TW201114869A - Thermal conductive adhesive - Google Patents

Thermal conductive adhesive Download PDF

Info

Publication number
TW201114869A
TW201114869A TW99111421A TW99111421A TW201114869A TW 201114869 A TW201114869 A TW 201114869A TW 99111421 A TW99111421 A TW 99111421A TW 99111421 A TW99111421 A TW 99111421A TW 201114869 A TW201114869 A TW 201114869A
Authority
TW
Taiwan
Prior art keywords
conductive adhesive
formula
thermal conductive
resin
thermally conductive
Prior art date
Application number
TW99111421A
Other languages
Chinese (zh)
Other versions
TWI468483B (en
Inventor
Yoshinori Yoneda
Michihiro Sugo
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW201114869A publication Critical patent/TW201114869A/en
Application granted granted Critical
Publication of TWI468483B publication Critical patent/TWI468483B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Die Bonding (AREA)

Abstract

Provided is an electric insulation thermal conductive adhesive having excellent adhesion to a heating member and a radiating member, and excellent thermal conductibility. The thermal conductive adhesive contains (A) 100 weight parts of polyimide polysiloxane resin which weight-average molecular weight is 5,000 to 150,000 and contains a repeat unit represented by a formula (1), in the formula (1), W represents a four-valence organic group, X represents a bivalence organic group containing phenolic hydroxyl, Y represents a bivalence polysiloxane residue represented by a formula (2), in the formula (2), R1 and R2 represent substitutional or non-substitutional monovalent hydrocarbon radical containing 1 to 8 of carbon atoms respectively, a is an integer from 1 to 20, Z represents a bivalence organic group apart from X and Y, p, q and r meet the following relations 0.15 ≤ p ≤0.6, 0.05 ≤ q ≤ 0.8, 0 ≤ r ≤ 0.75, p + q + r = 1; (B) 100-10,000 weight parts of electric insulation thermal conductive filling; and (C) an organic solvent.

Description

201114869 六、發明說明: 【發明所屬之技術領域】 本發明關於導熱性接著劑,尤其關於適用於接著電子 元件與散熱構件或發熱構件之導熱性接著劑。 【先前技術】 近年來’隨著電子元件例如電腦的中央運算處理裝置 (C P U )及晶片組之高性能化、小型化及高密度化,電子 元件及安裝有該電子元件的構件之發熱係變大。因此,電 子元件的冷卻在維持電子元件及安裝有該電子元件的構件 之性能方面’係成爲非常重要的技術。電子元件的散熱效 率’一般係藉由使導熱性良好的物質接觸電子元件而提高 。因此’具有優異導熱性的散熱材料(TIM)之需求係正 在增加。 散熱材料例如係置於電子元件與冷卻系統(例如散熱 器)之間,擔任將由電子元件所發出的熱有效地傳達至冷 卻系統的任務。散熱材料根據其形狀或用法,係分類爲薄 片狀成型物及糊狀組成物。薄片狀成型物例如係分類爲彈 性體(具有彈性的高分子物質)類型的散熱薄片及熱軟化 類型的相變化薄片(使用隨著溫度進行相變化的散熱材料 之薄片)。糊狀組成物例如分類爲非硬化類型的散熱油脂 、及塗佈時爲糊但例如經由熱處理而膠化或彈性體化的散 熱凝膠或散熱性接著劑。 此等散熱材料一般地係在有機聚合物材料中高密度塡 -5- 201114869 充有導熱物質的複合材料。有機聚合物材料的導熱率一般 係小’沒有隨著有機聚合物材料的種類而大不相同。因此 ’散熱材料的導熱率係大幅依賴於導熱物質在有機聚合物 材料中的體積塡充率。從而,如何在有機聚合物材料中塡 充多的導熱物質係重要。 散熱性接著劑係要求具有高的導熱性,同時在各式各 樣的環境或應力下具有接著力。在有機聚合物材料中愈高 密度地塡充導熱物質’散熱材料的散熱性愈提高。然而, 在有機聚合物材料中愈高密度地塡充導熱物質,散熱材料 本身亦變脆,可撓性或與被附體的接著力變差。 作爲散熱性接著劑的有機聚合物材料,已知環氧樹脂 、聚矽氧聚合物、聚醯亞胺等。然而,環氧樹脂雖然接著 性良好’但是在耐熱、耐久性有缺點。因此,從對導熱物 質的塗覆性或硬化後的柔軟性或熱安定性等之點來看,較 宜使用聚矽氧聚合物(例如參照下述專利文獻1及2 )。然 而’使用聚矽氧聚合物的散熱材料會無法滿足接著性及散 熱性兩者。 又’使用已改良耐熱性的聚醯亞胺時,由於聚醯亞胺 樹脂爲固體,故無法塡充導熱物質,不得不溶解在溶劑等 中而塡充。爲了避免此,必須在前驅物的聚醯胺酸溶液中 塡充導熱物質,由於其硬化通常必須30(TC以上的加熱, 故無法避免對周圍的熱負荷。 還有,爲了半導體元件及印刷基板等的配線部分之表 面保護,已知使用聚醯亞胺聚矽氧樹脂,與聚矽氧橡膠相 ⑧ -6 - .201114869 比’在高濕條件下對基材的密接性及耐久性高(例如參照 下述專利文獻3 )。亦有揭示利用含有此聚醯亞胺聚矽氧 樹脂的組成物當作半導體的接著劑(例如參照專利文獻4 )。然而’使用此等聚醯亞胺聚矽氧樹脂的導熱性接著劑 ’尤其要求電絕緣性的導熱性接著劑之檢討係沒有。 〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕特開2006-342200公報 〔專利文獻2〕特公昭6 1 -3670號公報 〔專利文獻3〕特開2002-0 1 2667號公報 〔專利文獻4〕特開2 0 0 6 - 0 0 5 1 5 9號公報 【發明內容】 發明所欲解決的問題 本發明之目的爲提供具有優異的導熱性,而且對於被 接著物,例如發熱構件及散熱構件具有優異的接著性之電 絕緣性的導熱性接著劑(亦稱爲散熱糊)。 解決問題的手段 本發明係下述的導熱性接著劑。 一種導熱性接著劑,其含有: (A)具有下述式(1)所示的重複單位之重量平均分子量 5,000〜1 5 0,000的聚醯亞胺聚矽氧樹脂100質量份 (B )電絕緣性的導熱性塡料 100〜1 0,000質量分 201114869 ,及 (C)有機溶劑。 【化1】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive adhesive, and more particularly to a thermally conductive adhesive suitable for use in following an electronic component and a heat dissipating member or a heat generating member. [Prior Art] In recent years, with the improvement of the high performance, miniaturization, and high density of electronic processing devices (CPUs) and chipsets of electronic components, such as computers, the electronic components and the components of the electronic components are thermally charged. Big. Therefore, the cooling of the electronic component is a very important technique in maintaining the performance of the electronic component and the member on which the electronic component is mounted. The heat dissipation efficiency of an electronic component 'is generally improved by bringing a substance having good thermal conductivity into contact with an electronic component. Therefore, the demand for heat dissipating materials (TIMs) having excellent thermal conductivity is increasing. The heat dissipating material, for example, is placed between the electronic component and the cooling system (e.g., the heat sink) to serve as a task for efficiently communicating the heat emitted by the electronic component to the cooling system. The heat dissipating material is classified into a sheet-like molded product and a paste-like composition depending on its shape or usage. The sheet-like molded article is, for example, a heat-dissipating sheet classified into an elastic body (having an elastic polymer material) and a phase-changing sheet of a thermosoftening type (a sheet using a heat-dissipating material which changes phase with temperature). The paste composition is classified, for example, into a non-hardening type heat-dissipating grease, and a heat-dissipating gel or a heat-dissipating adhesive which is a paste at the time of coating but gelled or elastomerized, for example, by heat treatment. These heat dissipating materials are generally made of a high density 有机 -5 - 201114869 composite material filled with a heat conductive material in an organic polymer material. The thermal conductivity of organic polymeric materials is generally small 'not very different depending on the type of organic polymeric material. Therefore, the thermal conductivity of the heat dissipating material is largely dependent on the volumetric charge rate of the thermally conductive material in the organic polymeric material. Therefore, how to charge a large amount of heat conductive material in an organic polymer material is important. Heat-dissipating adhesives are required to have high thermal conductivity while having an adhesive force under a wide variety of environments or stresses. The higher the density of the thermally conductive material in the organic polymer material, the more the heat dissipation of the heat dissipating material increases. However, the higher the density of the heat-conducting material in the organic polymer material, the heat-dissipating material itself becomes brittle, and the flexibility or adhesion to the attached body is deteriorated. As the organic polymer material which is a heat-releasing adhesive, an epoxy resin, a polyoxymethylene polymer, a polyimine or the like is known. However, although epoxy resin has good adhesion, it has disadvantages in heat resistance and durability. Therefore, from the viewpoint of coating properties to a heat conductive material, flexibility after softening, thermal stability, and the like, a polyoxymethylene polymer is preferably used (see, for example, Patent Documents 1 and 2 below). However, the heat dissipating material using a polyoxyl polymer cannot satisfy both the adhesion and the heat dissipation. Further, when a polyimide having improved heat resistance is used, since the polyimide resin is solid, it cannot be filled with a heat conductive material, and it has to be dissolved in a solvent or the like to be charged. In order to avoid this, it is necessary to fill the heat-conductive substance in the polyamic acid solution of the precursor, and it is usually necessary to heat 30 or more (heating of TC or more) because of the hardening, and it is impossible to avoid the heat load to the surroundings. Also, for the semiconductor element and the printed substrate For the surface protection of the wiring portion, it is known to use a polyimide polyimide polyoxyl resin, which has a higher adhesion and durability to the substrate under high-humidity conditions than the polyoxyxene rubber phase 8 -6 - .201114869 For example, refer to the following Patent Document 3). It is also disclosed that a composition containing the polyamidene polyoxyalkylene resin is used as a semiconductor (for example, refer to Patent Document 4). However, 'the use of such polyamidiene polymerization In the review of the thermal conductive adhesive of the epoxy resin, in particular, it is required to review the electrically insulating thermal conductive adhesive. [Prior Art Document] [Patent Document 1] [Patent Document 1] JP-A-2006-342200 (Patent Document 2) Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Problem invention The object of the present invention is to provide a thermally conductive adhesive (also referred to as a heat-dissipating paste) having excellent thermal conductivity and excellent electrical conductivity for an adherend such as a heat generating member and a heat dissipating member. The following thermal conductive adhesive: A thermally conductive adhesive comprising: (A) a polythenimine polyoxane having a weight average molecular weight of 5,000 to 150,000, having a repeating unit represented by the following formula (1): 100 parts by mass of the resin (B) electrically insulating thermal conductive material 100 to 1 000,000 mass points 201114869, and (C) organic solvent.

(式(1 )中,W係4價有機基,X係具有酚性羥基的二價 基,γ係下述式2所示的二價聚矽氧殘基,Z係X及Y以外的 二價有機基,p、q及r各自係0.15盔pSO.6、0.05Sqg〇.8、 0SrS0.75,且 p + q + r= l); 【化2】 ch3 r1 ch3 (2)(In the formula (1), W is a tetravalent organic group, X is a divalent group having a phenolic hydroxyl group, γ is a divalent polyfluorene residue represented by the following formula 2, and Z is a group other than X and Y. The valence organic group, p, q and r are each 0.15 helmet pSO.6, 0.05Sqg〇.8, 0SrS0.75, and p + q + r= l); [Chemical 2] ch3 r1 ch3 (2)

I I I CH2CH2CH2-Si—(〇-Si)-0-Si-CHCH2CH2-CH3 R2 ch3 (式(2 )中,R 1及R2互相獨立地係碳數1〜8的取代或非 取代之一價烴基,a係1〜20的整數)。 於本發明的1個實施態樣中,上述導熱性接著劑係進 —步含有0.1〜20質量份之量的(D )熱硬化性樹脂。 於本發明的1個實施態樣中,熱硬化性樹脂係式(1 ) 中的酚性羥基有反應性。 於本發明的1個實施態樣中,上述導熱性接著劑對網 板之接著強度係3Mpa以上,較佳係5〜lOMpa。 若本發明的導熱性接著劑置於銅板上而進行加熱,貞uIII CH2CH2CH2-Si-(〇-Si)-0-Si-CHCH2CH2-CH3 R2 ch3 (In the formula (2), R 1 and R 2 are each independently a substituted or unsubstituted one-valent hydrocarbon group having 1 to 8 carbon atoms, a is an integer from 1 to 20). In one embodiment of the present invention, the thermally conductive adhesive further comprises (D) a thermosetting resin in an amount of 0.1 to 20 parts by mass. In one embodiment of the present invention, the thermosetting resin is reactive with a phenolic hydroxyl group in the formula (1). In one embodiment of the present invention, the thermal conductivity adhesive has a bonding strength to the web of 3 MPa or more, preferably 5 to 10 MPa. If the thermal conductive adhesive of the present invention is placed on a copper plate for heating, 贞u

-8 - 201114869 該導熱性接著劑係流動而在銅板的表面上潤濕擴散。因此 ,藉由熱處理而與鋼板密接,導致的良好的接著。 若將本發明的導熱性接著劑施予被附體,爲了使硬化 而進行加熱,則接著劑流動而潤濕被附體的表面及擴散, 而且由於溶劑揮發,導熱性塡料露出接著劑硬化物的表面 。因此,得到良好的導熱性。 本發明亦提供一種電子構件,其係藉由將上述導熱性 接著劑硬化所得之物質接著於散熱構件或發熱構件上。 發明的效果 本發明的導熱性接著劑係藉由含有特定構造的聚醯亞 胺聚矽氧樹脂、導熱性塡料及有機溶劑,而具有優異的導 熱性’且對於被接著物具有優異的接著性。 【實施方式】 實施發明的形態 以下更詳細說明本發明的導熱性接著劑。 (A)聚醯亞胺聚砂氧樹脂 聚醯亞胺聚矽氧樹脂具有下述通式(1)所示的重複 單位。 201114869 【化3】-8 - 201114869 The thermally conductive adhesive flows and diffuses and spreads on the surface of the copper plate. Therefore, it is intimately bonded to the steel sheet by heat treatment, resulting in a good adhesion. When the thermally conductive adhesive of the present invention is applied to the attached body and heated for curing, the adhesive flows to wet the surface and spread of the attached body, and the thermal conductive material exposes the adhesive hardening due to solvent evaporation. The surface of the object. Therefore, good thermal conductivity is obtained. The present invention also provides an electronic component which is bonded to a heat dissipating member or a heat generating member by a substance obtained by hardening the above thermal conductive agent. Advantageous Effects of Invention The thermally conductive adhesive of the present invention has excellent thermal conductivity by containing a polyimide/polysiloxane resin having a specific structure, a thermal conductive coating, and an organic solvent, and has excellent adhesion to an adherend. . [Embodiment] Mode for Carrying Out the Invention The thermally conductive adhesive of the present invention will be described in more detail below. (A) Polyimine polysiloxane resin The polyamidene polyoxyl resin has a repeating unit represented by the following formula (1). 201114869 【化3】

ΟII / \ / \W C CII ο ϊ ο ο II II 八八 W C C II II ο ο ⑴ 式(1 )中的W係4價有機基。W例如可選自於苯均四 酸二酐、2,3,3’,4’-聯苯基四羧酸二酐、3,3’,4,4’-聯苯基 四羧酸二酐、3,3’,4,4’-二苯基醚四羧酸二酐、3,3’,4,4’-二苯基颯四羧酸二酐、3,3’,4,4’-二苯甲酮四羧酸二酐、乙 二醇雙偏苯三酸二酐、4,4’-六氟亞丙基雙苯二甲酸二酐、 2,2-雙〔4- ( 3,4-苯氧基二羧酸)苯基〕丙酸二酐的殘基 式(1 )中的X係具有酚性羥基的二價有機基。X例如 係由具有酚性羥基的二胺所衍生。X係例如下述式(3 )〜 (8 )所不的基。 【化4 1 OH I OH I ch3 ch3 ch3 ch3 -10- ⑧ 201114869ΟII / \ / \W C CII ο ϊ ο ο II II VIII W C C II II ο ο (1) The W in the formula (1) is a tetravalent organic group. W can be selected, for example, from pyromellitic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride. , 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-diphenylphosphonium tetracarboxylic dianhydride, 3,3',4,4' - benzophenone tetracarboxylic dianhydride, ethylene glycol trimellitic acid dianhydride, 4,4'-hexafluoropropylene phthalic acid dianhydride, 2,2-bis[4-(3, Residue of 4-phenoxydicarboxylic acid)phenyl]propionic acid dianhydride X in the formula (1) has a divalent organic group having a phenolic hydroxyl group. X is, for example, derived from a diamine having a phenolic hydroxyl group. X is, for example, a group which is not represented by the following formulas (3) to (8). [Chemical 4 1 OH I OH I ch3 ch3 ch3 ch3 -10- 8 201114869

【化5】 OH_A 【化6】 OH -3 _3[Chemical 5] OH_A [Chemical 6] OH -3 _3

【化7】【化7】

OHOH

【化8】 OH_A[Chemical 8] OH_A

(4)⑼(6)(7 -11 - 201114869(4)(9)(6)(7 -11 - 201114869

【化9 I OH OH[9 I OH OH

⑹ 式(O中的γ係下述式(2)所示的二價聚矽氧殘基 【化1 0】 ch3 r1 ch3(6) Formula (γ in O is a divalent polyfluorene residue represented by the following formula (2) [Chemical 1 0] ch3 r1 ch3

〜CH2CH2CH (2)~CH2CH2CH (2)

I I I i--^0—Si^~©^Si-^HCH2〇H2 ch3 r2 ch3 式(2)中的R1及R2互相獨立地係碳數1〜8、較佳1〜 4的取代或非取代之一價烴基。R 1及R2例如是甲基、乙基 式(2)中的a係1〜20、較佳3〜20之整數。當a比20 大時,對被接著體的接著力變弱。 式(1 )中的Z係X及Y以外的二價有機基。Z例如係由 慣用的聚醯亞胺樹脂中所用的二胺所衍生。該二胺例如係 由脂肪族二胺及芳香族二胺所選出的1或2種以上之組合。 脂肪族二胺例如是四亞甲基二胺、1,4-二胺基環己烷、 4,4’-二胺基二環己基甲烷。芳香族二胺例如是苯二胺、 4,4’-二胺基二苯基醚' 2,2-雙(4-胺基苯基)丙烷。Z較佳 係由下述式(9 )所示的芳香族二胺所衍生之基。 -12- 201114869 【化1 1】III i--^0—Si^~©^Si-^HCH2〇H2 ch3 r2 ch3 wherein R1 and R2 in the formula (2) are independently substituted or unsubstituted with a carbon number of 1 to 8, preferably 1 to 4. One of the hydrocarbon groups. R 1 and R 2 are, for example, a methyl group or an ethyl group (2), wherein a is an integer of from 1 to 20, preferably from 3 to 20. When a is larger than 20, the adhesion to the adherend becomes weak. The Z system in the formula (1) is a divalent organic group other than X and Y. Z is derived, for example, from a diamine used in a conventional polyimine resin. The diamine is, for example, a combination of one or more selected from the group consisting of aliphatic diamines and aromatic diamines. The aliphatic diamine is, for example, tetramethylenediamine, 1,4-diaminocyclohexane or 4,4'-diaminodicyclohexylmethane. The aromatic diamine is, for example, phenylenediamine or 4,4'-diaminodiphenyl ether 2,2-bis(4-aminophenyl)propane. Z is preferably a group derived from an aromatic diamine represented by the following formula (9). -12- 201114869 【化1 1】

式(9)中的B係下述式(10) 、 (11)及(12)中任 一者所示的基。 【化1 2】B in the formula (9) is a group represented by any one of the following formulas (10), (11) and (12). [1 2]

【化1 3 (10) 〇 ch3 -C-r-[化1 3 (10) 〇 ch3 -C-r-

ch3Ch3

(11) 【化1 4】(11) [Chem. 1 4]

(12) 式(1 )中的p、q及r,爲了展現由該重複單位而來的 效果,係 〇.15Sp$0.6、0.05SqS0.8、0‘rS0.75,較佳係 0.2Sp$0.5、0.05SqS0.75、0SrS0.6。若爲此範圍,則 得到對被接著體之良好接著性。 式(1 )中的p + q + r之合計係1。 聚醯亞胺聚矽氧樹脂的重量平均分子量係5,000〜 150,000,較佳係20,000〜150,000。其理由係因爲若分子 -13- 201114869 量小於上述下限,則無法展現作爲樹脂的強韌性,另一方 面若分子量大於上述上限,則與後述的導熱性塡料之混合 變困難。 上述聚醯亞胺聚矽氧樹脂例如可藉由下述所述的眾所 周知之方法來製造。 首先,將用於衍生出W的四羧酸二酐、用於衍生出X 及Z的二胺及用於衍生出Y的二胺基聚矽氧烷投入溶劑中, 然後在低溫,例如在0〜50 °C使反應。上述溶劑例如係由 N -甲基-2_吡咯烷酮(NMP)、環己酮、γ -丁內酯及N,N -二 甲基乙醯胺(DM Ac )所選出1或2種以上之組合。再者, 爲了容易地藉由共沸去除醯亞胺化之際所生成的水,可併: 用芳香族烴類,例如甲苯、二甲苯。藉由上述反應,而製 造聚醯亞胺樹脂對前驅物的聚醯胺酸。其次,將該聚醯胺 酸的溶液升溫到較佳80〜200°C '特佳1 40〜1 80°C的溫度》 藉由該升溫,聚醯胺酸的醯胺進行脫水閉環反應,得到聚 醯亞胺聚矽氧樹脂的溶液。若將該溶液投入溶劑中,例如 投入水、甲醇、乙醇或乙腈中,則生成沈澱物。將該生成 的沈澱物乾燥,而得到聚醯亞胺聚矽氧樹脂。 相對於四羧酸二酐而言’二胺及二胺基聚矽氧烷的合 計莫耳比例較佳係0.95〜1·05,特佳係0.98〜1.02的範圍 〇 爲了調整聚醯亞胺聚矽氧樹脂的分子量,亦可將二官 能性的羧酸’例如苯二甲酸酐,及一官能性的胺,例如苯 胺加到上述溶液中。此等化合物的添加量係各自相對於四 -14- 201114869 羧酸及二胺而言,例如爲2莫耳%以下。 藉由在醯亞胺化過程中添加脫水劑及醯亞胺化觸媒, 按照需要加熱到50°C右左,亦可使醯亞胺化。脫水劑例如 是酸酐’例如醋酸酐、丙酸酐及三氟乙酸酐。相對於1莫 耳的二胺而言,脫水劑的使用量例如是1〜I 〇莫耳。醯亞 胺化觸媒例如是3級胺,例如Q比Π定、三甲基卩比陡、二甲基 吡啶及三乙胺。相對於1莫耳所使用的脫水劑而言,醯亞 胺化觸媒的使用量例如是0.5〜10莫耳。 使用複數的二胺及/或複數的四羧酸二酐時,例如可 以是將原料預先全部混合後使共聚縮合的方法,邊使2種 以上的二胺或四羧酸二酐個別地反應邊依順序添加。然而 ,反應方法係不受此例示所特別限定。 (B )電絕緣性的導熱性塡料 電絕緣性的導熱性塡料例如是金屬氧化物及陶瓷粉體 。該金屬粉體例如是氧化鋅粉、氧化鋁粉。陶瓷粉體例如 是碳化矽粉、氮化矽粉、氮化硼粉、氮化鋁粉。導熱性塡 料係根據安定性或成本方面來適宜選擇。 導熱性塡料的形狀係沒有特別的限定,例如是粒狀、 樹枝狀、薄片狀及不定形狀》亦可使用具有此等形狀的導 熱性塡料粉末之1種或2種以上的混合物。導熱性塡料的粒 徑分布係沒有特別的限定,例如90重量%以上、較佳95重 量%以上係在0.05〜100 μιη的範圍內。導熱性塡料的平均 粒徑係沒有特別的限定,例如是1〜50μιη的範園。作爲導 -15- 201114869 熱性塡料,例如可以使用單一分布(單峰性)者。然而, 爲了使導熱性塡料在接著劑內以高密度均勻地分散,,組合 形狀及粒徑不同的複數之導熱性塡料而成爲多峰性分布, 其係比使用單一分布的導熱性塡料還有效果。 本發明的導熱性接著劑中的上述導熱性塡料之配合量 的比例’係每100質量份的聚醯亞胺聚矽氧樹脂有100〜 10,000質量份,較佳有200〜6,000質量份。上述導熱性塡 料之配合量的比例若未達上述下限,則使用本發明的導熱 性接著劑時,得不到充分的導熱性。又,上述導熱性塡料 之配合量的比例若超過上述上限,則使用本發明的導熱性 接著劑時,在與被接著體之間得不到充分的接著強度。 (C)有機溶劑 有機溶劑係與(A )成分有相溶性,較佳爲對(B )成 分的表面狀態不造成影響。有機溶劑例如是由醚類、酮類 、酯類、溶纖劑類、醯胺類及芳香族烴所選出的1或2種以 上之組合。醚類例如包含四氫呋喃及茴香醚。酮類例如包 含環己酮、2 -丁酮、甲基異丁基酮' 2 -庚酮、2 -辛酮及苯 乙酮。酯類例如包含醋酸丁酯、苯甲酸甲酯及γ -丁內醋。 溶纖劑類例如包含丁基卡必醇醋酸酯、丁基溶纖劑醋酸酷 及丙二醇單甲基醚醋酸酯。醯胺類例如包含Ν,Ν_二甲基甲 醯胺、Ν,Ν -二甲基乙醯胺及Ν -甲基-2 -吡咯烷酮。芳香族 烴類例如包含甲苯、二甲苯。有機溶劑較佳係選自於酮類 、酯類、溶纖劑類及醯胺類。有機溶劑特佳係丁基卡必醇 ⑧ -16- 201114869 醋酸酯、γ-丁內酯、丙二醇單甲基醚醋酸酯及N-甲基-2-吡 咯烷酮。此等溶劑係可單獨或組合2種以上使用。 有機溶劑的量,例如係考慮聚醯亞胺聚矽氧樹脂的溶 解性、導熱性接著劑的塗佈時之作業性或皮膜的厚度,通 常聚醯亞胺聚矽氧樹脂之量,相對於該樹脂與溶劑之合計 而言,係在1 〇〜6 0質量%、較佳2 0〜5 0質量%的範圍內使 用。於組成物的保存時,亦可預先調製成比較高的濃度, 而在使用時稀釋成所欲望的濃度。 本發明的導熱性接著劑亦可進一步含有(D)熱硬化 性樹脂。熱硬化性樹脂係與酚性羥基反應而形成交聯構造 。由於導熱性接著劑含有熱硬化性樹脂,例如可以展現耐 溶劑性的性能。熱硬化性樹脂較佳係環氧樹脂。環氧樹脂 例如是雙酚A型環氧樹脂、雙酚F型環氧樹脂、三苯基甲烷 型環氧樹脂、環狀脂肪族環氧樹脂、縮水甘油酯系樹脂及 縮水甘油胺系樹脂的1或2種以上。雙酚A型環氧樹脂例如 是苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、 二縮水甘油基雙酚A。雙酚F型環氧樹脂例如是二縮水甘油 基雙酚F。三苯基甲烷型環氧樹脂例如是三羥苯基丙烷三 縮水甘油醚。環狀脂肪族環氧樹脂例如是3,4-環氧基環己 基甲基-3,4-環氧基環己烷羧酸酯。縮水甘油酯系樹脂例如 苯二甲酸二縮水甘油酯、六氫苯二甲酸二縮水甘油酯_、苯 二甲酸二甲基縮水甘油酯。縮水甘油胺系樹脂例如是四縮 水甘油基二胺基二苯基甲烷、三縮水甘油基對胺基苯酚、 二縮水甘油基苯胺、二縮水甘油基甲苯胺、四縮水甘油基 -17- 201114869 雙胺基甲基環己烷。再者,按照需要,亦可在導熱性 劑中進一步添加1分子中含有1個環氧基的單官能環氧 合物。又,以與基材的密接性之提高爲目的,亦可添 官能矽烷。 相對於1〇〇質量份的聚醯亞胺聚矽氧樹脂而言, 樹脂的量較佳係0.1〜20質量份,更佳係0.1〜15質量 下。配合量若超過上述上限,則本發明的導熱性接著 接著強度、耐熱性等有降低的傾向。 本發明的導熱性接著劑,以促進上述環氧樹脂的 爲目的,亦可含有各種硬化促進劑。硬化促進劑例如 機膦化合物、胺基化合物及咪唑化合物的1或2種以上 機膦化合物例如是三苯基膦、三環己基膦。胺基化合 如是三甲基六亞甲基二胺、二胺基二苯基甲烷、2-( 基胺基甲基)苯酚、2,4,6_三(二甲基胺基甲基)苯 三乙醇胺。咪唑化合物例如是2-甲基咪唑、2-乙基咪 2 -十一基咪唑、2 -乙基-4-甲基咪唑及2 -苯基-4,5 -二羥 基咪唑。 硬化促進劑的量,相對於聚醯亞胺聚矽氧樹脂及 樹脂的總量1 00質量份而言,較佳係〇〜5質量份。配 若超過上述上限,則適用期有變差的傾向。 聚醯亞胺聚矽氧樹脂係藉由熱硬化而發揮優異的 性、機械強度、耐溶劑性、對各種基材的密接性。 本發明的接著劑之硬化條件係沒有特別的限定 80°C以上3 00t以下,較佳爲l〇〇°C以上200°C以下的範 接著 基化 加碳 環氧 份以 劑之 反應 是有 。有 物例 二甲 酚、 哩、 基甲 環氧 合量 耐熱 ,爲 圍。 -18- .201114869 當未滿上述下限而硬化時,熱硬化係過度費時而不實用。 當選擇成分及組成以使能在未達上述下限的低溫進行硬化 時,接著劑的保存安定性會有發生問題的可能性。又,本 發明的導熱性接著劑係不同於以往的聚醯胺酸溶液,由於 不需要300 °C以上的高溫且長時間的加熱來使硬化,故可 抑制基材的熱降解。 本發明的導熱性接著劑,除了添加上述成分,例如在 不損害本發明之目的及導熱性接著劑之效果的範圍內,亦 可添加由防老化劑、紫外線吸收劑、接著性改良劑、難燃 劑、界面活性劑、保存安定改良劑、防臭氧降解劑、光安 定劑、增黏劑、可塑劑、矽烷偶合劑、抗氧化劑、熱安定 劑、輻射線遮斷劑、核劑、滑劑、顏料及物性調整劑所選 出的1種或2種以上。 本發明的導熱性接著劑係在25°C中較佳爲具有0.5〜 2000Pa‘s的黏度,更佳爲具有1.〇〜i〇〇〇pa.s的黏度。 本發明的導熱性接著劑之導熱率(W/mK )較佳係0.5 以上,更佳係1 · 0以上,特佳係3以上。 本發明的導熱性接著劑對銅板的接著強度(Μ P a )較 佳係3以上’更佳係5以上’特佳係6以上。在8 0 °C、9 5 R Η 的闻溫咼濕環境下放置2 4 0小時後的接著強度(μ P a )較佳 係與上述相同。 本發明的導熱性接著劑例如可適用於高亮度用的大發 熱量之LED晶片的接著劑,或隨著小型化、輕量化而每單 位面積的發熱量大之半導體元件的接著劑。 -19- 201114869 以下藉由實施例來更詳細說明本發明,惟本發明不受 此等實施例所限定。 ι_聚醯亞胺聚矽氧樹脂的合成 如下述合成例1〜3所示地,製造3種類的聚醯亞胺聚 砂氧樹脂。 合成例1 於具備攪拌機、溫度計及氮氣置換裝置的燒瓶內,投 入88.8克(0_2莫耳)4,4’ -六氟亞丙基雙苯二甲酸二酐及 500克正甲基-2-吡咯烷酮。其次,準備在1〇〇克正甲基-2_ 吡咯烷酮中溶解有33.6克(0.〇4莫耳)式(13)所示的二 胺基矽氧烷、17.3克(0.08莫耳)4,4’-(3,3’-二羥基)二 胺基聯苯及32.8克(0.08莫耳)2,2-雙〔4-(4-胺基苯氧基 )苯基〕丙院之溶液。將該溶液滴下到上述燒瓶內。滴下 期間,調節反應系的溫度以使不超過5 0 °C。滴下結束後, 於室溫進一步攪拌1 〇小時。接著,於該燒瓶安裝附有水分 接納器的回流冷卻器後,添加5 0克二甲苯,升溫到1 5 0 °C ,保持該溫度6小時。結果得到黃褐色溶液。 【化1 5】(12) p, q, and r in the formula (1), in order to exhibit the effect from the repeating unit, the system is 1515Sp$0.6, 0.05SqS0.8, 0'rS0.75, preferably 0.2Sp$0.5, 0.05SqS0.75, 0SrS0.6. If it is this range, good adhesion to the adherend is obtained. The total of p + q + r in the formula (1) is 1. The polyamidene polyoxyl resin has a weight average molecular weight of 5,000 to 150,000, preferably 20,000 to 150,000. The reason is that if the amount of the molecule -13 - 201114869 is less than the above lower limit, the toughness as the resin cannot be exhibited, and if the molecular weight is larger than the above upper limit, the mixing with the thermal conductive material to be described later becomes difficult. The above polyimine polysiloxane resin can be produced, for example, by a method known in the art. First, a tetracarboxylic dianhydride for deriving W, a diamine for deriving X and Z, and a diamine polyoxyalkylene for deriving Y are introduced into a solvent, and then at a low temperature, for example, at 0. Allow the reaction at ~50 °C. The above solvent is, for example, one or a combination of two or more selected from N-methyl-2-pyrrolidone (NMP), cyclohexanone, γ-butyrolactone, and N,N-dimethylacetamide (DM Ac ). . Further, in order to easily remove the water formed by the amination of the oxime by azeotropy, an aromatic hydrocarbon such as toluene or xylene may be used in combination. By the above reaction, the polyamido acid of the precursor of the polyimine resin is produced. Next, the solution of the poly-proline is heated to a temperature of preferably 80 to 200 ° C 'excellent temperature of 40 to 180 ° C.>> By the temperature rise, the guanamine of the poly-proline is subjected to a dehydration ring-closure reaction. A solution of a polyamidene polyoxyl resin. When the solution is introduced into a solvent, for example, into water, methanol, ethanol or acetonitrile, a precipitate is formed. The resulting precipitate was dried to obtain a polyamidene polyoxymethylene resin. The total molar ratio of the 'diamine and the diamine polyoxyalkylene to the tetracarboxylic dianhydride is preferably 0.95 to 1.05, and particularly preferably 0.98 to 1.02. In order to adjust the polyimine polycondensation. The molecular weight of the oxirane resin may also be added to the above solution by a difunctional carboxylic acid such as phthalic anhydride, and a monofunctional amine such as aniline. The amount of these compounds added is, for example, 2 mol% or less based on the carboxylic acid and the diamine of the four-14-201114869. The ruthenium can also be imidized by adding a dehydrating agent and a ruthenium catalyzed catalyst during the ruthenium imidization, and heating to 50 ° C right and left as needed. The dehydrating agent is, for example, an acid anhydride such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride. The amount of the dehydrating agent used is, for example, 1 to 1 mol with respect to 1 mol of the diamine. The amidation catalyst is, for example, a tertiary amine such as Q to be determined, trimethylpyridinium, dimethylpyridine and triethylamine. The amount of the ruthenium-catalyzed catalyst used is, for example, 0.5 to 10 moles relative to the dehydrating agent used in 1 mole. When a plurality of diamines and/or tetracarboxylic dianhydrides are used, for example, a method in which the raw materials are all mixed in advance and copolymerized and condensed is used, and two or more kinds of diamines or tetracarboxylic dianhydrides are separately reacted. Add in order. However, the reaction method is not particularly limited by this illustration. (B) Electrically insulating thermally conductive coating The electrically insulating thermally conductive coating is, for example, a metal oxide and a ceramic powder. The metal powder is, for example, zinc oxide powder or alumina powder. The ceramic powder is, for example, tantalum carbide powder, tantalum nitride powder, boron nitride powder or aluminum nitride powder. The thermal conductivity material is suitably selected depending on the stability or cost. The shape of the thermal conductive coating material is not particularly limited, and for example, a granular shape, a dendritic shape, a flake shape, or an indefinite shape may be used. One or a mixture of two or more kinds of the thermal conductive powder having such a shape may be used. The particle diameter distribution of the thermal conductive material is not particularly limited, and is, for example, 90% by weight or more, preferably 95% by weight or more, in the range of 0.05 to 100 μm. The average particle diameter of the thermal conductive material is not particularly limited, and is, for example, a range of 1 to 50 μm. As a guide -15- 201114869 thermal feed, for example, a single distribution (unimodality) can be used. However, in order to uniformly disperse the thermal conductive material in the adhesive at a high density, a plurality of thermal conductive materials having different shapes and particle diameters are combined to have a multimodal distribution, which is a thermal conductivity using a single distribution. Expected to have an effect. The ratio of the amount of the above thermally conductive coating material in the thermally conductive adhesive of the present invention is 100 to 10,000 parts by mass, preferably 200 to 6,000 parts by mass per 100 parts by mass of the polyamidene polyoxymethylene resin. Share. When the ratio of the amount of the thermal conductive material is less than the above lower limit, sufficient thermal conductivity cannot be obtained when the thermally conductive adhesive of the present invention is used. When the ratio of the amount of the thermal conductive material to be added exceeds the above upper limit, when the thermally conductive adhesive of the present invention is used, sufficient bonding strength with the adherend is not obtained. (C) Organic solvent The organic solvent is compatible with the component (A), and preferably does not affect the surface state of the component (B). The organic solvent is, for example, a combination of one or more selected from the group consisting of ethers, ketones, esters, cellosolves, guanamines and aromatic hydrocarbons. The ethers include, for example, tetrahydrofuran and anisole. The ketones include, for example, cyclohexanone, 2-butanone, methyl isobutyl ketone '2-heptanone, 2-octenone, and acetophenone. The esters include, for example, butyl acetate, methyl benzoate, and γ-butane vinegar. The cellosolve includes, for example, butyl carbitol acetate, butyl cellosolve acetate, and propylene glycol monomethyl ether acetate. The guanamines include, for example, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, and hydrazine-methyl-2-pyrrolidone. The aromatic hydrocarbons include, for example, toluene and xylene. The organic solvent is preferably selected from the group consisting of ketones, esters, cellosolves, and guanamines. The organic solvent is particularly preferred as butyl carbitol. 8 -16- 201114869 Acetate, γ-butyrolactone, propylene glycol monomethyl ether acetate and N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more. The amount of the organic solvent is, for example, considering the solubility of the polyimide polyimide resin, the workability at the time of coating the thermal conductive adhesive or the thickness of the film, and usually the amount of the polyimide resin, relative to The total amount of the resin and the solvent is in the range of 1 〇 to 60% by mass, preferably 20 to 5% by mass. When the composition is stored, it may be previously prepared to a relatively high concentration, and diluted to a desired concentration at the time of use. The thermally conductive adhesive of the present invention may further contain (D) a thermosetting resin. The thermosetting resin reacts with a phenolic hydroxyl group to form a crosslinked structure. Since the thermally conductive adhesive contains a thermosetting resin, for example, it exhibits solvent resistance. The thermosetting resin is preferably an epoxy resin. The epoxy resin is, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a triphenylmethane type epoxy resin, a cyclic aliphatic epoxy resin, a glycidyl ester type resin, and a glycidylamine type resin. 1 or more. The bisphenol A type epoxy resin is, for example, a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, or diglycidyl bisphenol A. The bisphenol F type epoxy resin is, for example, diglycidyl bisphenol F. The triphenylmethane type epoxy resin is, for example, trishydroxyphenylpropane triglycidyl ether. The cyclic aliphatic epoxy resin is, for example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The glycidyl ester-based resin is, for example, diglycidyl phthalate, diglycidyl hexahydrocarbonate, and dimethyl glycidyl benzoate. The glycidylamine-based resin is, for example, tetraglycidyldiaminediphenylmethane, triglycidyl-p-aminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidyl-17-201114869 Aminomethylcyclohexane. Further, if necessary, a monofunctional epoxy compound containing one epoxy group in one molecule may be further added to the thermal conductive agent. Further, a functional decane may be added for the purpose of improving the adhesion to the substrate. The amount of the resin is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, per part by mass of the polyamidiamine polyoxyl resin. When the blending amount exceeds the above upper limit, the thermal conductivity of the present invention tends to decrease in strength, heat resistance and the like. The thermally conductive adhesive of the present invention may contain various curing accelerators for the purpose of promoting the above epoxy resin. The hardening accelerator such as an organic phosphine compound, an amine compound, and an imidazole compound may be, for example, triphenylphosphine or tricyclohexylphosphine. Amino compounds such as trimethylhexamethylenediamine, diaminodiphenylmethane, 2-(ylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)benzene Triethanolamine. The imidazole compound is, for example, 2-methylimidazole, 2-ethylmethane-2-undecylimidazole, 2-ethyl-4-methylimidazole, and 2-phenyl-4,5-dihydroxyimidazole. The amount of the hardening accelerator is preferably from 5% by mass to the total of 100 parts by mass of the polyamidene polyoxymethylene resin and the resin. If the ratio exceeds the above upper limit, the pot life will be worse. The polyimide polyimide polysiloxane resin exhibits excellent properties, mechanical strength, solvent resistance, and adhesion to various substrates by thermal curing. The curing condition of the adhesive of the present invention is not particularly limited to 80 ° C or more and 300 rpm or less, preferably 10 ° C or more and 200 ° C or less. . There are examples of dimethyl phenol, hydrazine, and ketone epoxy combined heat resistance. -18- .201114869 When hardened below the lower limit, the thermosetting is too time consuming and not practical. When the composition and composition are selected so as to be hardened at a low temperature which does not reach the above lower limit, the storage stability of the adhesive may be problematic. Further, the thermally conductive adhesive of the present invention is different from the conventional polyamic acid solution, and since it is not required to be heated at a high temperature of 300 ° C or higher and heated for a long period of time, thermal degradation of the substrate can be suppressed. The thermal conductive adhesive of the present invention may be added with an anti-aging agent, an ultraviolet absorber, an adhesion improver, or the like, in addition to the above-mentioned components, for example, insofar as the effects of the present invention and the effect of the thermally conductive adhesive are not impaired. Fuel, surfactant, preservation stability improver, anti-ozone degradant, light stabilizer, tackifier, plasticizer, decane coupling agent, antioxidant, thermal stabilizer, radiation shielding agent, nucleating agent, lubricant One or two or more selected from the pigment and the physical property adjuster. The thermally conductive adhesive of the present invention preferably has a viscosity of from 0.5 to 2000 Pa's at 25 ° C, more preferably a viscosity of from 1. 〇 to i 〇〇〇 pa.s. The thermal conductivity (W/mK) of the thermally conductive adhesive of the present invention is preferably 0.5 or more, more preferably 1.0 or more, and particularly preferably 3 or more. The thermal conductive adhesive of the present invention has a bonding strength (Μ P a ) of a copper plate of preferably 3 or more, more preferably 5 or more, and particularly preferably 6 or more. The bonding strength (μ P a ) after standing for 240 hours in a temperature and humidity environment of 80 ° C and 9 5 R 较佳 is preferably the same as described above. The thermally conductive adhesive of the present invention can be applied, for example, to an adhesive for a large-calorie LED wafer for high-brightness, or an adhesive for a semiconductor element having a large amount of heat per unit area with miniaturization and weight reduction. -19- 201114869 The present invention is described in more detail by way of examples, but the invention is not limited by the embodiments. Synthesis of ι_polyimine polyoxyl resin Three types of polyimine polysiloxane resins were produced as shown in the following Synthesis Examples 1 to 3. Synthesis Example 1 In a flask equipped with a stirrer, a thermometer, and a nitrogen gas replacement device, 88.8 g (0-2 mol) of 4,4'-hexafluoropropylene phthalic acid dianhydride and 500 g of n-methyl-2-pyrrolidone were charged. . Next, it is prepared to dissolve 33.6 g (0. 4 mol) of the diamine oxirane represented by the formula (13) and 17.3 g (0.08 mol) 4 in 1 gram of n-methyl-2-pyrrolidone. A solution of 4'-(3,3'-dihydroxy)diaminobiphenyl and 32.8 g (0.08 mol) of 2,2-bis[4-(4-aminophenoxy)phenyl]propene. The solution was dropped into the above flask. During the dropping, the temperature of the reaction system was adjusted so as not to exceed 50 °C. After the completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour. Next, after the flask was equipped with a reflux condenser equipped with a moisture receiver, 50 g of xylene was added, and the temperature was raised to 150 ° C, and the temperature was maintained for 6 hours. As a result, a yellowish brown solution was obtained. [化1 5]

£hoh3 c——s——c IH22ch H h2c c 2n· H ch—^153 3 I8 H2 N 一 H2 2CH Η H2C £i-CHH3 cIs——c 13) 將上述所得之黃褐色溶液冷卻到室溫(2 5 °C )爲止, -20- ⑧ 201114869 投入甲醇中以使再沈澱。將1 4 〇克所得之沈降物乾燥,測 定其線吸收光譜。結果,基於未反應的聚醯胺酸之吸收( UAOcnr1)係沒有出現,確認在1,7 8 0cm·1及1,720cm-1有 基於醯亞胺基的吸收。接著,藉由以四氫呋喃作爲溶劑的 凝膠滲透層析術(GPC ),測定重量平均分子量(聚苯乙 烯換算),結果爲3 0,000。將生成物稱爲聚醯亞胺聚矽氧 樹脂(I )。 合成例2 於具備攪拌機、溫度計及氮氣置換裝置的燒瓶內,投 入88.8克(0.2莫耳)4,4’·六氟亞丙基雙苯二甲酸二酐及 5 〇〇克正甲基-2-吡咯烷酮。其次,準備在100克正甲基-2-吡咯烷酮中溶解有67.2克(0.08莫耳)上述式13所示的二 胺基矽氧烷、17.3克(0.08莫耳)4,4’-( 3,3’-二羥基)二 胺基聯苯及16.4克(0.04莫耳)2,2-雙〔4-(4-胺基苯氧基 )苯基〕丙烷之溶液。將該溶液滴下到上述燒瓶內。滴下 期間,調節反應系的溫度以使不超過5(TC。滴下結束後, 於室溫進一步攪拌1 0小時。接著,於該燒瓶安裝附有水分 接納器的回流冷卻器後,添加5 0克二甲苯,升溫到1 5 0 °C ,保持該溫度6小時。結果得到黃褐色溶液。 將上述所得之黃褐色溶液冷卻到室溫(2 5 °C )爲止, 投入甲醇中以使再沈澱。將1 60克所得之沈降物乾燥,測 定其線吸收光譜。結果,基於未反應的聚醯胺酸之吸收( 1,64001^1)係沒有出現,確認在1,7 8 0cm·1及lJZOcnr1有 -21 - 201114869 基於醯亞胺基的吸收。接著,藉由以四氫呋喃作爲溶劑的 凝膠滲透層析術(GPC ),測定重量平均分子量(聚苯乙 烯換算),結果爲34,000。將生成物稱爲聚醯亞胺聚矽氧 樹脂(II)。 合成例3£hoh3 c——s——c IH22ch H h2c c 2n· H ch—^153 3 I8 H2 N-H2 2CH Η H2C £i-CHH3 cIs——c 13) Cool the yellow-brown solution obtained above to room temperature (2 5 °C), -20- 8 201114869 was put into methanol to reprecipitate. The sediment obtained by 14 g was dried, and its linear absorption spectrum was measured. As a result, absorption (UAOcnr1) based on unreacted poly-proline did not occur, and it was confirmed that there were ruthenium-based absorption at 1,78 0 cm·1 and 1,720 cm-1. Next, the weight average molecular weight (polystyrene conversion) was measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent, and the result was 3,000. The resultant is referred to as a polyamidene polyoxyl resin (I). Synthesis Example 2 In a flask equipped with a stirrer, a thermometer, and a nitrogen gas replacement device, 88.8 g (0.2 mol) of 4,4'·hexafluoropropylene phthalic acid dianhydride and 5 g of n-methyl-2 were charged. - pyrrolidone. Next, 67.2 g (0.08 mol) of the diaminopyridoxane represented by the above formula 13 and 17.3 g (0.08 mol) of 4,4'-(3) were dissolved in 100 g of n-methyl-2-pyrrolidone. , a solution of 3'-dihydroxy)diaminobiphenyl and 16.4 g (0.04 mol) of 2,2-bis[4-(4-aminophenoxy)phenyl]propane. The solution was dropped into the above flask. During the dropping, the temperature of the reaction system was adjusted so as not to exceed 5 (TC. After the completion of the dropwise addition, the mixture was further stirred at room temperature for 10 hours. Then, after the flask was equipped with a reflux cooler with a moisture receiver, 50 g was added. Xylene, the temperature was raised to 150 ° C, and the temperature was maintained for 6 hours. As a result, a yellow-brown solution was obtained. The yellow-brown solution obtained above was cooled to room temperature (25 ° C) and then poured into methanol to reprecipitate. 1 60 g of the obtained precipitate was dried, and the linear absorption spectrum was measured. As a result, the absorption (1,64001^1) based on the unreacted poly-proline did not occur, and it was confirmed that it was 1,78 0 cm·1 and lJZOcnr1. There is a ruthenium-based absorption of -21 - 201114869. Next, the weight average molecular weight (in terms of polystyrene) was measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent, and as a result, it was 34,000. It is called polythenimine polyoxyl resin (II). Synthesis Example 3

於具備攪拌機、溫度計及氮氣置換裝置的燒瓶內,投 入8 8.8克(0.2莫耳)4,4’-六氟亞丙基雙苯二甲酸二酐及 6〇〇克正甲基-2-吡咯烷酮。其次,準備在100克正甲基- 2-吡咯烷酮中溶解有244.8克(0.08莫耳)式(14)所示的二 胺基矽氧烷、17.3克(0.08莫耳)4,4’- (3,3’_二羥基)二 胺基聯苯及16.4克(0.04莫耳)2,2-雙〔4-( 4-胺基苯氧基 )苯基〕丙烷之溶液。將該溶液滴下到上述燒瓶內。滴下 期間,調節反應系的溫度以使不超過50°C。滴下結束後, 於室溫進一步攪拌1 0小時。接著,於該燒瓶安裝附有水分 接納器的回流冷卻器後,添加50克二甲苯,升溫到1 50°C ,保持該溫度6小時。結果得到黃褐色溶液。 【化1 6】In a flask equipped with a stirrer, a thermometer and a nitrogen displacement device, 8 8.8 g (0.2 mol) of 4,4'-hexafluoropropylene phthalic acid dianhydride and 6 g of n-methyl-2-pyrrolidone were charged. . Next, it is prepared to dissolve 244.8 g (0.08 mol) of the diamine oxirane represented by the formula (14) and 17.3 g (0.08 mol) of 4,4'- in 100 g of n-methyl-2-pyrrolidone. A solution of 3,3'-dihydroxy)diaminobiphenyl and 16.4 g (0.04 mol) of 2,2-bis[4-(4-aminophenoxy)phenyl]propane. The solution was dropped into the above flask. During the dropping, the temperature of the reaction system was adjusted so as not to exceed 50 °C. After the completion of the dropwise addition, the mixture was further stirred at room temperature for 10 hours. Next, after the flask was equipped with a reflux condenser equipped with a moisture receiver, 50 g of xylene was added, and the temperature was raised to 150 ° C, and the temperature was maintained for 6 hours. As a result, a yellowish brown solution was obtained. 【化1 6】

H2N-CH2CH2CH2—Si—^0-Sij—0-Si-CH2CH2CH2-NH2 (14) ch3 ch3 ch3 將上述所得之黃褐色溶液冷卻到室溫(25t )爲止, 投入甲醇中以使再沈澱。將3 00克所得之沈降物乾燥,測 定其線吸收光譜。結果,基於未反應的聚醯胺酸之吸收( ⑧ -22- 201114869 UWcnr1)係沒有出現,確認在1,780cm·1及1,720cm-1有 基於醯亞胺基的吸收。接著,藉由以四氫呋喃作爲溶劑的 凝膠滲透層析術(GPC ),測定重量平均分子量(聚苯乙 烯換算),結果爲36,000。將生成物稱爲聚醯亞胺聚矽氧 樹脂(III)。 2.接著劑的作成 使用下述的原料。 (A)聚醯亞胺聚矽氧樹脂:使用上述合成例〗〜3所得之 聚醯亞胺聚矽氧樹脂(I) 、(II)或(III)。 (B )電絕緣性的導熱性塡料: (81)導熱性塡料八:平均粒徑1(^111的氧化鋁(比重3.98 ) (B 2 )導熱性塡料B :平均粒徑1 μΐη的氧化鋁(比重3.9 8 ) (C)有機溶劑:丁基卡必醇醋酸酯(BCA) (D )熱硬化性樹脂:二縮水甘油基甲苯胺(DGT ) 〔實施例1〜4及比較例1〜2〕 將(Α)各自的聚醯亞胺聚矽氧樹脂(I)至(ΠΙ)、 (Β )電絕緣性的導熱性塡料(Β 1及Β 2 ) 、( C )有機溶 劑及(D )熱硬化性樹脂以表1所示的質量比例投入自轉公 轉混合器內,攪拌以使成爲均勻,然後進行脫泡而得到接 著劑。 -23- 201114869 〔表1〕 (A) 聚醯亞胺聚矽氧樹脂 (質量%) (B) 電絕緣性的導熱性塡料 (質量%) _ (C) 有機溶劑 BCA (質量%) (D) 熱硬化性樹 脂DGT (質量%) I II III B1 B2 實施例1 90 640 160 400 10 實施例2 90 640 160 400 10 實施例3 100 640 160 400 實施例4 90 320 80 300 10 比較例1 90 640 160 400 10 比較例2 100 640 160 400 3 .評價試驗 對於實施例1〜4及比較例1〜2所得之接著劑’依照下 述方法進行黏度、導熱率及接著強度的評價試驗。又’對 於加熱硬化性一液型的聚矽氧橡膠C (市售品)及D (市售 品),藉由與上述相同的程序進行評價試驗(分別爲比較 例3及比較例4 )。表2中顯示結果。 (1 )黏度 使用BH型旋轉黏度計,在25°C測定各接著劑的黏度。 (2 )導熱率 使各接著劑流入鐵氟龍(商標)(杜邦公司製)板的 溝’在80°C乾燥3〇分鐘,繼續將該接著劑在ι5〇π加熱1小 時’以作成1 〇 m m φ X 1 m m的試驗片。使用雷射閃光法熱常 數測定裝置(LFA447 ( NETZSCH公司製)),測定該試 驗片的熱擴散率及比熱容量,求得導熱率。 (3 )接著強度 -24- 201114869 將各接著劑以20mmx20mm的塗佈面積塗佈在銅板( 100mmx25mmxlmm)上,與相同大小的另一個銅板貼合。 將該經貼合的銅板在80 °C乾燥30分鐘’繼續在4MPa的壓力 下,於1 5 0 °C進一步乾燥2分鐘,然後於1 5 0 °C加熱1小時’ 而得到試驗片。使用自動繪圖儀(STROGRAPH V10-D ( 東洋精機公司製)),以5mm/min的速率測定試驗片的剪 切接著強度。 又,將與上述同樣地實施而得到之試驗片在 80°(:/95%1^中暴露24〇小時(高溫高濕試驗),與上述同 樣地測定剪切接著強度(高溫高濕試驗後)。 〔表2〕 最終硬化條件 (0c/i小時) 黏度 導熱率 接著強度 (MPa) (Pa · s) (W/mK) 通常 高溫高濕試驗後 實施例1 (接著劑I) 180 40 2.9 15 15 實施例2 (接著劑II) 180 25 3.0 9 8 實施例3 (接著劑III) 180 20 3.0 8 8 實施例4 (接著劑VI) 180 20 1.1 15 14 比較例1 (接著劑C-I) 180 30 3.0 1.0 0.2 比較例2 (接著劑C-II) 180 25 3.0 0.2 0.2 比較例3 (市售品) 150 60 2.5 2.0 0.2 比較例4 (市售品) 150 20 0.6 15 3 -25- 201114869 根據上述結果,接著劑1〜3具有適度的黏度,導熱率 係1 . 1〜3.0 W/m K的良好,接著強度係8〜1 5 Μ P a的良好, 高溫高濕試驗前後的接著強度之降低係幾乎沒有看到。 -26H2N-CH2CH2CH2-Si-^0-Sij-0-Si-CH2CH2CH2-NH2 (14) ch3 ch3 ch3 The yellow-brown solution obtained above was cooled to room temperature (25t), and was put into methanol to reprecipitate. The obtained precipitate was dried over 300 g, and its linear absorption spectrum was measured. As a result, absorption based on unreacted poly-proline (8-22-201114869 UWcnr1) did not occur, and it was confirmed that there were ruthenium-based absorption at 1,780 cm·1 and 1,720 cm-1. Next, the weight average molecular weight (polystyrene conversion) was measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent, and it was 36,000. The product is referred to as a polyamidene polyoxyl resin (III). 2. Preparation of an adhesive The following raw materials were used. (A) Polyimine polyoxyl resin: The polyamidene polyoxyl resin (I), (II) or (III) obtained in the above Synthesis Examples 〜3. (B) Electrically insulating thermal conductivity material: (81) Thermal conductivity material 8: Average particle size 1 (aluminum oxide of ^111 (specific gravity 3.98) (B 2 ) Thermal conductivity material B: average particle diameter 1 μΐη Alumina (specific gravity 3.9 8 ) (C) Organic solvent: butyl carbitol acetate (BCA) (D) Thermosetting resin: diglycidyltoluidine (DGT) [Examples 1 to 4 and Comparative Examples 1 to 2] (Α) each of the polyimine polysiloxane resins (I) to (ΠΙ), (Β) electrically insulating thermal conductive materials (Β 1 and Β 2 ), (C) organic solvents And (D) the thermosetting resin was put into the autorotation mixer at a mass ratio shown in Table 1, and stirred to be uniform, and then defoamed to obtain an adhesive. -23- 201114869 [Table 1] (A) Poly醯iminopolyoxyl resin (% by mass) (B) Electrically insulating thermal conductive material (% by mass) _ (C) Organic solvent BCA (% by mass) (D) Thermosetting resin DGT (% by mass) I II III B1 B2 Example 1 90 640 160 400 10 Example 2 90 640 160 400 10 Example 3 100 640 160 400 Example 4 90 320 80 300 10 Comparative Example 1 90 640 160 400 10 Comparison Example 2 100 640 160 400 3. Evaluation Test The adhesives obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were subjected to an evaluation test of viscosity, thermal conductivity, and adhesion strength in accordance with the following method. The liquid type polyoxyethylene rubber C (commercial product) and D (commercial product) were subjected to evaluation tests (Comparative Example 3 and Comparative Example 4, respectively) by the same procedure as above. The results are shown in Table 2. 1) Viscosity The viscosity of each adhesive was measured at 25 ° C using a BH type rotary viscometer. (2) The thermal conductivity caused each adhesive to flow into the groove of Teflon (trademark) (made of DuPont) at 80 ° C. After drying for 3 minutes, the adhesive was further heated at ι 5 〇 π for 1 hour to prepare a test piece of 1 〇mm φ X 1 mm. The laser flash thermal constant measuring device (LFA447 (manufactured by NETZSCH)) was used for measurement. The thermal diffusivity and specific heat capacity of the test piece were used to determine the thermal conductivity. (3) Next strength -24-201114869 Each adhesive was applied to a copper plate (100 mm x 25 mm x 1 mm) at a coating area of 20 mm x 20 mm, with another of the same size. The copper plate is bonded. The laminated copper plate Dried for 30 minutes 80 ° C 'continued at a pressure of 4MPa and further dried for 2 minutes in 1 5 0 ° C, then heated for 1 hour to 1 5 0 ° C' to obtain a test piece. The shear strength of the test piece was measured at a rate of 5 mm/min using an automatic plotter (STROGRAPH V10-D (manufactured by Toyo Seiki Co., Ltd.)). In addition, the test piece obtained in the same manner as described above was exposed to 80° (:/95% 1 ) for 24 hours (high temperature and high humidity test), and the shear strength was measured in the same manner as above (after the high temperature and high humidity test). [Table 2] Final hardening conditions (0c/i hours) Viscosity thermal conductivity Next strength (MPa) (Pa · s) (W/mK) Normally after high temperature and high humidity test Example 1 (adhesive I) 180 40 2.9 15 15 Example 2 (Binder II) 180 25 3.0 9 8 Example 3 (Binder III) 180 20 3.0 8 8 Example 4 (Binder VI) 180 20 1.1 15 14 Comparative Example 1 (Binder CI) 180 30 3.0 1.0 0.2 Comparative Example 2 (Adhesive C-II) 180 25 3.0 0.2 0.2 Comparative Example 3 (commercial product) 150 60 2.5 2.0 0.2 Comparative Example 4 (commercial product) 150 20 0.6 15 3 -25- 201114869 As a result of the above, the adhesives 1 to 3 have a moderate viscosity, and the thermal conductivity is 1. 1 to 3.0 W/m K, and the strength is 8 to 15 Μ P a , and the strength before and after the high temperature and high humidity test is high. The reduction system barely saw it. -26

Claims (1)

201114869 七、申請專利範圍: 1. 一種導熱性接著劑,其含有: (A)具有下述式1所示重複單位之重量平均分子量5, 〇〇〇 〜150,000的聚醯亞胺聚矽氧樹脂 1〇〇質量份 (B )電絕緣性的導熱性塡料 1 〇〇〜1 0,000質量份 ,及 (C )有機溶劑 【化1】 oyc\ /CNno X \CMMO o=s〉c=o /w/x 0=八vyo N Y o=/c'\c=o N o^uc\ //. Z (1) (此處,式(1 )中,w係4價有機基,X係具有酚性羥基 的二價基,Y係下述式(2 )所示的二價聚矽氧殘基,Z係 X及Y以外的二價有機基,p、q及r各自係〇.15SpS0.6、 〇.〇5^q^〇-8 ' 0SrS0.75’ 且 p + q + r=l); [it 2} ch3 r1 ch3 (2) -CH2CH2CH2-Si-Sij-G-Si-CHCH2CH2·· ch3 r2 ch3 的取代或非 (式(2 )中,R1及R2互相獨立地係碳數1 -取代之一價烴基,a係1〜20的整數)。 2.如申請專利範圍第1項之導熱性接著劑,其係進一 步含有(D )熱硬化性樹脂。 -27- 201114869 3 ·如申請專利範圍第1項之導熱性接著劑,其係進一 步含有〇_1〜20質量份的(D)熱硬化性樹脂。 4 ’如申S靑專利範圍第2或3項之導熱性接著劑,其中 該熱硬化性樹脂係與式(1 )中的酣性經基有反應性β 5 ·如申請專利範圍第丨項之導熱性接著劑,其對銅片 之接著強度係3MPa以上。 6 · —種電子構件’其係藉由將申請專利範圍第1〜5 項中任一項之導熱性接著劑硬化所得之物質接著於散熱構 件或發熱構件上之電子元件所成的電子構件。 -28 201114869 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無 201114869 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201114869 VII. Patent Application Range: 1. A thermal conductive adhesive comprising: (A) a polyamidene polyoxyl resin having a weight average molecular weight of 5, 〇〇〇~150,000, having a repeating unit of the following formula 1. 1 part by mass (B) electrically insulating thermal conductive material 1 〇〇~1 0,000 parts by mass, and (C) organic solvent [chemical 1] oyc\ /CNno X \CMMO o=s〉c=o / w/x 0=eight vyo NY o=/c'\c=o N o^uc\ //. Z (1) (here, in formula (1), w is a tetravalent organic group, and X is a phenol. a divalent group of a hydroxyl group, Y is a divalent polyfluorene residue represented by the following formula (2), a Z-based X and a divalent organic group other than Y, and each of p, q and r is 〇.15SpS0.6 , 〇.〇5^q^〇-8 ' 0SrS0.75' and p + q + r=l); [it 2} ch3 r1 ch3 (2) -CH2CH2CH2-Si-Sij-G-Si-CHCH2CH2·· The substitution or the substitution of ch3 r2 ch3 (in the formula (2), R1 and R2 are each independently a carbon number of 1 - a one-valent hydrocarbon group is substituted, and a is an integer of 1 to 20). 2. The thermally conductive adhesive of claim 1, which further comprises (D) a thermosetting resin. -27- 201114869 3. The thermally conductive adhesive of claim 1, which further comprises (D) a thermosetting resin in an amount of from 1 to 20 parts by mass. [4] The thermally conductive adhesive of the second or third aspect of the invention, wherein the thermosetting resin is reactive with the oxime radical in the formula (1), and is the same as the scope of the patent application. The thermal conductive adhesive has a bonding strength to the copper sheet of 3 MPa or more. An electronic component which is obtained by adhering a material obtained by curing the thermally conductive adhesive agent according to any one of claims 1 to 5 to an electronic component on a heat dissipating member or a heat generating member. -28 201114869 IV. Designated representative map: (1) The representative representative of the case is: None. (II) Simple description of the symbol of the representative figure: None 201114869 V. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: none
TW99111421A 2009-04-14 2010-04-13 Thermal follower TWI468483B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098430A JP5562574B2 (en) 2009-04-14 2009-04-14 Thermally conductive adhesive

Publications (2)

Publication Number Publication Date
TW201114869A true TW201114869A (en) 2011-05-01
TWI468483B TWI468483B (en) 2015-01-11

Family

ID=42956202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99111421A TWI468483B (en) 2009-04-14 2010-04-13 Thermal follower

Country Status (4)

Country Link
JP (1) JP5562574B2 (en)
KR (1) KR101625687B1 (en)
CN (1) CN101864268B (en)
TW (1) TWI468483B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228753B (en) * 2010-12-01 2015-07-22 东丽株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
TWI577767B (en) 2012-04-10 2017-04-11 住友電木股份有限公司 Semiconductor device, die- attach material and method of manufacturing semiconductor device
BR112018067991A2 (en) 2016-03-08 2019-01-15 Honeywell Int Inc thermal interface material, and electronic component
WO2018030079A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Resin composition, sheet obtained therefrom, laminate, power semiconductor device, plasma processing apparatus, and process for producing semiconductor
JP2018093030A (en) * 2016-12-01 2018-06-14 三菱電機株式会社 Electronic device and electronic device manufacturing method
FR3060601B1 (en) * 2016-12-20 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives ADHESIVE COMPOSITION AND ITS USE IN ELECTRONICS
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) * 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP2019172892A (en) * 2018-03-29 2019-10-10 信越化学工業株式会社 Silicone-modified polyimide resin composition
TWI661022B (en) * 2018-05-30 2019-06-01 律勝科技股份有限公司 Adhesive composition and adhesive sheet and cured product thereof
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN115216267B (en) * 2022-08-16 2023-08-22 西卡(江苏)工业材料有限公司 Environment-friendly high-adhesion high-thermal-conductivity organic silicon pouring sealant and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042168A (en) * 1988-09-26 1990-05-16 M&T化学有限公司 Polyimide film die attach adhesives
JPH0344040A (en) * 1989-07-12 1991-02-25 Hitachi Ltd Semiconductor device and its manufacture
JP2716611B2 (en) * 1991-10-29 1998-02-18 住友ベークライト株式会社 High thermal conductive film adhesive that can be thermocompressed
US6218496B1 (en) * 1994-03-31 2001-04-17 Occidental Chemical Corporation Polyimidesiloxane adhesive
JP2003138241A (en) * 2001-08-21 2003-05-14 Hitachi Chem Co Ltd Heat-resistant adhesive and laminate using the same adhesive-applied heatsink and adhesive-applied metallic foil
JP4535245B2 (en) * 2004-05-21 2010-09-01 信越化学工業株式会社 Partially-blocked polyimide-polysiloxane copolymer, process for producing the same, and resin composition containing the copolymer
JP2006253449A (en) * 2005-03-11 2006-09-21 Omron Corp Lead frame module
JP5183076B2 (en) * 2006-02-16 2013-04-17 信越化学工業株式会社 Manufacturing method of semiconductor device
JP2008248114A (en) * 2007-03-30 2008-10-16 Shin Etsu Chem Co Ltd Adhesive composition
JP4548855B2 (en) * 2007-09-05 2010-09-22 信越化学工業株式会社 Thermosetting polyimide silicone resin composition and cured film thereof
JP5489261B2 (en) * 2009-04-14 2014-05-14 信越化学工業株式会社 Thermally conductive adhesive

Also Published As

Publication number Publication date
TWI468483B (en) 2015-01-11
JP2010248349A (en) 2010-11-04
KR101625687B1 (en) 2016-05-30
CN101864268A (en) 2010-10-20
CN101864268B (en) 2014-01-22
KR20100113984A (en) 2010-10-22
JP5562574B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
TWI468483B (en) Thermal follower
JP5723498B1 (en) Polyimide resin composition and thermally conductive adhesive film using the same
JP4771100B2 (en) Solvent-free polyimide silicone resin composition and cured product thereof
TWI460249B (en) Adhesive composition, adhesive film, and method of producing semiconductor device
JP6452243B2 (en) Polyimide resin composition and adhesive film using the same
JP6814046B2 (en) A light emitting device including an inorganic filler, an epoxy resin composition containing the same, and an insulating layer using the inorganic filler.
JP4748292B2 (en) Film adhesive for electronic parts and electronic parts
JP6923108B1 (en) Thermosetting resin composition, resin sheet and metal base substrate
JP2008248114A (en) Adhesive composition
CN103059787B (en) Thermally conductive adhesive composition, the bonding sheet material using said composition and thermal conductivity dicing die bonding film
JP4174274B2 (en) Polyamideimide resin, resin composition containing the same, coating material for electronic parts, and adhesive for electronic parts
TWI476261B (en) Thermal follower
JP2005272814A (en) Thermally conductive composition and thermally conductive film
JP5183076B2 (en) Manufacturing method of semiconductor device
JP2019108517A (en) Thermosetting resin composition, and cured product thereof, laminate, metal base substrate and power module
JP7491422B2 (en) Thermosetting resin composition
JP2017057340A (en) Polyimide resin composition and glue film using the same
JP4530126B2 (en) Adhesive composition and adhesive film
KR101447258B1 (en) Thermal conductive epoxy composites and their applications for light emitting diode fixtures
JP2020084086A (en) Thermosetting resin composition
JP2013194094A (en) Resin composition, resin film and cured material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees