TW201120698A - Touch display. - Google Patents

Touch display. Download PDF

Info

Publication number
TW201120698A
TW201120698A TW98142371A TW98142371A TW201120698A TW 201120698 A TW201120698 A TW 201120698A TW 98142371 A TW98142371 A TW 98142371A TW 98142371 A TW98142371 A TW 98142371A TW 201120698 A TW201120698 A TW 201120698A
Authority
TW
Taiwan
Prior art keywords
touch
signal
display
electrode
circuit
Prior art date
Application number
TW98142371A
Other languages
Chinese (zh)
Inventor
qi-liang Chen
Hai-Ping Liu
de-hai Li
Original Assignee
Intellectual Point Of Technology Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Point Of Technology Shenzhen Co Ltd filed Critical Intellectual Point Of Technology Shenzhen Co Ltd
Priority to TW98142371A priority Critical patent/TW201120698A/en
Publication of TW201120698A publication Critical patent/TW201120698A/en

Links

Abstract

The present invention discloses a touch display, including a flat panel display screen, a display driving circuit, a touch circuit, and a display/touch strobe output circuit or a display/touch signal load circuit; said touch circuit has a touch excitation source and a touch signal detection circuit; wherein, a column electrode group and a row electrode group are disposed on the substrate of the display screen, and the touch circuit applies a touch signal through one specific electrode wire in the column electrode group or the row electrode group, and detects changes of the touch signal on the electrode wire to determine whether the electrode was touched. The touch signal on one specific electrode wire is periodically sampled by the touch circuit with one display frame as a cycle, or integer times of display frame as a cycle, and the touch signal is sampled in constant synchronous relation to the touch signal applies on the specific electrode wire, said constant synchronous relationship refers to that every sample data acquired time is at the same specific phase point on the touch excitation source waveform.

Description

201120698 六、發明說明: 【發明所屬之技術領域】 尤其涉及一種觸控 本發明涉及觸控螢幕和平板顯示器 顯示器。 【先前技術】 目觸控螢幕發展至今已廣泛用於個人電腦、智 話、公共資訊、智慧家電、卫業控制等眾多領域。在目】 觸控領域,主要有電喊_、光電式觸控螢幕 = 波式觸控螢幕、平面電容式觸控螢幕,近年來減電 控螢幕發展迅速。但目前這些觸控螢幕如有各自 點,造成它們誠在某些特殊場合已料_,但難以= 通顯示螢幕上推廣應用。 曰 顯示螢幕與觸控螢幕是對孿生產品,現有技術中, 顯示螢幕與觸控螢幕各自獨立承擔顯示和觸控任務。目驴吊言 種分立式的具有觸控功能的平板顯示器以顯示螢幕、顯示= 動器、觸控螢幕、觸控信號檢測器、背光源等部件構成, 控螢幕有應用不同感測原理的電阻式、電容式、電磁式、 聲波式和光電式等,顯示螢幕有無源液晶顯示螢^ (TN/STN-LCD)、有源液晶顯示螢幕(TFT_LCD)、有機發光二 極體顯示螢幕(OLED、AM-OLED)、等離子體顯示螢幕 (PDP)、納米碳官顯示螢幕、電子紙(e- paper)等。帶有觸控 螢幕的平板顯示器是將分體的觸控螢幕與顯示螢幕層疊在 一起,通過觸控螢幕探測到觸摸點的平面位置,再使顯示螢 幕上的游標跟隨觸摸點定位。觸控螢幕與顯示螢幕的層疊使 得觸控式平板顯示器變厚變重成本增加;在觸控螢幕置於顯 201120698 示螢幕前面時,觸控螢幕感測電極產生的反射又會使得顯示 不均勻和在強外界光環境下顯示對比度的下降,影響顯示效 果。將觸控板和顯示螢幕集成為一體,使具有觸控功能的平 板顯示器變得更加輕薄,是人們努力的方向。 找出一種解決上述的結構複雜問題的方案,提高具有觸 控功能的平板顯示器的可靠性、改善顯示效果、壓縮厚度、 降低成本,以簡潔的方法實現平板顯示器觸控功能是必要 的。 申請號為2006100948141、名稱為《觸控式平板顯示器》 和申請號為2006101065583、名稱為《具有觸控功能的平^板 顯示器》的中國發明專利說明書,分別揭示了一種觸控探測 電路與顯示螢幕電極之間的連接方式,通過類比開關或載入 電路使顯示螢幕電極既傳輸顯示驅動信號,又傳輸並感測觸 控信號’顯示驅動和觸控探測時分複用或同時共用顯示螢幕 電極’顯示螢幕電極既用於顯示驅動又用於觸控探測,從而 創新性地提出了“觸控式平板顯示器”的概念。 申請號為2009102035358、名稱為《一種觸控式平板顯 示器的驅動實現》的中國發明專利說明書,申請號為 2009101399060、名稱為《一種觸控式平板顯示器的驅動實 現》的中國發明專利說明書,申請號為200810133417X、名 稱為《一種觸控式平板顯示器》的中國發明專利說明書,則 又對觸控式平板顯示器做出了進一步的改進。 上述中國專利所揭示的這類觸控式平板顯示器的基本 工作原理是,利用顯示螢幕上兩組相交的電極作為觸控傳感 電極,電極組的各條電極線連接觸控激發源,觸控激發源向 電極線施加交流或直流的觸控激勵信號。當人的手指或其他 觸控物靠近或接觸某條電極線時,觸控電路通過探測各條電 4 201120698 極線觸控信號變化的大小’從而找出手指或其他觸控 示螢幕上的位置H種全新_示朗控二合為^ 觸控探測技術’具有顯者的成本優勢,對其改進後具 的發展前景。本發明就是對其提出的在觸控信號檢測時序方 面的一種改進。 【發明内容】 本發明的目的是提供一種觸控顯示器,解決觸控顯示 榮幕電極線上的觸控信號進行檢測的時序選擇問題。 為此,本發明提出一種觸控顯示器,包括平板顯示螢 幕、顯示驅動電路、觸控電路、以及使顯示螢幕電極既用於 顯示驅動又用於觸控探測的顯示/觸控信號選通輸出電路或 顯示/觸控信號載入電路;所述觸控電路具有觸控激發源和 觸控信號檢測電路;所述顯示/觸控信號選通輸出電路使顯 不營幕電極或與顯不蘇動電路連通傳輸顯示驅動信號,或與 觸控電路連通傳輸觸控信號,顯示驅動和觸控探測時分複用 顯示螢幕電極;所述顯示/觸控信號載入電路使顯示螢幕電 極同時傳輸顯示驅動信號和觸控信號,顯示驅動和觸控探測 同時共用顯示螢幕電極;在顯示螢幕的基板上具有行電極組 和列電極組,觸控電路通過對行電極組或列電極組中的某條 電極線施加觸控信號’並檢測該電極線上觸控信號的變化, 來探測該電極是否被觸碰;觸控電路對某條電極線上觸控信 號的採樣’是以顯示幀為週期、或是以顯示幀的整數倍為週 期,並以與施加在該條電極線上的觸控信號固定的同步關係 對觸控信號進行資料採樣,所述固定的同步關係是指每次獲 取採樣資料的時刻都處在觸控激發源信號波形同一特定相 位點上。 進一步地,在本發明的優選實施例中: 201120698 採樣,是指么T‘固二對觸控1號進行資料 固定序號的週期内進行資料採^知加的觸控信號為起始的 條電 電容 時刻對觸控信號進:固定 =電到放電完成時段内的某—固料刻對觸控信號 所述觸控電路以固定的 ,库,該條電極線上以開 :心的週期後的-定週期個數或時==: 所述觸控電路對觸控信號 週期個數或時間段内的累計性資;是對在一定 所述觸控電路對觸控信均性資料進行採樣。 信號和電流信號中的至少1$進仃㈣採樣’採樣的是電磨 所述觸控電路對觸控信 的幅值特徵和時間特徵中的至小:資料採樣,採樣的是信鞔 所述採樣錢的時㈣ 1 條電極線上觸控信號的相位移動輯;f固定的時間座標下該 所述相位移動特徵是 動特徵。 信號相位為比較物件。 之激發源信號輸出端上的觸控 本發明與現有技術對比的" 要完成對觸控動作的探測要 文果疋: 路來檢測觸控信號的變化資訊。而要相應的觸控信號檢剛電 貝6 。但要真正獲得觸摸資訊,觸 6 201120698 控仏號的檢測時間點與所施加的觸控激勵信號的同步,起到 了決疋性的作用。本發明揭示了觸控探測時,對觸控信號進 行檢測與所施加的觸控激勵信號的同步關係。 【實施方式】 本發月適用於包括具有行電極和列電極的液晶顯示營 幕(LCD)、有機發光二極體顯示螢幕(OLED、AM OLED)、 等離子體顯示螢幕(PDP)、納米碳管顯示螢幕、電子紙 (e-paper)等平板顯示器。 ^本說明書的内容以有源液晶顯示器的典型代表薄膜場 效應電晶體液晶顯示器(Thin Film Transistor LCD,TFT-LCD) 為物件進行闡述。 ’ „溥膜場效應電晶體液晶顯示螢幕是有源矩陣液晶顯示 二的典型代表,它以基板上的薄膜場效應電晶體 Π 器件。TFT_LCD顯示器典型的—個結構如第 曰後110 * tft液晶屏;元件符號120是液 5曰if向知描仃電極,元件符號12卜122 ' ...、12m]、 二線(行電極線);元件符號13G是液晶屏垂直 電1 ^元件符號131、...、13n是數據電極線(列 ,兀牛付號140是公共電極(c〇M電極),公並電極 畫素的參考電位丄符= (D—則連接至顯示書素)=至?二向糊線,沒極 應的液晶分子盒,在電是顯示晝素對 定義為CLC ;元件^^4效於一個電容,這個電容一般201120698 VI. Description of the Invention: [Technical Field of the Invention] In particular, the present invention relates to a touch screen and a flat panel display. [Prior Art] The development of the touch screen has been widely used in many fields such as personal computers, smart phones, public information, smart home appliances, and industrial control. In the field of touch, there are mainly electric shouting _, photoelectric touch screen = wave touch screen, flat capacitive touch screen, and the power-reduction screen has developed rapidly in recent years. However, if these touch screens have their own points, they are expected to be used in some special occasions, but it is difficult to display the application on the screen.曰 The display screen and the touch screen are the twin products. In the prior art, the display screen and the touch screen are independently responsible for display and touch tasks. The slogan's discrete touch-enabled flat panel display consists of a display screen, display = actuator, touch screen, touch signal detector, backlight, etc. The control screen has different sensing principles. Resistive, Capacitive, Electromagnetic, Acoustic, and Photoelectric, etc. Display screens include passive liquid crystal display (TN/STN-LCD), active liquid crystal display (TFT_LCD), and organic light-emitting diode display (OLED) , AM-OLED), plasma display screen (PDP), nano carbon display screen, e-paper, etc. A flat panel display with a touch screen stacks a split touch screen with a display screen to detect the planar position of the touch point through the touch screen, and then causes the cursor on the display screen to follow the touch point. The cascading of the touch screen and the display screen makes the touch panel display thicker and heavier and the cost increases; when the touch screen is placed in front of the display screen 201120698, the reflection generated by the touch screen sensing electrode causes the display to be uneven and The display contrast is reduced in a strong external light environment, which affects the display effect. Integrating the touchpad and the display screen to make the flat panel display with touch function thinner and lighter is the direction of people's efforts. It is necessary to find a solution to the above-mentioned structural complexity problem, improve the reliability of the flat panel display with touch control function, improve the display effect, compress the thickness, and reduce the cost, and realize the touch function of the flat panel display in a simple manner. The invention patent specification of the application number is 2006100948141, the name is "touch type flat panel display" and the application number is 2006101065583, and the name is "flat-panel display with touch function", respectively reveals a touch detection circuit and display screen The connection between the electrodes, through the analog switch or the loading circuit, the display screen electrode transmits both the display driving signal, and transmits and senses the touch signal 'display driving and touch detection time division multiplexing or simultaneously sharing the display screen electrode' The display screen electrode is used for both display driving and touch detection, thus innovatively introducing the concept of a "touch flat panel display". Application No. 2009102035358, the Chinese invention patent specification entitled "Drive Implementation of a Touch Panel Display", the application number is 2009101399060, the Chinese invention patent specification entitled "Drive Implementation of a Touch Panel Display", Application No. The Chinese invention patent specification for 200810133417X, entitled "One Touch Panel Display", has further improved the touch panel display. The basic working principle of the touch panel display disclosed in the above Chinese patent is that two sets of intersecting electrodes on the display screen are used as the touch sensing electrodes, and the electrode lines of the electrode group are connected to the touch excitation source, and the touch The excitation source applies an alternating current or direct current touch excitation signal to the electrode lines. When a person's finger or other touch object approaches or touches an electrode line, the touch circuit finds the position on the finger or other touch screen by detecting the magnitude of the change of the touch signal of each pole 4 201120698 H new type _ shows the Lang control two-in-one ^ touch detection technology' has obvious cost advantages, and its development prospects after improvement. The present invention is an improvement on the timing of detecting touch signals. SUMMARY OF THE INVENTION An object of the present invention is to provide a touch display that solves the problem of timing selection for detecting a touch signal on a touch screen electrode line. To this end, the present invention provides a touch display including a flat panel display screen, a display driving circuit, a touch circuit, and a display/touch signal strobe output circuit for causing the display screen electrode to be used for both display driving and touch detection. Or a display/touch signal loading circuit; the touch circuit has a touch excitation source and a touch signal detection circuit; and the display/touch signal strobe output circuit makes the display electrode or the display The circuit communicates with the display driving signal, or communicates with the touch circuit to transmit the touch signal, and the display driving and the touch detection time division multiplex display the screen electrode; the display/touch signal loading circuit causes the display screen electrode to simultaneously transmit the display driving The signal and the touch signal, the display driving and the touch detection share the display screen electrode at the same time; the row electrode group and the column electrode group are arranged on the substrate of the display screen, and the touch circuit passes through one of the row electrode group or the column electrode group Applying a touch signal to the line and detecting a change in the touch signal on the electrode line to detect whether the electrode is touched; the touch circuit is on an electrode line The sampling of the touch signal is based on the display frame period or an integer multiple of the display frame, and the data is sampled by the fixed relationship with the touch signal applied to the electrode line. The fixed synchronization relationship means that the time at which the sampling data is acquired is at the same specific phase point of the touch excitation source signal waveform. Further, in a preferred embodiment of the present invention: 201120698 sampling means that the T' solid touches the touch number of the touch number 1 in the period of the fixed number of the data. The touch signal enters at a fixed time: fixed=electric to the discharge completion period of a certain solid material engraved on the touch signal of the touch circuit to be fixed, the library, the strip electrode line is opened after the heart period - The number of cycles or times ==: The cumulative amount of the touch circuit for the number of touch signals or the time period; the sampling of the touch signal uniform data in a certain touch circuit. At least 1$ of the signal and current signals are sampled. The sampled is the minimum of the amplitude and time characteristics of the touch signal by the touch circuit: the data is sampled, and the sampled is the signal. When the money is sampled (4) The phase shift of the touch signal on one electrode line; the phase shift feature under the fixed time coordinate is a dynamic feature. The signal phase is a comparison object. The touch on the output end of the excitation source signal is compared with the prior art. To complete the detection of the touch action, the method is to detect the change information of the touch signal. And the corresponding touch signal should be checked. However, in order to truly obtain the touch information, it is a decisive factor to synchronize the detection time point of the 201120698 control signal with the applied touch excitation signal. The invention discloses a synchronization relationship between a touch signal detection and an applied touch excitation signal during touch detection. [Embodiment] This month is applicable to a liquid crystal display (LCD) having a row electrode and a column electrode, an organic light emitting diode display screen (OLED, AM OLED), a plasma display screen (PDP), a carbon nanotube Display flat panel displays such as screens and e-papers. The contents of this specification are described by the typical representative of a liquid crystal display (Thin Film Transistor LCD, TFT-LCD). The 溥 film field effect transistor liquid crystal display screen is a typical representative of active matrix liquid crystal display 2. It is a thin film field effect transistor 基板 device on the substrate. The TFT_LCD display is typically a structure such as the first 110 * tft LCD Screen; component symbol 120 is liquid 5曰if to know the electrode, component symbol 12 122', 12m], two lines (row electrode line); component symbol 13G is liquid crystal vertical 1 ^ component symbol 131 , ..., 13n is the data electrode line (column, yak payout 140 is the common electrode (c〇M electrode), the reference potential 丄 of the common electrode pixel = (D - then connected to the display pheromone) = To the two-way paste line, there is no liquid crystal molecular box, in the electric is to show that the halogen is defined as CLC; the component ^^4 acts on a capacitor, this capacitor is generally

Storage,Cs),用來存H〇 是存儲電容(Capacitance 仔储顯不晝素的資訊;元件符號180是 201120698 公共電極電壓源,負責產生公共電極參考電壓(Vc〇m Refer隱);元件賴181是TFT_LCD的栅極電極(行電 驅動器(Gate Driver),用來驅動水準方向掃描線;元件符號 182是TFT-LCD的源極電極(列電極)驅動器(s〇ur= Driver),用來驅動垂直方向資料線;元件符號183是時序控 制器(Timing Controller)負責接收來自影像信號處理晶片 RGB資料、時鐘信號Clock、水準同步(Hsync)和垂直同 步信號(Vsync),並將這些信號轉換,用於控制源極(列電 極)驅動器(Source Driver)和柵極(行電極)驅動器((}扯 Driver)協同工作。 一個顯不晝素一般由三個顯示紅、綠、藍三種原色的子 晝素組成。一個顯示子晝素的結構示意圖如第2圖所示:⑶ 代表水準方向行掃描電極線,也稱為行驅動電極線或栅驅動 電極線’Gi上的電位是Vg;Sj代表垂直方向列資料電極線, 也稱為列驅動電極線或源驅動電極線,习上的電位是Vs ; Dij代表TFT連接顯示晝素的端子,稱為汲極,Dij上的電 位是Vd,也稱為晝素電位;每個顯示晝素均配置一個半導 體開關器件-薄膜基板上場效應電晶體(TFT),可以通過脈衝 直接控制選通進行顯示掃描,因而每個晝素相對獨立。TFT 的栅極(Gate)與源極(s〇urce)間的電壓為Vgs,TFT的柵極 (Gate)與汲極(r>ain)間的電壓為Vg(^薄膜場效應電晶 體(TFT)有NMOS型和pm〇S型兩種。目前絕大部分的 TFT-LCD中所使用的薄膜場效應電晶體,是採用非晶矽 (amorphous silicon ’ a_Si)製程,其栅極絕緣層是氮化矽 (SiNx)’容㈣取正電荷’要在非晶料導體層巾形成通道, 恰好利用II化⑪中的正電荷來幫助吸引電子以形成通道,因 此使用非晶石夕製程㈣TFT多為NM〇s型。本說明書的内容 8 201120698 主要是以NMOS型镇膛μ成 Ρ Μ O S型薄膜場效庳電曰、努:電晶體為代表進行闡述, 舉表述。 〜Ί财相相通_理,科單獨列 所示··在顯^掃^^^螢幕常規顯示驅動的時序如第3圖 對行電極執行順裏面’顯示驅動電路 相應的顯利现讓顯示螢電極配合輸出 描時間段之門合古γ筻参處於顯不狀態;每兩個顯示掃Storage, Cs), used to store H〇 is the storage capacitor (Capacitance is not a good information; component symbol 180 is the 201120698 common electrode voltage source, responsible for generating the common electrode reference voltage (Vc〇m Refer implicit); 181 is a gate electrode of a TFT_LCD (a gate driver for driving a horizontal direction scan line; and a component symbol 182 is a source electrode (column electrode) driver of the TFT-LCD (s〇ur=Driver) for Driving the vertical direction data line; the component symbol 183 is a timing controller (Timing Controller) for receiving RGB data from the image signal processing chip, clock signal Clock, level synchronization (Hsync), and vertical synchronization signal (Vsync), and converting these signals, It is used to control the source (column electrode) driver (Source Driver) and the gate (row electrode) driver ((}Driver) to work together. One display is generally composed of three sub-colors of red, green and blue. The composition of the halogen is shown in Figure 2: (3) The scanning electrode line representing the horizontal direction, also called the row driving electrode line or the gate driving The potential on the pole line 'Gi is Vg; Sj represents the vertical direction column data electrode line, also called the column drive electrode line or the source drive electrode line, the conventional potential is Vs; Dij represents the TFT connection terminal for displaying the halogen, called For the drain, the potential on Dij is Vd, also known as the halogen potential; each display element is equipped with a semiconductor switching device - a field effect transistor (TFT) on the thin film substrate, which can be directly controlled by pulse for display scanning. Therefore, each element is relatively independent. The voltage between the gate and the source (s〇urce) of the TFT is Vgs, and the voltage between the gate (gate) and the drain (r) of the TFT is Vg. (^The thin film field effect transistor (TFT) has two types: NMOS type and pm〇S type. At present, most of the thin film field effect transistors used in TFT-LCD use amorphous silicon 'a_Si). The process, the gate insulating layer is tantalum nitride (SiNx) 'capacity (four) takes a positive charge' to form a channel in the amorphous conductor layer, just using the positive charge in the II 11 to help attract electrons to form a channel, therefore The use of amorphous Aussie process (four) TFT is mostly NM〇s type. The contents of this manual 8 201120698 Mainly based on the NMOS type 膛μ成Ρ Μ OS type thin film field effect 庳 曰, Nu: The transistor is represented by the representative, and the expression is 。 Ί _ _ _ _ _ _ 科 科 科 科Display ^ ^ ^ ^ screen conventional display drive timing as shown in Figure 3 on the row electrode to perform the inside of the display drive circuit corresponding to the display of the display of the fluorescent electrode with the output of the time segment of the door of the ancient γ 筻 处于 is not State; every two display sweeps

Time),Ϊia^n ^ ^ ^ ^ ^ ^ ^ Β1^ 動電路對行電極= 面止顯=執:顧示·顯示媒 . c〇M VZZZtT^ltt 設輸出信號,TFT處於截 二::輸出態或者某預 發幕電極技術㈣就是=發明+的時分複用顯示 示電極為檢隱時間段作為複用顯 工作,過㈣㈣㈣1料°馳電路協同 信號、或與广連通傳輸顯示驅動 測時分複用顯示營幕電極。在顯;:以;== ==rr_信號,顯示螢 =探’顯示螢幕電極連通觸控電路傳輸觸控信發, =z檢測f經ΐ條行電極線和各條列電極線的觸控°^號 極線為被::t號變化達到某設定條件的行電極線和列電 電極線。由探測到的被觸行電極線和被觸列電極 線的父叉點’確定出被觸點位置。 搞-if=實施例所列舉的具體實施方式十六到方式十九 揭不了相關的觸控信號檢測電路結構。 除此之外,本發明實施綱崎的具财施方式一到方 201120698 式六是通過選擇合理的觸控激勵信號方案,以避免觸控激勵 信號影響顯示效果的例子,具體實施方式七到方式十^出了 避免顯示影響觸控的幾種解決方案,具體實施方式十一到方 式十三揭示了觸控激勵信號頻率的選擇要求,具體實施方式 十四和方式十五揭示了觸控探測時’對觸控信^進行檢測= 所施加的觸控激勵信號的同步關係’具體實施方式二十到 式二十三揭示了多種單通道和多通道的觸控檢測掃描方式 和順序。這些實施例是對觸控電路其餘方面的改進,其採用 與否不影響本發明技術方案的實現’不影響本發明的j呆護範 以TFT-LCD為顯示螢幕的觸控顯示器4〇〇的電氣連接 關係如第4圖所示。包括TFT-LCD顯示螢幕41〇;tft_lcd 顯示螢幕水準方向的掃描行電極42〇,具有行電極線 42卜…、42m ; TFT-LCD顯示螢幕垂直方向的資料列電極 430 ’具有列電極線43卜…、43n ; TFT_LCD顯示螢幕的公 共電極層(COM電極)440 ; TFT-LCD顯示螢幕上的薄膜場 應電晶體TFT 450,其栅極(Gate)連接至水準方向掃描行電 極線,源極(Source)連接至垂直方向的資料列電極線,、及極 (I^ain)則連接至晝素電極;顯示畫素對應的液晶盒46〇/,在 ,氣上等效於一個電容,這個電容一般定義為CLC;存儲電 容(Capacitance Storage,Cs)470 ’用來存儲晝素的顯示資訊; COM電極的顯示驅動電路48〇,觸控探測狀態時用於 電極的觸控激發源48卜C0M電極的C0M信號選通 路482 ;行電極的顯示掃描驅動電路483,行電極的觸 路(具有觸控激發源和觸控信號檢測電路)484,行電極p 號選通輸出電路485 ;列電極的顯示資料驅動電路伽^ 電極的觸控電路(具有觸控激發源和觸控信號檢測電 201120698 路)487 ’列電極的列信號選通輸出電路488 ;時序控制器 (TimingController)489等。顯示掃描驅動電路483與觸控電 路484通過行信號選通輸出電路485連接到行電極420 ;顯 示資料驅動電路486與觸控電路487通過列信號選通輸出電 路488連接到列電極430; COM顯示驅動電路480與觸控激 發源481通過COM信號選通輸出電路482連接到COM電 極 440。 時序控制器489接收來自影像信號處理晶片的RGB資 料、時鐘信號Clock、水平同步Hsync和垂直同步信號Time),Ϊia^n ^ ^ ^ ^ ^ ^ ^ Β1^ moving circuit to row electrode = face stop display = hold: display · display medium. c〇M VZZZtT^ltt set output signal, TFT is in cut:: output State or a pre-curtain electrode technology (4) is = invention + time division multiplexing display indicator electrode for the hidden time period as a multiplexing display work, over (4) (four) (four) 1 material ° chi circuit coordination signal, or with wide communication transmission display drive time measurement The divisional multiplexing displays the camping electrodes. In the display;: with; == == rr_ signal, display flash = probe 'display screen electrode connected touch circuit transmission touch signal, = z detection f through the row electrode line and each column electrode line touch The control line of the ^^ number is the row electrode line and the column electrode line which are changed by :t number to reach a certain setting condition. The position of the contact is determined by the detected contact line of the touched electrode line and the touched electrode line. The specific embodiment 16 to the nineteenth embodiment of the embodiment are not disclosed. The related touch signal detecting circuit structure is not disclosed. In addition, the implementation method of the present invention is one of the methods of the method of selecting a reasonable touch excitation signal to avoid the influence of the touch excitation signal on the display effect. Several solutions for avoiding the influence of touch are displayed. The eleventh to the thirteenth embodiments disclose the selection requirements of the frequency of the touch excitation signal, and the fourteenth and fifteenth embodiments disclose the touch detection. 'Detecting the touch signal ^ = Synchronizing relationship of the applied touch excitation signal'. Embodiments 20 to 23 disclose various single-channel and multi-channel touch detection scanning modes and sequences. These embodiments are improvements to the rest of the touch circuit, and the adoption thereof does not affect the implementation of the technical solution of the present invention. The touch display that does not affect the present invention uses a TFT-LCD as a display screen of the display screen. The electrical connection relationship is shown in Figure 4. The TFT-LCD display screen 41〇; tft_lcd displays the scanning line electrode 42〇 in the screen level direction, has the row electrode line 42..., 42m; the TFT-LCD displays the data column electrode 430′ in the vertical direction of the screen has the column electrode line 43 ..., 43n; TFT_LCD displays the common electrode layer (COM electrode) 440 of the screen; TFT-LCD displays the film field on the screen as the transistor TFT 450, and its gate is connected to the horizontal direction scanning row electrode line, source ( Source) is connected to the data line electrode line in the vertical direction, and the pole (I^ain) is connected to the pixel electrode; the liquid crystal cell 46〇/ corresponding to the pixel is displayed, and the gas is equivalent to a capacitor. Generally defined as CLC; storage capacitor (Capacitance Storage, Cs) 470' is used to store the display information of the pixel; display driving circuit 48 of the COM electrode; touch excitation source 48 for the electrode when the touch detection state is used The C0M signal selection path 482; the row electrode display scan drive circuit 483, the row electrode touch path (with touch excitation source and touch signal detection circuit) 484, the row electrode p number gate output circuit 485; the column electrode display Data driven electricity Lujia^ electrode touch circuit (with touch excitation source and touch signal detection circuit 201120698) 487 column electrode column strobe output circuit 488; timing controller (TimingController) 489 and so on. The display scan driving circuit 483 and the touch control circuit 484 are connected to the row electrode 420 through the row signal strobe output circuit 485; the display data driving circuit 486 and the touch control circuit 487 are connected to the column electrode 430 through the column signal strobe output circuit 488; The driving circuit 480 and the touch excitation source 481 are connected to the COM electrode 440 through the COM signal strobe output circuit 482. The timing controller 489 receives RGB data from the image signal processing chip, a clock signal Clock, a horizontal sync Hsync, and a vertical sync signal.

Vsync,並控制連接柵極的行顯示驅動電路483、連接源極 的列顯示驅動電路486和連接公共電極的c〇M顯示驅動電 路480協同工作;也控制連接源極的行觸控電路4料、連接 柵極的列觸控電路487和連接公共電極的c〇M觸控激發源 481協同工作;並讓觸控顯示器内的行選通電路485、列選 通電路488和COM信號選通輸出電路482使顯示螢幕電^ 或與顯示驅動電路連通傳輸顯示驅動信號、或與觸控電路連 通傳輸觸控信號,顯示驅動和觸控探測時分複用顯示螢幕電 極。 在顯示時段,觸控顯示器400内的行選通電路485、 選通電路488和COM信號選通輸出電路482使顯示螢幕〜 電極420、列電極430和C〇M電極440,分別連通行顯示^ 動電路483、列顯示驅動電路486和c〇M顯示驅動電路4⑽ 傳輸顯示驅動信號,顯示螢幕41〇處於顯示態。 在觸控探測時段,觸控顯示器4〇〇内的行選通 485、列選通電路488和COM信號選通輸出電路482 螢幕行電極420、列電極430和c〇M電極44〇,分別連 觸控電路484、列觸控電路487和c〇M觸控激發源牦丨^ 11 201120698 輸觸控信號,並分別檢測流經各條行電極線和各 的觸控信號的變化,顯示螢幕行列電極切換作為觸控感應電 極使用;以行觸控電路484和列觸控電路487檢測&經的 觸控信號變化達到某設定條件的行電極線和列電極為被 觸電極線。由探測到的被觸行電極線和被觸列電極的交又 點,確定出觸摸點在顯示螢幕410上的位置。 第4圖示意的是典型的觸控顯示器的結構,下面對具體 實施方式的說明均建立在這個結構的基礎上。 八 具體實施方式一: 第4圖所示的觸控顯示器4〇〇,顯示榮幕電極時分複用 方案的時序如第5圖所示。以每兩次顯示巾貞之__隱時 間段作為觸控探測時段,這個時間段裏面顯示螢雷 為觸控感應電極使用,在顯示螢幕電極上施加觸控激勵信 號,並檢測顯示螢幕電極上觸控信號的變化。 觸控激發源為有直流底值或沒有直流底值的方波信號 源。在觸控探測時,對如第2圖所示TFT的Gi、$和c〇M 三個電極分別施加如第6圖所示觸控激勵信號,所施加的這 三個觸控激勵信號都是有直流底值或沒有直流底值的方 波,其頻率相同且相位-致。在顯錢幕電極從顯示狀態切 換到觸控制㈣時,錢讓對f極Gi與電極Sj施加的觸 控激勵信號的暫態電位差Vgs ( Vgs=Vg_Vs )低於讓tft處 於截止狀態的截止電壓;其次再讓對c〇M電極和電極Gi 施加合適的觸控激勵信號,使晝素電極電位Vd與c〇M電 極電位Vcom的平均值均保持不變,並使畫素電位vd符合 vgd^vg^vd的暫態電位差均低於讓TFT處於截止狀態的截 止電壓這一要求,保證Vgs和Vgd均低於讓TFT處於截止 狀態的截止電壓,從而確保了 TFT在觸控探測狀態下能保持 12 201120698 有效截土,並維持了顯示畫素的電壓,讓顯示效果不受觸控 探測的影響。 觸控激發源選擇為有直流底值或沒有直流底值的方波 信號源,且這些方波信號源的頻率和相位一致,跳變的幅度 也一致,使TFT的Gi、幻和C0M三個電極施加的激勵信 號的差值為恒定的直流電平,事實上觸控檢測時可以採用結 構簡便的檢測電路就能得到良好的檢測效果’並且信號源的 產生非常方便,有較高的實用價值。 具體實施方式二: 本實施例與實施例一的不同在於:所施加的這三個觸控 激勵信號(如第7圖所示)的頻率是不相同的。 具體實施方式三: 本實施例與實施例一和實施例二的不同在於:所施的這 三個觸控激勵信號都是有直流底值或沒有直流底值的方 波’其頻率相同但相位不一致,如第8圖所示。 具體實施方式四: 本實施例與實施例一至實施例三所不同的是:在觸控探 測時,如第2圖所示TFT的Gi、Sj和COM三個電極分別 施加如第9圖所示觸控激勵信號,所施加的三個觸控激勵信 號都是有直流底值或者沒有直流底值的正弦波(注意實施例 一至三為方波而非正弦波),其頻率相同和相位一致。 具體實施方式五: 本實施例與實施例一至實施例四所不同的是,在觸控探 =時’如第2圖所示TFT的Gi、Sj和c〇m三個電極分別 如第10圖所示觸控激勵信號,所施加的三個觸控激勵 信號都是有直流底值或者沒有直流底值的正弦波,頻率和相 位都相同’但波形交流部分的幅值是不同的。 13 201120698 具體實施方式六: 本實施例與實施例一至實施例五所不同的是,在觸控探 測時,對如第2圖所示TFT的Gi、Sj和COM三個電極分 別施加如第11圖所示觸控激勵信號,這種激勵信號的組合 不使晝素電極電位Vd與COM電極電位Vcom的平均值均 保持不變,但可以令兩者的電位差Vd-Vcom的平均值保持 不變’也能讓顯示效果不受觸控探測的影響。 具體實施方式七: 第4圖所示的觸控顯示器400,顯示器採用TFT-LCD, TFT-LCD採用正性液晶材料。液晶材料介電係數各向異性的 特徵,使液晶盒内各處分佈電容隨各處液晶分子的排列而變 化。TFT-LCD内各處液晶分子的排列取決於該處驅動電壓所 累積的有效值,不同時刻不同位置累積的驅動電壓有效值不 同,液晶分子排列就不同,分佈電容也不同,進行觸控探測 的測量環境就不同。對TFT_LCD施加驅動電壓時,液晶分 子排列狀態因驅動電場的作用而一致趨向平行於電場的方 向。 —顯示電極時分複用方案的又一時序如第12圖所示。以 每兩次顯示幀之間的幀消隱時間段作為觸控探測時段。在這 一時間段裏面,先同時對顯示螢幕所有行電極線Gi和列電 極線Sj施加一個飽和的預置驅動(預驅動 ,pre-driving),Gi、Vsync, and the row display driving circuit 483 for controlling the connection gate, the column display driving circuit 486 for connecting the source, and the c〇M display driving circuit 480 for connecting the common electrode to work together; and controlling the row touch circuit 4 for connecting the source The column touch circuit 487 connecting the gates and the c〇M touch excitation source 481 connected to the common electrode cooperate with each other; and the row gating circuit 485, the column gating circuit 488 and the COM signal strobe output in the touch display The circuit 482 causes the display screen to be connected to the display driving circuit to transmit the display driving signal, or to communicate with the touch circuit to transmit the touch signal, and the display driving and the touch detecting time division multiplexing display the screen electrode. During the display period, the row strobe circuit 485, the strobe circuit 488, and the COM signal strobe output circuit 482 in the touch display 400 cause the display screen ~ electrode 420, the column electrode 430, and the C 〇 M electrode 440 to be connected to each other for display. The dynamic circuit 483, the column display driving circuit 486, and the c〇M display driving circuit 4 (10) transmit a display driving signal, and the display screen 41 is in a display state. During the touch detection period, the row strobe 485, the column strobe circuit 488, and the COM signal strobe output circuit 482 of the touch display 4A are respectively connected to the screen row electrode 420, the column electrode 430, and the c〇M electrode 44〇. The touch circuit 484, the column touch circuit 487, and the c〇M touch excitation source 牦丨^ 201120698 transmit touch signals, and respectively detect changes in the flow lines flowing through the respective row lines and the respective touch signals, and display the screen rows and columns. The electrode switching is used as the touch sensing electrode; the row touch circuit 484 and the column touch circuit 487 detect that the row electrode line and the column electrode whose touch signal changes to a certain set condition are the touched electrode lines. From the detected intersection of the touched electrode line and the touched electrode, the position of the touched point on the display screen 410 is determined. Fig. 4 is a view showing the structure of a typical touch display, and the following description of the specific embodiments is based on this structure. Eight Embodiments 1: The touch display 4A shown in Fig. 4 shows the timing of the time division multiplexing scheme of the gate electrode as shown in Fig. 5. The __ hidden time period of the display frame is used as the touch detection period. In this time period, the lightning ray is used as the touch sensing electrode, the touch excitation signal is applied on the display screen electrode, and the touch screen electrode is detected. Control signal changes. The touch excitation source is a square wave signal source with or without a DC bottom value. In the touch detection, the touch excitation signals as shown in FIG. 6 are respectively applied to the three electrodes of Gi, $, and c〇M of the TFT shown in FIG. 2, and the three touch excitation signals applied are A square wave with a DC bottom value or no DC bottom value has the same frequency and phase-induced. When the display screen electrode is switched from the display state to the touch control (4), the transient potential difference Vgs (Vgs=Vg_Vs) of the touch excitation signal applied to the f-pole Gi and the electrode Sj is lower than the cut-off voltage for letting the tft in the off state. Secondly, a suitable touch excitation signal is applied to the c〇M electrode and the electrode Gi, so that the average values of the electrode potential Vd and the c〇M electrode potential Vcom are kept constant, and the pixel potential vd is in accordance with vgd^. The transient potential difference of vg^vd is lower than the cutoff voltage of the TFT in the off state, ensuring that both Vgs and Vgd are lower than the cutoff voltage for turning off the TFT, thereby ensuring that the TFT can be maintained under the touch detection state. 12 201120698 Effectively intercepting the ground and maintaining the voltage of the displayed pixels, so that the display effect is not affected by the touch detection. The touch excitation source is selected as a square wave signal source having a DC bottom value or no DC bottom value, and the frequency and phase of the square wave signal sources are the same, and the amplitude of the jump is also uniform, so that the Gi, the phantom and the C0M of the TFT are three. The difference between the excitation signals applied by the electrodes is a constant DC level. In fact, a simple detection circuit can be used to obtain a good detection effect when the touch detection is performed, and the generation of the signal source is very convenient and has high practical value. Embodiment 2 The difference between this embodiment and Embodiment 1 is that the frequencies of the three touch excitation signals (as shown in FIG. 7) are different. The third embodiment is different from the first embodiment and the second embodiment in that the three touch excitation signals are both a DC bottom value or a square wave without a DC bottom value. Inconsistent, as shown in Figure 8. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 4: The difference between this embodiment and the first embodiment to the third embodiment is that, in the touch detection, the three electrodes of Gi, Sj and COM of the TFT as shown in FIG. 2 are respectively applied as shown in FIG. For the touch excitation signal, the three touch excitation signals applied are sinusoidal waves having a DC bottom value or no DC bottom value (note that Embodiments 1 to 3 are square waves instead of sine waves), and the frequencies are the same and the phases are the same. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 5: The difference between this embodiment and the first embodiment to the fourth embodiment is that when the touch detection is performed, the three electrodes of the Gi, Sj and c〇m of the TFT shown in FIG. 2 are respectively as shown in FIG. For the touch excitation signal shown, the three touch excitation signals applied are sinusoidal waves with or without a DC bottom value, and the frequency and phase are the same 'but the amplitude of the waveform AC portion is different. 13 201120698 Embodiment 6: This embodiment differs from Embodiment 1 to Embodiment 5 in that, in the touch detection, the electrodes of Gi, Sj and COM of the TFT shown in FIG. 2 are respectively applied as shown in FIG. 11 . The touch excitation signal is shown, and the combination of the excitation signals does not keep the average value of the pixel electrode potential Vd and the COM electrode potential Vcom constant, but the average value of the potential difference Vd-Vcom can be kept unchanged. It also allows the display to be unaffected by touch detection. Embodiment 7: The touch display 400 shown in FIG. 4 adopts a TFT-LCD, and the TFT-LCD adopts a positive liquid crystal material. The anisotropy of the dielectric constant of the liquid crystal material causes the distributed capacitance in the liquid crystal cell to vary with the arrangement of the liquid crystal molecules. The arrangement of liquid crystal molecules in the TFT-LCD depends on the effective value accumulated by the driving voltage at the same place. The effective values of the driving voltages accumulated at different positions at different times are different, the liquid crystal molecules are arranged differently, and the distributed capacitance is also different. The measurement environment is different. When a driving voltage is applied to the TFT_LCD, the liquid crystal molecular alignment state tends to be parallel to the direction of the electric field due to the action of the driving electric field. - A further timing of the display electrode time division multiplexing scheme is shown in FIG. The frame blanking period between each display frame is used as the touch detection period. During this period of time, a saturated preset drive (pre-driving), Gi, is applied to all the row electrode lines Gi and the column electrode lines Sj of the display screen at the same time.

Sj和COM三個電極上的信號波形如第13圖所示,觸控激 勵k號為有直流底值或沒有直流底值的正弦波。Gi_Sj間的 ,位差Vgs在_l〇.5V到-17V之間,低於讓TFT處於截止狀 態的截止電壓,避免影響顯示;Gi_c〇M間的電位差Vgc在 -10.5V到-12V之間、Sj-COM間的電位差Vsc是5V,都超 過液晶分子的飽和驅動電壓。在所施加的飽和驅動電壓的作 201120698The signal waveforms on the three electrodes of Sj and COM are shown in Fig. 13, and the touch excitation k is a sine wave with a DC bottom value or no DC bottom value. Between Gi_Sj, the difference Vgs is between _l〇.5V and -17V, which is lower than the cutoff voltage for turning off the TFT to avoid affecting the display; the potential difference Vgc between Gi_c〇M is between -10.5V and -12V. The potential difference Vsc between Sj-COM is 5V, which exceeds the saturation driving voltage of the liquid crystal molecules. In the applied saturation drive voltage made 201120698

用下,液晶顯示螢幕内行電極和CQM 子、列電極和㈣電極之間的液晶分子,排列方“ I; 迅速轉向趨向平行於電場的方向。如第14圖所示,^^ 液晶材料分子施加電場㈣,液晶分子的 ^ 向的排列狀態。再分別對顯示螢幕行電極線Gi和列 sj=加觸控激脑號,並分職職經各條行電極線和各條 歹^極線_控信號的變化;之制齡預鶴電壓使= 分子排列-致’排除了液晶材料介電係數各向異性導致二 檢測各條行電極線上和各條列電極線上“ 變化時,不同時刻不同位置上的測量環境趨向於一 致,有利於觸控探測結果的穩定性和一致性。 、 對液晶外加電場時,由於液晶分子為無極性分子, 14圖液晶分子的不會受電場正貞方向的 的暫態電壓可正可負’只要保持對液$ 動即可。所以施加在顯示螢幕同—電極上的預驅動信 、。觸控激勵信號的波形或頻率、幅值都可以是相同的,甚 至將預驅動信號和觸控激勵信號採用同一信號。 具體實施方式八: ㈣料同的是,本射TFT-LCD採物生液晶 材料,如第15圖所示。 具體實施方式九: 第4圖所示的觸控顯示器4〇〇,顯示器採用tft_lcd, ,於液晶顯示器的回應速度相對較低,在顯示高速晝面時, 容易存在殘影、拖尾現象,為了解決這一問題,目f的一種 ‘解決方,案是提高顯示的巾貞頻,在每_個顯示巾貞後面***一個 “黑,”,讓“黑幀,,阻斷之前顯示内容的殘影。所謂黑幀就是 在這一幀内,在TFT處於導通的狀態下,通過列電極、幻對 15 201120698 ,示晝素電極施加-個餘和驅動電壓,讓顯示液 r加電%垂直或平打的方向。在顯示書 搞知=分子排列處於—致的情訂,液晶顯示螢幕内列電 ^和COM電極之㈣晶分子的排列也將是—致的。由於行 ^是掃描電極,各行電極上的電壓有效值是-樣的,在列 電極和COM電極之間料好排贼於—致的情況下,^ #電極上的分佈電容就基本是一致的。 顯示電極時分複用方案的時序如第16圖所示。在黑幢 之後才分別對㈣螢幕行電極線G i和列電極線sj施加觸控 激勵信號’並分別檢測流經各條行電極線和各條列電極線的 觸控信號的變化。黑_液晶分子排列處於一致,排除 了液晶材料介電係數各向異性導致的分佈電容的變化,檢測 各條行電極線上和各條列電極線上觸控信號的變化時,不同 時刻不同位置上的測量環境趨向於一致,有利於觸控探測結 果的穩定性和一致性》 具體實施方式十: 第4圖所示的觸控顯示器4〇〇,顯示器採用tfT-LCD, 與實施例九相同之處在於,也在每一個顯示幀後面***一個 黑1J>貞” ’讓“黑巾貞”阻斷之前顯示内容的殘影。 與實施例九不同的是,顯示電極時分複用方案的再一時 序如第17圖所示。在正常顯示幀之後和黑幀之後都分別對 顯示螢幕行電極線Gi和列電極線Sj施加觸控激勵信號,並 分別檢測流經各條行電極線和各條列電極線的觸控信號的 變化。這樣’既充分地利用了顯示幀間的幀消隱時間,在每 一幀消隱時間都將顯示螢幕電極切換為觸控感應電極使 用;又利用黑幀液晶分子排列一致,排除液晶材料介電係數 各向異性導致的分佈電容的變化;綜合判斷來消除液晶分子 201120698 排列不一致對檢測環境的影響。 具體實施方式十一: 第4圖所示的觸控顯示器4〇〇, 姑链萁4c庙a从/λ , ·~貝不窃才木用TFT-LCD, ,璃基板厚度為G.3mmi人的手指觸摸 手指通過基板玻璃片與顯示榮幕 γ ' 容,等效雷路如笛㈣糾 ^極間形成一個搞合電 電極提供觸控激難號的觸控激㈣^:二對顯不螢幕 '電路的採樣電阻,元件符號是 件C使用的顯示營幕電極的等效電阻,元 相對顯示t幕料他雷舰八不螢幕電極 并命Γ 電極的分佈電容,元件符號1831是手 且作為觸控感應電極使用的顯示瑩幕電極間的耗合 =件符號1832是—組作為觸控感應電極使用的顯示 鱟幕電極與COM電極之間的電容。 1通㊉,手私與一組作為觸控感應電極使用的顯示螢幕電 人曰=重疊寬度在5mm以下,基板玻璃厚度為 0.3mm,_ σ ’各1831就大約為10pF ;對於通常的TFT_LCD採樣電 ,1820和等效電阻1821之和約為3〇ΚΩ,作為觸控感應電 =使用的顯示螢幕電極上的觸控信號部分地從耦合電容 1831 /¾漏出去到手指;當觸控激發源輸出Vnns=5v的正弦 2時,耦合電容1831導致的洩漏電流Δί隨觸控激發源頻率 f化的關係如第19圖所示。觸控激勵信號的頻率對耦合電 谷1831的容抗構成主要的影響,而容抗不同’電流從手指 沒漏^去的觸控信號的大小就不同。頻率太低,耦合電容 1831容抗太小,觸控顯示器4〇〇對觸控物的觸控不敏感,容 ,^生觸控的漏判斷。觸控激勵信號的頻率選擇對觸控探測 可罪性的影響較大’特別是當顯示器前再加有保護面殼的情 17 201120698 況下。 從第19圖可以看出,在實際的實驗結果中,觸控 低於10KHz時’茂漏電流Ai較小’與環境雜訊二 敉不约月顯難於區分,將觸控激發源頻率設置在ΙΟΚΗζ或 、上時才疋利用顯示螢幕電極作為觸控感應電極使用的合 理電路參數β σ 具體實施方式十二: 第4圖所示的觸控顯示器400,顯示器採用TF1VLCD, 玻:J板厚度為〇 3mm。當液晶屏的c〇M電極設置在朝向 上基板玻璃上時,C〇M電極會在行電極和列電極 電:,ΐίί間形成一定的屏蔽效果。手指與顯示螢幕C0M If合電容,⑺Μ電極與-組作為觸控感應 電極使用的顯示螢幕電極間又存在粞合電容,等效電路$ 圖所示。元件符號2_是對顯示電極提供觸控激^ ㈣的觸控激發源,元件符號2_是觸控電路内、觸 檢測電路的採樣電阻’元件符號順是一組 _轉幕電極料效電阻,元件符 難錢電極制的顯㈣幕電極相對顯示榮幕内 ”他電極的分佈電容,元件符號顧是c〇M電極斑一 為觸控感應電極使用的顯示螢幕電極間_合電容,、元件= ^ 2032是手指與顯示螢幕COM電極間_合電容,元^ 號2040是激發源和C0M電極之間的等效電阻。 通常,手難-組作_域應電 極_重疊寬度在w ατ, 不爱幕電 合電容2032就大約為1()pF .對;^度為^賴’轉 P 對於通吊的TFT-LCD採摄雷 摸.’肩不螢幕表面時’由於耗合電容2031和2〇32的存在,作 201120698 為觸控感應電極使用的顯示螢幕電極上的觸控信號部分地 從_合電容2031流到COM電極’再從com電極與手指的 耦合電容2032部分洩漏出去到手指。選用高頻的^控激勵 信號時,從耦合電容2031和2032洩漏的電流Μ就較大, 觸控信號穿透COM電極遮罩的能力就較強,可獲得比較好 的觸控探測能力。 具體實施方式十三: 第4圖所示的觸控顯示器4〇〇,顯示器採用tft_lcd。 液晶材料介電係數各向異性的特徵,使液晶盒内各處分佈電 容隨各處液晶分子的排列而變化。T F T_ L c D内各處液晶分子 的排列取決於該處驅動電壓所累積的有效值,不同時刻不同 位置累積的驅動電壓有效值不同,液晶分子排列就不同,分 佈電容也不同’進行觸控探測的測量環境就不同。但液晶材 =電係數的各向異性存在隨頻率變化的色散效應,通常在 本不信號的仙下,其介電係數的各向異性基 對f示瑩幕行電極線Gi和列電極線sj施加頻率在 =HZ或以上的觸控激勵信號,並分別檢測流經各條行電極 ,和f條列電極線的觸控信號的變化。雖然tft_lcd的不 = = 排列不盡一致,但由於液晶材料介電係 於,仍排曰^效應,對於1ΜΗζ或以上的觸控激勵信 : * 了液Ba材料介電係數各向異性導致的分佈電容的 丨行電極線上和各條列電極線上觸控信號的變 觸控探測結果的穩定性和—致性。 双百扪於 具體實施方式十四: 第圖所示的觸控顯示器彻,顯示器採用TFT_LCD。 201120698 實際進行觸控探:目I丨吐、 測量。測量的等吋 通㊉疋以電壓信號為檢測物件來進行 顯示螢幕電極接碰電路如第18圖所示。元件符號1810是對 1820是觸㈣^觸控激勵信號_控激發源,元件符號 1821是一組作炎觸控信號檢測電路的採樣電阻,元件符號 電阻,元件符^,、、觸控感應電極使用的顯示螢幕電極的等效 螢幕電極;183〇是一組作為觸控感應電極使用的顯示 ^是H顯^幕⑽他電極的分料容,元件符號 間的耗合電日容、作為觸控感應電極使用的顯示螢幕電極 用的顯示螢幕雷it付號1832是—組作為觸控感應電極使 是測量觸沖S與 電極之間的電容,元件符號1841 β 丨旦魅二二途電壓變化的觸控信號採樣點,元件符號1840 號電壓變化的檢測參考點’這裏是選擇觸控激 /'、 的輪出端作為參考點,事實上還可以選擇其他的 位點為參考點,如觸控電路的接地端、或觸控電路的正電 極或觸控電路的負電極、或對比電路中的 一點、或觸控螢 上另一組電極線等都能有不錯的檢測效果。觸控激發源 =10為方波信號’由於元件符號1830和元件符號1831是電 谷負載’觸控激勵的方波信號在這兩個電容上出現充放電波 开)°觸控激發源1810的’輸出波形和觸控信號採樣點1841的 觸控信號波形如第21圖所示。 本實施方式對觸控信號的檢測方法採用瞬時值測量 法’測量觸控信號採樣點184ΐ在某一特定相位點上的電位, 比較不同的幀消隱時間段内所檢測到的這個特定相位點電 位的變化’來獲取觸控資訊;該的某一特定相位點是指相對 於觸控激發源1810輸出端波形的特定相位點。第18圖所示 電路以激發源信號為電路源、採樣電阻所在的支路上是元件 符號1830和元件符號1831兩個電容並聯再與元件符號1820 20 201120698 和凡件符號1821兩個電阻串聯的RC回路。在觸控探測時 ,,對第18圖所示電路施加觸控激勵信號,電路就會對電 谷產生充放電過程。第21圖中T1和T2段為適合採樣的相 位S間在觸控信號採樣點11上T1的相位區間是電容開 始充電到充電完成的時間段,T2的相位區間是電容開始放 電到放電完成的時間段。 為確保證每一次對觸控信號的檢測都處於相對於觸控 激,源1810輸出端波形的特定相位點上,需要保持嚴格的 一系列的同步關係。這裏的同步關係由三項同步關係組成: 顯示幀同步、觸控激勵脈衝數同步、觸控激勵波形相位同 f。顯示幀同步:每次開始施加觸控激勵信號都是在兩次顯 不幀之間的幀消隱時間段内的某一固定時刻;激勵脈衝個數 同步:從開始施加觸控激勵信號到作為觸控感應電極使用的 ,不螢幕電極上,開始計算觸控激勵信號脈衝數,每次獲取 採樣資料的時刻都是在相同序號的觸控激勵信號脈衝數 上,激勵波形相位同步:每次獲取採樣資料的時刻都處在觸 控激發源輸出端波形的特定相位點上,而這個特定相位點的 位置選擇在T1或T2這兩個相位區間内。一個完整的同步過 私如第22a圖、第22b圖、第22c圖所示。第22a圖是顯示 螢幕時分複用的時序圖,顯示螢幕的行電極、列電極、c〇M 電極在顯示掃描時間段裏面,配合輸出相應的顯示信號,順 序進行顯示掃描’而在顯示螢幕的行電極、列電極、C〇M 電極在φ貞消隱時間段(Η段和K段)内複用在觸控檢測態 時’按檢測要求施加方波觸控激勵信號並進行檢測;第22b 圖疋第22a圖中Η段和K段(幀消隱時間段)的放大示意 圖’如第22b圖所示顯示螢幕電極在幀消隱時間段内的同一 固定時刻開始施加方波觸控激勵信號,實現幀同步;第22c 21 201120698 圖疋第22b圖中X段(載入激勵信號並檢測時間段)的放大 示意圖,在顯示幀消隱時間段裏面經過幀同步後,開始施加 觸控激勵信號,同時也開始計算激勵信號脈衝個數,每次採 樣檢測都是控制在相同序號的觸控激勵信號脈衝數上,以實 現觸控激勵脈衝個數同步;在此觸控激勵信號脈衝裏面,每 次獲取採樣資料的時刻都處在觸控激勵輸出端波形的某特 定相位上,以實現與觸控激勵波形相位的同步。 具體實施方式十五: 與實施例十四不同的是,觸控激發源181〇為正弦波信 號,由於元件符號1830和元件符號1831是電容負載,正弦 波,,控激發源帶上電容負載後,在觸控信號採樣點上的波 形還疋正弦波,但發生了幅度和相位的變化,觸控激發源 1810的輸出波形和觸控信號採樣點的觸控信號波形如第 圖所示。 本實施方式對觸控錢的檢财法採肋移測量法,比 較不同的巾貞 >肖隱時間段上觸控錢採樣點1841某_特定相 位點的相位移動’來獲取觸控資訊;該的某—特定相位點是 才曰相,於觸控激發源1刚輸出端波形的特定相位點。第18 ,所示控激發源信號為電路源、採樣電阻所在的支路上 是兀件符號1830和元件符號1831兩個電容並聯再與元件符 ί H符11821兩個電阻串聯的rc回路。在觸控 18圖所示電路施加觸控激勵信號,正弦波 回Μ A發生幅值的下降和相位的延遲;手指觸摸顯 不Λ . σ電容1831引起了 Rc回路中C的變化,在 :控點’則量正弦波過零點相對觸控激發源1810輸 的變化,來判斷觸控是否發生。測量 觸控U木樣點上觸控信舰形相位移動的變化,也可以在 22 201120698 正弦波的峰值點上或其他相位點上進行測量。 同樣為確保每次對觸控信號的檢測 控激發源刪輸出端波形的特定相位點 成:顯示瓣、觸控敎勵脈衝數同步、觸控激== 以==號都是在= =螢加觸控激勵信號到作為觸控感 ^^ \ ,開始計算觸控激勵信號脈衝數,每次獲 上r激“二:刻都疋在相同序號的觸控激勵信號脈衝數 波形的特定/目=同^觸^測量觸控信號採樣點上觸控信號 行時間的比較;正弦波發源輸出端波形相同相位點進 ΦΚ a . . 皮的相移貪訊是全相位的,故只要每次 如! 24:,固目:點的移動即可。-個完整的同步過程 ίΪΪΪ”時序圖,顯示螢幕的行電極、列電極I圓 序進行顯面,配合輸_、賴*信號’順In the following, the liquid crystal molecules between the liquid crystal display electrode and the CQM sub-column, the column electrode and the (four) electrode are arranged in the direction "I; rapidly turning toward the direction parallel to the electric field. As shown in Fig. 14, the liquid crystal material is applied. The electric field (4), the alignment state of the liquid crystal molecules, and the display of the line electrode line Gi and the column sj= are respectively added to the touch brain number, and are divided into various line electrode lines and each line electrode line _ The change of the control signal; the pre-tension voltage of the system makes = the molecular arrangement - the 'elimination of the dielectric material anisotropy of the liquid crystal material causes two to detect the line on each row and on the column electrode line" when changing, different positions at different times The measurement environment on the trend tends to be consistent, which is beneficial to the stability and consistency of the touch detection results. When an electric field is applied to the liquid crystal, since the liquid crystal molecules are non-polar molecules, the transient voltage of the liquid crystal molecules in the positive direction of the electric field can be positive or negative as long as the liquid is kept moving. Therefore, it is applied to the pre-driver on the display screen. The waveform or frequency and amplitude of the touch excitation signal can be the same, and even the pre-drive signal and the touch excitation signal use the same signal. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 8: (4) It is the same as that of the present TFT-LCD material, as shown in Fig. 15. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 9: The touch display shown in FIG. 4 is a display with tft_lcd, and the response speed of the liquid crystal display is relatively low. When the high-speed surface is displayed, image sticking and smearing are likely to occur. To solve this problem, a kind of solution to the problem is to increase the frequency of the display, insert a "black" after each _ display frame, and let "black frame," block the content before the display The so-called black frame is in this frame, in the state that the TFT is on, through the column electrode, the magic pair 15 201120698, the display of the pixel electrode - a residual and the driving voltage, so that the display liquid r power up % vertical or The direction of the flat hit. In the display book know = the molecular arrangement is in the same situation, the arrangement of the (4) crystal molecules in the liquid crystal display screen and the COM electrode will also be the same. Since the line ^ is the scan electrode, each line The effective value of the voltage on the electrode is -like. When the thief is placed between the column electrode and the COM electrode, the distributed capacitance on the electrode is basically the same. Display electrode time division multiplexing scheme Timing as shown in Figure 16. After the black building, the touch excitation signal ' is applied to the (four) screen row electrode line G i and the column electrode line sj respectively, and the changes of the touch signals flowing through the respective row electrode lines and the respective column electrode lines are respectively detected. The arrangement of the black liquid crystal molecules is uniform, and the variation of the distributed capacitance caused by the dielectric anisotropy of the liquid crystal material is excluded, and when the change of the touch signals on each of the row electrode lines and the respective column electrode lines is detected, at different times and at different positions The measurement environment tends to be consistent, which is beneficial to the stability and consistency of the touch detection result. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 10: The touch display shown in FIG. 4 is a display with tfT-LCD, which is the same as the embodiment IX. In that, after inserting a black 1J> 贞" in the back of each display frame, let "black 贞" block the residual image of the previously displayed content. Different from the ninth embodiment, the further timing of the display electrode time division multiplexing scheme is as shown in Fig. 17. Applying a touch excitation signal to the display screen electrode line Gi and the column electrode line Sj after the normal display frame and after the black frame, respectively, and detecting the touch signals flowing through the respective row electrode lines and the respective column electrode lines respectively Variety. In this way, the frame blanking time between display frames is fully utilized, and the screen electrode is switched to the touch sensing electrode in each frame blanking time; the liquid crystal molecules are aligned in the black frame, and the liquid crystal material is excluded. The variation of the distributed capacitance caused by the coefficient anisotropy; comprehensive judgment to eliminate the influence of the alignment of the liquid crystal molecules 201120698 on the detection environment. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 11: The touch display 4〇〇 shown in Fig. 4, the 萁 萁 c 4c temple a from / λ, · ~ 贝 不 不 wood TFT-LCD, the thickness of the glass substrate is G.3mmi The finger touches the finger through the substrate glass piece and displays the glory γ' capacity, the equivalent lightning path such as the flute (four) remedies between the poles to form a touch electrode that provides the touch-sensitive difficulty number (4) ^: two pairs of display The sampling resistance of the screen 'circuit, the component symbol is the equivalent resistance of the display screen electrode used by C. The relative display of the t-screen is the output voltage of the electrode and the component of the electrode. The component symbol 1831 is the hand. The display between the display screen electrodes used as the touch sensing electrode = the symbol 1832 is the capacitance between the display curtain electrode and the COM electrode used as the touch sensing electrode. 1 through 10, hand and a set of display screens used as touch sensing electrodes = overlap width is less than 5mm, substrate glass thickness is 0.3mm, _ σ ' each 1831 is about 10pF; for normal TFT_LCD sampling The sum of the 1820 and the equivalent resistance 1821 is about 3 〇ΚΩ. As the touch sensing power=the touch signal on the display screen electrode is partially leaked from the coupling capacitor 1831 /3⁄4 to the finger; when the touch excitation source When the sinusoid 2 of Vnns=5v is output, the relationship between the leakage current Δί caused by the coupling capacitor 1831 and the frequency of the touch excitation source is as shown in FIG. The frequency of the touch excitation signal has a major influence on the capacitive reactance of the coupled valley 1831, and the magnitude of the touch signal with different capacitive reactances from the finger does not leak. The frequency is too low, the coupling capacitance 1831 is too small, and the touch display 4 is not sensitive to the touch of the touch object, and the tolerance of the touch is judged. The frequency selection of the touch excitation signal has a greater impact on the sinfulness of the touch detection, especially in the case of a protective cover before the display. It can be seen from Fig. 19 that in the actual experimental results, when the touch is lower than 10KHz, the 'leakage current Ai is smaller' is difficult to distinguish from the ambient noise, and the touch excitation source frequency is set at合理 or 上, 合理 use the display screen electrode as a touch sensing electrode used in a reasonable circuit parameter β σ. Embodiment 12: The touch display 400 shown in Figure 4, the display uses TF1VLCD, glass: J plate thickness is 〇 3mm. When the c〇M electrode of the liquid crystal panel is disposed on the upper substrate glass, the C〇M electrode forms a certain shielding effect between the row electrode and the column electrode. There is a coupling capacitor between the finger and the display screen C0M If, and (7) the electrode and the group as the touch sensing electrode. The equivalent circuit is shown in the figure. The component symbol 2_ is a touch excitation source that provides a touch excitation (4) to the display electrode, and the component symbol 2_ is a sampling resistor in the touch circuit and the touch detection circuit. The component symbol is a set of _ switch electrode material effect resistor The component is difficult to display the electrode of the electrode (four) electrode relative to the display inside the screen. The distribution capacitance of the electrode, the component symbol is the c〇M electrode spot, the display electrode used for the touch sensing electrode, the capacitance, the component = ^ 2032 is the capacitance between the finger and the display COM electrode, and the element 2040 is the equivalent resistance between the excitation source and the C0M electrode. Generally, the hand is difficult - the group is _ domain should be the electrode _ overlap width is w ατ, Do not love the curtain capacitance 2032 is about 1 () pF. Right; ^ degree is ^ Lai ' turn P for the hanging TFT-LCD mining Lei touch. 'When the shoulder is not the surface of the screen' due to the consumption of capacitance 2031 and The presence of 2〇32, for 201120698, the touch signal on the display screen electrode used for the touch sensing electrode partially flows from the _combined capacitor 2031 to the COM electrode' and then leaks out from the com electrode and the finger coupling capacitor 2032 to the finger. When using high frequency control excitation signal, slave coupling The leakage current of the 2031 and 2032 is larger, and the ability of the touch signal to penetrate the COM electrode mask is stronger, and a better touch detection capability can be obtained. Embodiment 13: The touch shown in FIG. The display is controlled by 4 〇〇, and the display adopts tft_lcd. The anisotropy of the dielectric constant of the liquid crystal material causes the distributed capacitance in the liquid crystal cell to vary with the arrangement of liquid crystal molecules everywhere. TF T_ L c D The arrangement depends on the effective value accumulated by the driving voltage at the same place. The effective values of the driving voltages accumulated at different positions at different times are different, the arrangement of the liquid crystal molecules is different, and the distributed capacitance is different. The measurement environment for the touch detection is different. However, the liquid crystal material = The anisotropy of the electrical coefficient has a dispersion effect with frequency. Usually, under the condition of the signal, the anisotropic base of the dielectric coefficient is applied to the screen electrode line Gi and the column electrode line sj. HZ or above touch excitation signals, and respectively detect changes in touch signals flowing through the respective row electrodes and the f column electrode lines. Although the tft_lcd is not == the arrangement is not uniform, but The dielectric material of the liquid crystal material is still in the 曰^ effect, for a touch excitation signal of 1 ΜΗζ or more: * The liquid of the distributed capacitance caused by the anisotropy of the dielectric constant of the liquid Ba material is touched on the line of the electrode and the line of each column electrode The stability and the consistency of the touch detection result of the control signal. The two-way implementation of the touch display is as shown in the figure, and the display adopts TFT_LCD. 201120698 Actual touch detection: Objective I丨Spit, measurement, measurement, etc. The voltage electrode signal is used as the detection object to display the screen electrode contact circuit as shown in Figure 18. The component symbol 1810 is the 1820 touch (four) ^ touch excitation signal _ control excitation source The component symbol 1821 is a set of sampling resistors for detecting the touch signal detection circuit, the component symbol resistance, the component symbol ^, and the equivalent screen electrode for displaying the screen electrode used by the touch sensing electrode; The display used to control the sensing electrode is the display device of the H display screen (10), the capacitance of the electrode, the power consumption between the component symbols, and the display screen used as the touch sensing electrode. 1832 is the group as the touch sensing electrode, which is used to measure the capacitance between the touch S and the electrode. The component symbol 1841 β is the touch signal sampling point of the change of the voltage of the device, and the detection of the voltage change of the component symbol 1840 is used. Point 'here is the selection of the touch-excitation /', the wheel-out end as a reference point, in fact, you can also choose other sites as the reference point, such as the ground of the touch circuit, or the positive electrode or touch of the touch circuit The negative electrode of the circuit, or a point in the comparison circuit, or another set of electrode lines on the touch firefly can have a good detection effect. The touch excitation source=10 is a square wave signal 'Because the component symbol 1830 and the component symbol 1831 are electric valley loads, the square wave signal of the touch excitation appears on the two capacitors.) The touch excitation source 1810 'The waveform of the touch signal of the output waveform and the touch signal sampling point 1841 is as shown in FIG. 21. In this embodiment, the touch signal detection method uses an instantaneous value measurement method to measure the potential of the touch signal sampling point 184 at a specific phase point, and compares the specific phase point detected in different frame blanking periods. The change in potential is used to obtain touch information; a particular phase point is a specific phase point relative to the waveform of the output of the touch excitation source 1810. The circuit shown in Figure 18 uses the excitation source signal as the circuit source, and the branch where the sampling resistor is located is the RC with the two symbols of the component symbol 1830 and the component symbol 1831 connected in parallel with the two symbols of the component symbol 1820 20 201120698 and the symbol 1821. Loop. In the touch detection, a touch excitation signal is applied to the circuit shown in Fig. 18, and the circuit generates and charges a battery. In the 21st picture, the T1 and T2 segments are suitable for sampling. The phase interval of T1 at the touch signal sampling point 11 is the time period from when the capacitor starts charging to the completion of charging, and the phase interval of T2 is when the capacitor starts discharging to discharge. period. In order to ensure that each time the touch signal is detected relative to the touch, a specific phase of the waveform at the output of the source 1810 needs to maintain a strict series of synchronization relationships. The synchronization relationship here consists of three synchronization relationships: display frame synchronization, touch excitation pulse number synchronization, touch excitation waveform phase and f. Display frame synchronization: each time the touch excitation signal is applied is a fixed time in the frame blanking period between two display frames; the number of excitation pulses is synchronized: from the start of applying the touch excitation signal to The touch sensing electrode is used on the non-screen electrode to start counting the number of touch excitation signal pulses. Each time the sampling data is acquired, the number of touch excitation signal pulses of the same serial number is used, and the excitation waveform phase is synchronized: each acquisition The time of sampling the data is at a specific phase point of the waveform of the output end of the touch excitation source, and the position of the specific phase point is selected in the two phase intervals of T1 or T2. A complete synchronization is shown in Figure 22a, Figure 22b, and Figure 22c. Figure 22a is a timing diagram showing the time division multiplexing of the screen, showing the row electrode, the column electrode, and the c〇M electrode of the screen in the display scanning period, and outputting the corresponding display signal, sequentially performing the display scanning' while displaying the screen The row electrode, the column electrode, and the C〇M electrode are multiplexed in the touch detection state during the φ贞 blanking period (Η segment and K segment), and the square wave touch excitation signal is applied according to the detection requirement and is detected; 22b Figure 22a is an enlarged view of the segment and K segment (frame blanking period). As shown in Figure 22b, the screen electrode is applied to apply the square wave touch excitation at the same fixed time in the frame blanking period. Signal, realize frame synchronization; 22c 21 201120698 Figure 22b is an enlarged view of the X segment (loading the excitation signal and detecting the time period), after the frame synchronization in the display frame blanking period, the touch excitation is started. The signal also starts to calculate the number of excitation signal pulses. Each sampling detection is controlled by the number of touch excitation signal pulses of the same serial number to realize the synchronization of the number of touch excitation pulses; Pulse signal which, each time the time of obtaining the sampling data are in the touch excitation output end of a particular phase of the waveform, to achieve synchronization of the touch excitation waveform phase. DETAILED DESCRIPTION OF THE INVENTION Fifteenth Embodiment: Unlike the fourteenth embodiment, the touch excitation source 181 is a sine wave signal, since the component symbol 1830 and the component symbol 1831 are capacitive loads, sine waves, and the excitation source is charged with a capacitive load. The waveform at the sampling point of the touch signal is also sinusoidal, but the amplitude and phase change occur. The output waveform of the touch excitation source 1810 and the touch signal waveform of the touch signal sampling point are as shown in the figure. In the embodiment, the method for measuring the money of the touch money is measured by the rib shift measurement method, and the phase shift of the _specific phase point of the touch money sampling point 1841 on the different time period is compared to obtain the touch information; The certain phase point is a specific phase point of the waveform of the output end of the touch excitation source 1 . In the 18th, the control excitation source signal is the circuit source, and the branch where the sampling resistor is located is the rc loop in which the two capacitors of the component symbol 1830 and the component symbol 1831 are connected in parallel and the two components of the component symbol H. In the circuit shown in the touch 18 diagram, the touch excitation signal is applied, and the sine wave returns to the amplitude A and the phase delay; the finger touch is not displayed. The σ capacitor 1831 causes the change of the C in the Rc loop. The point 'measures the change of the sine wave zero-crossing point relative to the touch excitation source 1810 to determine whether the touch occurs. Measuring the change in the phase shift of the touch letter on the touch U wood sample point can also be measured at the peak point of the 22 201120698 sine wave or at other phase points. Similarly, to ensure that each time the detection of the touch signal is controlled, the specific phase point of the waveform of the excitation source is deleted: display flap, touch excitation pulse number synchronization, touch excitation == === are all in == Adding the touch excitation signal to the touch sense ^^ \, starting to calculate the number of touch excitation signal pulses, each time getting r-excited "two: the same number of touch excitation signal pulse number waveform specific / mesh = Same as ^ Touch ^ to measure the touch signal line time on the touch signal sampling point; the sine wave source output end waveform has the same phase point into the Φ Κ a . The skin phase shift greet is all phase, so as long as each time 24:, solid mesh: the movement of the point can be. - A complete synchronization process ΪΪΪ ΪΪΪ" timing diagram, showing the row electrode of the screen, the column electrode I rounded to the surface, with the input _, 赖 * signal 'shun

而在顯不螢幕的行電極、列電極、COM 嶋段和κ段)内複用在觸控檢 圖θ篦W 要求载入正弦波激勵信號並進行檢測;第24b 大疋音m &圖中H段和K段(顯示的幢消隱時間段)的放 間^二的1如第24t>圖所示顯示營幕電極在顯示的幢消隱時 幀.、同—固定時刻開始施加正弦波觸控激勵信號,實現 檢測日^•門圖是第2朴圖中X段(施加觸控激勵信號並 過^同二段)的放大示意圖’在顯示的幢消隱時間段裏面經 曾舖二广後’開始施加正弦波觸控激勵信號,同時也開始計 ^工激勵信號脈衝個數,每次採樣檢測都是控制在相同序 23 201120698 =觸控激勵信號脈紐上,以實現雜脈衝她.在 都處:=2信號脈衝裏面,每次獲取採樣資料二時刻 現盥觸心輸出端波形的相同的某特定相位點上,以實 現興觸控激勵波形相位的同步。 具體實施方式十六: 針第方式十四和方式十五都是用瞬時值測量法,來 ===控顯示器働進行觸控探測。這種瞬時值測景 測疋装士寺二相位點的極短時間段内進行對觸控信號的檢 ΐιί特點就是檢測速度快。實_時_量法觸控信 三種電路結構如第25圖、第26圖和第27圖所示。 檢測電路結構都是由信號制通道、資料採樣通道 。。貝厂:处理和時序控制電路組成。信號檢測通道具有緩衡 °。第級差分放大電路和第二級差分放大電路;資料採樣 通道具有類比/數位轉換電路;資料處理和時序控制電路是 “有^料運异成力、資料輸出輸入介面的中央處理器(cpu、 MCU),中央處理器具有控制軟體、資料處理軟體。 第25圖所示是一種瞬時值測量法的觸控信號檢測電路 結構圖,元件符號2510是觸控信號採樣點的信號,元件符 號2511是檢測參考點的信號’觸控信號採樣點的信號251〇 和檢測參考點的信號2511分別經過緩衝器252〇和緩衝器 2521緩衝後’作為第一級差分放大器2522的輸入信號;第 一級差分放大器2522的輸出再作為第二級差分放大器2523 的其中一個輸入,元件符號2524是調節電壓輸出,其作為 基準電位,連接第二級差分放大器2523的另一個輸入,用 來減去第一級差分放大電路輸出信號的底值;第二級差分放 大器2523輸出到類比/數位轉換器2525,元件符號2525在 中央處理器(CPU、MPU) 2526輸出的同步控制信號2530 24 201120698 的控制下進行同步採樣,採樣的轉換結果發送到中央處理器 (CPU、MPU) 2526,再由中央處理器進行資料處理及觸 判斷。 卫 第26圖所示是一種瞬時值測量法的觸控信號檢測電路 ,構圖,元件符號2610是觸控信號採樣點的信號,元件符 號2611是檢測參考點的信號,觸控信號採樣點的信號26ι〇 和檢測參考點的信號2611分別經過緩衝器262〇和緩衝器 2621緩衝後,作為第一級差分放大器2622的輸入信號·,第 一級差分放大器2622的輸出再作為第二級差分放大器2623 的^中一個輸入,第二級差分放大器2624用第二級差分放 大器2623的輸出作為回饋輸入信號並自動調節輸出電壓, 其作為基準電位’連接第二級差分放大器2623的另一個輸 入^用來1去第一級差分放大電路輸出信號的底值;第二級 差分放大器2623輸出到類比/數位轉換器2625,元件符號 %25在中央處理器(CPU、Mpu) 2626輸出的同步控制信 5虎263G。的控制下進行同步採樣,採樣的轉換結果發送到中 央處理器(CPU、MPU) 2626,再由中央處理器進行資料處 理及觸控判斷。 第27圖所示是一種瞬時值測量法的觸控信號檢測電路 結構圖,甘元件符號271〇是觸控信號採樣點的信號,元件符 號2711疋檢測參考點的信號,觸控信號採樣點的信號 2710 和核測^點的^號27丨1分別經過緩衝器2720和緩衝器 2721 ίίί 7為第一級差分放大器2722的輸入信號;第 、及、刀大器2722的輸出再作為第二級差分放大器2723 SI:個ί入’中央處理器(CPU、MPU) 2726根據觸控 運异、、,°果达出調節資料到類比/數位位/類比轉換器2724,元 件符號2724的輸出電壓作為基準電位,連接第二級差分放 25 201120698 $ Μ b另一個輸入,用來減去第一級差分放大電路輸 7ης值,第二級差分放大器2723輸出到類比/數位轉 私i λα 一,^件符號2725在中央處理器(CPU、MPU)2726 丄鱼社控制信號273°的控制下進行同步採樣’採樣的 、二發送到中央處理器(cPU、Mpu) 2726,再由中央 處理器進行資料處理及觸控判斷。 、 觸和ϋ圖、第26圖、第27圖所示的三種瞬時值測量法 電路的區別在於:第25圖所示方案是手動的 古萁Γ二人差分電路設置一個基準電位,對二次差分電路具 Lit節能力;第26圖所示方案是二次差分電路的輸 I:、,坐類比電路再回饋給二次差分電路作為基準電 -古ί二次差分電路具有自動跟蹤的調節能力;第27圖所 3 =饋給二次差分電路作為基準電位,對二次差分電J 具有智慧化的調節能力。 不同尺寸及解析度的顯示螢幕,其電極的電阻一般在 以上,檢測電路與觸控螢幕上電極線的連接點上,因檢 測電路的輸入阻抗而對觸控信號分流,檢測電路的輸入阻抗 越大對觸控彳5號的分流作用越小。當檢測電路的輸入阻抗 為2.5倍以上時,觸控信號都能反映出觸摸動作資訊的,所 以要求信號檢測通道對電極線的輸入阻抗在5ΚΩ或以 =如第25 ffi 25、第26目及第27圖在差分放大電路與觸 上螢幕上電極線的連接點之間加上緩衝器就是為了增大檢 測電路的輸入阻抗。 a 具體實施方式十七: 、具體實施方式十四和方式十五也可以使用平均值測量 法,來對第4圖的觸控顯示器400進行觸控探測。這種平均 26 201120698 值測量法是在-定區段内進行對觸控信號的 :觸,號的平= 乍,結果。平均值測量法雖比瞬時 量資料更平穩有,控的判斷。有=二頻值〜擾的: 種。實現平均值測H對觸控信號檢測的三種電路結構如第 ? f 1 ί 2 9圖和#第=所示。其觸控信號檢測電路結構都 疋純號檢測通道、貝料採樣通道、資料處理和控 路組成。信號檢測通道具有緩衝器、第—級差分放大電路、 ,效值測量電路和第二級差分放大電路;#料採樣通道具有 類比/數位轉換電路;資料處理和時序控制電路是具有資料 運算能力、資料輸出輸入介面的中央處理器(cpu、腳 中央處理器具有控制軟體、資料處理軟體。 第28 ®所示是-種平均_量法的馳錢檢測電路 、,構圖’ 7L件符號2810是觸控信號採樣點的信號,元件符 號2811是檢測參考點的信號,觸控信號採樣點的信 號 2810 和裰測參考點的仏號2811分別經過緩衝器282〇和缓衝器 =821緩衝後,作為第一級差分放大電路單元2幻2的輸入信 號,第一級差分放大電路單元2822内含頻率選通電路,選 通電路的選通頻率為激發源觸控信號的頻率,其對差分放大 的輸出進行選通,選通後的輸出再作為有效值轉換器2823 ,輸入,元件符號2823的有效值輸出作為第二級差分放大 益2824的輸入;元件符號2825是調節電壓輸出,其作為基 準電位,連接到第二級差分放大器2824的另一個輸入端, ,來減去2823的有效值輸出信號的底值;第二級差分放大 咨2824輸出到類比/數位轉換器2826,元件符號2826在中 央處理器(CPU、MPU) 2827輸出的同步控制信號2830的 控制下進行同步採樣’採樣的轉換結果發送到中央處理器 27 201120698 (CPU、MPU) 2827, 判斷。 2827’再由中央處理器進行資料處理及觸控In the display, the row electrode, the column electrode, the COM segment and the κ segment are multiplexed in the touch map θ篦W, and the sine wave excitation signal is required to be loaded and detected; the 24th big m m & In the middle H segment and the K segment (the displayed building blanking time period), the interval 1 of the second block, as shown in Fig. 24t, shows that the camping electrode is in the frame of the displayed blanking frame, and the same-fixed time starts to apply the sine. The wave touch excitation signal realizes the detection day ^• The door diagram is the enlarged view of the X segment (applying the touch excitation signal and passing the same two segments) in the second plan diagram. After Erguang, 'the sine wave touch excitation signal is applied, and the number of excitation signal pulses is also started. Each sampling and detection is controlled in the same order 23 201120698 = touch excitation signal pulse to realize the noise pulse. She. In the everywhere: = 2 signal pulse, each time the sampled data is acquired, the current phase of the touch-off output waveform is at the same specific phase point to realize the synchronization of the phase of the touch excitation waveform. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Sixteenth: The first method and the fifteenth method of the needle are measured by the instantaneous value method, and the display is controlled by the === control display. This kind of instantaneous value measurement measures the touch signal in a very short period of time of the two phase points of the sacred temple. The feature is that the detection speed is fast. Real _ hour _ volume touch signal The three circuit structures are shown in Figure 25, Figure 26 and Figure 27. The detection circuit structure is composed of a signal channel and a data sampling channel. . Shell factory: processing and timing control circuit components. The signal detection channel has a balanced °. The first stage differential amplifying circuit and the second stage differential amplifying circuit; the data sampling channel has an analog/digital conversion circuit; the data processing and timing control circuit is a central processor (cpu, which has a different output force and a data output input interface). MCU), the central processing unit has control software and data processing software. Figure 25 is a structural diagram of the touch signal detection circuit of the instantaneous value measurement method, the component symbol 2510 is the signal of the touch signal sampling point, and the component symbol 2511 is The signal of the detection reference point 'the signal of the touch signal sampling point 251 〇 and the signal 2511 of the detection reference point are buffered by the buffer 252 〇 and the buffer 2521 respectively as the input signal of the first stage differential amplifier 2522; the first stage difference The output of amplifier 2522 is again used as one of the inputs of second stage differential amplifier 2523, which is the regulated voltage output that serves as the reference potential and is coupled to the other input of second stage differential amplifier 2523 for subtracting the first stage differential. The bottom value of the output signal of the amplifying circuit; the second stage differential amplifier 2523 outputs the analog to digital converter 2525, element The symbol 2525 is synchronously sampled under the control of the synchronous control signals 2530 24 201120698 outputted by the central processing unit (CPU, MPU) 2526, and the sampled conversion result is sent to the central processing unit (CPU, MPU) 2526, and then the data is processed by the central processing unit. Processing and touch judgment. Wei 26 shows a touch signal detection circuit of instantaneous value measurement method, composition, component symbol 2610 is the signal of the touch signal sampling point, component symbol 2611 is the signal for detecting the reference point, touch The signal 26 〇 of the signal sampling point and the signal 2611 of the detection reference point are buffered by the buffer 262 〇 and the buffer 2621, respectively, as an input signal of the first-stage differential amplifier 2622, and the output of the first-stage differential amplifier 2622 is again used as the first One input of the second stage differential amplifier 2623, the second stage differential amplifier 2624 uses the output of the second stage differential amplifier 2623 as a feedback input signal and automatically adjusts the output voltage as a reference potential 'connected to the second stage differential amplifier 2623 An input ^ is used to go to the bottom value of the output signal of the first stage differential amplifying circuit; the second stage differential amplifier 262 3 is output to the analog/digital converter 2625, and the component symbol %25 is synchronously sampled under the control of the synchronous control signal 5 tiger 263G outputted by the central processing unit (CPU, Mpu) 2626, and the sampled conversion result is sent to the central processing unit ( CPU, MPU) 2626, and then the central processor performs data processing and touch judgment. Figure 27 shows a structure diagram of the touch signal detection circuit of the instantaneous value measurement method. The Gan component symbol 271〇 is the touch signal sampling point. The signal, the component symbol 2711疋 detects the signal of the reference point, the signal 2710 of the touch signal sampling point and the ^27丨1 of the nuclear test point pass through the buffer 2720 and the buffer 2721 respectively as the first stage differential amplifier 2722. The input signal; the output of the first and second knives 2722 is used as the second stage differential amplifier 2723 SI: one ί into the 'central processing unit (CPU, MPU) 2726 according to the touch and different, Data to the analog/digital/analog converter 2724, the output voltage of the component symbol 2724 is used as the reference potential, and the second stage differential is connected. 25 201120698 $ Μ b Another input for subtracting the first stage differential amplifying circuit 7ης value, the second stage differential amplifier 2723 outputs to the analog/digital transpose i λα, and the symbol 2725 is synchronously sampled under the control of the central processor (CPU, MPU) 2726 squid control signal 273°. The second is sent to the central processing unit (cPU, Mpu) 2726, and then the central processing unit performs data processing and touch determination. The difference between the three instantaneous value measurement circuits shown in the touch and the map, the 26th and the 27th is that the scheme shown in Fig. 25 is to manually set a reference potential for the conventional two-person differential circuit. The differential circuit has the Lit section capability; the scheme shown in Fig. 26 is the input of the second differential circuit I:, and the analog circuit is fed back to the second differential circuit as the reference. The second differential circuit has the ability to adjust automatically. Fig. 27 shows that the secondary differential circuit is fed as a reference potential and has an intelligent adjustment capability for the secondary differential electric J. For display screens of different sizes and resolutions, the resistance of the electrodes is generally above. On the connection point between the detection circuit and the electrode line on the touch screen, the touch signal is shunted due to the input impedance of the detection circuit, and the input impedance of the detection circuit is more The smaller the shunting effect of the large touch 彳5. When the input impedance of the detection circuit is 2.5 times or more, the touch signal can reflect the touch action information, so the input impedance of the signal detection channel to the electrode line is required to be 5 ΚΩ or == 25 ffi 25, 26th and Figure 27 is to add a buffer between the differential amplifier circuit and the connection point of the upper electrode line of the screen to increase the input impedance of the detection circuit. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 17: Embodiment 14 and Method 15 The average value measurement method can also be used to perform touch detection on the touch display 400 of FIG. This average 26 201120698 value measurement method is performed on the touch signal in the -determined section: the touch, the number of the flat = 乍, the result. Although the average measurement method is more stable than the instantaneous data, the judgment is controlled. There are = two frequency values ~ disturbed: species. The three circuit configurations for achieving the average value measurement H for touch signal detection are shown in the figure ?f 1 ί 2 9 and #第=. The touch signal detection circuit structure is composed of a pure number detection channel, a bedding sampling channel, data processing and a control circuit. The signal detection channel has a buffer, a first-stage differential amplifying circuit, an effect value measuring circuit and a second-stage differential amplifying circuit; the # sampling channel has an analog/digital conversion circuit; the data processing and timing control circuit has a data computing capability, The central processing unit of the data output input interface (cpu, foot CPU has control software, data processing software. The 28® shows the average _ quantity method of the money detection circuit, the composition '7L part symbol 2810 is touch The signal of the signal sampling point is controlled, the component symbol 2811 is a signal for detecting the reference point, and the signal 2810 of the touch signal sampling point and the signal 2811 of the reference point of the measurement are buffered by the buffer 282〇 and the buffer=821, respectively. The first differential amplifier circuit unit 2822 includes a frequency gate circuit, and the gate frequency of the gate circuit is the frequency of the excitation source touch signal, and the differential amplification output is The strobe is performed, and the output after the strobe is used as the rms converter 2823, and the rms value of the component symbol 2823 is output as the second-stage differential amplification. Input 2824; component symbol 2825 is a regulated voltage output that is connected as a reference potential to the other input of the second stage differential amplifier 2824 to subtract the bottom value of the 2823 rms output signal; second stage differential amplification The 2824 is output to the analog/digital converter 2826, and the component symbol 2826 is synchronously sampled under the control of the synchronous control signal 2830 outputted by the central processing unit (CPU, MPU) 2827. The sampling result is sent to the central processing unit 27 201120698 (CPU , MPU) 2827, judge. 2827' and then the central processor for data processing and touch

號2911是檢測參考點的信號, •丨口孤外诹點的信號,元件符 觸控信號採樣點的信號2910 和檢測參考點的信號2911分別經過緩衝器292〇和緩衝器 2921緩衝後,作為第一級差分放大電路單元2922的輸入信 號;第一級差分放大電路單元2922内含頻率選通電路,^ 通電路的選通頻率為激發源觸控信號的頻率’其對差分放大 的輸出進行選通,選通後的輸出再作為有效值轉換器2923 的輸入,元件符號2923的有效值輸出作為第二級差分放大 器2924的輸入;回饋調節類比電路2925用第二級差分放大 器2924的輸出作為回饋輸入信號並自動調節輸出電壓,其 作為基準電位,連接到第二級差分放大器2924的另一個輸 入端,用來減去2923的有效值輸出信號的底值;第二級差 分放大器2924輸出到類比/數位轉換器2926,元件符號2926 在中央處理器(CPU、MPU) 2927輸出的同步控制信號2930 的控制下進行同步採樣,採樣的轉換結果發送到中央處理器 (CPU、MPU) 2927 ’再由中央處理器進行資料處理及觸控 第30圖所示是一種平均值測量法的觸控信號檢測電路 結構圖,元件符號3010是觸控信號採樣點的信號,元件符 號3011是檢測參考點的信號,觸控信號採樣點的信號3010 和檢測參考點的信號3011分別經過緩衝器3〇2〇和緩衝器 3021緩衝後,作為第一級差分放大電路單元3〇22的輸入信 號;第一級差分放大電路單元3022内含頻率選通電路,選 通電路的選通頻率為激發源觸控信號的頻率,其對差分放大 28 201120698 的輸出進行選通,選通後的輸出再作為有效值轉換器3023 ^輸入元件付號搬3的有效值輸出作為第二級差分放大 的.輸人’中央處理器(CPU、MPU) 3027根據觸控 、吉果送出調節資料到類比/數位位/類比轉換器3025,元 件符,3025的輸出電壓作為基準電位,連接到第二級差分 3024的另—個輸人端,用來減去元件符號搬3的有 2 號的底值;第二級差分放大器細輸出到類比/No. 2911 is a signal for detecting the reference point, and a signal of the out-of-band point, the signal 2910 of the component touch signal sampling point and the signal 2911 of the detection reference point are buffered by the buffer 292〇 and the buffer 2921, respectively. The input signal of the first stage differential amplifying circuit unit 2922; the first stage differential amplifying circuit unit 2922 includes a frequency strobe circuit, and the strobe frequency of the pass circuit is the frequency of the excitation source touch signal, which performs the differential amplified output The strobe, the strobed output is then used as the input of the rms converter 2923, the rms value of the component symbol 2923 is output as the input of the second stage differential amplifier 2924; the feedback adjustment analog circuit 2925 is used as the output of the second stage differential amplifier 2924. The input signal is fed back and the output voltage is automatically adjusted as a reference potential, connected to the other input of the second stage differential amplifier 2924 for subtracting the bottom value of the effective value output signal of 2923; the second stage differential amplifier 2924 is output to Analog/Digital Converter 2926, Component Symbol 2926 Control of Synchronous Control Signal 2930 Outputted at Central Processing Unit (CPU, MPU) 2927 Synchronous sampling, the sampling conversion result is sent to the central processing unit (CPU, MPU) 2927 'The data processing and touch by the central processing unit is shown in Fig. 30 is a structure of the touch signal detecting circuit of the average value measuring method. The component symbol 3010 is a signal of a touch signal sampling point, the component symbol 3011 is a signal for detecting a reference point, and the signal 3010 of the touch signal sampling point and the signal 3011 of the detection reference point pass through the buffer 3〇2〇 and the buffer 3021, respectively. After buffering, as an input signal of the first-stage differential amplifying circuit unit 3〇22; the first-stage differential amplifying circuit unit 3022 includes a frequency strobe circuit, and the strobe frequency of the strobe circuit is the frequency of the excitation source touch signal, The output of the differential amplification 28 201120698 is gated, and the output after the strobe is used as the rms converter 3023 ^the input component is the effective value of the output 3 as the second-stage differential amplification. The input 'central processor (CPU , MPU) 3027 according to touch, Jiguo send adjustment data to analog / digital / analog converter 3025, component, 3025 output voltage as the reference potential, connected to the Stage differential 3024 - will be another input terminal, for subtracting the transport element 3 has a bottom symbol value number of 2; a second differential amplifier output to a fine analog /

、器3026,元件符號3026在中央處理器(Cpu、MPLQ 〇27,出的同步控制信號3〇3〇的控制下進行同步採樣,採 樣的轉換結果發送到巾央處理li (CPU、MPU) 3027,再由 中央處理器進行資料處理及觸控判斷。 縮j 目、第29圖和帛3〇 ®所示的三種平均值測量法 3㈣檢測電路的區別在於:第28圖 二次差分電路設置一個基準電位,對二次差= 調節能力;帛29圖所示方案是二次差分電路的輸 出缟k遽經類比電路再回饋給二次差分電路作為基準電 二次差分電路具有自動跟蹤的調節能力;第30圖所 =是f中央處理器運算後的結果經類比/數位位/類比轉 且右j饋給—次差分電路作為基準電位,對二次差分電路 八有智慧化的調節能力。 不同尺寸及解析度的顯示螢幕,其電極的電阻一般 上’檢測電路與觸控螢幕上電極線的連接點上,因檢 =路的輸人阻抗而對觸控信號分流,檢測電路的輸入= =,對觸控信號的分流作用越小。當檢測電路的輸入阻= 以上時’觸控信號都能反映出觸摸動作資訊的二 ^要求―檢測通道對電極、線的輸入阻抗在則或5κ = ,如第28圖、第29圖及第30圖在差分放大電路盘觸押 29 201120698 螢幕上電極線的連接點之間加上緩衝器就是為了增大檢夠 電路的輸入阻抗。 具體實施方式十八: 在介紹實施例十四時我們提到,第4圖所示的觸控|貝來 器400,顯示器採用TFT-LCD,測量的等效電路如第18 _所 示。觸控激發源1810為方波信號,由於元件符號1830和元 件符號1831是電容負載,觸控激勵的方波信號在這兩個電 容上出現充放電波形。觸控激發源1810的輸出波形和觸趣 信號採樣點1841的觸控信號波形如第21圖所示,為了說曰^ 本實施例,現重新對第21圖標號,如第31圖所示。 本實施方式對觸控信號的檢測方法採用時間特徵鲫量 法,測量觸控信號採樣點1841充放電過程中兩個既定電仇 間的時間間隔的變化,來獲取觸控資訊。如第圖所示, 測量觸控信號採樣點1841波形的充電過程中兩個既定電位 V422和V421之間的時間T423,放電過程中兩個既定電位 V421和V422之間的時間T424,可以反映這個電容負戟 變化。當手指觸摸顯示螢幕時第18圖等效電路的耦合電容 1831就會產生,改變了電路的電容負載以及時間常數,兩 既定電位間的時間間隔Τ423和Τ424也就發生了改變。測 時間間隔Τ423和Τ424的變化就可以獲得觸控的資訊, 電位V421和V422選取充放電過程中採樣點1841的兩個 乂rt 實現時間特徵測量法觸控信號檢測的電路結構如 圖和第33 ®所示。其驗錢檢測電路結 測及資料採樣通道、資料處理和時序㈣電路 測及資料採樣通道具有緩衝器、類比/數位位轉2 = 或電壓調節輸出單元、比較器、記數器;資料處理^時】: 201120698 制電路是具有資料運算能力、資料輸出輸入介面的中央處理 器(CPU、MCU),中央處理器具有控制軟體、資料處理軟體。 第32圖是一種時間特徵測量法的觸控信號檢測電路結 構圖,元件符號3210是觸控信號採樣點的信號,元件符號 3211是一個既定電位(V42i),由電壓調節輸出單元322〇 來產生,元件符號3212是一個既定電位(V422),由電壓調 節輸出單元3221來產生;觸控信號採樣點的信號321〇經過 緩衝器3230緩衝輸出,與元件符號3211這個既定電位進入 比車父器3232進行比較;觸控信號採樣點的信號321〇經過緩 衝器3231緩衝輸出,與元件符號3212這個既定電位進入比 較器3233進行比較;中央處理器(cpu、MCU)3235產生計 數器3234的記數脈衝信號3240,比較器3233的輸出電位作 為計數器3234的啟動記數信號,比較器3232的輸出電位作 為計數器3234的停止記數信號;計數器3234停止記數後的 瀆數由中央處理器(CPU、MCU)3235讀取,讀數完畢後由中 央處理器(CPU、MCU)3235送出歸零信號3241歸零計數器 3234,為下一次讀數做好準備,並由中央中央處理器 MCU)3235進行資料處理及觸控判斷。 第33圖是一種時間特徵測量法的觸控信號檢測電路姓 構圖,元件符號3310是觸控信號採樣點的信號,中央處^ 器(CPU、MCU)3327通過程式預置或歷史檢測判斷而轸^ 應資料到類比/數位位/類比轉換器3320輸出一個」 3311 (V421),也輸出資料到類比/數位位/類比轉換 輸出一個既定電位3312 (V422);觸控信號採樣點 3310經過緩衝器3322緩衝輸出,與3311這個既定電,儿 比較器3324 ’觸控信號採樣點的信號3310經過緩 % 緩衝輸出,與元件符號3312這個既定電位進入I匕浐器 31 201120698 3325 ;中央處理器(CPU、MCU)3327產生計數器3326的記 數脈衝信號3330 ’比較器3325的輸出電位作為計數器3326 的啟動記數信號,比較器3324的輸出電位作為計數器3326 的停止記數信號;計數器3326停止記數後的讀數由中央處 理器(CPU、MCU)3327讀取,讀數完畢後由中央處理器 (CPU、MCU)3327送出歸零信號3331歸零計數器3326,為 下一次讀數做好準備’並由中央中央處理器(CPU、 MCU)3327進行資料處理及觸控判斷。 第32圖和第33圖所示的兩種時間特徵測量法觸控信號 檢測的區別在於:第32圖所示方案是手動的方法給比較器 設置兩個既定電位V421和V422 ;第33圖所示方案是由中 央處理器給比較器設置兩個既定電位V421和V422,中央處 理器通過程式預置或將之前的測量結果運算後輸出對應資 料到類比/數位位/類比轉換電路,使其輸出作為既定比較電 位,對既定比較電位V421和V422的設置具有智慧化的調 節能力。 具體實施方式十九: >與實把例十八不同,本例中觸控激發源181〇為正弦波 佗號,由於元件符號1830和元件符號1831是電容負載,正 弦波的,控激發源帶上電容負載後,在觸控信號採樣點上的 波形還疋正弦波’但發生了幅度和相位的變化,觸控激發源 1810的輸出波形和觸控信號採樣點1841控信號波形如 第23圖所示。 本實施方柄觸控錢的檢測方法採用相移測量法,比 較不同的㈣隱時間段上觸控信號採樣點題上特定相位 Π2動’來獲取觸控資訊。可以看出可以通過測量相 位的改X來反映這個觸摸電容的影響,而相位的改變也可以 32 201120698 =測量時間間隔來反映,這個時間間隔的檢測示意圖亦見如 佈:3-圖二:的ί不螢幕無手指觸摸時’由於第18圖中的分 f電谷 的存在’檢觸控信號採樣點1841上的觸控信 號波形相對觸控激發源輪出端譲的波财相位的延^ 當手指觸摸顯示螢幕時帛18圖所示等效電路的輕合電容 =’增大了電路的電容負载,觸控信號採樣點 上的匕零點與激發源之間的過零點之間的時間T500會 變大,即產生進一步的相移。測量時严曰1 T500的變化就可^ 得觸控的資訊。根據觸控激發源波形的不同,特定相位點^ 應的電位可以是零點或者是其他電位點。 實現相移測量法觸控信號檢測的電路結構如第34圖和 f 35圖所示。纟觸控信號檢測電路結構都是由信號檢測及 貧料採樣通道、資料處理和時序控制電路組成。信號檢測及 ^料採樣通道具有緩衝器、類比/數位位/類比轉換電路或電 壓調節輸出單元、比較器、記數器;資料處理和時序控制電 路是具有資料運算能力、資料輸出輸入介面的中央處理器 (CPU、MCU),中央處理器具有控制軟體、資料處理軟體。 第34圖疋一種相移特徵測量法的觸控信號檢測電路結 構圖,元件符號3410是觸控信號採樣點的信號,元件符號 3斗11是檢測參考點的信號,元件符號3412是由電壓調節輸 出單元3420產生的對應一個特定相位點時的電位;觸控信 號採樣點的信號3410經過緩衝器343〇緩衝輸出,與元件符 號3412這個特定相位點對應的電位進入比較器3432進行比 較;觸控信號採樣點的信號3411經過缓衝器3431緩衝輸 出,與元件符號3412這個特定相位點對應的電位進入比較 器3433進行比較;中央處理器(cpu、MCU)3435產生計數 器3434的記數脈衝佗號3440’比較器3433的輸出電位作為 33 201120698 計數器3434的啟動記數信號,比較器3432的輸出電位作為 計數器3434的停止記數信號;計數器3434記數停止後的讀 數由中央處理器(CPU、MCU)3435讀取,讀數完畢後由中央 處理器(CPU、MCU)3435送出歸零信號3441歸零計數器 3434,為下一次讀數做好準備,並由中央中央處理器(CPU、 MCU)3435進行資料處理及觸控判斷。 第35圖是一種相移特徵測量法的觸控信號檢測電路結 構圖,元件符號3510是觸控信號採樣點的信號,3511是檢 測參考點的信號,中央處理器(CPU、MCU)3526根據程式預 設或者歷史檢測判斷而輸出相應資料到類比/數位位/類比轉 換器3520,特定相位點對應的電位3512即是類比/數位位/ 類比轉換器3520的輸出電位;觸控信號採樣點的信號351〇 經過緩衝器3521緩衝輸出,與元件符號3512這個特定相位 點對應的電位進入比較器3523進行比較;觸控信號採樣點 的信號3511經過緩衝器3522緩衝輸出,與元件符號3512 這個特定相位點對應的電位進入比較器3524進行比較;中 央處理器(CPU、MCU)3526產生計數器3525的記數脈衝信 號3530,比較器3524的輸出電位作為計數器3525的啟動記 數信號’比較器3523的輸出電位作為計數器3525的停止記 數#说,§十數3525 §己數停止後的讀數由中央處理器 (CPU、MCU)3526讀取’讀數完畢後由中央處理器(cpu、 MCU)3526送出歸零信號3531歸零計數器3525 ,為下一次 讀數做好準備,並由中央中央處理器(CPU、MCU)3526進行 資料處理及觸控判斷。 第34圖和第35圖所示的兩種相移測量法觸控信號檢測 的區別在於:第34圖所示方案是用手動的方法設定特定相 位點對應的電位;第35圖所示方案是由中央處理器通過類 34 201120698 比/數位位/類比轉換器來設定特定相位點對應的電位,中央 處理益通過程式預設或將之前的測量結果運算後經類比/數 位位/類比轉換器回饋作為特定相位點對應的電位,對特定 相位點的設置具有智慧化的調節能力。 本實施方式所測量的觸控信號相位特徵實質上也是時 間特徵的一種。 * 具體實施方式二十: 第4圖所示的觸控顯示器4〇〇,時分複用顯示螢幕電极 來完成觸控功能。觸控顯示器400以部分的或全部的N條顯 示螢幕電極線時分複用作觸控感應電極線,以單通道順序掃 描的檢測方式進行觸控探測:觸控信號檢測電路具有一個觸 控信號檢測通道或一個資料採樣通道,以掃插的方式依次順 序檢測N條觸控感應電極線中的第一條、第二條、...、直至 最後的第N條觸控感應電極線,從而完成一個探測幀的全部 檢測過程,如第36圖所示。 這也是最常規和自然的觸控檢測方式。 具體實施方式二十一: 與實施例二十不同,本例中是按某一既定的間隔i以掃 描的方式檢測N條觸控感應電極中的第一條電極、第i+l 條、第2i+l條、…、直至到最後的第>^條觸控感庫線, 從而完成肩糊全部檢測過程。 電極線 i=2時,即間隔一條觸控感應電極線的檢測掃插示意圖如 第37圖所开"。 具體實施方式,十二: 與實施例二十一和二十二不同的是,本例是以單通道粗 掃加細掃的檢'則方式進行觸控探測:觸控信號檢測電路具有 一個檢測通道或一個資料採樣通道,把觸控感應電極線按每 35 201120698 幾個分區,每個分區選取—停 < 多條觸控烕 =觸作控為檢該:區最觸= 有觸控測’確定觸控動作發生的區域;再在 的觸ί資訊:此方2襄面,行細Ϊ掃推檢測’獲得更具體 卜3 ^、目的是為了節省觸控檢測的時間。 圖所 早且掃加細掃的檢測掃描示意圖如第38 〇 具體實施方式二十三: t例〜通道順序掃#的檢測方^進行觸控探測 :觸控 ° ^測電路具有多個觸控信號檢測通道和多個資料採樣 ’把全部的觸控感應電極線分為跟觸控信號檢測通道數 目相同的組數,每一個觸控信號檢測通道負責一個觸控感應 電極組内的檢測。 、/—種方案是各觸控信號檢測通道同時分別在各自組内 進行順序掃描檢測’综合全部觸控信號檢測通道的檢測結 果’獲得全螢幕的觸控資訊。第39圖是三個觸控信號檢測 通道時的掃描順序示意圖。 另—種方案是各觸控信號檢測通道同時分別在各自組 内進行間隔掃描檢測’综合全部觸控信號檢測通道的檢測結 果’獲得全螢幕的觸控資訊第4〇圖是三個觸控信號檢測通 道時的掃描順序示意圖。 再一種方案是各觸控信號檢測通道同時分別在各自組内 進行粗掃加細掃檢測,综合全部觸控信號檢測通道的檢測結 果,獲得全螢幕的觸控資訊。第41圖是三個觸控信號檢測 通道時的掃描順序示意圖。 36 201120698 以上内容是結合具體的優選實施方式對本發明所作的進 一步詳細說明,不能認定本發明的具體實施只局限於這些說 明。對於本發明所屬技術領域的普通技術人員來說,在不脫 離本發明構思的前提下,還可以做出若干簡單推演或替換, 都應當視為屬於本發明的保護範圍。 37 201120698 【圖式簡單說明】 第1圖是一種TFT-LCD顯示器典型的結構 第2圖是一種TFT_LCD的顯示子晝素的結椹: 第3圖是一種TFT_LCD液晶顯示螢幕常 ^圖。 時序圖。 况.,"員不驅動的 第4圖是一種TFT_LCD顯示螢幕的 圖。 鵰不态的結構 第5圖是一種時分複用顯示螢幕電極的時 第β圖是具體實施方式一的觸控激勵信號 第7圖是具體實施方式二的觸控激勵信號^窗。 第8圖是具體實施方式三的觸控激勵信號波 。 第9圖是具體實施方式四的觸控激勵信號波=圖。 第10圖是具體實施方式五的觸控激勵信& ^ ° 第11圖是具體實施方式六的觸控激勵俨^波^圖。 第12圖是具體實施方式七、方式八的°時^二圖。 幕電極的時序圖。 是用顯示螢 第13圖是具體實施方式七、方式八的觸 形圖。 啊役教勵信說波 第14圖是在外場下正性液晶材料分子排列順 第15圖是在外場下負性液晶材料分子排列頻=。 序圖第16圖是具體實施方式九的時分複用顯示螢幕電極時 第17圖是具體實施方式十的時分複用顯示螢幕電極 序圖。 守 第18圖是手指觸摸顯示螢幕時的等效電路圖。 第19圖是觸摸所產纟的觸控信號茂漏電隨頻率變 化的曲線圖。 38 201120698 第20圖是COM電極設置在上基板玻璃上時,手指觸摸 顯示螢幕時的等效電路圖。 第21圖是觸控激勵信號為方波時,觸控激發源和觸控 信號採樣點的觸控信號波形圖。 第22a、22b、22c圖是觸控激勵信號為方波時,觸控探 測的完整同步過程示意圖。 第23圖是觸控激勵信號為正弦波時,觸控激發源和觸 控信號採樣點的觸控信號波形圖。 第24a、24b、24c圖是觸控激勵信號為正弦波時,觸控 探測的完整同步過程示意圖。 第25圖是一種瞬時值測量法的觸控信號檢測電路結構 圖。 第26圖是一種瞬時值測量法的觸控信號檢測電路結構 圖。 第27圖是一種瞬時值測量法的觸控信號檢測電路結構 圖。 第28圖是一種有效值測量法的觸控信號檢測電路結 構圖。 第29圖是一種有效值測量法的觸控信號檢測電路結 構圖。 第30圖是一種有效值測量法的觸控信號檢測電路結 構圖。 第31圖是觸控激勵信號為方波,觸控信號採樣點觸 控信號的時間特徵。 第32圖是一種時間特徵測量法的觸控信號檢測電路 結構圖。 第33圖是一種時間特徵測量法的觸控信號檢測電路 39 201120698 結構圖。 第34圖是 圖。 第35圖是 圖。 第36圖是 順序示意圖。 第37圖是 類序示意圖。 第38圖是 測順序示意圖 第39圖是 順序示意圖。 第40圖是 順序示意圖。 第41圖是 夠順序示意圖 種相移測量法的觸控信號檢測電路結構 種相移測量法的觸控信號檢測電路結構 種單通道順序触的觸控檢測方式檢測 種單通道間隔料的觸控檢測方式檢測 種單通道粗掃加細掃的觸控檢測方式檢 種多通道―料_控_方式檢測 種多通相隔料的觸控檢測方式檢測 通道粒掃力掃的觸控檢測方式檢 201120698 【主要元件符號說明】 100 : TFT-LCD 顯示器; 110 : TFT液晶屏; 120 :液晶屏水準方向掃描行電極; 121、122、…、12m-l、12m :掃描電極線; 130 :液晶屏垂直方向貧料列電極, 131、...、13η :掃描電極線; 140 :公共電極; 150 :液晶屏上的薄膜電晶體TFT ; 160 :顯示晝素對應的液晶分子盒; 170 :存儲電容; 180 :公共電極電壓源; 181 : TFT-LCD的柵極電極; 182 : TFT-LCD的源極電極(列電極)驅動器; 183 :時序控制器; 400 :觸控顯示器; 410 : TFT-LCD顯示螢幕; 420 : TFT-LCD顯示螢幕水準方向的掃描行電極; 421、…、42m :行電極線; 430 : TFT-LCD顯示螢幕垂直方向的資料列電極; 440 : TFT-LCD顯示螢幕的公共電極層; 450 : TFT-LCD顯示螢幕上的薄膜場效應電晶體TFT ; 460 :顯示晝素對應的液晶盒; 470 :存儲電容; 480 : COM電極的顯示驅動電路; 481 :觸控探測狀態時用於COM電極的觸控激發源; 41 201120698 482 : COM電極的COM信號選通輸出電路; 483 :行電極的顯示掃描驅動電路; 484 :行電極的觸控電路; 485 :行電極的行信號選通輸出電路; 486 :列電極的顯示資料驅動電路; 487 :列電極的觸控電路; 488 :列電極的列信號選通輸出電路; 489 :時序控制器; 1810 :對顯示螢幕電極提供觸控激勵信號的觸控激發源; 1820 :觸控電路内觸控信號檢測電路的採樣電阻, 1821 :兩個電阻串聯的RC回路; 1830: —組作為觸控感應電極使用的顯示螢幕電極 相對顯示螢幕内其他電極的分佈電容; 1831 :手指與一組作為觸控感應電極使用的顯示螢 幕電極間的耦合電容; 1832 : —組作為觸控感應電極使用的顯示螢幕電極 與COM電極之間的電容; 1840:測量觸控信號電壓變化的檢測參考點; 1841 :測量觸控信號電壓變化的觸控信號採樣點; 2010:對顯示螢幕電極提供觸控激勵信號的觸控激 發源; 2020 :觸控電路内觸控信號檢測電路的採樣電阻; 2021 : —組作為觸控感應電極使用的顯示螢幕電極 的等效電阻; 2030 : —組作為觸控感應電極使用的顯示螢幕電極 相對顯示螢幕内其他電極的分佈電容; 42 201120698 2031 : COM電極與一組作為觸控感應電極使用的顯示螢幕 電極間的耦合電容; 2032 :手指與顯示螢幕COM電極間的耦合電容; 2040 :激發源和COM電極之間的等效電阻; 2510 :觸控信號採樣點的信號; 2511 :檢測參考點的信號; 2520 :緩衝器; 2521 :緩衝器; 2522 :第一級差分放大器; 2523 :第二級差分放大器; 2524 :調節電壓輸出; 2525 :類比/數位轉換器; 2526 :中央處理器; 2530 :同步控制信號; 2610 :觸控信號採樣點的信號; 2611 :檢測參考點的信號; 2620 :緩衝器; 2621 :緩衝器; 2622 :第一級差分放大器; 2623 :第二級差分放大器; 2624 :第二級差分放大器; 2625 :類比/數位轉換器; 2626 :中央處理器; 2630 :同步控制信號; 2710 :觸控信號採樣點的信號; 2711 :檢測參考點的信號; 43 201120698 2720 :緩衝器; 2721 :緩衝器; 2722 :第一級差分放大器; 2723 :第二級差分放大器; 2724 :數位/類比轉換器; 2725 :類比/數位轉換器; 2726 :中央處理器; 2730 :同步控制信號; 2810 :觸控信號採樣點的信號; 2811 :檢測參考點的信號; 2820 :緩衝器; 2821 :緩衝器; 2822 :第一級差分放大電路單元; 2823 :有效值轉換器; 2824 :第二級差分放大器; 2825 :調節電壓輸出; 2826 :類比/數位轉換器; 2827 :中央處理器; 2830 :同步控制信號; 2910 :觸控信號採樣點的信號; 2911 :檢測參考點的信號; 2920 :緩衝器; 2921 :緩衝器; 2922 :第一級差分放大電路單元; 2923 :有效值轉換器; 2924 :第二級差分放大器; 201120698 2925 :回饋調節類比電路; 2926 :類比/數位轉換器; 2927 :中央處理器; 3010 :觸控信號採樣點的信號; 3011 :檢測參考點的信號; 3020 :缓衝器; 3021 :緩衝器; 3022 :第一級差分放大電路單元; 3023 :有效值轉換器; 3024 :第二級差分放大器; 3025 :數位/類比轉換器; 3026 :類比/數位轉換器; 3027 :中央處理器; 3030 :同步控制信號; 3210 :觸控信號採樣點的信號; 3211 :既定電位; 3220 :電壓調節輸出單; 3212 :既定電位; 3221 :電壓調節輸出單元; 3230 :缓衝器; 3231 :缓衝器; 3232 :比較器; 3233 :比較器; 3234 :計數器; 3235 :中央處理器; 3240 :記數脈衝信號; 45 201120698 3241 歸零信號; 3310 觸控信號採樣點的信號; 3320 資料到數位/類比轉換器; 3327 中央處理器; 3311 既定電位; 3321 數位/類比轉換器; 3312 既定電位; 3322 緩衝器 3324 比較器 3323 缓衝器 3325 比較器 3326 計數器 3327 中央處理器; 3330 記數脈衝信號; 3412 觸控信號採樣點的信號; 3311 檢測參考點的信號; 3420 電壓調節輸出單元; 3410 觸控信號採樣點的信號; 3430 緩衝器 • t 3412 特定相位點對應的電位; 3432 比較器 3431 緩衝器 3433 比較器 3435 中央處理器; 3434 計數器 • 9 3440 記數脈衝信號; 46 201120698 3441 歸零信號; 3510 觸控信號採樣點的信號; 3511 檢測參考點的信號; 3526 中央處理器; 3520 數位/類比轉換器; 3512 特定相位點對應的電位; 3521 緩衝器; 3522 緩衝器; 3524 比較器; 3526 中央處理器 3525 計數器; 3530 記數脈衝信號; 3526 中央處理器 3531 歸零信號; 3526 中央處理器 3526 中央處理器 3526 中央處理器 3526 中央處理器 3526 中央處理器 以及 3526 中央處理器 47The device 3026 and the component symbol 3026 are synchronously sampled under the control of the central processing unit (Cpu, MPLQ 〇27, the synchronous control signal 3〇3〇, and the sampling conversion result is sent to the towel processing process li (CPU, MPU) 3027. Then, the central processing unit performs data processing and touch judgment. The three average measurement methods shown in Fig. 29, Fig. 29, and 帛3〇® 3 (4) The difference between the detection circuits is that the second differential circuit of Fig. 28 sets one Reference potential, for quadratic difference = adjustment capability; 方案29 diagram is the output of the second differential circuit 缟k遽, and then the analog circuit is fed back to the second differential circuit as the reference electric secondary differential circuit with automatic tracking adjustment capability Fig. 30 = is the result of f central processor operation after the analog / digital / analog ratio and the right j feed - the differential circuit as the reference potential, the second differential circuit eight intelligent adjustment ability. The display screen of size and resolution, the resistance of the electrode is generally on the connection point between the detection circuit and the electrode line on the touch screen, and the touch signal is shunted due to the input impedance of the detection channel, and the detection circuit is In = =, the smaller the shunting effect on the touch signal. When the input resistance of the detection circuit is above, the 'touch signal can reflect the two requirements of the touch action information—the input impedance of the detection channel to the electrode and the line is Or 5κ = , as shown in Figure 28, Figure 29, and Figure 30. Adding a buffer between the connection points of the upper electrode line on the differential amplifier circuit board 29 201120698 is to increase the input impedance of the detection circuit. Embodiment 18: When introducing the fourteenth embodiment, we mention that the touch control device 400 shown in FIG. 4 uses a TFT-LCD, and the equivalent circuit of the measurement is shown in FIG. The excitation source 1810 is a square wave signal. Since the component symbol 1830 and the component symbol 1831 are capacitive loads, the square wave signal of the touch excitation exhibits a charge and discharge waveform on the two capacitors. The output waveform and the tactile signal of the touch excitation source 1810 The touch signal waveform of the sampling point 1841 is as shown in FIG. 21, in order to say that the present embodiment, the 21st icon number is now re-associated, as shown in FIG. 31. This embodiment adopts time for detecting the touch signal. Characteristic measurement method Touch signal sampling point 1841 changes the time interval between two established vengeances during charging and discharging to obtain touch information. As shown in the figure, two predetermined potentials during charging of the touch signal sampling point 1841 waveform are measured. The time T423 between V422 and V421, the time T424 between the two established potentials V421 and V422 during discharge can reflect the negative change of the capacitance. When the finger touches the display screen, the coupling capacitance 1831 of the equivalent circuit of Figure 18 is Will generate, change the capacitive load of the circuit and the time constant, the time interval between the two established potentials Τ 423 and Τ 424 will also change. The measurement of the time interval Τ 423 and Τ 424 can get the touch information, the potential V421 and V422 are selected The circuit structure of the touch signal detection method of the two 乂rt implementation time characteristic measurement methods of the sampling point 1841 during charging and discharging is shown in Fig. 33®. Its money detection circuit conclusion and data sampling channel, data processing and timing (4) circuit measurement and data sampling channel with buffer, analog / digital bit 2 = or voltage adjustment output unit, comparator, counter; data processing ^ Time]: 201120698 The circuit is a central processing unit (CPU, MCU) with data computing capability and data output input interface. The central processing unit has control software and data processing software. Figure 32 is a structural diagram of a touch signal detecting circuit of a time characteristic measuring method. The component symbol 3210 is a signal of a touch signal sampling point, and the component symbol 3211 is a predetermined potential (V42i) generated by the voltage regulating output unit 322 The component symbol 3212 is a predetermined potential (V422) generated by the voltage adjustment output unit 3221; the signal 321 of the touch signal sampling point is buffered and outputted through the buffer 3230, and the predetermined potential of the component symbol 3211 enters the parent device 3232. For comparison, the signal 321 of the touch signal sampling point is buffered and outputted through the buffer 3231, and is compared with the predetermined potential of the component symbol 3212 to the comparator 3233; the central processing unit (cpu, MCU) 3235 generates the counting pulse signal of the counter 3234. 3240, the output potential of the comparator 3233 is used as the start count signal of the counter 3234, and the output potential of the comparator 3232 is used as the stop count signal of the counter 3234; the number of turns after the counter 3234 stops counting is controlled by the central processing unit (CPU, MCU) 3235 read, after the reading is completed, the central processor (CPU, MCU) 3235 sends the return-to-zero signal 3241 to zero counter 3 234, ready for the next reading, and the central processing unit MCU) 3235 for data processing and touch judgment. Figure 33 is a composition diagram of the touch signal detection circuit of the time feature measurement method, the component symbol 3310 is the signal of the touch signal sampling point, and the central device (CPU, MCU) 3327 is judged by program preset or history detection. ^ The data should be output to the analog/digital/analog converter 3320 to output a "3311 (V421), which also outputs data to the analog/digital/analog conversion output to a predetermined potential 3312 (V422); the touch signal sampling point 3310 passes through the buffer 3322 buffer output, with 3311, the comparator 3324 'touch signal sampling point signal 3310 is buffered and outputted, and the component potential 3312 is set to enter the I device 31 201120698 3325; CPU (CPU) , MCU) 3327 generates the counter pulse signal 3330 of the counter 3326. The output potential of the comparator 3325 is used as the start count signal of the counter 3326, and the output potential of the comparator 3324 is used as the stop count signal of the counter 3326; after the counter 3326 stops counting, The reading is read by the central processing unit (CPU, MCU) 3327. After the reading is completed, the central processing unit (CPU, MCU) 3327 sends the return-to-zero signal 3331 to zero. It is 3326, ready for the next read "by the central central processor (CPU, MCU) 3327 for data processing and touch determination. The difference between the two types of time feature measurement touch signal detection shown in Fig. 32 and Fig. 33 is that the scheme shown in Fig. 32 is a manual method for setting two predetermined potentials V421 and V422 to the comparator; Fig. 33 The scheme is to set two preset potentials V421 and V422 to the comparator by the central processing unit, and the central processor outputs the corresponding data to the analog/digital/analog conversion circuit through the program preset or the previous measurement result, and outputs the corresponding data. As a predetermined comparison potential, the setting of the predetermined comparison potentials V421 and V422 is intelligently adjusted. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 19: > Unlike the practical example 18, in this example, the touch excitation source 181 is a sine wave apostrophe, since the component symbol 1830 and the component symbol 1831 are capacitive loads, sine waves, and control excitation sources. After the capacitive load is applied, the waveform at the sampling point of the touch signal is also sinusoidal wave 'but the amplitude and phase change occur. The output waveform of the touch excitation source 1810 and the touch signal sampling point 1841 control signal waveform are as shown in the 23rd. The figure shows. In the method for detecting the touch money of the embodiment, the phase shift measurement method is adopted, and the touch information is obtained by comparing the specific phase Π2 movement of the touch signal sampling point on the different (4) hidden time period. It can be seen that the influence of this touch capacitance can be reflected by measuring the change of phase X, and the phase change can also be reflected by the measurement time interval of 32 201120698 = measurement interval. See also the diagram of the detection of this time interval: 3: Figure 2: ί If there is no finger touch, 'Because of the existence of the electric f valley in Fig. 18', the touch signal waveform on the touch signal sampling point 1841 is delayed relative to the wave phase of the touch excitation source wheel. When the finger touches the display screen, the light-combining capacitance of the equivalent circuit shown in Fig. 18 = 'increased the capacitive load of the circuit, the time between the zero point on the touch signal sampling point and the zero-crossing point between the excitation sources T500 Will become larger, that is, produce a further phase shift. When measuring, you can get the information of touch with the change of T500. Depending on the waveform of the touch excitation source, the potential of a particular phase point can be zero or other potential points. The circuit structure for realizing the phase shift measurement touch signal detection is as shown in Figs. 34 and f 35.纟The touch signal detection circuit structure is composed of signal detection and poor sampling channel, data processing and timing control circuit. The signal detection and sampling channel has a buffer, an analog/digital/analog conversion circuit or a voltage adjustment output unit, a comparator, and a counter; the data processing and timing control circuit is a data processing capability and a data output input interface. The processor (CPU, MCU), the central processing unit has control software and data processing software. Figure 34 is a structure diagram of a touch signal detecting circuit of a phase shift characteristic measuring method, the component symbol 3410 is a signal of a touch signal sampling point, the component symbol 3 bucket 11 is a signal for detecting a reference point, and the component symbol 3412 is regulated by a voltage. The output unit 3420 generates a potential corresponding to a specific phase point; the signal 3410 of the touch signal sampling point is buffered and outputted through the buffer 343, and the potential corresponding to the specific phase point of the component symbol 3412 enters the comparator 3432 for comparison; The signal 3411 of the signal sampling point is buffered and outputted through the buffer 3431, and the potential corresponding to the specific phase point of the component symbol 3412 enters the comparator 3433 for comparison; the central processing unit (cpu, MCU) 3435 generates the counting pulse nickname of the counter 3434. The output potential of the 3440' comparator 3433 is used as the start count signal of the 33201120698 counter 3434, the output potential of the comparator 3432 is used as the stop count signal of the counter 3434; the counter 3434 counts the stop reading by the central processing unit (CPU, MCU) 3435 reading, after the reading is completed, the central processing unit (CPU, MCU) 3435 sends the return-to-zero signal 3441 to zero. The counter 3434 is prepared for the next reading and is processed by the central processing unit (CPU, MCU) 3435 for data processing and touch determination. Figure 35 is a structure diagram of a touch signal detection circuit for phase shift characteristic measurement method, component symbol 3510 is a signal of a touch signal sampling point, 3511 is a signal for detecting a reference point, and a central processing unit (CPU, MCU) 3526 is programmed according to Presetting or history detection and outputting corresponding data to the analog/digital/analog converter 3520, the potential 3512 corresponding to the specific phase point is the output potential of the analog/digital/analog converter 3520; the signal of the touch signal sampling point 351〇 buffer output through the buffer 3521, the potential corresponding to the specific phase point of the component symbol 3512 enters the comparator 3523 for comparison; the signal 3511 of the touch signal sampling point is buffered and outputted through the buffer 3522, and the specific phase point of the component symbol 3512 The corresponding potential enters the comparator 3524 for comparison; the central processing unit (CPU, MCU) 3526 generates the count pulse signal 3530 of the counter 3525, and the output potential of the comparator 3524 is used as the start count signal of the counter 3525's output potential of the comparator 3523. As the stop count of the counter 3525 # said, § tens of 3525 § the number of readings after the stop by the central processing unit (CPU , MCU) 3526 read 'After the reading is completed, the central processor (cpu, MCU) 3526 sends a return-to-zero signal 3531 to the zero counter 3525, ready for the next reading, and is controlled by the central processing unit (CPU, MCU) 3526 Data processing and touch judgment. The difference between the two phase shift measurement touch signal detections shown in Fig. 34 and Fig. 35 is that the scheme shown in Fig. 34 is to manually set the potential corresponding to a specific phase point; the scheme shown in Fig. 35 is The central processor uses the class 34 201120698 ratio/digit/analog converter to set the potential corresponding to a specific phase point. The central processing is preset by the program or the previous measurement result is calculated and then fed back by the analog/digital/analog converter. As a potential corresponding to a specific phase point, the setting of a specific phase point has an intelligent adjustment capability. The phase characteristics of the touch signal measured in this embodiment are also essentially one of the time characteristics. * Embodiment 20: The touch display shown in FIG. 4 is time-divisionally multiplexed to display the screen electrodes to complete the touch function. The touch display 400 uses a part or all of the N display screen electrode lines to be used as a touch sensing electrode line, and performs touch detection by a single channel sequential scanning detection method: the touch signal detecting circuit has a touch signal a detection channel or a data sampling channel, sequentially detecting the first, second, ..., and finally the Nth touch sensing electrode lines of the N touch sensing electrode lines in a sweeping manner, thereby Complete the entire detection process of a probe frame, as shown in Figure 36. This is also the most common and natural touch detection method. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 21: Different from Embodiment 20, in this example, the first electrode, the i+1th, and the first of the N touch sensing electrodes are detected by scanning at a predetermined interval i. 2i+l, ..., until the last> > ^ touch sense library line, thus completing the entire detection process of shoulder paste. When the electrode line i=2, the detection sweeping pattern of a touch sensing electrode line is as shown in Fig. 37. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Twelve: Different from Embodiments 21 and 22, in this example, touch detection is performed by a single channel coarse scan and fine sweep detection: the touch signal detection circuit has a detection Channel or a data sampling channel, the touch sensing electrode line is divided into several sections every 35 201120698, each partition is selected - stop < multiple touch 烕 = touch control for the check: area most touch = touch test 'Determining the area where the touch action occurs; then the touch information: This side 2, the line scans the sweep detection' to get more specific. The purpose is to save the time of touch detection. The scanning scan of the image is as early as the sweeping scan is performed as shown in the 38th embodiment. Twenty-three: t example ~ channel sequential sweep # detection side ^ touch detection: touch detection circuit has multiple touches The signal detection channel and the plurality of data samples 'divide all the touch sensing electrode lines into the same number of groups as the touch signal detecting channels, and each touch signal detecting channel is responsible for detecting in a touch sensing electrode group. The / / scheme is that each touch signal detection channel simultaneously performs sequential scan detection in the respective groups 'the detection result of all the touch signal detection channels' to obtain the touch information of the full screen. Figure 39 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. Another method is that each touch signal detection channel simultaneously performs interval scan detection in each group 'integrated detection results of all touch signal detection channels' to obtain full screen touch information. The fourth picture is three touch signals. Schematic diagram of the scanning sequence when detecting channels. In another solution, the touch signal detection channels are respectively subjected to coarse scan and fine scan detection in respective groups, and the detection results of all the touch signal detection channels are integrated to obtain the touch information of the full screen. Figure 41 is a schematic diagram of the scanning sequence when three touch signal detection channels are used. 36 201120698 The above is a detailed description of the present invention in conjunction with the specific preferred embodiments, and it is not intended that the specific embodiments of the invention are limited to the description. It will be apparent to those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the invention. 37 201120698 [Simple description of the diagram] Figure 1 is a typical structure of a TFT-LCD display. Figure 2 is a diagram showing the structure of a TFT_LCD display: Figure 3 is a diagram of a TFT_LCD liquid crystal display. Timing diagram. Condition., "The driver does not drive. Figure 4 is a diagram of the TFT_LCD display screen. Fig. 5 is a time division multiplexing display screen electrode. Fig. 7 is a touch excitation signal of the first embodiment. Fig. 7 is a touch excitation signal window of the second embodiment. Figure 8 is a touch excitation signal wave of the third embodiment. Figure 9 is a diagram showing the touch excitation signal wave = map of the fourth embodiment. FIG. 10 is a touch excitation signal of the fifth embodiment. FIG. 11 is a touch excitation signal of the sixth embodiment. Fig. 12 is a view of the second embodiment of the seventh embodiment and the eighth embodiment. Timing diagram of the screen electrode. It is used to display the firefly. Fig. 13 is a contact diagram of the seventh embodiment and the eighth mode. Ah, the servant said that the wave picture 14 is the molecular arrangement of the positive liquid crystal material in the external field. Figure 15 is the molecular arrangement frequency of the negative liquid crystal material in the external field. Fig. 16 is a time division multiplexed display screen electrode of the ninth embodiment. Fig. 17 is a time division multiplexed display screen electrode sequence diagram of the tenth embodiment. Figure 18 is an equivalent circuit diagram when a finger touches the display screen. Figure 19 is a graph showing the leakage of the touch signal generated by the touch with frequency. 38 201120698 Figure 20 is an equivalent circuit diagram when the COM electrode is placed on the upper substrate glass when the finger touches the display screen. Figure 21 is a waveform diagram of the touch signal of the touch excitation source and the touch signal sampling point when the touch excitation signal is a square wave. The 22a, 22b, and 22c are schematic diagrams of the complete synchronization process of the touch detection when the touch excitation signal is a square wave. Figure 23 is a waveform diagram of the touch signal of the touch excitation source and the sampling point of the touch control signal when the touch excitation signal is a sine wave. The 24a, 24b, and 24c diagrams are schematic diagrams of the complete synchronization process of the touch detection when the touch excitation signal is a sine wave. Fig. 25 is a structural diagram of a touch signal detecting circuit of an instantaneous value measuring method. Figure 26 is a structural diagram of a touch signal detecting circuit for instantaneous value measurement. Fig. 27 is a structural diagram of a touch signal detecting circuit of an instantaneous value measuring method. Figure 28 is a diagram showing the structure of a touch signal detecting circuit of an effective value measuring method. Figure 29 is a diagram showing the structure of a touch signal detecting circuit of an effective value measuring method. Figure 30 is a diagram showing the structure of a touch signal detecting circuit of an effective value measuring method. Figure 31 is a time characteristic of the touch excitation signal being a square wave and the touch signal sampling point of the touch signal. Figure 32 is a structural diagram of a touch signal detecting circuit of a time characteristic measuring method. Figure 33 is a structural diagram of a touch signal detecting circuit 39 201120698 of a time characteristic measuring method. Figure 34 is a diagram. Figure 35 is a picture. Figure 36 is a sequence diagram. Figure 37 is a schematic diagram of the sequence. Figure 38 is a schematic diagram of the measurement sequence. Figure 39 is a schematic diagram of the sequence. Figure 40 is a sequence diagram. Figure 41 is a sequence diagram of the phase shift measurement method of the touch signal detection circuit structure phase shift measurement method touch signal detection circuit structure single channel sequential touch touch detection mode detection type single channel spacer material touch Detection method detection Single-channel coarse sweep and fine sweep touch detection method Multi-channel inspection - material control _ mode detection multi-pass phase separation touch detection method detection channel particle sweep scanning touch detection method inspection 201120698 [Main component symbol description] 100 : TFT-LCD display; 110 : TFT liquid crystal screen; 120 : LCD screen horizontal direction scanning row electrode; 121, 122, ..., 12m-1, 12m: scan electrode line; 130: LCD screen vertical Directional lean column electrode, 131, ..., 13n: scan electrode line; 140: common electrode; 150: thin film transistor TFT on liquid crystal screen; 160: liquid crystal molecular box corresponding to halogen; 170: storage capacitor; 180: common electrode voltage source; 181: gate electrode of TFT-LCD; 182: source electrode (column electrode) driver of TFT-LCD; 183: timing controller; 400: touch display; 410: TFT-LCD display Screen 420: TFT-LCD displays scanning line electrodes in the horizontal direction of the screen; 421, ..., 42m: row electrode lines; 430: TFT-LCD displays the data column electrodes in the vertical direction of the screen; 440: TFT-LCD displays the common electrode layer of the screen; 450: TFT-LCD display on-screen thin film field effect transistor TFT; 460: display liquid crystal corresponding to the pixel; 470: storage capacitor; 480: COM electrode display drive circuit; 481: touch detection state for COM Touch excitation source of electrode; 41 201120698 482 : COM signal strobe output circuit of COM electrode; 483: display scan drive circuit of row electrode; 484: touch circuit of row electrode; 485: row signal strobe output of row electrode Circuit; 486: display electrode driving circuit of column electrode; 487: touch circuit of column electrode; 488: column signal strobe output circuit of column electrode; 489: timing controller; 1810: providing touch excitation signal to display screen electrode Touch excitation source; 1820: sampling resistance of touch signal detection circuit in touch circuit, 1821: RC circuit with two resistors connected in series; 1830: - display screen electrode used as touch sensing electrode Relatively displaying the distributed capacitance of other electrodes in the screen; 1831: coupling capacitance between the finger and a set of display screen electrodes used as the touch sensing electrodes; 1832: - group between the display screen electrode and the COM electrode used as the touch sensing electrode Capacitance; 1840: measuring reference point for measuring touch signal voltage change; 1841: measuring touch signal sampling point for measuring touch signal voltage change; 2010: touch excitation source for providing touch excitation signal to display screen electrode; 2020: The sampling resistance of the touch signal detecting circuit in the touch circuit; 2021: - the equivalent resistance of the display screen electrode used as the touch sensing electrode; 2030: - the display screen electrode used as the touch sensing electrode is relatively displayed in the screen Distributed capacitance of other electrodes; 42 201120698 2031 : Coupling capacitance between COM electrode and a set of display screen electrodes used as touch sensing electrodes; 2032: Coupling capacitance between finger and display COM electrode; 2040: excitation source and COM electrode Equivalent resistance between; 2510: signal at the touch signal sampling point; 2511: signal for detecting the reference point; 25 20: buffer; 2521: buffer; 2522: first stage differential amplifier; 2523: second stage differential amplifier; 2524: regulated voltage output; 2525: analog/digital converter; 2526: central processing unit; 2530: synchronous control Signal; 2610: signal of touch signal sampling point; 2611: signal for detecting reference point; 2620: buffer; 2621: buffer; 2622: first stage differential amplifier; 2623: second stage differential amplifier; 2624: second Stage differential amplifier; 2625: analog/digital converter; 2626: central processing unit; 2630: synchronous control signal; 2710: signal of touch signal sampling point; 2711: signal for detecting reference point; 43 201120698 2720: buffer; : Buffer; 2722: first stage differential amplifier; 2723: second stage differential amplifier; 2724: digital/analog converter; 2725: analog/digital converter; 2726: central processing unit; 2730: synchronous control signal; Signal of the touch signal sampling point; 2811: signal for detecting the reference point; 2820: buffer; 2821: buffer; 2822: first stage differential amplifying circuit unit; 2823: RMS value 2824: second stage differential amplifier; 2825: regulated voltage output; 2826: analog/digital converter; 2827: central processing unit; 2830: synchronous control signal; 2910: signal of touch signal sampling point; 2911: detection reference Point signal; 2920: buffer; 2921: buffer; 2922: first stage differential amplifier unit; 2923: rms converter; 2924: second stage differential amplifier; 201120698 2925: feedback adjustment analog circuit; 2926: analogy /digital converter; 2927: central processing unit; 3010: signal of touch signal sampling point; 3011: signal for detecting reference point; 3020: buffer; 3021: buffer; 3022: first stage differential amplifying circuit unit; 3023: rms converter; 3024: second stage differential amplifier; 3025: digital/analog converter; 3026: analog/digital converter; 3027: central processing unit; 3030: synchronous control signal; 3210: touch signal sampling point Signal; 3211: set potential; 3220: voltage regulation output; 3212: set potential; 3221: voltage regulation output unit; 3230: buffer; 3231: buffer; : Comparator; 3233: Comparator; 3234: Counter; 3235: CPU; 3240: Count pulse signal; 45 201120698 3241 Return to zero signal; 3310 Touch signal sampling point signal; 3320 Data to digital/analog converter 3327 central processing unit; 3311 set potential; 3321 digital/analog converter; 3312 set potential; 3322 buffer 3324 comparator 3323 buffer 3325 comparator 3326 counter 3327 central processing unit; 3330 counting pulse signal; 3412 touch Signal sampling point signal; 3311 detection reference point signal; 3420 voltage regulation output unit; 3410 touch signal sampling point signal; 3430 buffer • t 3412 specific phase point corresponding potential; 3432 comparator 3431 buffer 3343 comparator 3435 central processing unit; 3434 counter • 9 3440 counting pulse signal; 46 201120698 3441 return to zero signal; 3510 touch signal sampling point signal; 3511 detecting reference point signal; 3526 central processing unit; 3520 digital/analog converter; 3512 the potential corresponding to a specific phase point; 3521 buffer; 3522 buffer; 3524 comparator; 3526 central processor 3525 counter; 3530 count pulse signal; 3526 central processor 3531 zero return signal; 3526 central processing unit 3526 central processing unit 3526 central processing unit 3526 central processing unit 3526 central processing unit and 3526 central processing unit 47

Claims (1)

201120698 七、申請專利範圍: 雷路、上觸Γ顯示器,包括平板顯示螢幕、顯示驅動 顯示,觸控信號選通輸出電路或= 2入電該觸控電路具有觸控激發源和觸控 該顯示/觸控信號選通輸出電路使顯示螢 不驅動電路連通傳輸顯示驅動信號,或與 複觸控信號’顯示驅動和觸控探測時分 複用4.,員不螢幕電極;該顯示/觸控信號入 幕電極㈣傳輸顯*_錢 驅^ 觸控探測同時共用顯示勞幕電極;在顯示螢幕 具有订電極組和列電極組,觸控電路通過對行電極組或 中的某條電極線施加觸控信號,並檢測該電極 線上觸控彳§號的變化,來探測該電極是否被觸碰,其中·· 路對某條電極線上觸控信號的採樣’是以顯示中貞 t期、或是以顯示t貞的整數倍為週期,並以與施加在 該條電極線上的觸控信號固定的同步關 =据採樣,該固定的同步關係是鱗次獲取採樣t 的時刻都處在觸控激發源信號波形同一特定相位點上。 2、如申請專利範圍第!項所述之觸控顯示器]1中. 該觸控電路以固定的同步關係對觸控信號進行数据 ^樣’是指在該條電極線上以開始施加的觸控信號為起 始的固定序號的週期内進行数据採樣。 3、如申請專利範圍第1項所述之觸控顯示器,其中·· 該觸控電路在特定相位點上採樣是指,施加在該條 電極線上的觸控信號的波形是方波或其他階躍波時,在 該條電極線上施加的觸控信號對觸控物的觸摸電容進行 48 201120698 某-充放電週期中,從開始充電到充電完成時段 料刻龍控信號進行採樣;或在某一充放 刻從開始放電到放電完成時段内的某—固定時 刻對觸控信號進行採樣。 心了 如申請專利範圍第1項所述之觸控顯示器,其中: 採樣ϊ θ 路以11定的同步_對觸控信號進行数据 始的in =ίΐ該條電極線上間始施加_控信號為起 数°据採ΐ 仙後的—定週期個數或時間段内進行 琴:月專利範圍第4項所述之觸控顯示器,其中: =期個數或時間段内的累計性數据二 該項所述之觸控顯示器’其中: 壓信號数据採樣’採樣的是電 示器,其中: 號的幅值特徵和時間数=樣’採樣的是信 圍第7項所述之觸控顯示器,其中: 條電極移 =定的時-標下該 ====述之觸控顧示器,其,: 控信號相位為比較對象。=激發源㈣輸出端上的觸 49201120698 VII. Patent application scope: Leilu, upper touch display, including flat panel display screen, display drive display, touch signal strobe output circuit or = 2 power input The touch circuit has touch excitation source and touch display The touch signal strobe output circuit enables the display flashing non-driving circuit to communicate with the display display driving signal, or the time-division multiplexing with the composite touch signal 'display driving and touch detection 4. The member does not have a screen electrode; the display/touch signal Into the screen electrode (four) transmission display * _ money drive ^ touch detection while sharing the display screen electrode; in the display screen has a set of electrode sets and column electrode sets, the touch circuit by applying touch to a row electrode group or a certain electrode line Signal, and detecting the change of the touch mark on the electrode line to detect whether the electrode is touched, wherein the sampling of the touch signal on a certain electrode line is performed in the display period, or The integer multiple of t贞 is displayed as a period, and is synchronized with the touch signal fixed to the touch signal applied to the electrode line. The fixed synchronization relationship is the time at which the sample t is obtained. The touch excitation source signal waveform is at the same specific phase point. 2. If you apply for a patent scope! In the touch display of the item, the touch control circuit performs a data sequence on the touch signal in a fixed synchronization relationship, and refers to a fixed serial number starting from the start of the touch signal on the electrode line. Data sampling is performed during the period. 3. The touch display of claim 1, wherein the touch circuit is sampled at a specific phase point, wherein the waveform of the touch signal applied to the electrode line is a square wave or other order. In the case of a jump wave, the touch signal applied on the electrode line is subjected to the touch capacitance of the touch object 48 201120698 In a certain charge-discharge cycle, the dragon control signal is sampled from the start of charging to the completion of the charging period; or at a certain The charging signal is sampled at a certain fixed time from the start of discharge to the completion of the discharge. For example, the touch display disclosed in claim 1 is as follows: wherein: sampling ϊ θ road is synchronized with 11 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The touch display according to item 4 of the patent scope of the patent: the number of the period or the cumulative data in the time period. The touch display of the item: wherein: the pressure signal data sampling is sampled by an electric indicator, wherein: the amplitude characteristic of the number and the number of times = the sample is the touch display of the seventh item of the information, Wherein: the bar electrode shift = the fixed time - the standard ==== the touch controller, wherein: the control signal phase is the comparison object. = excitation source (four) on the output of the touch 49
TW98142371A 2009-12-10 2009-12-10 Touch display. TW201120698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142371A TW201120698A (en) 2009-12-10 2009-12-10 Touch display.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142371A TW201120698A (en) 2009-12-10 2009-12-10 Touch display.

Publications (1)

Publication Number Publication Date
TW201120698A true TW201120698A (en) 2011-06-16

Family

ID=45045274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142371A TW201120698A (en) 2009-12-10 2009-12-10 Touch display.

Country Status (1)

Country Link
TW (1) TW201120698A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456451B (en) * 2011-11-23 2014-10-11 Hsiung Kuang Tsai Display apparatus and touch sensing method thereof
TWI465992B (en) * 2011-09-05 2014-12-21 Shih Hua Technology Ltd Method for detecting touch spot of touch panel
TWI514231B (en) * 2012-05-18 2015-12-21 Egalax Empia Technology Inc Detecting method and device for capacitive touch screen
TWI588731B (en) * 2016-10-13 2017-06-21 敦泰電子股份有限公司 Electronic device and the driving method thereof
US10884554B2 (en) 2013-01-25 2021-01-05 Japan Display Inc. Display device with touch detection function and electronic apparatus
CN112799551A (en) * 2021-01-20 2021-05-14 京东方科技集团股份有限公司 Touch module, positioning detection method thereof and touch panel
CN113064526A (en) * 2021-04-13 2021-07-02 合肥松豪电子科技有限公司 Scanning method of touch panel TP applied to TDDI chip encountering pit
TWI754821B (en) * 2019-05-31 2022-02-11 大陸商北京集創北方科技股份有限公司 Common voltage decoupling circuit, touch display integrated driver using the same, and touch display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465992B (en) * 2011-09-05 2014-12-21 Shih Hua Technology Ltd Method for detecting touch spot of touch panel
TWI456451B (en) * 2011-11-23 2014-10-11 Hsiung Kuang Tsai Display apparatus and touch sensing method thereof
TWI514231B (en) * 2012-05-18 2015-12-21 Egalax Empia Technology Inc Detecting method and device for capacitive touch screen
US10884554B2 (en) 2013-01-25 2021-01-05 Japan Display Inc. Display device with touch detection function and electronic apparatus
US11500485B2 (en) 2013-01-25 2022-11-15 Japan Display Inc. Display device with a touch detection function
US11893176B2 (en) 2013-01-25 2024-02-06 Japan Display Inc. Display device with touch detection function
TWI588731B (en) * 2016-10-13 2017-06-21 敦泰電子股份有限公司 Electronic device and the driving method thereof
TWI754821B (en) * 2019-05-31 2022-02-11 大陸商北京集創北方科技股份有限公司 Common voltage decoupling circuit, touch display integrated driver using the same, and touch display device
CN112799551A (en) * 2021-01-20 2021-05-14 京东方科技集团股份有限公司 Touch module, positioning detection method thereof and touch panel
CN112799551B (en) * 2021-01-20 2024-03-15 京东方科技集团股份有限公司 Touch module, positioning detection method thereof and touch panel
CN113064526A (en) * 2021-04-13 2021-07-02 合肥松豪电子科技有限公司 Scanning method of touch panel TP applied to TDDI chip encountering pit

Similar Documents

Publication Publication Date Title
WO2011035485A1 (en) Touch control display able to remove touch control impact on display
CN102132232B (en) Touch control screen
JP5481740B2 (en) Touch display that can eliminate the effects of touch on the display
WO2011035489A1 (en) Touch control display
TW201120698A (en) Touch display.
CN201590059U (en) Touch control circuit
CN106598363B (en) The method and circuit of driving touch sensor and the display device using this circuit
CN107665052B (en) Touch pen, touch sensing system and driving method thereof
TWI588689B (en) Low noise and time division multiplexing technology of embedded multi-touch panel and driving method
US9310942B2 (en) Display device having touch sensor reducing limit in driving time of pixel array and driving time of touch sensor and method for driving the same
CN102693703B (en) Display with integrated touch sensor and driving method thereof
CN106095177B (en) Touch-sensing equipment and its driving method
CN105487704B (en) Electronic device with touch sensor and its driving method
CN105630261B (en) Touch-sensing circuit, display device and the method for sensing the touch input on touch panel
KR102088906B1 (en) Appratus and method for driving touch screen
TW201120507A (en) Touch-controlled screen.
CN104090696B (en) Display panel, device and the driving method of two-sided touch-control
CN104216583B (en) touch screen driver
TW201344526A (en) In-cell multi-touch display panel system
KR20140054971A (en) Touch sensing system and method of reducing latency thereof
CN103018994A (en) In-cell multi-touch liquid crystal display panel system
TW201120844A (en) Touch-control display capable of removing touch-control impact on display.
KR20130058512A (en) Apparatus and method for driving touch screen
CN201765574U (en) Touch control display capable of eliminating touch control influence on display
TW201023005A (en) Touch panel and circuit thereof