TW201141000A - Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device - Google Patents

Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device Download PDF

Info

Publication number
TW201141000A
TW201141000A TW099114073A TW99114073A TW201141000A TW 201141000 A TW201141000 A TW 201141000A TW 099114073 A TW099114073 A TW 099114073A TW 99114073 A TW99114073 A TW 99114073A TW 201141000 A TW201141000 A TW 201141000A
Authority
TW
Taiwan
Prior art keywords
charging
battery
charge
time
battery pack
Prior art date
Application number
TW099114073A
Other languages
Chinese (zh)
Other versions
TWI397240B (en
Inventor
Chin-Hsing Kao
Chun-Ming Chen
Tien-Chung Tso
Original Assignee
Ememory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ememory Technology Inc filed Critical Ememory Technology Inc
Priority to TW099114073A priority Critical patent/TWI397240B/en
Priority to JP2010163823A priority patent/JP5400724B2/en
Publication of TW201141000A publication Critical patent/TW201141000A/en
Application granted granted Critical
Publication of TWI397240B publication Critical patent/TWI397240B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A smart battery device includes an adapter, a switch electrically connected to the adapter, a battery pack electrically connected the switch, a sense resistor electrically connected to the battery pack and the adapter, an analog preprocessing circuit electrically connected to the battery pack and the sense resistor for digitizing analog signals measured at the battery pack and the sense resistor to form digital signals, and an adaptive control circuit electrically connected to the analog preprocessing circuit for receiving the digital signals, and electrically connected to the switch for selectively turning the switch on or off according to the digital signals.

Description

201141000 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種智慧型電池裝置及其充電方法,尤指一種 可估計充電時間的智慧型電池裝置及其充電方法。 【先前技術】 電池疋g可攜且能自我供電的電源供應器,利用電化學反應 從各式各樣的化學物品巾產生電力。而充電電池不僅可產生電力, 當電力耗盡時’還可湘外㈣力將充電電池巾的電化學反應進行 逆反應,使得充電電池再次回復到可以產生電力的狀態。而典型的 充電電池可再充電數百至數千次。充電電池廣泛應用在;肖費性電子 產品上,尤其是可揭式電子裝置,例如手機、多媒體裝置、筆記型 電腦及小筆電。 先刖技術已揭露一種智慧型電池系統(smart battery system, SBS),其利用可攜式電子裝置的處理和顯示功能,讓可攜式電子裝 置的作業系統透過資料匯流排,例如系統管理匯流排(system management bus,SMBus),和充電電池溝通。作業系統從充電電池 接收智慧型電池系統的參數,像是電池平均充滿時間 (average-time-to-flill,ATTF),以及透過圖形化使用者介面(graphical 201141000 userinterface)顯示智慧型電池系統的參數,以通知使用者可攜式電 子裝置的電池狀況。另外,作㈣統也可透過系統管理匯流排控制 充電電池的電源管理功能。 明參照第1圖,第1圖係先前技術的電池裝置1〇之示奄圖。電 池裝置10可被安裝於-殼體,以及電性連接於筆記型電月留,用以提 供電能給筆記型電腦_部電路和電子裝置,像是硬碟機及液晶顯 示器。電池裝置10包含複數個電池100、一電池管理Ic 11〇、安裝 於殼體筆記型f職電連接n 12G、-输絲13G、一開關 140、-電流感測電阻15〇、-系統管理匯流排16〇、一熱敏電阻· 及複數個有機發光二極體195。筆記型電腦充電連接器12〇透過保 險絲130和開關140電性連接於複數個電池1〇〇的正端,及透過電 流感測電阻150電性連接於複數個電池1〇〇的負端。電池所剩電力、 電池狀態以及控制訊號,可透過系統管理匯流排16〇在電池管理冗 110和筆記型電腦充電連接器120之間傳遞。複數個電池1〇〇可提 供電壓範圍在16V到18V的直流電源給筆記型電腦,但複數個電池 100也能提供超出上述電壓範圍的直流電源給筆記型電腦。複數個 電池100可被排成串聯,並聯,或是串聯並聯的任意組合。例如, 如第1圖所示,複數個電池1〇〇包含四個串聯排列的個別電池。電 池管理1C 110控制保險絲13〇和開關14〇,以防止突發的過量電流 及/或過里電壓危害筆έ己型電腦。開關14〇是一電晶體,其具有一控 制端電性連接於電池管理1C 110。電池管理IC 110亦電性連接於電 流感測電阻150的第一端和第二端,用以偵測突發的過量電流。電 201141000 池管理IC11G具有-端電性連接於錄電阻19Q,用 敏電阻19G所偵測到的溫度變化調節直流電源的輸出。電θ池管理^ 110也控制複數個有機發光二極冑195,肋提供電池狀態訊息給筆 記型電腦的使用者,且使用者可透過殼體看見複數個有機發光二極 體 195 〇 然而’虽智慧型電池系統在作業系統和充電電池間提供較大流 量的訊息時,使用者很難從電池平均充滿時間去删距離電池完全 充電的所辦間。另外,先前技術可藉由f池完全充電的電量扣除 ,池剩下的電里去除以平均電流得到電池平均充滿時間。但上述計 μ電也平均充滿時間的方法並不準確。再者,先前技術不會提供使 者採用何種充電②定的有用資訊。最後,充電設定也不能被自動 優仆。 【發明内容】 $本發明之-實施例提供一種智慧型電池裝置,包含一轉接插 、員開關、-電池組、—檢測電阻、—類比預處理電路及一自動 二控制電路。棚關電性連接於雜接插頭;該電池組電性連接 關’雜測電阻紐連接_電池組和該職綱;該類比 =電路電性連接於該電池組和驗測電阻,用膽在該電池纪 t該檢測電_量_比訊驗低⑽成數位減;該自動適配 !電路電叫接於軸比預處理電路和該開關 ,用以接收該數位 201141000 訊號以及根制數位訊麵雜關啟或_該開關。 本發明之另-實施例提供一種用以對一智慧型電池裝置的一電 池組充電的方法,包含該智慧型電池裝置的一微處理器從使用者的 輸入指令接收-偏好的充電條物她㈣咖㈣咖仙㈣:該微 處理器從儲存在該智慧型電池裝置的一記憶體電路中的一電池特性 查閱表,操取有關於該偏好的充電條件的複數個參數;微處理器根 鲁據該複數個參數致能該電池組充電;該微處理器運算一最終充電狀 態和-大約的電池平均充滿時間;該微處理器更新一充電狀態;該 Μ處理器在忒充電狀態小於該最終充電狀態時,遞增該智慧型電池 裝置的-計時器電路的-計數器;該微處理器更新在該記憶體電路 中的該電池平均充滿時間;及該微處理器在該充電狀態大於或等於 該最終充電狀態時,停止該電池組充電。 本發明之另一實施例提供一種在一智慧型電池裝置中產生近似 鲁於電池平均充滿時間的方法,包含計算從定電流充電到定電壓充電 的一過渡點(transitionpoint);得到在該過渡點的充電狀態;根據該 過渡點計算定電流區間的電量和定電壓區間的電量;根據該定電流 區間的電量計算定電流充電時間;根據該定電壓區間的電量產生近 似於定電壓充電時間;及將該定電流充電時間和該定電壓充電時間 加總得到電池平均充滿時間。 【實施方式】 201141000 清參照第2圖’第2圖係本發明的一實施例揭露的一智慧型電 池裝置2G之示意圖。智慧型電池紅2()包含—電池組·、一自 動適配控制電路210、一外部轉接插頭22〇、一類比預處理電路23〇、 -開關240、-檢測電阻250及-熱敏電阻29〇。自動適配控制電路 210包含-微處理213、-嵌入式快閃記憶體(embeddedflash memory) 212 4 時器 214、-隨機存取記憶體(randQm access memory,RAM)215及一充電控制電路211。類比預處理電路230包 含一電壓和溫度測量類比數位轉換器(v〇ltage and temperature measurement ADC)231及一庫侖計數器(c〇ul〇mb⑽血口%。庫侖 計數器232可被視為一積分式類比數位轉換器(integrating ADC)。 電池組200包含複數個電池。複數個電池可被排成串聯’並聯, 或是串聯並聯的任意組合。自動適配控制電路21〇用來控制開關24〇 的開啟和關閉,以選擇性地將電池組2〇〇透過外部轉接插頭220連 接外部電子裝置或是將電池組200透過外部轉接插頭220和外部電 子裝置分離。微處理器213送一訊號至充電控制電路211,充電控 制電路211根據接收自微處理器213的訊號控制開關240的開啟或 是關閉。電壓和溫度測量類比數位轉換器231具有一第一輸入端電 性連接於熱敏電阻290,用以接收有關於電池組2〇〇溫度狀況的一 溫度訊號,和一第二輸入端電性連接於電池組200,用以接收電池 組200的一電壓位準。電壓和溫度測量類比數位轉換器23丨可轉換 電壓位準成為一數位電壓訊號,以及轉換溫度訊號成為一數位溫度 201141000 訊號’電壓和溫度測量類比數位轉換器231並將數位電壓訊號和數 位溫度訊號傳送至微處理器213。庫侖計數器232具有一第一輸入 端電性連接於檢測電阻250的第一端,以及一第二輸入端電性連接 於檢測電阻250的第二端。庫侖計數器232可偵測檢測電阻25〇兩 端的電壓降,並將檢測電阻250兩端的電壓降對時間積分,以及數 位化積分後的結果成為電池充電訊號,最後電池充電訊號透過庫侖 計數器232的輸出端傳送至微處理器213。嵌入式快閃記憶體212 φ 係用以儲存充電特性、使用歷史(usehistory)、勤體及資料庫。使用 歷史包含老化訊息(aging information)。 1參照第3圖,第3圖係本發明的另一實施例揭露一種估計電 電時間的過程30之流程圖。過程3〇可透過智慧型電池裝置2〇 來執行,其步驟詳述如下: 步驟300:開始; vl^3G2·使用者輸人偏好的充電條件; /驟3〇4 .微處理器213從複數個電池特性查閱表,擷取有關於 充電條件的複數個參數; 步驟306 .微處理器213計算最終充電狀態和預測電池平均充滿 時間; v驟308 .微處理器213更新充電狀態;如果充電狀態小於等於 最終充電狀態’執行步驟31〇 ;否則跳至步驟314 ; ッ驟3l0 .微處理器213遞增一計數增量至計時器214的計數 201141000 器t ; 步驟312 :微處理$ 213更新在嵌入式快閃記憶體212巾的電池 平均充滿時間,跳至步驟308 ; / 步驟314: 結束。 在步驟302中’使用者輸入偏好的充電條件,或簡要的^述 像是快速充電或是完全充電(foil charging)。偏好的充電條件可2是 偏好的充電時間或是偏好的電量(charge level)。在步驟3〇4中芙於 使用者提供的充電條件,微處理器213從儲存在嵌入式快閃記二體籲 212的複數個電池特性查閱表,擷取有關於充電條件的複數個參 數。複數個電池特性查閱表包含複數個參數,例如可影響充電時間 的充電電流IChg。在步驟306中,基於使用者提供的充電條件,微 處理器213可計算最終充電狀態S〇Cf和電池平均充滿時間。最終 充電狀態SOCf可被偏好的電量(preferred charge level)所影響,亦可 被儲存在嵌入式快閃s己憶體212的電池使用歷史資訊及/或電池老化 資訊所影響。在步驟308中,當電池組200正在執行充電時,微處籲 理器213可更新充電狀態S0C。在步驟310中,如果充電狀態s〇c 小於最終充電狀態SOCf,電池組200不會被充電至偏好的電量,以 及微處理器213遞增計數增量&amp;至計數器t。然後在步驟312中, 微處理器213更新儲存於嵌入式快閃記憶體212的電池平均充滿時 間,以及跳回步驟308繼續更新充電狀態s〇c。重複步驟308至步 驟312直到充電狀態S0C是大於或是等於最終充電狀態s〇Cf,此 時過程30將結束(步驟314)。如上所述,即可建立充電狀態的複數 10 201141000 個不連續點’以及當充電狀態通過複數個不連續點+的每—不連續 點時,微處理器213會更新電池特性查閱表。 ^請參照第4圖’第4圖係說明電池組細充電條件的示意圖4〇。 當電池組2GG充電時,以每觀池芯(batteiyedl)之賴為準,依電 池芯的即時電壓(presentvoltage)劃分成三種充電條件:⑴假如即時 電壓小於3.0伏特,則使用量值較小之定電流1{&gt;_執行預充電 (pre charge),其中 iPre chg 為預充電流(pre charge current),預充電期 間,電池芯的電壓將逐漸升高;(2)假如即時電壓大於或等於3 〇伏 特貝]使用正規疋電流充電(n〇rmal c〇nstant_current charge),通常正 規定電流1〇^遠大於預充電流IpreChg,定電流充電期間,電池芯的 電壓將逐漸升高;(3)假如即時電壓達到規範之上限電壓值%如(譬 如:4.2伏特),則使用此上限電壓值VHm作定電壓充電 (constant_voltagecharge);還有’當電池芯處在定電壓充電階段,假 如未被微處理器213強制停止充電,則進入電池芯的電流將逐漸降 低(稱為結尾電流),直到結尾電流降到終止電流(terminati〇neurrent) Itermination ’微處理器213隨即命令開關240關閉而終止充電,此時對 應充電飽滿狀態。設計充電條件(1)和充電條件(3),都是為了避免電 池芯快速老化(aging)及充電安全考量。電池組2〇〇充電期間,處在 定電流充電所花費的時間,可以表示為定電流充電時間tcc。一旦進 入定電壓充電階段,一結尾電流(taper culTent)流入電池組200,以增 加電池組200的充電狀態(state of charge,簡稱SOC),直到結尾電 流成為終止電流(termination current) Itemlinati()n。終止電流 Itermination 可 201141000 低於預充電流Whg ^魏从電觀麵段至_終止電流 花費的時間,可以表示為—定電壓時間w 1電流時間 tcc和定電壓時間“的總合,即為一充 q凡电時間tchg。充電電壓和充電 、(:hg終止電私―較使用者可設定的她,且皆儲存 於嵌入式快閃記憶體212。 在步驟3〇6中,為了預測電池平均充滿時間(ATTF),定電流時 間U㈣壓日销tev必須可被預測。魄_定電流時和定 電壓時間U的總和’代表電池平均充滿時間。根據從定電流充電至鲁 =電壓充電的轉換點或是過渡點的電池紐的電量知,可預測 定電流時間tcc。轉換點(changep〇int)是有關於在電池組2^〇切換至 定電壓充電之前,電池組的電量多寡的充電百分比,例如75% 或·。根據充電百分比,可蚊奴電流充電綱儲存的電量。 QChg。織可儀定·充電_所儲存的電量知除以充電電流 iChg以得到定電流時間tee。糾’可透過預測定電壓電流^在每—1 時間區間i内所提供的電量W以產生近似於定電壓時間^。透過姆_ 加用以預測定電壓時間tev的時間〖的數目,可增加近似值的^ 確性。為了歧每-時間區間i内狀電壓電流,可利用電、也 組200的開路電_(:%以及内電阻(Rm)i。開路電壓(〇cv)i是儲 存在後入式快閃§己憶體212内的預設參數。而定電壓電流(ία)= 經由下式計算得到·· 1 12 201141000 (ic,i=^z^n —每一時間區間M所提供的電量AQ除以定電壓電流(Icv)i可決6 每一時間區間定電壓時間(处士然後,定電壓時間可經由^ 計算得到: 、 卜式 如上所述’透過增加用以辦技電壓時間w的時間區間i的數 目可增加近似值的準雜。近似值可_逐漸增加㈣間區間 數目,經由疊代法直到滿足下式而得到: 、 lcvj-(&lt;:νΜ〈threshold 這裡J表示疊代的次數,而thrcs_是預設的時間_。例如, —Id可以是-分鐘。因此,如果最近—次疊代的定電壓時間 tew和緊接著下-次疊代的定電壓時間w的差距小於—分鐘,曰則 可利用定電壓時間tcvj以計算電池平均充滿時間。 藉由上述方法和裝置產生近似於電池平均充滿時間,可提供使 用者-個更準雜計f池平均充滿咖財法,村雜使用者決 定使用何種充電裝置的根據,以及優化充電時間和電入充狀 度的充電設定。如此,上述優點使得本翻所揭料方 201141000 更便於使用者所使用。 以上所述僅林發明之雛實關,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖係先前技術的電池裝置的功能方塊之示意圖。 第2圖係本發_—實施例揭露的-智慧型電池裝置之示音圖。 2圖係本發明的另—實施例揭露—種估計電池充電時二二之 第4圖係說明電池組充電電位變化的示意圖。 【主要元件符號說明】 10 電池裝置 20 智慧型電池裝置 30 估計電池充電時間的過程 40 充電電位變化的示意圖 100 複數個電池 110 電池管理1C 12〇 筆記型電腦充電連接器 13〇 保險絲 201141000 140 開關 150 電流感測電阻 160 系統管理匯流排 190 反應熱敏電阻 195 複數個有機發光二極體 200 電池組 210 自動適配控制電路 ^ 211 充電控制電路 212 嵌入式快閃記憶體 213 微處理器 214 計時器 215 隨機存取記憶體 220 外部轉接插頭 230 類比預處理電路 231 電壓和溫度測量類比數位轉換器 • 232 庫俞計數器 240 開關 250 檢測電阻 290 熱敏電阻 300- 314 步驟 15201141000 VI. Description of the Invention: [Technical Field] The present invention relates to a smart battery device and a charging method thereof, and more particularly to a smart battery device capable of estimating charging time and a charging method thereof. [Prior Art] A battery-powered, self-powered power supply that uses an electrochemical reaction to generate electricity from a wide variety of chemical towels. The rechargeable battery can not only generate electricity, but when the power is exhausted, the electrochemical reaction of the rechargeable battery towel can be reversely reacted, so that the rechargeable battery returns to a state in which power can be generated again. A typical rechargeable battery can be recharged hundreds to thousands of times. Rechargeable batteries are widely used in versatile electronic products, especially removable electronic devices such as mobile phones, multimedia devices, notebook computers, and small notebooks. The prior art has disclosed a smart battery system (SBS) that utilizes the processing and display functions of the portable electronic device to allow the operating system of the portable electronic device to pass through a data bus, such as a system management bus. (system management bus, SMBus), communicate with rechargeable battery. The operating system receives parameters of the smart battery system from the rechargeable battery, such as average-time-to-flill (ATTF), and displays the parameters of the smart battery system through the graphical user interface (graphical 201141000 user interface) To inform the user of the battery status of the portable electronic device. In addition, the (four) system can also control the power management function of the rechargeable battery through the system management bus. Referring to Fig. 1, Fig. 1 is a schematic diagram of a prior art battery device. The battery unit 10 can be mounted to the housing and electrically connected to the notebook type to provide power to the notebook computer and electronic devices such as a hard disk drive and a liquid crystal display. The battery device 10 includes a plurality of batteries 100, a battery management Ic 11 〇, mounted on the housing notebook type f electrical connection n 12G, - wire 13G, a switch 140, - current sensing resistor 15 〇, - system management convergence A row of 16 turns, a thermistor, and a plurality of organic light-emitting diodes 195. The notebook charging connector 12 is electrically connected to the positive ends of the plurality of batteries through the fuses 130 and the switches 140, and is electrically connected to the negative ends of the plurality of batteries 1 through the electrical flu resistance resistor 150. The remaining battery power, battery status, and control signals can be passed between the battery management redundancy unit 110 and the notebook charging connector 120 through the system management bus 16 . A plurality of batteries can supply a DC power source with a voltage range of 16V to 18V to the notebook computer, but a plurality of batteries 100 can also supply a DC power source beyond the above voltage range to the notebook computer. A plurality of batteries 100 can be arranged in series, in parallel, or in any combination of series and parallel. For example, as shown in FIG. 1, a plurality of batteries 1A include four individual cells arranged in series. The battery management 1C 110 controls the fuse 13〇 and the switch 14〇 to prevent sudden excess current and/or over-voltage from jeopardizing the pen-type computer. The switch 14A is a transistor having a control terminal electrically connected to the battery management 1C 110. The battery management IC 110 is also electrically coupled to the first and second ends of the electrical influenza resistance resistor 150 for detecting a sudden excess current. Electricity 201141000 The pool management IC11G has a - terminal electrically connected to the recording resistor 19Q, and regulates the output of the DC power supply by the temperature change detected by the sensitive resistor 19G. The electric θ pool management ^ 110 also controls a plurality of organic light-emitting diodes 195, the ribs provide battery status information to the user of the notebook computer, and the user can see a plurality of organic light-emitting diodes 195 through the housing. When the smart battery system provides a large flow of information between the operating system and the rechargeable battery, it is difficult for the user to delete the distance between the battery and the battery. In addition, the prior art can be deducted by the full charge of the f-cell, and the remaining electricity in the pool is removed to obtain the average charge time of the battery with the average current. However, the above method of counting the average time is also not accurate. Furthermore, the prior art does not provide useful information on what kind of charging is used by the author. Finally, the charging settings cannot be automatically servant. SUMMARY OF THE INVENTION The present invention provides a smart battery device including a switch, a switch, a battery pack, a sense resistor, an analog pre-processing circuit, and an automatic two control circuit. The shed is electrically connected to the miscellaneous plug; the battery pack is electrically connected to the 'missing resistor connection _ battery pack and the grade; the analogy = the circuit is electrically connected to the battery pack and the test resistor, The battery meter t is lower than the detector (10) into a digit minus; the automatic adaptation circuit is electrically connected to the axis ratio pre-processing circuit and the switch for receiving the digit 201141000 signal and the root digital signal Face miscellaneous or _ the switch. Another embodiment of the present invention provides a method for charging a battery pack of a smart battery device, comprising a microprocessor of the smart battery device receiving a preferred charge from a user input command (4) coffee (4) café (4): the microprocessor reads a battery characteristic look-up table stored in a memory circuit of the smart battery device, and operates a plurality of parameters relating to the preferred charging condition; The battery is charged according to the plurality of parameters; the microprocessor calculates a final state of charge and - an approximate battery full charge time; the microprocessor updates a state of charge; the processor is less than the state of charge In the final state of charge, incrementing the counter of the timer of the smart battery device; the microprocessor updates the average battery fill time in the memory circuit; and the microprocessor is greater than or equal to the state of charge In the final state of charge, the battery pack is stopped. Another embodiment of the present invention provides a method for generating an approximate burn-in time of a battery in a smart battery device, comprising calculating a transition point from constant current charging to constant voltage charging; obtaining a transition point at the transition point Charging state; calculating the electric quantity of the constant current interval and the electric quantity of the constant voltage interval according to the transition point; calculating the constant current charging time according to the electric quantity of the constant current interval; generating the approximate charging time according to the electric quantity of the constant voltage interval; and The constant current charging time and the constant voltage charging time are summed to obtain an average battery charging time. [Embodiment] 201141000 2A is a schematic diagram of a smart battery device 2G according to an embodiment of the present invention. Smart battery red 2 () includes - battery pack, an automatic adaptation control circuit 210, an external adapter plug 22, an analog pre-processing circuit 23, - switch 240, - detection resistor 250 and - thermistor 29〇. The automatic adaptation control circuit 210 includes a micro-processing 213, an embedded flash memory 212 214, a random access memory (RAM) 215, and a charging control circuit 211. The analog pre-processing circuit 230 includes a voltage and temperature measurement analog converter 231 and a coulomb counter (c〇ul〇 mb (10) blood port %. The coulomb counter 232 can be regarded as an integral analogy A digital converter (integrating ADC). The battery pack 200 includes a plurality of batteries. The plurality of batteries can be arranged in series 'parallel, or any combination of series and parallel. The automatic matching control circuit 21 is used to control the opening of the switch 24 And closing to selectively connect the battery pack 2 through the external adapter plug 220 to the external electronic device or to separate the battery pack 200 from the external adapter plug 220 and the external electronic device. The microprocessor 213 sends a signal to the charging. The control circuit 211, the charge control circuit 211 controls the opening or closing of the switch 240 according to the signal received from the microprocessor 213. The voltage and temperature measurement analog-to-digital converter 231 has a first input electrically connected to the thermistor 290, a temperature signal for receiving a temperature condition of the battery pack 2, and a second input end electrically connected to the battery pack 200 for A voltage level of the battery pack 200 is received. The voltage and temperature measurement analog digital converter 23 turns the convertible voltage level into a digital voltage signal, and converts the temperature signal into a digital temperature 201141000 signal 'voltage and temperature measurement analog digital converter The 231 transmits the digital voltage signal and the digital temperature signal to the microprocessor 213. The coulomb counter 232 has a first input electrically connected to the first end of the detecting resistor 250, and a second input electrically connected to the detecting resistor. The second end of the 250. The coulomb counter 232 can detect the voltage drop across the detecting resistor 25〇, and integrate the voltage drop across the detecting resistor 250 with time, and the result of the digital integration becomes the battery charging signal, and finally the battery charging signal. The output of the coulomb counter 232 is transmitted to the microprocessor 213. The embedded flash memory 212 φ is used to store charging characteristics, use history, use, and database. The usage history includes aging information. 1 refers to FIG. 3, and FIG. 3 illustrates another embodiment of the present invention for estimating an electric power time. The flow chart of the process 30. The process 3 can be performed by the smart battery device 2, and the steps are as follows: Step 300: Start; vl^3G2 · User input preferred charging condition; /3. The microprocessor 213 retrieves a plurality of parameters relating to the charging conditions from the plurality of battery characteristics lookup tables; Step 306. The microprocessor 213 calculates the final state of charge and predicts the average battery full time; v. 308. The microprocessor 213 updates Charging state; if the state of charge is less than or equal to the final state of charge', step 31 is performed; otherwise, the process goes to step 314; Step 3101. The microprocessor 213 increments a count increment to the count of the timer 214 201141000 t; Step 312: Micro Process $213 to update the battery's average full time in the embedded flash memory 212, skip to step 308; /step 314: end. In step 302, the user enters a preferred charging condition, or a brief description of whether it is fast charging or foil charging. The preferred charging condition may be a preferred charging time or a preferred charge level. In step 3〇4, the user provides a charging condition, and the microprocessor 213 retrieves a plurality of parameters relating to the charging condition from a plurality of battery characteristic look-up tables stored in the embedded flash memory unit 212. The plurality of battery characteristics look-up tables include a plurality of parameters, such as a charging current IChg that can affect the charging time. In step 306, based on the charging conditions provided by the user, the microprocessor 213 can calculate the final state of charge S〇Cf and the battery average fill time. The final state of charge SOCf may be affected by the preferred charge level and may also be affected by the battery usage history information and/or battery aging information stored in the embedded flash memory. In step 308, when the battery pack 200 is performing charging, the micro-processor 213 may update the state of charge S0C. In step 310, if the state of charge s〇c is less than the final state of charge SOCf, the battery pack 200 is not charged to the preferred amount of power, and the microprocessor 213 increments the count increment &amp; to the counter t. Then in step 312, microprocessor 213 updates the battery's average full time stored in embedded flash memory 212, and jumps back to step 308 to continue updating the state of charge s〇c. Step 308 to step 312 are repeated until the state of charge S0C is greater than or equal to the final state of charge s〇Cf, at which point process 30 will end (step 314). As described above, the plurality of charging states 10 201141000 discontinuous points can be established and the microprocessor 213 updates the battery characteristics look-up table when the state of charge passes through each of the discontinuous points of the plurality of discontinuous points. ^Please refer to Fig. 4'. Fig. 4 is a schematic view showing the fine charging condition of the battery pack. When the battery pack 2GG is charged, it is divided into three charging conditions according to the current voltage of the battery core (b) according to the batteiyedl: (1) If the instantaneous voltage is less than 3.0 volts, the amount of use is small. The constant current 1{&gt;_ performs a pre charge, where iPre chg is a pre charge current, during which the voltage of the cell will gradually increase; (2) if the instantaneous voltage is greater than or equal to 3 〇伏特贝] Use regular 疋 current charging (n〇rmal c〇nstant_current charge), usually the current is specified 1〇^ is much larger than the pre-charge current IpreChg, during the constant current charging, the cell voltage will gradually increase; (3 If the instantaneous voltage reaches the upper limit voltage value of the specification (such as: 4.2 volts), use the upper voltage value VHm for constant voltage charging (constant_voltagecharge); and 'when the battery core is in the fixed voltage charging phase, if not When the microprocessor 213 forcibly stops charging, the current entering the battery core will gradually decrease (called the end current) until the end current drops to the termination current (terminati〇neurrent) Itermination The microprocessor 213 then commands the switch 240 to turn off and terminates charging, at which point it is fully charged. The charging conditions (1) and charging conditions (3) are designed to avoid rapid aging and charging safety of the battery core. During the charging of the battery pack 2, the time taken for constant current charging can be expressed as the constant current charging time tcc. Once in the constant voltage charging phase, an end current (taper culTent) flows into the battery pack 200 to increase the state of charge (SOC) of the battery pack 200 until the end current becomes a termination current Itemlinati()n . The termination current Itermination can be 201141000 lower than the precharge current Whg ^ Wei from the electrical observation section to the time of _ termination current, can be expressed as - the total voltage time w 1 current time tcc and constant voltage time "the sum of the two, that is Charging voltage and charging, (: hg termination of electricity private - more than the user can set her, and are stored in embedded flash memory 212. In step 3〇6, in order to predict the battery average Full time (ATTF), constant current time U (four) pressure daily sales tev must be predictable. 总 _ constant current and the sum of the constant voltage time U ' represents the average battery full charge time. According to the conversion from constant current to Lu = voltage charging The power of the battery or the point of the transition point can be predicted, and the constant current time tcc can be predicted. The change point (changep〇int) is the charge percentage of the battery pack before the battery pack 2^〇 switches to the constant voltage charge. For example, 75% or ·. According to the percentage of charge, the amount of electricity stored in the mosquito-free current charging class. QChg. Weaving can be determined. Charging_The stored amount of electricity is divided by the charging current iChg to get the constant current time. Tee. Correction can be obtained by predicting the amount of power W supplied by the constant voltage current ^ in each time interval i to produce a time approximating the constant voltage time ^. The time used to predict the constant voltage time tev, The accuracy of the approximation can be increased. In order to distinguish the voltage current in the per-time interval i, the open circuit _ (:% and internal resistance (Rm)i) of the electric group and the group 200 can be utilized. The open circuit voltage (〇cv) i is stored. In the post-input flash § Recall the preset parameters in the body 212. The constant voltage current (ία) = is calculated by the following formula · 1 12 201141000 (ic, i = ^ z ^ n - each time interval M The supplied electric quantity AQ divided by the constant voltage current (Icv)i can be determined by 6 constant voltage time in each time interval (Shou Shi, then the constant voltage time can be calculated by ^:, as described above, 'by increasing the operating voltage The number of time intervals i of time w can increase the quasi-difference of the approximation. The approximation can be gradually increased by the number of intervals between (four), obtained by the iterative method until the following formula is satisfied: , lcvj-(&lt;: νΜ<threshold where J represents the stack The number of generations, and thrcs_ is the preset time _. For example, -Id can Yes - minutes. Therefore, if the difference between the constant voltage time tew of the most recent iteration and the constant voltage time w of the next-time iteration is less than -minute, the constant voltage time tcvj can be used to calculate the average battery fill time. By the above method and device, the approximate average battery full time is generated, and the user can be provided with a more accurate miscellaneous meter, and the household user decides which charging device to use, and optimizes the charging time. And the charging setting of the electric charging degree. Thus, the above advantages make the uncovering party 201141000 more convenient for the user to use. The above-mentioned changes and modifications of the scope of the patent application of the present invention are all within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of functional blocks of a prior art battery device. Fig. 2 is a sound diagram of the smart battery device disclosed in the present invention. 2 is a further embodiment of the present invention. It is a schematic diagram for estimating the charging potential of a battery pack when the battery is charged. [Main component symbol description] 10 Battery device 20 Smart battery device 30 Process for estimating battery charging time 40 Schematic diagram of charging potential change 100 Multiple batteries 110 Battery management 1C 12〇 Notebook charging connector 13〇Fuse 201141000 140 Switch 150 Current sense resistor 160 System management bus 190 Reaction thermistor 195 Multiple organic light-emitting diodes 200 Battery pack 210 Automatic adaptation control circuit ^ 211 Charge control circuit 212 Embedded flash memory 213 Microprocessor 214 Timer 215 Random Access Memory 220 External Adapter Plug 230 Analog Preprocessor 231 Voltage and Temperature Measurement Analog Digital Converter • 232 Library Counter 240 Switch 250 Sense Resistor 290 Thermistor 300- 314 Step 15

Claims (1)

201141000 七、申請專利範圍: 1. 一種智慧型電池裝置,包含: 一轉接插頭; 一開關,具有—輸出端電性連接於該轉接插頭的一第_端. 一電池組,包含複數個電池,該電池組具有U電性連 於該開關的一輸入端; -檢測電阻’具有-第-端電性連接於該電池組的第二端,和 一第一端電性連接於該轉接插頭的一第二端; 一類比預處理電路(analogpreprocessingcircuit),電性連接於該 電池組和該檢測電阻,用以將在該電池組和該檢測電阻測 量的類比訊號數位化以形成數位訊號;及 一自動適配控制電路,具有一輸入端電性連接於該類比預處理 電路的一輸出端’用以接收該數位訊號,以及一輸出端電 性連接於該開關的一控制端,用以根據該數位訊號選擇性 地開啟或關閉該開關。 2. 如請求項1所述之智慧型電池裝置,其中該自動適配控制電路 包含: 一記憶體電路,用以儲存韌體、該電池組的歷史資料、充電特 性及一資料庫; 一充電控制電路,電性連接於該開關的該控制端,用以選擇性 地開啟或關閉該開關;及 201141000 微處理盗,具有-第-輸入端電性連接於該類比預處理電路 的該輸出端,用以接收該數位訊號,一第二輸入端電性連 接於該記憶體電路,用以存取儲存於該記憶體電路中的該 韌體、該歷史資料、該充電特性及該資料庫,和一輸出端 電性連接於電㈣,肋控繼充f控制電路根 據該數位訊號開啟或關閉該開關; 其中該微處理器從使用者的輸入中接收一偏好的充電條件,從 儲存在該記憶體電路中的一電池特性查閱表擷取有關於偏 好的充電條件的複數個參數,根據該複數個參數致能該電 池組充電,運算一最終充電狀態和產生近似於一電池平均 充滿時間,更新一充電狀態,當該充電狀態小於該最終充 電狀癌時,遞增s亥智慧型電池裝置的一計時器電路的一叶 數器,更新在該記憶體電路中的該電池平均充滿時間,及 當該充電狀態大於或等於該最終充電狀態時,停止該電池 組充電。 3·如請求項2所述之智慧型電池裝置,其中該類比預處理電路包 含: 一庫命s十數器(Coulomb counter),電性連接於該檢測電阻,用以 根據該檢測電阻兩端的一電壓降產生該數位訊號的一電池 充電訊號。 4.如請求項2所述之智慧型電池裝置,另包含: 17 201141000 -熱敏電阻(thermistor) ’連接於該電池組,用來侧該電 池組的溫度以產生一溫度訊號; 其中該類比預處理電路包含: 一溫度測量類比數位轉換器(temperature mea_ment anabg-to-digital converter),用以將該溫度峨數位化以形 成該數位訊號的一數位溫度訊號。 5. 如請求項2所述之智慧型電池裝置,其中該類比預處理電路包 含: 一電壓測:!:類比數位轉換器(a v〇ltage measurement analog-to-digital converter),電性連接於該電池組,用以將 該電池組的一電壓訊號數位化以形成該數位訊號的一數位 電壓訊號。 6. 如請求項2所述之智慧型電池裝置,其中該微處理器根據該數 位sfl號計算充電狀態(他仿0f charge, S0C)和電池平均充滿時間 (average-time-to-fUll,ATTF)。 7. 如請求項2所述之智慧型電池裝置,其中在充電期間,當該充 電狀態通過複數個不連續點中的每一不連續點時,該微處理器 更新該電池特性查閱表。 8. 如請求項2所述之智慧型電池裝置,其中當該電池組儲存電荷 201141000 増加時’該微處理器週期性地更新該電池平均充滿時間。 9 ’ 一種對一智慧型電池裝置的一電池組充電的方法,該方法包含: 該智慧型電池裝置的一微處理器從使用者的輸入中接收一偏好 的充電條件(preferred charging condition); 該微處理器從儲存在該智慧型電池裝置的一記憶體電路中的一 電池特性查閱表擷取有關於該偏好的充電條件的複數個參 鲁數; 〆 該微處理器根據該複數個參數致能該電池組充電; 該微處理器運算一最終充電狀態和產生近似於一電池平均充滿 時間; 該微處理器更新一充電狀態; 該微處理器當該充電狀態小於該最終充電狀態時,遞增該智慧 型電池裝置的一計時器電路的一計數器; 鲁 該微處理器更新在該記憶體電路中的該電池平均充滿時間;及 s玄微處理器在該充電狀態大於或等於該最終充電狀態 該電池組充電。 1〇.如請求項9所述之方法,其中該複數個參數包含—偏好的充電 電流(preferred charge current)。 如請求項9所述之方法,其中該複數個參數包含一偏好的充電 時間(preferred charge time)。 201141000 1 条件是一預設的、 12·如請求項9所述之方法,其中該偏好的充㉟ —快速的或一使用者定義的充電 13.如請求項9所述之方法,另包含: 建立5亥充電狀態的複數個不連續點;及 該微處理器在充電期間當該充電狀態通過該複數個不連續點中 的每一不連續點時,更新該電池特性查閱表。 14.如請求項9所述之方法,另包含: 該微處理器在該電池組儲存電荷增加時,週期性地更新該電池 平均充滿時間。 15· —種在一智慧型電池裝置中產生近似於電池平均充滿時間的方 法,該方法包含: 計算從定電流充電到定電壓充電的一過渡點(transition point); 得到在該過渡點的充電狀態; 根據該過渡點計算定電流區間的電量和定電壓區間的電量; 根據該定電流區間的電量計算定電流充電時間; 根據該定電壓區間的電量產生近似於定電壓充電時間;及 將該定電流充電時間和該定電壓充電時間加總得到電池平均充 滿時間。 20 201141000 16. 如請求項15所述之絲,其中計算該定電流充電日麵〜 電流區間的電量和一充電電流相除得到的商。 异疋 17. 如請求項15所述之方法,其中根據該定電壓區間 似於該定電壓充電時間包含: 產生近 預測關於複數個充電區間的複數個時間區間内的定電, 以用來提供一預設充電量; L • 根據該預設充電量和該複數個時間區間内的定電壓電流,計算 關於泫複數個充電區間的複數個時間區間;及 加總s亥複數個時間區間以得到該定電壓充電時間。 如印求項17所述之方法’其中加總該複數個時間區間以得到該 定電壓充電時間包含: ~ 増加時間區間數目直到該定電壓充電時間的兩連續計算值之間 • 的差異小於一預定的閥值;及 選擇該兩連續計算值的-後者做為該定電壓充電時間。 .如凊求項I5所述之方法’其中計算從該定電流充電到該定電壓 充電的該過渡點係根據一電壓上限值計算從該定電流充電到該 定電壓充電的該過渡點。 八、圓式: 21201141000 VII. Patent application scope: 1. A smart battery device, comprising: an adapter plug; a switch having an output terminal electrically connected to a first end of the adapter plug. A battery pack comprising a plurality of a battery, the battery pack is electrically connected to an input end of the switch; the detecting resistor has a first end electrically connected to the second end of the battery pack, and a first end electrically connected to the battery a second end of the plug; an analog preprocessing circuit (electrical preprocessing circuit) electrically connected to the battery pack and the detecting resistor for digitizing the analog signal measured by the battery pack and the detecting resistor to form a digital signal And an automatic adaptation control circuit having an input terminal electrically connected to an output end of the analog preprocessing circuit for receiving the digital signal, and an output terminal electrically connected to a control end of the switch The switch is selectively turned on or off according to the digital signal. 2. The smart battery device of claim 1, wherein the automatic adaptation control circuit comprises: a memory circuit for storing firmware, historical data of the battery pack, charging characteristics, and a database; a control circuit electrically connected to the control end of the switch for selectively turning the switch on or off; and the 201141000 micro-processing thief having a -first input electrically connected to the output of the analog pre-processing circuit For receiving the digital signal, a second input terminal is electrically connected to the memory circuit for accessing the firmware, the historical data, the charging characteristic, and the data library stored in the memory circuit. And an output terminal is electrically connected to the electric (four), and the rib control relaying f control circuit turns the switch on or off according to the digital signal; wherein the microprocessor receives a preferred charging condition from the user input, and stores the A battery characteristic lookup table in the memory circuit captures a plurality of parameters relating to a preferred charging condition, and the battery pack is charged according to the plurality of parameters, and a final charge is calculated The state and the generation are similar to an average battery full charge time, and a state of charge is updated. When the state of charge is less than the final charge cancer, a leaf of a timer circuit of the smart battery device is incremented, and the memory is updated in the memory. The battery in the body circuit has an average full time, and when the state of charge is greater than or equal to the final state of charge, the battery pack is stopped. 3. The smart battery device according to claim 2, wherein the analog pre-processing circuit comprises: a Coulomb counter, electrically connected to the detecting resistor, according to the two ends of the detecting resistor A voltage drop produces a battery charging signal for the digital signal. 4. The smart battery device according to claim 2, further comprising: 17 201141000 - a thermistor is connected to the battery pack for side temperature of the battery pack to generate a temperature signal; wherein the analogy The pre-processing circuit includes: a temperature measing anabg-to-digital converter for digitizing the temperature to form a digital temperature signal of the digital signal. 5. The smart battery device of claim 2, wherein the analog pre-processing circuit comprises: a voltage measurement: a: analogy analog-to-digital converter, electrically connected to the And a battery pack for digitizing a voltage signal of the battery pack to form a digital voltage signal of the digital signal. 6. The smart battery device according to claim 2, wherein the microprocessor calculates a state of charge (he is 0f charge, S0C) and an average battery full time (average-time-to-fUll, ATTF) according to the digit sfl number. ). 7. The smart battery device of claim 2, wherein the microprocessor updates the battery characteristic look-up table when the charging state passes through each of the plurality of discontinuous points during charging. 8. The smart battery device of claim 2, wherein the microprocessor periodically updates the battery average time when the battery pack stores charge 201141000. 9' A method of charging a battery pack of a smart battery device, the method comprising: a microprocessor of the smart battery device receiving a preferred charging condition from a user input; The microprocessor extracts a plurality of parameter numbers relating to the preferred charging condition from a battery characteristic look-up table stored in a memory circuit of the smart battery device; the microprocessor generates the plurality of parameters according to the plurality of parameters The battery pack can be charged; the microprocessor calculates a final state of charge and produces an approximate charge time of the battery; the microprocessor updates a state of charge; the microprocessor increments when the state of charge is less than the final state of charge a counter of a timer circuit of the smart battery device; the microprocessor updates an average charge time of the battery in the memory circuit; and the sin microprocessor is greater than or equal to the final charge state in the state of charge The battery pack is charged. The method of claim 9, wherein the plurality of parameters comprise a preferred charge current. The method of claim 9, wherein the plurality of parameters comprise a preferred charge time. The method of claim 9, wherein the method of claim 9 is fast, or a user-defined charge. 13. The method of claim 9, further comprising: Establishing a plurality of discontinuities of the 5 Hz state of charge; and updating, by the microprocessor, the battery characteristic lookup table when the state of charge passes through each of the plurality of discontinuities during charging. 14. The method of claim 9, further comprising: the microprocessor periodically updating the average battery fill time as the stored charge of the battery pack increases. 15. A method of generating an approximate battery full charge time in a smart battery device, the method comprising: calculating a transition point from constant current charging to constant voltage charging; obtaining charging at the transition point a state; calculating a power amount of the constant current interval and a constant voltage interval according to the transition point; calculating a constant current charging time according to the electric quantity of the constant current interval; generating a charging time corresponding to the constant voltage according to the electric quantity of the constant voltage interval; The constant current charging time and the constant voltage charging time add up to obtain the average battery full time. 20 201141000 16. The wire according to claim 15, wherein the quotient obtained by dividing the electric quantity of the constant current charging surface to the current interval by a charging current is calculated. The method of claim 15, wherein the charging time according to the constant voltage interval is: generating a near-predicted constant power in a plurality of time intervals for the plurality of charging intervals to provide a preset charging amount; L. calculating a plurality of time intervals for the plurality of charging intervals according to the preset charging amount and the constant voltage current in the plurality of time intervals; and summing the plurality of time intervals to obtain The constant voltage charging time. The method of claim 17, wherein the summing the plurality of time intervals to obtain the constant voltage charging time comprises: ~ increasing the number of time intervals until a difference between two consecutive calculated values of the constant voltage charging time is less than one a predetermined threshold; and selecting the two consecutive calculated values - the latter as the constant voltage charging time. The method of claim 1 wherein the calculation of the transition from the constant current charging to the constant voltage charging is based on a voltage upper limit value for calculating the transition point from the constant current charging to the constant voltage charging. Eight, round: 21
TW099114073A 2010-05-03 2010-05-03 Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device TWI397240B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099114073A TWI397240B (en) 2010-05-03 2010-05-03 Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device
JP2010163823A JP5400724B2 (en) 2010-05-03 2010-07-21 Smart battery device, method for charging battery pack of smart battery device, and method for approximating ATTF in smart battery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099114073A TWI397240B (en) 2010-05-03 2010-05-03 Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device
JP2010163823A JP5400724B2 (en) 2010-05-03 2010-07-21 Smart battery device, method for charging battery pack of smart battery device, and method for approximating ATTF in smart battery device

Publications (2)

Publication Number Publication Date
TW201141000A true TW201141000A (en) 2011-11-16
TWI397240B TWI397240B (en) 2013-05-21

Family

ID=50686572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114073A TWI397240B (en) 2010-05-03 2010-05-03 Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device

Country Status (2)

Country Link
JP (1) JP5400724B2 (en)
TW (1) TWI397240B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176135A (en) * 2011-12-26 2013-06-26 财团法人工业技术研究院 Battery aging evaluation method
TWI481889B (en) * 2013-11-22 2015-04-21 Wistron Corp Rechargeable battery temperature detection method, power management device and electronic system
US9190854B2 (en) 2012-06-15 2015-11-17 Broadcom Corporation Charger external power device gain sampling
TWI707519B (en) * 2015-05-18 2020-10-11 日商艾普凌科有限公司 Constant current charging device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522240B1 (en) 2012-12-14 2014-06-18 三菱自動車工業株式会社 Charging time estimation device and charging time estimation method
US20140306529A1 (en) * 2013-04-12 2014-10-16 Seagate Technology Llc Dynamic charging of a rechargeable battery
JP6261901B2 (en) * 2013-07-24 2018-01-17 ローム株式会社 Battery management circuit, power management system using the same, electronic equipment
JP5742999B2 (en) * 2014-04-08 2015-07-01 三菱自動車工業株式会社 Charging time estimation device and charging time estimation method
JP5742998B2 (en) * 2014-04-08 2015-07-01 三菱自動車工業株式会社 Charging time estimation device and charging time estimation method
CN112332497A (en) * 2020-11-24 2021-02-05 深圳市神舟创新科技有限公司 Notebook computer battery identification method
CN114056164A (en) * 2021-11-17 2022-02-18 马旭辉 Intelligent control equipment for battery charging

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178121A (en) * 1990-11-07 1992-06-25 Toshiba Corp Trickle charge controller
JP2836677B2 (en) * 1995-02-28 1998-12-14 日本電気株式会社 Rechargeable battery charger with charging completion time display
JP3692617B2 (en) * 1996-05-27 2005-09-07 ソニー株式会社 Charging time calculation method and battery pack
KR100262305B1 (en) * 1997-08-25 2000-07-15 강병호 A smart battery, and power supply for notebook computer using a smart battery
JPH11187587A (en) * 1997-12-24 1999-07-09 Matsushita Electric Ind Co Ltd Charge control circuit
JP2001008372A (en) * 1999-06-21 2001-01-12 Japan Storage Battery Co Ltd Electrical apparatus
US6534954B1 (en) * 2002-01-10 2003-03-18 Compact Power Inc. Method and apparatus for a battery state of charge estimator
JP3714333B2 (en) * 2003-02-28 2005-11-09 日産自動車株式会社 Secondary battery input / output possible power estimation device
US6927554B2 (en) * 2003-08-28 2005-08-09 General Motors Corporation Simple optimal estimator for PbA state of charge
TWI283097B (en) * 2004-12-31 2007-06-21 Jason Auto Technology Co Ltd Method and device for battery charger and diagnosis with detectable battery energy barrier
DE102005020356A1 (en) * 2005-05-02 2006-11-09 Robert Bosch Gmbh Device, in particular charger device
TWI300999B (en) * 2006-02-09 2008-09-11 Neotec Semiconductor Ltd Method of end of discharge voltage measurement for battery and calibration thereof
TWI295522B (en) * 2006-02-09 2008-04-01 Neotec Semiconductor Ltd Battery capacity monitoring and displaying system
US7615969B2 (en) * 2006-07-27 2009-11-10 Dell Products L.P. Systems and methods for temperature-dependent battery charging
JP2008154323A (en) * 2006-12-14 2008-07-03 Gs Yuasa Corporation:Kk Charger and method for detecting charged state
JP5521298B2 (en) * 2008-09-22 2014-06-11 日産自動車株式会社 Lithium secondary battery charge control method, charge control device, and vehicle
JP2010160955A (en) * 2009-01-08 2010-07-22 Panasonic Corp Method of charging battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176135A (en) * 2011-12-26 2013-06-26 财团法人工业技术研究院 Battery aging evaluation method
TWI426288B (en) * 2011-12-26 2014-02-11 Ind Tech Res Inst Method for estimating battery degradation
CN103176135B (en) * 2011-12-26 2015-04-22 财团法人工业技术研究院 battery aging evaluation method
US9229064B2 (en) 2011-12-26 2016-01-05 Industrial Technology Research Institute Method for estimating battery degradation
US9190854B2 (en) 2012-06-15 2015-11-17 Broadcom Corporation Charger external power device gain sampling
TWI481889B (en) * 2013-11-22 2015-04-21 Wistron Corp Rechargeable battery temperature detection method, power management device and electronic system
CN104659866A (en) * 2013-11-22 2015-05-27 纬创资通股份有限公司 Rechargeable battery temperature detection method, power management device and electronic system
US9476778B2 (en) 2013-11-22 2016-10-25 Wistron Corporation Rechargeable battery temperature detection method, power management device and electronic system
CN104659866B (en) * 2013-11-22 2017-04-12 纬创资通股份有限公司 Rechargeable battery temperature detection method, power management device and electronic system
TWI707519B (en) * 2015-05-18 2020-10-11 日商艾普凌科有限公司 Constant current charging device

Also Published As

Publication number Publication date
TWI397240B (en) 2013-05-21
JP5400724B2 (en) 2014-01-29
JP2012029394A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TW201141000A (en) Smart battery device, method of charging a battery pack of a smart battery device and method of approximating average-time-to-full in a smart battery device
US8319479B2 (en) Method of estimating battery recharge time and related device
JP5835761B2 (en) Battery capacity deterioration estimation apparatus and method
US10527680B2 (en) Systems and methods for determining battery state of charge
Pop et al. State-of-the-art of battery state-of-charge determination
CN101425698B (en) Battery pack, method of charging secondary battery and battery charger
US9312712B2 (en) Method and system for controlling charging parameters of a battery using a plurality of temperature ranges and counters and parameter sets
JP5466564B2 (en) Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
JP3121732B2 (en) Secondary battery parameter measurement method, secondary battery charge / discharge control method and life prediction method using the same, secondary battery charge / discharge control device, and power storage device using the same
US8258751B2 (en) Method and system for tracking battery state-of-health based on charging information
TWI403749B (en) Battery capacity detection circuit, electronic system and method thereof
US20090309548A1 (en) Graphic State of Charge Indicator for a Battery Charging System and Method of Use
KR101825617B1 (en) Apparatus and method for changing using-band of battery
EP3828567B1 (en) Battery management device, battery management method, and battery pack
US20140320089A1 (en) Smart charging algorithm of lithium ion battery
CN102866357A (en) System and method for measuring electric quantity of battery
CN112771708A (en) Deterioration degree of storage element, storage battery power level detection device, and storage element management unit
CN104391249A (en) Cell electric quantity displaying method and device and mobile terminal
KR101822594B1 (en) Apparatus and method for changing using-band of battery
CN102033204A (en) Battery power detection circuit, method and electronic system
EP3805768B1 (en) Battery management apparatus, battery management method, and battery pack
KR20080073382A (en) Method of determining internal resistance of battery
CN107356880B (en) Battery electric quantity detection method
CN114910799A (en) Storage battery capacity monitoring method and device, computer equipment and storage medium
CN108232342B (en) Storage battery management method and system and storage battery management equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees