). The drawing can use the deflection to cause the ion beam 3 to diverge as a whole in the γ direction. For measuring the irradiation angle structure of the ion beam 3 irradiated to the glass substrate 7, an example is shown in Fig. 17. The ion implantation device of Fig. 17 ^ ^ After the analysis slit 5, the ion beam limiting means 24 is provided. In the ion beam limiting section 24, only a part of the ion beam 3 is transmitted in the γ direction. After the transmission of the ion beam limiting means 24 is detected by the dimensional beam carrier 9 Ion 20/30 201145343 3. After that, according to The distance between the ion beam limiting means 24 in the Z direction and the ion beam profiler 9, the positive center position of the ion beam limiting means 24 in the gamma direction, and the ion beam of the rotor beam 3 irradiated to the ion beam profiler 9. The lining between the positions is used to calculate the irradiation angle of the ion beam 3 to the substrate 7 by the control device 25. The process up to the irradiation angle will be described in detail below with reference to Figs. 18 to 2G. In i, the size of the beam in the x direction is the smallest in the vicinity of the analysis slit 5 (refer to the figure).

不喊子束3外形的單點劃線)。離子束限制手段24進 用^#僅麟子束3的-部分妨。軒束 =要能覆㈣子束3整體的尺寸,但如果離子束限制手 奴24位料析狹缝5的後部分(後段 子束3在X方向上聚隹,所w目士 且幻由於離 ? ,、、、斤乂具有可以使離子束限制手段 在X方向上的尺寸減小的優點。此外,在圖p ^析狹縫5的後部分設錄子束關手段24,但也可 分析狹缝5的前部分(前段)配㈣子束關手段24。 圖18的(a)表示離子束限制手段%的一個 = 段24包括多個播板%,擔』 幵=,邊沿γ方向排列(參_8的⑽。 背二裝有^珠螺母’該滚珠螺母與沿x方向伸出的i珠 ”配合。透過利用電動機27 可以使各擋板26沿X方向移動。 ㈣止反钇 =19的⑷A示離子束限制手段24 同,在該例子中,擋板沿γ方向移動'二 擒板8〜3G沿γ方向移動的機構與前面的例子相同,包括 # 21/30 201145343 各擋板上的滾珠螺母、與浪珠螺母螺紋配合的滾珠絲 二以及使各滾珠絲槓轉_電動機3卜此外,在該例子中, :^ 3。也邊在z方向上相互錯開位置’邊沿γ方向排 上的:二目19的(b))°此外’如果不考慮裝置在Y方向 2尺寸’則代替由擋板28〜3q的三傭板構成的結構, 28或魏29與擋板30兩塊撞板構成的結 構作為離子束限制手段使用。 γ方^if 18、圖19所示的多塊擔板在Χ方向上或在 於使離二•移動,在γ方向上的任意位置’可以形成用 縫通過的狹缝。沿γ方向順序形成所述狭 ”亚且對離子束3向玻璃基板7的照射角度進行測量。 圖20描緣了通過離子束限制手段24後的 子束輪廓儀9的情况。在該例子中,把離子 儀9配置成在泣平面内與玻璃基板7的被照射離子 面平行。通過離子束限制手段24後的離子束3在γ 時i對,有^度。該寬度有時在Υ方向上上下對稱,也有 d,向二側發散的離子束3的照射角度為 α4。可以散的離子束3的照射角度為 罝體地^til 上的參數計算出各照射角度。Do not call the single-dot line of the bundle 3 shape). The ion beam limiting means 24 uses only the portion of the lining bundle 3. Xuan beam = to cover (4) the size of the sub-bundle 3 as a whole, but if the ion beam limits the rear part of the slot 5 of the hand slave 24 (the latter sub-bundle 3 gathers in the X direction, The distance of ?, , , and 乂 has the advantage that the size of the ion beam limiting means can be reduced in the X direction. Further, the sub beam closing means 24 is provided in the rear portion of the slit 5, but it is also possible. The front portion (front section) of the analysis slit 5 is provided with (four) beamlet closing means 24. Fig. 18(a) shows that one of the ion beam limiting means % = segment 24 includes a plurality of broadcast panels %, 』 幵 =, edge γ direction Arrangement (refer to (10) of _8. The back nut is equipped with a bead nut. The ball nut is engaged with the i-bead extending in the x direction.) The baffle 26 can be moved in the X direction by the motor 27. (4) (4)A of =19 indicates that the ion beam limiting means 24 is the same, in this example, the mechanism in which the baffle moves in the γ direction 'the movement of the second jaws 8 to 3G in the γ direction is the same as the previous example, including # 21/30 201145343 Ball nut on the plate, ball screw 2 matched with the nut of the ball nut, and turning the ball screw _ motor 3 In this example, :^ 3. Also in the z direction, the position is shifted to the 'edge γ direction: the second head 19 (b)) ° and the other 'if the device is not in the Y direction 2 size' The structure consisting of the three boards of the baffles 28 to 3q, 28 or the structure of the two plates of the baffle 30 and the baffle 30 is used as an ion beam limiting means. γ square ^if 18, the multiple blocks shown in Fig. 19 The slit may be formed in the Χ direction or in the 位置 direction, and may be formed at any position in the γ direction. The slits are sequentially formed in the γ direction and the ion beam 3 is directed to the glass substrate 7. The irradiation angle is measured. Fig. 20 depicts the case of the beamlet profiler 9 after passing through the ion beam limiting means 24. In this example, the ionizer 9 is arranged to be irradiated with the ionized surface of the glass substrate 7 in the weeping plane. Parallel. The ion beam 3 after passing through the ion beam limiting means 24 has a degree of γ at γ. The width is sometimes vertically symmetrical in the Υ direction, and d is also present, and the irradiation angle of the ion beam 3 diverging to the two sides is α4. The angle of the ion beam 3 that can be scattered is calculated as the parameter on the body ^til Irradiation angle.

方二’根據離子束限制手段24與離子束輪輕9在Z 狹缝^輯(Z2 —Z1)以及由離子束關手段24形成的 =的中心位置與由離子束輪廓儀9檢測到的離子束 射g的離子束端部的距離⑺,γ2),可以計算出各照 子束離子ΐ3所照射的_基板7的面與離 …束麵儀9相互平行地沿Μ向配置,但不限於此,也 22/30 201145343 下Y方向傾斜。即使在這樣的情況 透過汉置把玻璃基板7相掛 射角卢:,可以導出離子束3 _===;_ 的結=:=::::?:r=度 ^適當設定作為離子束發散;二:= ί磁2=賴17料磁場、電場、電極配置、電極結 ==:==,,也可 ::塊_了的某種===== 所述的測量照射角度的機構,可以在離子注入=置 =離子束3向玻璃基板7的照射角度是否正確"。削 左它的轡化例 ^ 方坏軒源2可响― • ί源弟x(F_an)式、桶式、旁熱式等任意類型的離 此外,也可以與上述的偏轉電磁 2和質量分析磁鐵4之間設 二?,子源 離子束3沿離子束3的長邊方向:::; 構成难子注人裂置,使得離子束3發散。 神田时 鐵4^子ί^ΙΓΓ中’不㈣子源2或質量分析磁 =tt 散_偏轉電磁鐵17使離子束 1 向上發散的結構,但本發明不限於此。即 採用把在此前的實施方式中已經叙述過的利用離子源 23/30 201145343 . * 莖分析磁鐵4的發散仙與湘偏轉電磁鐵17的發散作用 組合的結構。在配置掃描器的情况下,也可以同樣地 子源2、質量分析磁鐵4的發散作用與利用掃描器 的發政作用組合的結構。 兩,外,在上述的實施方式中,假設作為離子束是具有 ^電荷的離子束’但也可以是具有負電荷_子束。^該 下要把使離子束偏轉的磁鐵的磁場方向和施加在 可。源2的引出電極系統上的電壓的極性設定成相反的即 的^夕曰卜,在上述實施方式中’支承玻璃基板7的托架8 構,定的’但也可以設置使托架繞x軸轉動的機 過把該機構與_離子源2等_子束3的發散作 (::角:Γ節向玻璃基板7照射的離子束的照射角度 先確麻’可以設置控織置25,根據預 25。 、' σ异出妝射角度,但不是必須具備控制裝置 制過在監視器上顯示在Υ方向上的由離子束限 出^ υΊ 縫的中心位置、由離子束輪廓儀9檢測 離^的離子束端部位置 '離子束限制手段24與 、、主入Μ I儀9在Ζ ^向上的位置這樣的各種訊息,離子 所期望的角度。 开也可以相照射角度是否是 此外除了别面敍述者以外,在 ,圍内,雜也可以進行各觀進和變更 【圖式簡單說明】 圖1絲示本發_離子注人裝置-個實施方式的ΧΖ 24/30 201145343 平面圖。 貝知方式的離子注入裝置的 圖2係表示在本發明—個 YZ平面内的離子束軌道。 圖3係表示圖2中記载的離子源的 圖4係圖3中記载的離子源的平_。1子的立體圖。 它實=係構賴3中記_離子源糾出電極系統的其 圖6係圖2中記載的質量分析磁鐵的— 的⑷為質量分析磁鐵的剖面圖,圖6的 ^回The square 2' is based on the ion beam limiting means 24 and the ion beam wheel 9 in the Z-slot (Z2 - Z1) and the center position of the = formed by the ion beam-closing means 24 and the ions detected by the ion beam profiler 9. The distance (7), γ2) of the end of the ion beam of the beam g can be calculated, and the surface of the substrate 7 irradiated by each of the photon beam ions ΐ3 can be arranged in the zigzag direction parallel to the beam surfacer 9, but is not limited thereto. , also 22/30 201145343 under the Y direction tilt. Even in such a case, by arranging the glass substrate 7 by the Han dynasty, it is possible to derive the ion beam 3 _===; _ knot =:=::::?:r=degree^ appropriately set as the ion beam Divergence; two: = ί magnetic 2 = Lai 17 material magnetic field, electric field, electrode configuration, electrode junction ==:==, can also be:: block_a certain ===== The mechanism can be set in the ion implantation = set = ion beam 3 to the glass substrate 7 is correct. The left side of the smashing example ^ Fang Bad Xuan source 2 can be sounded - • ί source brother x (F_an) type, barrel type, side heating type and other types of separation, can also be combined with the above deflection electromagnetic 2 and mass analysis Two magnets are arranged between the magnets 4, and the source ion beam 3 is along the longitudinal direction of the ion beam 3:::; Kanda time iron 4^ sub ^ ΙΓΓ ^ 'n (four) sub source 2 or mass analysis magnetic = tt _ deflection electromagnet 17 makes the ion beam 1 divergence structure, but the invention is not limited thereto. That is, a structure in which the ion source 23/30 201145343 is used as described in the previous embodiment, and the divergence of the stem analysis magnet 4 is combined with the divergence of the Xiang deflection electromagnet 17 is employed. In the case of arranging the scanner, the divergence of the sub-source 2 and the mass analysis magnet 4 can be similarly combined with the governing action of the scanner. In addition, in the above embodiment, it is assumed that the ion beam is an ion beam having a charge, but it may have a negative charge _ beam. ^ The direction of the magnetic field of the magnet that deflects the ion beam is applied to it. The polarity of the voltage on the extraction electrode system of the source 2 is set to be opposite, that is, in the above embodiment, the carrier 8 supporting the glass substrate 7 is fixed, but it can also be set so that the carrier is wound around x. The machine that rotates the shaft passes the divergence of the _ beamlet 3 such as the _ ion source 2 (:: angle: the angle of irradiation of the ion beam irradiated to the glass substrate 7 is first confirmed), and the control woven 25 can be set. According to the pre-25., ' σ different makeup angle, but it is not necessary to have the control device made on the monitor displayed in the Υ direction of the center position of the 离子 slit by the ion beam, detected by the ion beam profiler 9 The position of the ion beam end position of the ion beam is controlled by the ion beam limiting means 24 and the position of the main ion finder I in the Ζ ^ position. The desired angle of the ion is also opened. Other than the narrator, in the surrounding area, the miscellaneous can also carry out various observations and changes [Simplified description of the drawings] Figure 1 shows the hair _ ion injection device - an embodiment of the ΧΖ 24/30 201145343 floor plan. Figure 2 of the ion implantation apparatus of the known mode is shown in The present invention is an ion beam trajectory in the YZ plane. Fig. 3 is a perspective view showing the ion source of Fig. 2 and Fig. 4 is a perspective view of the ion source of the ion source shown in Fig. 3. (3) of the mass spectrometry magnet of FIG. 2 is a cross-sectional view of the mass analysis magnet, and FIG. 6

平面中的磁極寬度的變化。 J表不在XZ 圖7係對通過圖6中記载的質量 束承受的洛純力龍明圖。、㈣軸部的離子The change in the width of the magnetic pole in the plane. The J table is not in the XZ. Fig. 7 is a diagram of the Luo Chunli Mingming which is subjected to the mass beam described in Fig. 6. (4) Ions in the shaft

平面Γ8表林發明另―個實施方式轉子置在YZ 千面内的離子束軌道。 八裒置在YZ 圖9係表示圖8中記载的離 的U)為具有沿著γ方向的大體 W出電極系統,圖9的(b )為具有㈣狹縫的 的狹縫的引出電極系統。 者X方向的大體矩形 圖10係圖9中記載的離子源 為與圖9的⑷對應的平面圖,圖m\i0的⑷ ㈦對應的平面圖。 ⑽的⑻為與圖9的 圖11係表示對通過各電極之間 用,圖11的(a)是在等離子體雷朽產生的偏轉作 的作用’圖η的㈦表示在間產生 生的作用。 辦制電極和接地電極之間產 圖12係構成圖9中記載的離子源的引出電極系統的其The plane Γ8 table forest invents another embodiment of the ion beam trajectory in which the rotor is placed in the YZ thousand plane. Fig. 9 shows that U) shown in Fig. 8 is a substantially W output electrode system having a γ direction, and Fig. 9 (b) is a lead electrode having a slit of (4) slit. system. The substantially rectangular shape in the X direction is shown in Fig. 10. The ion source shown in Fig. 9 is a plan view corresponding to (4) of Fig. 9, and (4) (7) corresponding to Fig. m\i0. (8) (8) is shown in Fig. 11 and Fig. 9 is used for the passage between the electrodes, and Fig. 11(a) is the action of the deflection caused by the plasma blasting. . Between the working electrode and the ground electrode, FIG. 12 is the lead electrode system constituting the ion source shown in FIG.

S 25/30 Ν 201145343 它實施例’圖12的(a)表示設在各電極上的電極孔在γ 方向上的中心位置的關係。圖12的(b)表示通過比圖ι2 的(a)中記载的位置c2位於更靠向與γ方向相反一侧的 電極孔的離子束偏㈣情况’圖12 %⑷表示通過比圖 U的(〇中記載的位置e2位於更靠向γ方向—側的電極 孔的離子束偏轉的情况。 圖13係圖8中記載的質量分析磁鐵的一個例子,圖 巫U)為質量分析磁鐵的剖面圖,圖丨3的⑻表示在 z平面中的磁極寬度的變化。 圖U係表示本發明另外的實施方式的離子注入裝置 仗面内的離子束軌道。 yz平 絲林發明其它#財式的離子注入裝置在 yz千面内的離子束軌道。 16的圖圖15中記載的偏轉電磁鐵—個例子的圖,圖 γΖ平面矣:’’、偏轉電磁鐵的剖面圖’圖16的⑴表示從 十面看的偏轉電磁鐵的情况。 乂2平回面圏7 ^不本發明的離子注入I置-個實施方式的 以,、為褒備有測量照射角度的手段的例子。 圖18的〔f 17中記載的離子束限制手段的一個例子, =18的U)表示在XY平面上 在YZ平面上的情况。 ^况圖18的(b)表不 圖l/的c 17中記载的離子束限制手段另外的例子, 在YZ平面ai=^Y平面上的情况,圖19的㈤表示 子。圖2G係表不測量離子束向麵基板的照射角度的例 26/30 201145343S 25/30 Ν 201145343 This embodiment' (a) of Fig. 12 shows the relationship between the center positions of the electrode holes provided in the respective electrodes in the γ direction. (b) of FIG. 12 shows a case where the ion beam is shifted (4) toward the electrode hole on the side opposite to the γ direction from the position c2 described in (a) of FIG. 2A. FIG. 12(4) shows the pass ratio U. (The position e2 described in 〇 is located in the case where the ion beam is deflected toward the electrode hole in the γ direction side. Fig. 13 is an example of the mass analyzing magnet shown in Fig. 8, and Fig. U is a mass analyzing magnet. In the cross-sectional view, (8) of Fig. 3 indicates the change in the width of the magnetic pole in the z-plane. Fig. U is a view showing an ion beam trajectory in the facet of the ion implantation apparatus according to another embodiment of the present invention. Yz flat silk forest invented ion beam orbits in other yz thousand faces. Fig. 15 is a view showing an example of a deflection electromagnet shown in Fig. 15, a γ Ζ plane 矣: '', and a sectional view of the deflection electromagnet. Fig. 16 (1) shows a deflection electromagnet seen from ten sides.乂2 flat back surface ^ 7 ^ Not the ion implantation I of the present invention - an embodiment of the means for measuring the irradiation angle. An example of the ion beam limiting means described in [f17] in Fig. 18, U of = 18) indicates a case on the YZ plane on the XY plane. Further, in the case of (b) of Fig. 18, another example of the ion beam limiting means described in Fig. 1/c17, in the case of the YZ plane ai = ^Y plane, (f) of Fig. 19 represents a sub. Fig. 2G shows an example of not measuring the irradiation angle of the ion beam to the surface substrate. 26/30 201145343

• I 【主要元件符號說明】 1. 離子注入裝置 2. 離子源 3. 離子束 4. 質量分析磁鐵 5. 分析狹缝 6. 處理室 7. 玻璃基板 8. 托架 • 9.離子束輪賴 10. 電弧室 11. 等離子體電極 12. 抑制電極 13. 接地電極 14. 上側線圈 15. 下側線圈 16. 磁幸厄 • 17.偏轉電磁鐵 18. 磁輛 19. 磁輛 20. 下侧線圈 21. 下側線圈 22. 上側線圈 23. 上側線圈 24. 離子束限制手段 25. 控制裝置 S: 27/30 201145343 26. 擋板 27. 電動機 28. 擋板 29. 擋板 30. 擋板 31. 電動機• I [Description of main component symbols] 1. Ion implantation device 2. Ion source 3. Ion beam 4. Mass analysis magnet 5. Analysis slit 6. Processing chamber 7. Glass substrate 8. Bracket • 9. Ion beam rotation 10. Arc chamber 11. Plasma electrode 12. Suppression electrode 13. Ground electrode 14. Upper coil 15. Lower coil 16. Magnetic beam; 17. Deflection solenoid 18. Magnetic 19. Magnetic 20. Lower coil 21. Lower side coil 22. Upper side coil 23. Upper side coil 24. Ion beam limiting means 25. Control unit S: 27/30 201145343 26. Baffle 27. Motor 28. Baffle 29. Baffle 30. electric motor

Claims (1)

201145343 七、申請專利範圍: 1 ’板綠料^获向玻璃基 在從離子型的離子注入裝置, *,竭離子磁鐵的所述離子束的輸送路徑 散,從而使沿該離子束的長邊方向發 所設定的容許笋散角Μ =㈣度且在根據設計規則 長邊方向與該===== 2. 手如娜w㈣離子束發散 3. 手如仏其_子束發散 4. 如申請專利範圍第j項的離子注入裝置,其中 手段包括該離子源和該f量分析麵兩者’。、κ u Hi專利範圍第1至4項中任一項的離子注入裝置,其中 的一:^=束==_—嫩 ^束輪廓儀,檢測通過該離子束限制手段後的該離子 束在長邊方向上的離子束端部。 6·如申請專利細第5項_子注人裝置,其中該離子束 段被設置成在娜子束的輸送路徑上,觸制好束進行質 1 29/30 S 201145343 分析的分析狹縫鄰接。201145343 VII. Patent application scope: 1 'The green material of the plate is obtained from the ion-implanting device of the ion-type ion implantation device, *, and the ion beam is scattered along the transport path of the ion beam so that the long side along the ion beam The direction of the allowable shoot angle Μ = (four) degrees and in the direction of the long side according to the design rule with the ===== 2. The hand such as Na w (four) ion beam divergence 3. The hand is like its _ beam divergence 4. An ion implantation apparatus of claim j, wherein the means comprises both the ion source and the f-quantity analysis surface. The ion implantation apparatus of any one of items 1 to 4 of the κ U Hi, wherein: one = ^ = beam = = _ - a beam profiler, the ion beam after detecting the ion beam limiting means is The end of the ion beam in the direction of the long side. 6. As claimed in the patent item 5, the sub-injector device, wherein the ion beam segment is set to be in the transport path of the nano beam, and the beam is subjected to the analysis of the analysis of the slit 1A 29/30 S 201145343 .
TW100103952A 2010-06-04 2011-02-01 Ion implantation device TWI420563B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128422A JP5041260B2 (en) 2010-06-04 2010-06-04 Ion implanter

Publications (2)

Publication Number Publication Date
TW201145343A true TW201145343A (en) 2011-12-16
TWI420563B TWI420563B (en) 2013-12-21

Family

ID=45052804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103952A TWI420563B (en) 2010-06-04 2011-02-01 Ion implantation device

Country Status (4)

Country Link
JP (1) JP5041260B2 (en)
KR (1) KR101245501B1 (en)
CN (1) CN102270557B (en)
TW (1) TWI420563B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476809B (en) * 2012-08-21 2015-03-11 Nissin Ion Equipment Co Ltd Ion implantation apparatus
TWI619138B (en) * 2012-11-13 2018-03-21 Sumitomo Heavy Industries Ion Technology Co Ltd Ion implantation device, beam parallelization device and ion implantation method
TWI747194B (en) * 2019-03-27 2021-11-21 日商日新離子機器股份有限公司 Mass separator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299871B (en) * 2013-07-16 2016-12-28 上海凯世通半导体股份有限公司 Ion source system and ion beam current system
TWI501286B (en) * 2014-06-27 2015-09-21 Advanced Ion Beam Tech Inc Ion implanter
JP6721486B2 (en) * 2016-10-18 2020-07-15 東京エレクトロン株式会社 Ion beam irradiation device and substrate processing device
CN107248491A (en) * 2017-06-14 2017-10-13 上海华力微电子有限公司 A kind of bearing calibration of the implant angle of ion beam
JP7029633B2 (en) * 2018-02-09 2022-03-04 日新イオン機器株式会社 Ion source, ion implanter
US10714296B2 (en) * 2018-12-12 2020-07-14 Axcelis Technologies, Inc. Ion source with tailored extraction shape
CN110718439B (en) * 2019-09-30 2020-12-18 中国科学院长春光学精密机械与物理研究所 Ion beam processing apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350926A (en) * 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
JP3511930B2 (en) * 1999-02-09 2004-03-29 日新電機株式会社 Ion source and ion beam irradiation apparatus using the same
US6635880B1 (en) * 1999-10-05 2003-10-21 Varian Semiconductor Equipment Associates, Inc. High transmission, low energy beamline architecture for ion implanter
US6437350B1 (en) 2000-08-28 2002-08-20 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for adjusting beam parallelism in ion implanters
US7326941B2 (en) * 2004-05-18 2008-02-05 Advanced Ion Beam Technology, Inc. Apparatus and methods for ion beam implantation using ribbon and spot beams
JP4414988B2 (en) * 2005-08-22 2010-02-17 アドバンスト イオン ビーム テクノロジー インク Ion beam implantation apparatus and method
JP4997756B2 (en) * 2005-12-20 2012-08-08 日新イオン機器株式会社 Ion beam irradiation apparatus and beam uniformity adjustment method
US7394079B2 (en) * 2006-01-27 2008-07-01 Varian Semiconductor Equipment Associates, Inc. Architecture for ribbon ion beam ion implanter system
JP4882456B2 (en) * 2006-03-31 2012-02-22 株式会社Ihi Ion implanter
JP4218699B2 (en) * 2006-06-09 2009-02-04 日新イオン機器株式会社 Analysis electromagnet
JP5560036B2 (en) * 2006-06-12 2014-07-23 アクセリス テクノロジーズ, インコーポレイテッド Beam angle adjustment in ion implanter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476809B (en) * 2012-08-21 2015-03-11 Nissin Ion Equipment Co Ltd Ion implantation apparatus
TWI619138B (en) * 2012-11-13 2018-03-21 Sumitomo Heavy Industries Ion Technology Co Ltd Ion implantation device, beam parallelization device and ion implantation method
TWI747194B (en) * 2019-03-27 2021-11-21 日商日新離子機器股份有限公司 Mass separator

Also Published As

Publication number Publication date
CN102270557A (en) 2011-12-07
JP5041260B2 (en) 2012-10-03
KR101245501B1 (en) 2013-03-25
TWI420563B (en) 2013-12-21
KR20110133413A (en) 2011-12-12
CN102270557B (en) 2014-03-05
JP2011253775A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
TW201145343A (en) Ion injection device
US7462843B2 (en) Apparatus and methods for ion beam implantation
TW200910406A (en) Beam processing apparatus
JP5655881B2 (en) Ion beam deflection magnet for ribbon-like ion beam and ion beam irradiation apparatus including the same
TWI381413B (en) Irradiation system with ion beam/charged particle beam
JP5648919B2 (en) Ion implanter
JP4600426B2 (en) Ion implanter and ion beam deviation angle correction method
US7755067B2 (en) Ion implantation apparatus and method of converging/shaping ion beam used therefor
JP4582065B2 (en) Analysis electromagnet, control method thereof, and ion implantation apparatus
JP2009295475A (en) Ion injecting device and beam orbit correction method
JP2008135207A (en) Ion implantation device
JP4375370B2 (en) Beam traveling angle correction method in ion implanter
JP2009152002A (en) Ion beam irradiation device
JP2006351312A (en) Ion implanter
JP2008047491A (en) Bending magnet, and ion implantation device equipped therewith
JP4414988B2 (en) Ion beam implantation apparatus and method
US10217601B2 (en) Ion source
JP4468336B2 (en) Ion beam implantation apparatus and method
JP4946256B2 (en) Electric field lens and ion implantation apparatus including the same
JP2006228667A (en) Ion irradiation device
JP5634992B2 (en) Ion beam irradiation apparatus and ion beam divergence suppression method
KR20130103287A (en) Ion implantation apparatus
JP2008010282A (en) Ion beam generating device, ion doping device, ion beam generating method, and mass separation method
JP5018938B2 (en) Ion implanter
KR101468578B1 (en) Ion implantation apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees